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Abstract. Due to the uncertainty in accessing Web pages, analysis of
Web logs faces some challenges. Several rough k-means cluster algorithms
have been proposed and successfully applied to Web usage mining. How-
ever, they did not explain why rough approximations of these cluster al-
gorithms were introduced. This paper analyzes the characteristics of the
data in the boundary areas of clusters, and then a rough k-means cluster
algorithm based on a reasonable rough approximation (RKMrra) is pro-
posed. Finally RKMrra is applied to Web access logs. In the experiments
RKMrra compares to Lingras and West algorithm and Peters algorithm
with respect to five characteristics. The results show that RKMrra dis-
covers meaningful clusters of Web users and its rough approximation is
more reasonable.

1 Introduction

Web usage mining [1] can be viewed as the application of data mining techniques
to any collection of Web access logs. It is a promising research field because Web
user information needs are acquired by mining Web access logs. In recent years,
it has also become a subtopic of Web Intelligence (WI) [2, 3]. Clustering as
an important data mining technique is generally used in Web usage mining.
User profiles can be established by clustering Web access logs based on some
sort of similarity measures. Clustering is done so that Web users within the
same cluster behave more similarly than those in different clusters. Therefore,
it is very useful for Web applications, such as personalized recommendation [4],
business intelligence [13], and other Web based applications [1].

However, clustering faces some challenges in Web usage mining compared to
traditional data mining. Due to the uncertainty in accessing Web pages and the
ease of movement from one Web page to another, the clusters tend to have vague
or imprecise boundaries. Rough set theory [5, 14] as a kind of tool dealing with
imprecision and incomplete knowledge is widely used in clustering Web logs.
Several rough k-means cluster algorithms have been proposed, for example the
rough k-means cluster algorithm introduced by Lingras and West [6] and the
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refined one by Peters [7]. Some other algorithms for clustering Web users have
also been proposed in the literature [8, 9, 10, 11].

The concept of the rough approximation in clusters was presented by Lingras
and West. In rough clustering each cluster has two approximations, namely the
lower and upper approximations. Then Peters analyzed Lingras and West cluster
algorithm and pointed out some refinements. However, both of them did not
illustrate why these rough approximations in clusters were introduced.

The objective of this paper is to analyze the data objects in the boundary
areas of clusters. Based on the analysis, a reasonable rough approximation will
be suggested. Then the rationality of the rough approximation will also be ex-
plained.

The structure of the paper is as follows. In Section 2 we introduce two rough k-
means algorithms, which are Lingras and West algorithm and Peters algorithm.
Then theses algorithms are analyzed in Section 3. In Section 4 we suggest a more
reasonable rough approximation. Based on the rough approximation, a k-means
cluster algorithm is proposed. To evaluate the performance of the algorithm,
experiments are presented in Section 5. Finally, the paper concludes with a
summary in Section 6.

2 Review of Existing Rough k-Means Cluster Algorithms

2.1 Rough Properties of the Cluster Algorithms

Rough set is a kind of mathematical tool for dealing with uncertainty. All the
previous rough k-means cluster algorithms use this characteristic of rough set
theory. A cluster is represented by a rough set based on a lower approximation
and an upper approximation. Although the rough k-means algorithms do not
verify all the properties of rough set theory, they have some basic properties as
follows:

– Property 1: A data object X belongs to one lower approximation at most.
– Property 2: For a cluster (set) C and a data object X, if X belongs to the

lower approximation of C, then it also belongs to the upper approximation
of C.

– Property 3: If a data object X does not belong to any lower approximation,
then X belongs to two or more upper approximations. That means X lies in
two or more boundary areas of clusters.

2.2 Existing Rough k-Means Cluster Algorithms

Let Xn represents the nth data object which is a multidimensional vector. Ck

is the kth cluster (set), and its upper and lower approximation are Ck and Ck

respectively. CB
k = Ck − Ck is the boundary area of the cluster. mk represents

the centroid of cluster Ck .
K-means clustering is a process of finding centroids for all clusters, and assigns

objects to each cluster based on their distance from the centroids. This process
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is done iteratively until stable centroid values are found. Rough k-means cluster
algorithms incorporate rough sets into k-means clustering, which requires the
addition of the concept of lower and upper bounds, such as Lingras and West
algorithm and Peters algorithm.

Lingras and West algorithm use Eq. (1) to calculate the centroids of clusters
that is modified to include the effects of lower as well as upper bounds.

mk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωl

∑

Xn∈Ck

Xn
|Ck| + ωb

∑

Xn∈CB
k

Xn
|CB

k | for CB
k �= φ

ωl

∑

Xn∈Ck

Xn
|Ck| otherwise

(1)

where ωl is the lower weight and ωb is the boundary weight.
The next step in Lingras and West algorithm is to design criteria to determine

whether an object belongs to the upper or lower bound of a cluster. When
assigning the data object Xn to the lower or upper approximation, we look for
the centroid ms closest to Xn firstly, and then the following set T must be
determined first(see Eq. (2)).

T = {t : d(Xn,mk) − d(Xn,ms) ≤ ε ∧ k �= s} (2)

– If T �= φ , then Xn ∈ Ct , ∀t ∈ T .
– Else Xn ∈ Cs.

where ε is the threshold.
Lingras and West algorithm, described above, depends on three parameters

ωl, ωb and ε. Experimentation with various values of the parameters is able to
develop a reasonable rough set clustering and it also delivers meaningful results.
However, there exist some problems in the algorithm as presented by Lingas
and West, such as its numerical instability and its instability in computing the
number of clusters. Therefore, Peters made some improvement for the rough
cluster algorithm to resolve these problems.

The rough cluster algorithm proposed by Peters use Eq. (3) to calculate the
centroids of clusters.

mk = ωl

∑

Xn∈Ck

Xn

|Ck| + ωu

∑

Xn∈Ck

Xn

|Ck|
with ωl + ωu = 1 (3)

where ωl is the lower weight and ωu is the upper weight.
The next step is to forces a data object as a lower approximation for each

cluster (see Eq. (4)). Then, in order to assign any one of other data objects Xn,
except the data objects satisfying Eq. (4), to the lower or upper approximation,
looking for the centroid ms closest to Xn, so the set T ′ is determined (see
Eq. (5)).

d(Xl,ms) = min
n,k

d(Xn,mk) ⇒ Xl ∈ Cs ∧ Xl ∈ Cs (4)

T ′ =
{

t :
d(Xn,mk)
d(Xn,ms)

≤ ζ ∧ k �= s

}

(5)
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– If T ′ �= φ, then Xn ∈ Ct , ∀t ∈ T ′.
– Else Xn ∈ Cs.

where ζ is the threshold.

3 Comments on Existing Rough k-Means Algorithms

Peters analyzed Lingras and West cluster algorithm from several aspects and
then put forward some problems existing in the algorithm. Based on his analysis
a refined rough k-means cluster algorithm was proposed. However, there still
exist some improvements to be made.

1. Computation of Centroid
As can be seen from Eq. (2), the importance of the lower and upper approx-

imations are defined by the weight ωl and ωu respectively. Moreover, Peters
suggested a limitation ωl + ωu = 1. Obviously, the weights are determined by
end users and not related to the data objects in the lower or boundary area.

2. Numerical stability
Lingras and West algorithm is numerical instable since there are data con-

stellations where |C| = 0. When |C| = 0, the cluster C seems to have no sure
representative according to the definition of the lower approximation in rough
set theory. To avoid such kind of case, Peters suggested that each cluster has
at least one lower member and was forced to have a lower member in the ini-
tial cluster assignment. Therefore, it is better for a cluster algorithm to assure
|C| �= 0 whether it forces the lower member for each cluster or not.

3. Interpretation issues and objective function
Peters gave two (extreme) examples of data constellation to illustrate that

the objective function of relative distance between data objects was better than
that of absolute distance. However, if the objective function is taken into account
from other aspects, the data objects in the lower and boundary areas may be
explained more intuitively.

4 A Rough k-Means Algorithm Based on a Reasonable
Rough Approximation

4.1 Analysis of the Data Objects in the Boundary Areas of Clusters

The data objects that the cluster algorithms deal with are usually multidimen-
sional data sets. Suppose that the data objects are in the multidimensional space
now. After a rough k-means cluster algorithm is performed, several cluster means
(centroids) that are the representatives of clusters are generated. These centroids
are also multidimensional vectors. Note that an arbitrary object A and two clus-
ter centroids (C and B) in the multidimensional space form a triangle, which
also decide a plane (see Fig. 1). Moreover, the data objects E, D and A are in
the same plane.
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Fig. 1. The boundary area

Suppose

– A is an arbitrary data object. B and C are two cluster centroids. They are
all in the multidimensional space. Moreover, C is the cluster centroid closet
to A.

– O is the mid-point of the line segment from B to C.
– The straight line l is perpendicular to the line segment from B to C, so is

the straight line l′ .
– Angle b represents � ABC and angle c represents � ACB. Similarly, Angle b′

represents � EBC and angle c′ represents � ECB.

Given A is not an outlier. Intuitively, it is so hard to make clear whether the
object A belongs to the cluster C or the cluster B when A lies in the straight
line l , since the distance from A to C equals that from A to B. In this case, it is
easy to find that c=b. The closer A gets to C, namely the further A is from B,
the easier it is for A to be distinguished. Similarly, the larger the value of c-b is,
the further A is from the boundary area (such as the data object E). Obviously,
it is more intuitive to assign A to the lower approximation of the cluster C when
A is in the right side of l′ (such as the data object D). It can be explained that
the boundary area between cluster C and cluster B gets to its largest area when
c equals the maximum 90. Therefore, a more reasonable rough approximation is
suggested in the following to replace the distance measure for determining the
set T ” :

– If (c − b) ≤ ε′ and c ≤ ϑ, then A ∈ C and A ∈ B
– Else A ∈ C

Accordingly, the weights ωl and ωu are changed as follows:

ωl =
360 − 2ϑ

360
and ωu =

2ϑ

360

where ε′ and ϑ are two given thresholds. Note that 0 ≤ ε′, ϑ ≤ 90. The threshold
ε′ defines the biggest difference between from A to C and from A to another
cluster centriod B. The threshold ϑ determines the weights and reflects the
maximum of the boundary area. Note that ϑ must be selected from 0 to 90.
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4.2 The Proposed Algorithm

The outline of the rough k-means cluster algorithm based on a reasonable rough
approximation (RKMrra) can be stated as follows:

Step 1. Initialization. Randomly assign each data object to exactly one lower
approximation. By definition (Property 2, Section 2.1) the data objects in
the same cluster belong to both the lower and the upper approximations of
the cluster.

Step 2. Calculation of the new cluster centroids according to Eq. (2).
Step 3. Assign the data objects to the lower and upper approximations.

(i) For a given data object Xn determine its closest centroid ms:

dmin
n,s = d(Xn,ms) = min

k=1,...,K
d(Xn,mk) (6)

Assign Xn to the upper approximation of the cluster s: Xn ∈ Cs.
(ii) Determine whether Xn belongs to other approximations:

– Calculation of the set T ”:
Step 3.1 Initialization. The set T ” is set to φ. The set L is set to

{1,2, . . . , K}.
Step 3.2 L = L − {s} . For a centroid mj (j ∈ L) calculate two

angles as follows:

θs = arccos
d(Xn,ms)2 + d(ms,mj)2 − d(Xn,mj)2

2d(Xn,ms)d(ms,mj)

θj = arccos
d(Xn,mj)2 + d(ms,mj)2 − d(Xn,ms)2

2d(Xn,mj)d(ms,mj)

Step 3.3 If (θs − θj) ≤ ε′ and θs ≤ ϑ (0 ≤ ϑ ≤ 90 ), then T ” =
T ” ∪ {j} . Where ε′ and ϑ are two given thresholds.

Step 3.4 L = L − {j} . If L �= φ, continue with Step 3.2.
– If T ” �= φ, then Xn ∈ Ct, ∀t ∈ T ”
– Else Xn ∈ Cs

(iii) Update the weights ωl and ωu according to the following equations:

ωl =
360 − 2ϑ

360
and ωu =

2ϑ

360
(7)

Step 4. Check convergence of the algorithm.
– If the algorithm has not converged, continue with Step 2.
– Else STOP.
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4.3 Analysis of the Rationality of the Proposed Rough
Approximation

We analyze the rationality of the proposed rough approximation from the fol-
lowing three aspects:

1. Computation of Centroid
As can be seen from Step 3.3, the threshold ϑ defines the width of the bound-

ary area. Furthermore, it also decides the weights ωl and ωu (see Eq. (7)). There-
fore the weights are closely related to the boundary area. This leads to the ease
of decision made by end users or experts for the parameters ωl and ωu.

2. Numerical stability
Unlike the algorithms proposed by Lingras et al. or by Peters, the algorithm

proposed above is numerical stable since there doesn’t exist that |C| = 0. There-
fore, no data object need to be forced as lower members of clusters. Moreover,
each cluster has definite representatives.

3. Interpretation issues and objective function
The objective function (see Step 3.3) is taken into account from the angle

aspect instead of from the distance aspect. Moreover, the data objects in the
lower and boundary areas are explained more intuitively.

5 Experiments and Discussion

Experiments were conducted on the Web access logs of the introductory first
year course in computing science at Saint Mary’s University. Lingras and West
showed that the visits from students attending these courses could fall into one
of the following three categories (for more details see [6]):

1. Studious: These students always download the current set of notes regularly.
2. Crammers: These students download a large set of notes just before the

exam for a pre-test cramming.
3. Workers: These group of students are more interested in doing class and

lab assignments than downloading the notes.
Since the students in the courses are of different educational backgrounds.

Lingras and West decided to use the following five attributions representing
each visitor:

1. On campus/Off campus access
2. Day time/Night time access
3. Access during lab/class days or non-lab/class days
4. Number of hits
5. Number of notes downloaded
The values for the first three attributes were either 0 or 1. The last two

values were normalized to the interval [0,1] and the last attribute was the most
important for clustering visitors.

The total access logs (AllData) have a total size of 21637. We selected 3000
data records (D1) randomly out of the total access logs. Similarly, we got other
nine data sets (D2, D3, D4 and so on) with a size of 3000 respectively. The
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eleven data sets in all were used for the following experiments. Furthermore the
performance of RKMrra is compared to that of two other rough k-means clus-
ter algorithms, which are Lingras and West algorithm and Peters algorithm. To
exclude any influence of different selections of the weights, we consider these
algorithms with ωl = 0.7 and ωu = 0.3, which corresponds to ϑ = 54 in the fol-
lowing experiments. Each algorithm is repeated i-times (iteration factor). When
the clustering result doesn’t change any more, the cluster algorithm gets to the
maximum number of iterations (imax). Among the final results, the experiment
with the minimal Davies-Bouldin index (D-B Index) (for more details see [12])
is considered as best.

We focus on the following aspects to evaluate the performance of RKMrra:

– In Section 5.1 we analyze the convergence speed of the algorithm.
– In Section 5.2 we investigate the selections of the thresholds.
– In Section 5.3 we analyze the stability of the algorithm.
– In Section 5.4 we discuss the initial cluster assignment of the algorithm.
– In the last analysis (Section 5.5) we compare the clustering quality of RKM-

rra with that of the other two algorithms.

5.1 Convergence Speed

In order to evaluate the convergence speed of the cluster algorithms, we conduct
10 experiments on 10 data sets (D1, . . . , D10) for each algorithm. The thresholds
are chosen ε = 0.5, 0.6, 0.7 for Lingras and West algorithm, ζ = 1.1 for Peters
algorithm and ε′ = 0.7 for RKMrra. Table 1 shows the final number of iterations
when the result of a cluster algorithm remains stable. The last column is the
average number of iterations on 10 data sets for each algorithm.

There are some slightly differences among the average number of iterations
of the three algorithms. The average number of iterations of Peters algorithm
is the smallest, while that of RKMrra is larger and Lingras and West algorithm
has the largest average number of iterations.

In general, these three algorithms have similar convergence speeds.
Note that the threshold ε is chosen as three different values (0.5, 0.6 and 0.7)

for Lingras and West algorithm. However, the threshold ζ is chosen as a definite
value for Peters algorithm, so is the threshold ε′ for RKMrra.

We explain why we choose three different values for the threshold ε for Lingras
and West algorithm from the following two aspects:

1. Lingras and West algorithm is very sensitive to the threshold ε
For example, the number of the objects in the boundary area increases too

much when the threshold ε changes from 0.63 to 0.64 (see Table 2). The same

Table 1. The number of iterations

Algorithm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 AverIter

Lingras 40 24 26 36 27 21 28 34 30 32 29.8
Peters 30 29 26 30 29 19 26 26 34 27 27.6

RKMrra 30 26 25 25 26 34 33 28 30 26 28.3
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Table 2. The sensitivity to the threshold ε

Data set The number of the data ε
objects in the boundary area

D1 8 0.61,0.62
12 0.63

2598 0.64,0.65,. . .

cases happen when experiments are conducted on other data sets for Lingras
and West algorithm.

2. To maintain the consistency
In order to maintain the consistency of the analysis when comparing with

other algorithms, we limit the number of the data objects in the boundary area
within 150.

In conclusion, because of the analysis above, the threshold ε for Lingras and
West algorithm must be adjusted for different data sets.

5.2 Selections of the Thresholds

To evaluate the influence of the threshold on the algorithm we use the data set
(AllData) with the largest size. We analyze the selections of the thresholds from
the following two aspects:

1. The range of the threshold ε′

Lingras and West algorithm and Peters algorithm suggested the selections of
the threshold ε or ζ respectively. However, they did not point out the range
within which ε or ζ should be selected. Therefore, the selections of ε or ζ depend
on the decisions of experts or end users. Here we discuss the dependency of the
thresholds of the three algorithms. The results are illustrated in Fig. 2.

Lingras and West algorithm shows good performance and similar linear char-
acteristic with RKMrra when the value of the threshold (ε or ε′ ) ranges from 0.2
to 1.0. However, the number of data objects in the boundary area increases too
much suddenly so that Lingras and West algorithm delivers no meaningful result
for ε > 1.0 , so does the same case for Peters algorithm for ζ > 1.7. In contract
to Lingras and West algorithm and Peters algorithm, RKMrra still work well
even though ε′ becomes very large.

In order to better illustrate the range of ε′ , we consider four extreme cases
as follows:

– When ε′ = 90 and ϑ = 90, there exist that|C| > 0 and |CB | > 0.
– When ε′ = 90 and ϑ = 90, there exist that |C| > 0 and |CB| = 0.
– When ε′ = 0 and ϑ = 90, there exist that |C| > 0 and |CB| = 0.
– When ε′ = 0 and ϑ = 0, there exist that|C| > 0 and |CB | = 0.

where |C and |CB| are the number of data objects in the lower and boundary
areas of clusters respectively.

From the four extreme cases above, we conclude that there must exist data
objects in the lower area for any ε′ from 0 to 90. Therefore, RKMrra needn’t
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Fig. 2. Dependency on the threshold ε′

force the data objects as the lower members of clusters during the initial cluster
assignment. In contrast to RKMrra, it is a necessary step for Peters algorithm
(see Eq. (5)).

2. The rationality of the threshold ϑ
The threshold ϑ is used to do two things:
(1) Computing the weights. (see Eq. (7))
(2) Controlling the boundary area. (see Step 3.3)
To evaluate the dependency on the threshold ϑ of RKMrra, we remove the

threshold ϑ from Step 3.3 and replace the weights (ωl and ωu) in Eq. (7) with
the weights in Eq. (2). Table 3 illustrates how the results are influenced by the
threshold ϑ . The experiment is conducted on the data set AllData.

When ε′ is small, the two algorithms have the same clustering results no
matter whether the threshold ϑ is removed. As ε′ becomes very large, such as
the maximum value (90), the Davies-Bouldin indexes of both algorithms change a
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Table 3. The dependency of the threshold ϑ

Algorithm Whether removing ωl ωu ε′ The number of the D-B index
the parameter ϑ boundary objects

RKMrra No 0.7 0.3 1.1 616 0.626
RKMrra′ yes
RKMrra No 0.7 0.3 1.2 663 0.628
RKMrra′ yes

. . .
RKMrra No 0.7 0.3 90 12433 1.175
RKMrra′ yes 90 16532 6.766

lot. Moreover, the algorithm of removing the threshold ϑ (RKMrra’) has a larger
Davies-Bouldin index comparatively. Therefore, it is reasonable to suggest the
threshold ϑ to compute the weights and control the boundary area for RKMrra.

In general, in comparison to Lingras and West algorithm and Peters algorithm,
the parameter ϑ is reasonable suggested by RKMrra. At the same time, the
thresholds (ε′ and ϑ) of RKMrra are selected within a reasonable range. As
far as the selection of the thresholds within the specified range is concerned,
the setting of the thresholds has actually been relaxed. Furthermore, during the
initial cluster assignment, it isn’t a necessary step to force the data objects as
the lower members of clusters for RKMrra.

5.3 Stability

We use 10 data sets (D1, . . . , D10) to conduct the experiments. The thresholds
are chosen as in Section 5.1. Since the algorithms adjust the assignment of the
data objects gradually, we find that the Davies-Bouldin index of each algorithm
changes a lot in the experiments. Before the clustering result remains stable, the
Davies-Bouldin index sometimes increases and sometimes decreases. That means
the Davies-Bouldin index does not always monotonously increase or decrease. For
example, the Davies-Bouldin index (D-B index) of an algorithm increases from
i = 5 to i = 10 firstly, then decreases from i = 10 to i = 15 and increases again
from i = 15 to i = imax. If we use the number of jumps to record the change
of the D-B index, then the number of jumps of the example equals 3. Here we
analyze the stability of the algorithm from the number of jumps of the D-B index
in relation to iteration factors.

Table 4 shows the jumps of the D-B index of the algorithms run on ten different
data sets. The iteration factor is set to i = 5, 10, 15, 20, . . . ,imax respectively to

Table 4. The number of jumps of the D-B index

Algorithm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 AvJump

Lingras 1 2 3 4 1 1 2 2 2 3 21
10 = 2.1

Peters 1 1 2 3 1 1 2 1 2 3 17
10 = 1.7

RKMrra 1 2 1 1 4 1 1 2 2 1 16
10 = 1.6
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calculate the number of jumps of the D-B index. The last column of the table is
the average number of jumps.

Obviously, RKMrra with the smallest average value has the best stability.
Peters algorithm has a close value with the proposed one and Lingras and West
algorithm is the most instable.

5.4 The Initial Cluster Assignment

The number of the data objects in the boundary area (the boundary objects)
changes a lot for different iteration factors (see Table 5). We use the ratio of
the boundary objects for i = 5(imin) to those for i = imax to demonstrate this
change. Figure 3 shows the ratios of different algorithms run on five data sets
(D1, ..., D5). The ratios on other five data sets (D6, ..., D10) are similar to the
ratios on the five data sets (D1, ..., D5).

As can be seen from Fig. 3, there is a significant difference between RKMrra
and the other two algorithms. The ratio of RKMrra is either greater or less than
one, while the ratios of the other two algorithms are both less than or equal
one. This shows that the number of the boundary objects of RKMrra for imax is
greater than those for imin on some data sets. However, there don’t exist such
cases for Lingras and West algorithm and Peters algorithm.

Table 5. The ratio of the boundary objects for imax to those for imin

Algorithm D1 D2 D3 D4 D5
imax imin imax imin imax imin imax imin imax imin

Lingras 12 109 9 98 14 77 4 12 48 117
Peters 40 40 47 98 41 63 47 85 70 84

RKMrra 52 69 55 39 44 78 57 94 66 102
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Fig. 3. The ratio of the boundary objects for imax to those for imin



440 D. Miao et al.

The reason is that RKMrra just adjusts the assignment of the data objects
in the boundary area for each iteration factor. In contrast to RKMrra, Lingras
and West algorithm and Peters algorithm need to restrict the boundary area
within a certain range for the initial cluster assignment firstly, then select the
data objects around the limited boundary area.

5.5 Clustering Quality

As introduced above, among the rough k-means cluster algorithms, the one with
the minimal Davies-Bouldin index is considered as best. In order to evaluate the
clustering quality, We use 10 data sets (D1, . . . , D10) to conduct the experiments.
The thresholds are chosen as in Section 5.1. An interesting phenomenon is found
among the results of the experiments: The Davies-Bouldin index increases with
the number of data objects in the boundary area. That shows the clustering qual-
ity of an algorithm is better as the data objects in the boundary area decrease.

The boundary area in rough k-means clustering is also referred to as the secu-
rity zone [7]. Because the data objects in the boundary area have the possibilities
to belong to more than one clusters and require a second look before making a
final decision. Hence, the cluster algorithm with the maximum number of data
objects in the boundary area indicates the highest security requirements.

Strictly speaking, unlike the classical k-means cluster algorithms, the rough
k-means can be interpreted as two layer interval clustering approaches with
lower and upper approximations. Therefore, there isn’t a kind of cluster validity
criterion for the rough k-means cluster algorithms virtually.

Taken into consideration two factors (the D-B index and the number of the
boundary objects) analyzed above, here we use the ratio of the Davies-Bouldin
index to the number of data objects in the boundary area to evaluate the clus-
tering quality.The results are depicted in the Fig. 4. The algorithm with the
minimum ratio is considered as best.
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Fig. 4. The clustering quality



A Reasonable Rough Approximation for Clustering Web Users 441

Obviously, RKMrra has the similar clustering quality with Peters algorithm.
In contract to Lingras and West algorithm, the ratios of RKMrra and that of
Peters algorithm change smoothly and have small ratios. Therefore, RKMrra
and Peters algorithm have better clustering quality.

6 Conclusion

In this paper we introduce Lingras and West rough cluster algorithm and Peters
refined one at first and then comment on them to put forward some problems.
In order to solve these problems, the characteristics of the data objects in the
boundary area are analyzed. This led to the suggestion of a reasonable rough
approximation. The reasonable rough approximation is proposed from the angle
aspect, instead of from the distance aspect, although there are some relationships
between them. Based on the reasonable rough approximation suggested, a rough
k-means cluster algorithm is proposed.

A challenge of the rough k-means is resolved to some extent: the selection
of the initial parameters ωl and ωu. Since the parameters are limited within a
reasonable range according to the threshold ϑ. Furthermore, they are closely
related with the width of the boundary area. By tuning the initial parameters,
experts can interpret the clustering results according to the given width of the
boundary area.

At last, RKMrra is applied to Web logs. The paper describes the design of the
experiments to compare RKMrra with Lingras and West algorithm and Peters
algorithm with respect to five characteristics. The results show that RKMrra
discovers meaningful clusters of Web users and its rough approximation is more
reasonable.
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