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Abstract. Conventional clustering algorithms categorize an object into
precisely one cluster. In many applications, the membership of some of
the objects to a cluster can be ambiguous. Therefore, an ability to specify
membership to multiple clusters can be useful in real world applications.
Fuzzy clustering makes it possible to specify the degree to which a given
object belongs to a cluster. In Rough set representations, an object may
belong to more than one cluster, which is more flexible than the con-
ventional crisp clusters and less verbose than the fuzzy clusters. The
unsupervised nature of fuzzy and rough algorithms means that there is
a choice about the level of precision depending on the choice of parame-
ters. This paper describes how one can vary the precision of the rough
set clustering and studies its effect on synthetic and real world data sets.
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1 Introduction

In addition to clearly identifiable groups of objects, it is possible that a data set
may consist of several objects that lie on the fringes. The conventional clustering
techniques will mandate that such objects belong to precisely one cluster. Such
a requirement is found to be too restrictive in many data mining applications. In
practice, an object may display characteristics of different clusters. In such cases,
an object should belong to more than one cluster, and as a result, cluster bound-
aries necessarily overlap. Fuzzy set representation of clusters, using algorithms
such as fuzzy C-means, make it possible for an object to belong to multiple
clusters with a degree of membership between 0 and 1 [I]. In some cases, the
fuzzy degree of membership may be too descriptive for interpreting clustering
results. Rough set based clustering provides a solution that is less restrictive
than conventional clustering and less descriptive than fuzzy clustering.

Rough set theory has made substantial progress as a classification tool in
data mining [IIT4]. The basic concept of representing a set as lower and up-
per bounds can be used in a broader context such as clustering. Clustering in
relation to rough set theory is attracting increasing interest among researchers
[A2I80TOTEITS]. Lingras [5] described how a rough set theoretic classification
scheme can be represented using a rough set genome. In subsequent publications
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[6/7], modifications of K-means and Kohonen Self-Organizing Maps (SOMs) were
proposed to create intervals of clusters based on rough set theory.

Clustering is an unsupervised learning process. That means there is no cor-
rect solution prescribed by an expert. For example, in a multidimensional space
with a large number of objects, one cannot easily identify the number of clusters
an algorithm should aim for. Researchers have proposed various cluster quality
measures that make it possible to arrive at the appropriate number of clusters.
The rough clustering has an additional issue that one needs to consider, namely,
the precision of the clusters. Precision of the clusters refers to the number of
objects that are precisely assigned to a cluster. An object in rough set cluster-
ing may be assigned to exactly one cluster or it may be assigned to multiple
clusters. The objects that are assigned to multiple clusters are said to belong
to the boundary region. Percentage of objects in boundary region is inversely
proportional to the precision of rough clustering. This paper demonstrates how
the size of boundary region can be varied with the help of threshold in rough
set clustering. Experiments with a synthetic data set and a real world data set
also suggest a procedure for choosing an appropriate precision.

2 Adaptation of Rough Set Theory for Clustering

Due to space limitations, some familiarity with rough set theory is assumed [I14].
Rough sets were originally proposed using equivalence relations. However, it is
possible to define a pair of upper and lower bounds (A(C)7 A(C)) or a rough
set for every set C' C U as long as the properties specified by Pawlak [14] are
satisfied. Yao et al. [16] described various generalizations of rough sets by relaxing
the assumptions of an underlying equivalence relation. Such a trend towards
generalization is also evident in rough mereology proposed by Polkowski and
Skowron [12] and the use of information granules in a distributed environment
by Skowron and Stepaniuk. The present study uses such a generalized view of
rough sets. If one adopts a more restrictive view of rough set theory, the rough
sets developed in this paper may have to be looked upon as interval sets.
Let us consider a hypothetical classification scheme

U/P = {C,Cs,...,Ci} (1)

that partitions the set U based on an equivalence relation P. Let us assume
due to insufficient knowledge that it is not possible to precisely describe the sets
C;,1 < i < k, in the partition. Based on the available information, however, it
is possible to define each set C; € U/P using its lower A(C;) and upper A(C;)
bounds. We will use m-dimensional vector representations, u, v for objects and
c; for cluster Cj.

We are considering the upper and lower bounds of only a few subsets of U.
Therefore, it is not possible to verify all the properties of the rough sets [14].
However, the family of upper and lower bounds of ¢; € U/P are required to
follow some of the basic rough set properties such as:
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(P1) An object x can be part of at most one lower bound
(P2) x € A(c;) = x € A(cy)
(P3) An object x is not part of any lower bound <=

X belongs to two or more upper bounds.

Property (P1) emphasizes the fact that a lower bound is included in a set. If two
sets are mutually exclusive, their lower bounds should not overlap. Property (P2)
confirms the fact that the lower bound is contained in the upper bound. Property
(P3) is applicable to the objects in the boundary regions, which are defined as the
differences between upper and lower bounds. The exact membership of objects in
the boundary region is ambiguous. Therefore, property (P3) states that an object
cannot belong to only a single boundary region. Their discussion can provide
more insight into the essential properties for a rough set model. Note that (P1)-
(P3) are not necessarily independent or complete. However, enumerating them
will be helpful later in understanding the rough set adaptation of evolutionary,
neural, and statistical clustering methods. In the context of decision-theoretic
rough set model, Yao and Zhao [I7] provide a more detailed discussion on the
important properties of rough sets and positive, boundary, and negative regions.

3 Adaptation of K-Means to Rough Set Theory

Here, we refer readers to [3] for discussion on conventional K-means algorithm.
Incorporating rough sets into K-means clustering requires the addition of the
concept of lower and upper bounds. Calculation of the centroids of clusters from
conventional K-Means needs to be modified to include the effects of these bounds.
The modified centroid calculations for rough sets are then given by:

if A(c) # 0 and A(c) — A(c) =0

Pp— ExeA(c)mj
J [A(e)]

else if A(c) =0 and A(c) — A(c) # 0

Exe(A(c)—A(c)) T

T A(-A®@)

else

Cj = Wiower X ZTZ?S? " + Wypper X lei?é)c::((:))f 90_7’
where 1 < j < m. Here, m is the dimensions of the vectors ¢ and x. The
parameters Wipwer and Wypper correspond to the relative importance of lower and
upper bounds, and Wieyer + Wypper = 1. If the upper bound of each cluster were
equal to its lower bound, the clusters would be conventional clusters. Therefore,
the boundary region A(c) — A(c) will be empty, and the second term in the
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equation will be ignored. Thus, Eq. @) will reduce to conventional centroid
calculations.

The next step in the modification of the K-means algorithms for rough sets
is to design criteria to determine whether an object belongs to the upper or
lower bound of a cluster given as follows. For each object vector x, let d(x, c;)
be the distance between itself and the centroid of cluster c;. Let d(x,c;) =
min << d(x, ¢;). The ratio d(x, ¢;)/d(x, c;), 1 <1, j < k, are used to determine
the membership of x. Let T' = {j : d(x, ¢;)/d(x,c;) < threshold and i # j}.

1. T # 0, x € A(c;) and x € A(c;),Vj € T. Furthermore, x is not part of any
lower bound. The above criterion guarantees that property (P3) is satisfied.
2. Otherwise, if T =0, x € A(c;). In addition, by property (P2), x € A(c;).

It should be emphasized that the approximation space A is not defined based on
any predefined relation on the set of objects. The upper and lower bounds are
constructed based on the criteria described above.

4 Refinements of Rough Set Clustering

Rough clustering is gaining increasing attention from researchers. The rough K-
means approach, in particular, has been a subject of further research. Peters [15]
discussed various deficiencies of Lingras and West’s original proposal [6]. The
first set of independently suggested alternatives by Peters are similar to the Eq.
[@)). Peters also suggest the use of ratios of distances as opposed to differences
between distances similar to those used in the rough set based Kohonen algo-
rithm described in [7]. The use of ratios is a better solution than differences.
The differences vary based on the values in input vectors. The ratios, on the
other hand, are not susceptible to the input values. Peters [I5] have proposed
additional significant modifications to rough K-means that improve the algo-
rithm in a number of aspects. The refined rough K-means algorithm simplifies
the calculations of the centroid by ensuring that lower bound of every cluster
has at least one object. It also improves the quality of clusters as clusters with
empty lower bound have a limited basis for its existence. Peters tested the re-
fined rough K-means for various datasets. The experiments were used to analyze
the convergence, dependency on the initial cluster assignment, study of Davies-
Boulden index, and to show that the boundary region can be interpreted as a
security zone as opposed to the unambiguous assignments of objects to clusters
in conventional clustering. Despite the refinements, Peters concluded that there
are additional areas in which the rough K-means needs further improvement,
namely in terms of selection of parameters.

By its very definition, unsupervised learning is an exercise with no known
solution. Clustering is one of the primary examples of unsupervised clustering,
which attempts to find groups of objects with similar characteristics. There are
a number of unknowns involved in the process. The appropriate number of groups
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is not known apriori. Measures such as Davies-Boulden index have been used to
identify the most appropriate number of clusters. As mentioned previously, even
if there were clearly identifiable clusters of objects, it is quite often likely that
some of the objects may be straying from these clusters. In that case, the next
issue is how to decide what percentage of objects are straying from the neatly
formed clusters. These stray objects will then be assigned to boundary regions
of multiple clusters using the rough K-means algorithm. This paper experiments
with the issue of determining the appropriate number of boundary region objects
using two data sets. The first data set is a two dimensional set of objects arti-
ficially created with clearly identifiable clusters and stray objects. Since we can
visualize the appropriate rough set clustering, we can test the behavior of the
rough K-means algorithm for different values of threshold. The threshold para-
meter helps us control the size of the boundary region. We define the percentage
of boundary region as a ratio of cardinality of the union of all the boundary
regions divided by the total number of objects expressed as percentages, given

by:
[ Uceu/p(Ale) — A0))||
U]l
The following section studies the variation in BoundarySize along with qual-
itative analysis of changing memberships to suggest a procedure for identifying
appropriate value of the threshold in the rough K-means algorithm.

BoundarySize = x 100 (3)

5 Study Data and Experimental Analysis

We use two kinds of data, synthetic data and real data, to demonstrate how to
choose an appropriate threshold for rough clustering.

5.1 Synthetic Data

The synthetic data set has been developed to study how the BoundarySize
varies with threshold for rough clustering. In order to visualize the data set, we
restrict it to two dimensions as can be seen in Fig. [[l There are a total of 65
objects. It is obvious that there are three distinct clusters, denoted by C7, Cs
and C3. However, five objects, identified as z; (1 < i <5), do not belong to any
particular cluster. We performed rough clustering on the synthetic data set for
different values of threshold.

Fig.2lshows how changing the value of threshold can affect the BoundarySize
of rough clustering with & = 3 and wjower = 0.75. In the inset figure, we can
see a slow increase in the BoundarySize until the threshold reaches a value of
1.4, since the higher values lead to larger boundary regions. While the threshold
values were changed from 1.4 to 2, the BoundarySize remained constant at
7.7%. However, the re-distribution of objects in the boundary region did occur.
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Fig. 1. Synthetic data

For example, x5, which was in the boundary region of cs and c3, was also added
to the boundary region of ¢y, when threshold changed the value from 1.6 into 1.7.
It is obvious from Fig. [[l that x5 should only belong to the boundary region of co
and c3. That means increasing the value of threshold beyond a certain value can
lead to unreasonable addition of some objects to boundary regions of some of the
clusters. Moreover, one should not increase the boundary region too much as it
will lead to fairly indecisive and uninformative rough clustering. Fig. 2] shows a
sudden and sharp increase in the BoundarySize after threshold reaches a value
of 2. The BoundarySize goes up to a value of more than 50% when threshold
reaches the value of 2.5. Therefore, it is reasonable to consider threshold = 1.4
as an appropriate value in terms of the variance in BoundarySize. This value
of threshold can be identified by the fact that further number of increases in
threshold do not lead to net change in BoundarySize.

5.2 Real Data

This section reports experiments with a real world data set belonging to a small
retail chain. The data consists of all the customer transactions in 2006. There were
a total of 68716 transactions, one transaction per item purchased. 40260 of these
transactions can be associated with 5878 identified customers. The objective of
the experiment is to cluster the customers based on their spending habits. Each
customer is represented by his monthly spending patterns. The monthly spending
pattern gives a better understanding of a customer’s spending habits than total
spending. A customer who spends $100 regularly may be a little more loyal than
one who spends $1000 during a single visit. The chronological ordering of spending
does not help us understand the propensity of a customer to spend. For example, a
person spending $100, $200, $300 in three months will look different from the one
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Fig. 2. Synthetic data: Change in BoundarySize with threshold

who spends $300, $100, $200 during the same three months. Therefore, we sort
the spending values, which makes the two customers identical in terms of their
revenue generation potential. Instead of using twelve monthly spending and visit
values, which may be too detailed for the purpose of grouping, we will represent
the patterns using the lowest, highest and average spending. However, in some
cases, lowest and highest values can be outliers. Therefore, we use second highest,
second lowest and median values as a representative of the pattern.

313 customers visited in only one month. These customers were termed as
infrequent customers. It was decided that there was no further need for grouping
these customers. After eliminating the 313 customers, the number of customers
was 5565. After experimenting with different number of clusters we set k = 5.
Wiower Was set at 0.75.

Fig. B describes the BoundarySize changes with the threshold, which is sim-
ilar to the one found for the synthetic data. The BoundarySize goes up a little
slowly until the threshold reaches a value of 1.4, where there is a marked in-
crease. This suggests that 1.4 may be an appropriate value for the threshold.
We can also see a sudden and sharp jump at threshold = 2.5. This reinforces our
earlier observation that high values of threshold may lead to inconclusive rough
clustering. Fig. [l presents the rough centroids as the representative patterns for
each cluster. Cluster c; is the largest cluster consisting of moderate spenders who
spend $0 to $52 in a month. The next cluster, cs, is about the quarter the size
of ¢z with spending ranging from $0 to $100. Third cluster (c3) is even smaller



376 P. Lingras, M. Chen, and D. Miao

100
i %5
9 S
80 F - 15F
0F 21°F
25t
60 = [:I 'l Il Il Il I I L 3
50 k L1 L2 L3 14 L5 1.6 L7 2

Threzhold

BoundarySize (%)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 2 2.5
Threshold

Fig. 3. Real data: Change in BoundarySize with threshold
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Fig. 4. Rough centroids for the retail data

with spending ranging from $10 to $250. Fourth cluster has approximately 70
to 100 customers who spend $120 to $500. The last cluster is the smallest with
spending ranging from $137 to $1330. The overlap between different clusters for
threshold = 1.4 and threshold = 2 are shown in Table [Il It can be seen in
Table [[(a) that the intermediate clusters, i.e. c2, c3, and ¢4 have overlaps with
two clusters on either side. For example, co overlaps with ¢; and cg3, while cg
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Table 1. The number of objects in the intersection of clusters

Cl C2 C3 C4Ch Cl1 C2 C3 C4 C5
Cl - 403 0 0 O Cl - 809 81 11 8
C2403 - 177 0 O C2809 - 388 28 9
C3 0 177 — 41 0 C3 81 388 — 163 18
c4 0 0 41 - 9 C4 11 28 163 — 59
¢ 0 0 0 9 - Cs 8 9 18 59 -

(a)threshold=1.4 (b)threshold=2.0

overlaps with ¢ and ¢4, and ¢4 overlaps with c3 and c5. Clusters ¢; and c5 have
overlap with only one cluster: ¢; with ¢, and c5 with ¢4. When the threshold is
raised to 2.0, we can see from Table [I{b) that each cluster overlaps with other
four clusters. That means many objects have now moved to boundary regions of
all the clusters. This makes any conclusion about their membership impossible.

6 Conclusions

Rough set clustering makes it possible to assign stray objects - that may not
belong to a precise cluster - to boundary regions of two or more clusters. This
aspect of rough set clustering adds a degree of imprecision to the clustering
scheme. The degree of imprecision is an additional unknown in the unsupervised
learning based on rough set theory. The experiments with a synthetic data set
and a real world data set show that it is important to choose a right balance
between rough and precise cluster assignments. The paper describes a procedure
that can be used to control the imprecision in rough set clustering for the rough
K-means algorithm by varying the threshold parameter. The results presented
here lay foundations for a more comprehensive study of the quality of rough set
clustering, which will be presented in a subsequent publication.

Acknowledgement

The authors would like to thank China Scholarship Council and NSERC Canada
for their financial support.

References

1. Banerjee, M., Mitra, S., Pal, S.K.: Rough fuzzy MLP: knowledge encoding and
classification. IEEE Transactions on Neural Networks 9(6), 1203-1216 (1998)

2. Ho, T.B., Nguyen, N.B.: Nonhierarchical Document Clustering by a Tolerance
Rough Set Model. International Journal of Intelligent Systems 17(2), 199-212
(2002)

3. Hartigan, J.A., Wong, M.A.: Algorithm AS136: A K-Means Clustering Algorithm.
Applied Statistics 28, 100-108 (1979)



378

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

P. Lingras, M. Chen, and D. Miao

Hirano, S., Tsumoto, S.: Rough Clustering and Its Application to Medicine. Infor-
mation Sciences 124, 125-137 (2000)

Lingras, P.: Unsupervised Rough Set Classification using GAs. Journal Of Intelli-
gent Information Systems 16(3), 215-228 (2001)

. Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough K-means.

Journal of Intelligent Information Systems 23(1), 5-16 (2004)

. Lingras, P., Hogo, M., Snorek, M.: Interval Set Clustering of Web Users using Mod-

ified Kohonen Self-Organizing Maps based on the Properties of Rough Sets. Web
Intelligence and Agent Systems: An International Journal 2(3), 217-230 (2004)

. Mitra, S.: An evolutionary rough partitive clustering. Pattern Recognition Let-

ters 25, 1439-1449 (2004)

. Mitra, S., Bank, H., Pedrycz, W.: Rough-Fuzzy Collaborative Clustering. IEEE

Trans. on Systems, Man and Cybernetics 36(4), 795-805 (2006)

Nguyen, H.S.: Rough Document Clustering and the Internet. Handbook on Gran-
ular Computing (2007)

Pedrycz, W., Waletzky, J.: Fuzzy Clustering with Partial Supervision. IEEE Trans.
on Systems, Man and Cybernetics 27(5), 787-795 (1997)

Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate
Reasoning. International Journal of Approximate Reasoning 15(4), 333-365 (1996)
Peters, J.F., Skowron, A., Suraj, Z., Rzasa, W., Borkowski, M.: Clustering: A
rough set approach to constructing information granules. In: Proceedings of 6th
International Conference on Soft Computing and Distributed Processing, Rzeszow,
Poland, June 24-25, 2002, pp. 57-61 (2002)

Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1992)

Peters, G.: Some Refinements of Rough k-Means. Pattern Recognition 39(8), 1481
1491 (2006)

Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Infor-
mation Sciences 109, 21-47 (1998)

Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models.
Information Sciences (to appear, 2008)



	Precision of Rough Set Clustering
	Introduction
	Adaptation of Rough Set Theory for Clustering
	Adaptation of K-Means to Rough Set Theory
	Refinements of Rough Set Clustering
	Study Data and Experimental Analysis
	Synthetic Data 
	 Real Data 

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




