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Abstract. Decision theoretic framework has been helpful in providing
a better understanding of classification models. In particular, decision
theoretic interpretations of different types of the binary rough set clas-
sification model have led to the refinement of these models. This study
extends the decision theoretic rough set model to supervised and unsu-
pervised multi-category problems. The proposed framework can be used
to study the multi-classification and clustering problems within the con-
text of rough set theory.
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1 Introduction

Probabilistic extensions have played a major role in the development of rough
set theory since its inception. Recently, Yao [10] explained a list of probabilistic
models under the decision theoretic framework. The models included in the
overview were: rough set-based probabilistic classification [7], 0.5 probabilistic
rough set model [4], decision-theoretic rough set models [8,9], variable precision
rough set models [11], rough membership functions [4], parameterized rough set
models [5], and Bayesian rough set models [6]. The study of such a variety of
models under a common framework also helps understand the similarities and
differences between the models. Such a comparison can help in choosing the right
model for the application on hand. It can also help in creating a new model that
combines desirable features of two or more models. Finally, it can also lead to a
unified model that can be moulded to a given application requirement. Yao [10]
described how the decision theoretic framework exposed additional issues in
probabilistic rough set models.

Rough set theory - like many other classification techniques - was originally
developed for binary classification. That is, an object either belongs to a given
class or does not. Many classification techniques are not easily extendible to a
multi-class problem. The objective of a multi-class problem is to assign an object
to any of the k possible classes. Whenever a technique cannot be easily extended
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to the multi-class problem, researchers have generally chosen two approaches,
namely one-versus-one or one-versus-rest [1].

This paper describes how rough set theory does not need to use either the one-
versus-one or one-versus-rest technique for extending the binary classification.
The framework described in this paper uses the term category instead of class to
emphasize the fact that it can be used in supervised and unsupervised learning.
Conventionally, the classification techniques refer to only supervised learning.
When the objects are categorized without the help of a supervisor, the categories
are usually called clusters. The proposed multi-category framework is applicable
to both classification and clustering problems.

The paper further extends the binary decision theoretic rough set framework
for a multi-category problem. The extended framework is shown to reduce to
Yao’s binary classification approach when the number of categories is equal to
two. Moreover, the framework is also shown to be applicable to rough clustering
techniques. Finally, it is shown that the decision theoretic crisp categorization
is a special case of the rough set based approach. The paper concludes with
a discussion on the implications of introducing decision theoretic framework in
further theoretical development, especially in the rough clustering area.

2 Literature Review

Due to space limitations, we assume familiarity with the rough set theory [5].

2.1 The Bayesian Decision Procedure

The Bayesian decision procedure deals with making decision with minimum risk
based on observed evidence. Let Ω = {ω1, . . . , ωs} be a finite set of s states, and
let A = {a1, . . . , am} be a finite set of possible m actions. Let P (ωj |x) be the
conditional probability of an object x being in state ωj given that the object is
described by x. Let λ(ai|ωj) denoted the loss, or cost for taking action ai when
the state is ωj . For an object x with description x, suppose action ai is taken.
Since P (ωj |x) is the probability that the true state is ωj given x, the expected
loss associated with taking action ai is given by:

R(ai|x) =
s∑

j=1

λ(ai|ωj)P (ωj |x) (1)

The quantity R(ai|x) is also called the conditional risk.
Given a description x, a decision rule is a function τ(x) that specifies which

action to take. That is, for every x, τ(x) takes one of the actions, a1, . . . , am.
The overall risk R is the expected loss associated with a given decision rule,
defined by:

R =
∑

x
R(τ(x)|x)P (x) (2)

If the action τ(x) is chosen so that R(τ(x)|x) is as small as possible for every
object x. For every x, compute the conditional risk R(ai|x) for i = 1, . . . , m
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defined by equation (1) and select the action for which the conditional risk is
minimum. If more than one action minimizes R(ai|x), a tie-breaking criterion
can be used.

Yao proposed probabilistic rough set approximations in [10], which applies the
Bayesian decision procedure for the construction of probabilistic approximations.
The classification of objects according to approximation operators in rough set
theory can be easily fitted into the Bayesian decision-theoretic framework. Let
Ω = {A, Ac} denote the set of states indicating that an object is in A and not
in A, respectively. Let A = {a1, a2, a3} be the set of actions, where a1,a2 and a3
represent the three actions in classifying an object, deciding POS(A), deciding
NEG(A), and deciding BND(A), respectively. The probabilities P (A|[x]) and
P (Ac|[x]) are the probabilities that an object in the equivalence class [x] belongs
to A and Ac, respectively. The expected loss R(ai|[x]) associated with taking the
individual actions can be expressed as:

R(a1|[x]) = λ11P (A|[x]) + λ12P (Ac|[x]), (3)
R(a2|[x]) = λ21P (A|[x]) + λ22P (Ac|[x]), (4)
R(a3|[x]) = λ31P (A|[x]) + λ32P (Ac|[x]), (5)

where λi1 = λ(ai|A), λi2 = λ(ai|Ac), and i = 1, 2, 3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

If R(a1|[x]) ≤ R(a2|[x]) and R(a1|[x]) ≤ R(a3|[x]), decide POS(A) ;
If R(a2|[x]) ≤ R(a1|[x]) and R(a2|[x]) ≤ R(a3|[x]), decide NEG(A) ;
If R(a3|[x]) ≤ R(a1|[x]) and R(a3|[x]) ≤ R(a2|[x]), decide BND(A).
Tie-breaking criteria should be added so that each object is classified into

only one region. Since P (A|[x]) + P (Ac|[x]) = 1, the rules to classify any object
in [x] can be simplified based on the probability P (A|[x]) and the loss function
λij (i = 1, 2, 3 ;j = 1, 2).

Based on the general decision-theoretic rough set model, it is possible to
construct specific models by considering various classes of loss functions. In fact,
many existing models can be explicitly derived from the general model. For
example, the 0.5 probabilistic model can be derived when the loss function is
defined as follows:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (6)

A unit cost is incurred if an object in Ac is classified into the positive region or
an object in A is classified into the negative region; half of a unit cost is incurred
if any object is classified into the boundary region. The 0.5 model corresponds
to the application of the simple majority rule.

3 Extension to the Multi-category Problem

Many classification techniques are originally designed for binary classification.
Examples include Decision trees, Perceptrons, and Support Vector Machines.
These techniques tend to classify objects into two classes such as the positive
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or negative regions in rough set theory. Some of these techniques have natural
extensions for multi-class problems. Others use either the one-versus-one or one-
versus-rest technique [1]. Let C = {c1, . . . , ck} be a set of categories. We will
use the terms category, classes, and clusters interchangeably whenever it is ap-
propriate in the context. In the one-versus-one approach, a binary classification
model is created for every pair of classes (ci, cj). The training of such a model
uses only the subset of those objects, which were classified as either ci or cj . It
can be easily seen that there will be a total of k× (k−1) such models. Assuming
uniform distribution, there will be n

k objects belonging to each class, where n is
the size of the complete training set. While it would require significant compu-
tational effort to train k × (k − 1) models, on an average each model will have
only 2×n

k objects. The one-versus-rest technique, on the other hand, creates a
binary model for each class ci by classifying objects as either belonging to ci or
not belonging to ci. There are only k such models. However, the training set for
each model is the same size as the complete training set, i.e. n. Moreover, the
training set is biased towards objects not belonging to the class. For example,
for any given class ci there will be n

k objects belonging to ci and (k−1)×n
k ob-

jects not belonging to ci. Therefore, the chances of a classification model erring
towards predicting that an object does not belong to ci are higher. As a result,
studies have shown that the one-versus-one approach tends to be more accurate
than the one-versus-rest approach. However, one-versus-one multi-classification
creates a large number of models and works with a small amount of training data
for each model. Smaller training data can lead to over-fitting and may explain
the relative accuracy of the one-versus-one approach.

Given the inadequacies of both one-versus-one and one-versus-rest models, a
classification technique that has a natural multi-class extension is more desirable.
Rough set theory has such a natural extension. In this section, the multi-class
extension of rough set is described. It should be noted that many implementation
of rough set theory use similar philosophy for multi-classification. This section
provides a formal framework that can be used with both supervised and unsu-
pervised rough categories. We will start with formal definitions for the proposed
framework.

Objects: Let X = {x1, . . . , xn} be a finite set of objects.

Categories: Let C = {c1, . . . , ck} be a finite set of k states given that C is the
set of categories and each category is represented by a vector ci (1 ≤ i ≤ k).
Furthermore, let C partition the set of objects X .

Object and category similarity: For every object, xl, we define a non-empty
set Tl of all the categories that are similar to xl. Clearly, Tl ⊆ C. We will use
xl → Tl to denote the fact that object xl is similar to all the elements of set Tl.
Let us further stipulate that object xl can be similar to one and only one Tl.
The definition of the similarity will depend on a given application. Later on we
will see an example of how to calculate similarity using probability distribution.
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Upper and lower approximations: If an object xl is assigned to a set Tl,
then the object belongs to the upper approximations of all categories ci ∈ Tl. If
| Tl |= 1, then xl belongs to the lower approximation of the only ci ∈ Tl. Please
note that when | Tl |= 1, {ci} = Tl. Therefore, upper (apr) and lower (apr)
approximation of each category ci can be defined as follows:

apr(ci) = {xl|xl → Tl, ci ∈ Tl}, (7)
apr(ci) = {xl|xl → Tl, {ci} = Tl}. (8)

Since we do not define upper and lower approximations of all the subsets of
X , we cannot test all the properties of rough set theory. However, it can be
easily shown that the resulting upper and lower approximations in fact follow
important rough set theoretic properties given the fact that C is a partition of
X specified by Lingras and West [2].

– An object can be part of at most one lower approximation (P1)
– xl ∈ apr(ci) ⇒ xl ∈ apr(ci) (P2)
– An object xl is not part of any lower approximation (P3)

�
xl belongs to two or more upper approximations.

4 Loss Functions for Multi-category Problem

Following Yao [10], we define a set of states and actions to describe the decision
theoretic framework for multi-category rough sets.

States: The states are essentially the set of categories C = {c1, . . . , ck}.

An object is said to be in one of the categories. However, due to lack of infor-
mation we are unable to specify the exact state of the object. Therefore, our
actions are defined as follows.

Actions: Let B = {B1, . . . , Bs} = 2C −{∅} be a family of non-empty subsets of
C, where s = 2k−1. We will define a set of actions b = {b1, . . . , bs} corresponding
to set B, where bj represents the action in assigning an object xl to the set Bj .

Note that some of the sets Bj ’s will be the same as the set Tl’s defined
in previous sections. The reason we choose to use a different notation is to
emphasize the fact that we do not specify any similarity between xl and Bj as
we do in case of xl and Tl. Note that there will be a total of n Tl’s, one for each
object, and they may not be distinctly different from each other. That is, two
objects may be similar to the same subset of C. On the other hand, there will
be exactly s = 2k − 1 distinct Bj ’s.

Now we are ready to write the Bayesian decision procedure for our multi-
category rough sets as follows.

Let λxl(bj |ci) denote the loss, or cost, for taking action bj when an object
belongs to ci. Let P (ci|xl) be the conditional probability of an object xl being
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in state ci. Therefore, the expected loss R(bj|xl) associated with taking action
bj for an object xl is given by:

R(bj|xl) =
k∑

i=1

λxl(bj |ci)P (ci|xl) (9)

For an object xl, if R(bj|xl) ≤ R(bh|xl), ∀ h = 1, . . . , s, then decide bj .
We generalize the loss function for the 0.5 probabilistic model [3] given by

Yao [10] as follows:

λxl(bj |ci) =
|bj − Tl|

|bj|
if ci ∈ bj ;

λxl(bj |ci) =
|bj − ∅|

|bj|
if ci /∈ bj . (10)

When ci belongs to bj, the loss for taking action bj corresponds to the fraction
of bj that is not related xl. Otherwise, the loss for taking action bj will have the
maximum value of 1.

It can be easily seen that when k is equal to 2, C = {c1, c2}. Therefore,
B = {{c1}, {c2}, {c1, c2}}. Without loss of generality, we can designate c1 to be
the positive class, c2 to be the negative class, and {c1, c2} to be the boundary
region. Then one can easily verify that λxl({c1}|c1) = 0, λxl({c2}|c1) = 1,
and λxl({c1, c2}|c1) = 1

2 , which corresponds to the loss function described by
Yao [10] for the 0.5 probabilistic model [3].

Let us illustrate the proposed rough multi-category expected loss function
with the following example.

Example 1. Let C = {c1, c2, c3, c4} and B = 2C −{∅} (|B| = 24 −1 = 15). For
an object xl, let {P (c1|xl), P (c2|xl), P (c3|xl), P (c4|xl)}={0.15, 0.2, 0.25, 0.4}.
We will define the set Tl such that xl → Tl as: Tl = {ch|P (ch|xl) > 0.2} =
{c3, c4}. The expected loss associated with taking action bj is shown in Table
1. The values of the expected loss seem quite reasonable. The lowest value is
obtained for the set Tl = {c3, c4}. It is highest for the sets that do not contain
either c3 or c4. Since the probability of P (c4) > P (c3), the sets containing c4
tend to have lower loss than those containing c3.

Example 2. One can also obtain a crisp categorization from the proposed for-
mulation by stipulating that all the Tl’s in our formulation are singleton sets.
We can demonstrate this by using the same probability function, but changing
the criteria for defining the set Tl such that xl → Tl as: Tl = {ch} such that
P (ch|xl) is maximum. If more than one such ch have the same (maximum) value,
we arbitrarily choose the first ch. This ensures that Tl is a singleton set. In our
example, with {P (c1|xl), P (c2|xl), P (c3|xl), P (c4|xl)} = {0.15, 0.2, 0.25, 0.4},
Tl = {c4}. The resulting expected loss function in this example is shown in
Table 2.
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Table 1. Expected loss for all the actions from Example 1

The expected loss R(bj |xl) Action

0.35 {c3, c4}
0.433 {c2, c3, c4}
0.467 {c1, c3, c4}
0.5 {c1, c2, c3, c4}
0.6 {c4}
0.7 {c2, c4}

0.725 {c1, c4}
0.75 {c3}, {c1, c2, c4}
0.775 {c2, c3}
0.8 {c1, c3}, {c1, c2, c3}
1 {c1}, {c2}, {c1, c2}

Table 2. Expected loss for all the actions from Example 2

The expected loss R(bj |xl) Action

0.6 {c4}
0.75 {c3}
0.8 {c2}
0.85 {c1}

5 Concluding Remarks

This paper describes an extension of the Bayesian decision procedure described
by Yao [10] for multi-category rough sets. The proposal is a natural extension of
the conventional binary rough set classification. Unlike some other classification
techniques such as Perceptrons and Support Vector Machines, it is not necessary
to create a multiple binary classifiers using either the one-versus-one or one-
versus-rest approaches. This is a significant advantage of rough set theory as
both one-versus-one and one-versus-rest approaches can be difficult to implement
in practice. The one-versus-one approach can lead to large number of binary
classifiers, which may overfit the training data. On the other hand, the one-
versus-rest approach tends to have lower classification accuracy.

In addition to extending the Bayesian decision process from binary rough
set classifiers to rough set multi-classifiers, the approach can easily be applied to
unsupervised rough set classifiers. The definition of probability used in this paper
is abstract as opposed to the frequency based values used in various probabilistic
rough set models, including the unified framework proposed by Yao [10]. By
changing the definition of the probability one can easily adopt the Bayesian
decision process to rough set based clustering. Such an adoption can be useful in
further theoretical development in rough clustering. Results of such development
will be reported in future publications.
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