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Abstract. The absolutely abstract and accurate geometric elements de-
fined in Euclidean geometry always have lengths or sizes in reality. While
the figures in the real world should be viewed as the approximate descrip-
tions of traditional geometric elements at the rougher granular level. How
can we generate and recognize the geometric features of the configura-
tions in the novel space? Motivated by this question, rough geometry
is proposed as the result of applying the rough set theory to the tra-
ditional geometry. In the new theory, the geometric configuration can
be constructed by its upper approximation at different levels of granu-
larity and the properties of the rough geometric elements should offer
us a new perspective to observe the figures. In this paper, we focus on
the foundation of the theory and try to observe the topologic features of
the approximate configuration at multiple granular levels in rough space.
Then we also attempt to apply the research results to the problems in
different areas for novel solutions, such as the applications of rough ge-
ometry in the traditional geometric problem (the question whether there
exists a convex shape with two distinct equichordal points) and the recog-
nition work with principal curves. Finally, we will describe the questions
induced from our exploratory research and discuss the future work.

Keywords: Rough sets, rough geometry, geometric invariants, equi-
chordal points, principal curves.

1 Introduction

As the belief of Zadeh that there exits the information granularities in many
areas with different forms (see, e.g., [27,28]), human problem solving always
involves the ability of perception, abstraction, representation and understanding
of real world problems at different levels of granularity. Through the research
on the basic issues of “Granular Computing”(see, e.g., [8,9,10,11]), the complex
or uncertain problem is tried to be transformed among the different granular
spaces for seeking the proper solutions (see, e.g., [21,22]).

Like the research focus of granular computing theory, the multilevel methods
of analyzing the image content in both spatial and frequency domain have been
the hotspots in the research area of pattern recognition (see, e.g., [1,7]). The
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analysis of the objects contained in the digital images from different levels or
views can not only improve the recognition efficiency, but also help to understand
the images’ content more effectively, and this recognition process may be more
coincident with the human intelligence. In recent years, rough set theory has
been applied to the research of image analysis and processing as a granular
computing model to provide the hierarchical methods (see, e.g., [2,15,16]).

Especially, some popular issues in the research area of image analysis, such
as the recognition methods of off-line handwriting characters, usually pay atten-
tion to the geometric features of the objects (see, e.g., [14,29]), but the geometric
elements analyzed in practical applications often have different representations
from those in the traditional geometry. In other words, the figures in the real
world should be viewed as the approximate descriptions of traditional geomet-
ric elements at rougher granular level. How can we generate and recognize the
geometric features of the configurations in the novel space?

Euclidean geometry has been the most popular measurement tool in the past
thousands years, but the absolutely abstract and accurate geometric elements
defined in Euclidean geometry always have lengths or sizes in reality. For exam-
ple, the points and straight lines in a digital image are sized rather than abstract
and the sizes of these geometric elements depend on the resolution of this dig-
ital image. In another view, the Euclidean points lying in the region of a pixel
are indiscernible and equivalent in the digital image, then the partition of the
Euclidean points can be obtained from this equivalence relation and the pixels
can be considered as the equivalence classes of the Euclidean points. So rough
geometry is proposed as the result of applying the granular computing scheme
and rough set theory to the traditional geometry [12].

Fig. 1.1 shows a Euclidean straight line in digital space, and Fig. 1.2 indicates
that the representation of this line in the digital space is formed by the pixel set
that covers it. The pixel set can also be viewed as the union of the equivalence
classes which have nonempty intersections with the straight line, namely, the
pixel set constructs the upper approximation of the Euclidean straight line under
the partitions in digital space.

As a matter of fact, most geometric configurations in the real world are the
approximate representations of Euclidean geometric elements, and the geomet-
ric properties of these approximate configurations are often different from those
of the corresponding Euclidean geometric elements. The new properties of the

1.1: Euclidean Line 1.2: Digital Line

Fig. 1. A Euclidean Straight Line in Digital Space
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geometric configuration constructed by upper approximation at different granu-
lar levels should offer us a new perspective to observe the geometric elements.

The rest of this paper is organized as follows. Section 2 focuses on the theoretic
foundation of rough geometry and based on that, we try to study the geometric
properties and observe the variation of the topologic features of the approximate
configuration at different granular levels in rough space. Then in Section 3, we
also attempt to apply the research results to the problems in different areas for
novel solutions, such as the applications of rough geometry in the traditional
geometric problem (the question whether there exists a convex shape with two
distinct equichordal points) and the recognition work with principal curves will
be mainly introduced. Finally, we will describe the questions induced from our
exploratory research and discuss the future work in Section 4.

2 Rough Geometry

2.1 Rough Sets

The rough geometric space is constructed based on the foundation of rough set
theory (see, e.g., [17,18,19]), so the notions of rough sets which are related to
rough geometry will be firstly recalled as shown below.

Information system IS is a pair S = (U, A), where U is a non-empty finite set
of objects and A is a non-empty finite set of attributes. Each subset of attributes
B ⊆ A determines a binary indiscernibility relation INDS(B) : INDS(B) ⇒
{(x, y) ∈ U × U |∀a ∈ B, a(x) = a(y)}. Because the binary relation INDS(B)
is reflexive, symmetric and transitive, INDS(B) is an equivalence relation and
defines a partition on the universe U .

Given an equivalence relation R, the equivalence class of the element x ∈ U
under the partition induced from R consists of all objects y ∈ U such that xRy,
which is defined as [x]R = {y|y ∈ U ∧ xRy}, the objects in an equivalence class
are indiscernible from each other. The equivalence class of any object x under the
partition formed by the indiscernibility relation INDS(B) (B ⊆ A) is usually
denoted by [x]B for simplicity.

In an information system S = (U, A), the subset of objects X ⊆ U can be
described by the attributes subset B ⊆ A, i.e. X can be approximated using
only the information contained in B by constructing the B-lower and B-upper
approximations, which are denoted by BX and BX respectively, where BX =
{x|[x]B ⊆ X} and BX = {x|[x]B ∩ X �= ∅}. BX and BX can also be viewed as
the intension and extension of the concept represented by X .

2.2 Rough Space and Rough Configuration

In rough geometry, rough set theory is combined with the traditional geometry
and the figures are represented by the equivalence classes and set approximation.
These approximate representations are the new geometric elements of distinct
features in different space. In the following paragraphs, the fundamental concepts
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about the new space and configuration approximation defined in rough geometry
will be introduced.

Let ϕ is a mapping from a real number field 
 to a subset of real num-
bers 
′

. For ∀x, y ∈ 
, if x ≤ y ⇒ ϕ(x) ≤ ϕ(y) , ϕ is called a monotone
increasing mapping from 
 to 
′

, the binary relation induced from the mapping
ϕ : Eϕ = {(x, y) ∈ 
 × 
|ϕ(x) = ϕ(y)} is obviously an equivalence relation
on 
. Let 
n is an n-dimension Euclidean space, the indiscernibility relation
“≈ϕ” defined by Eϕ in 
n is as follows: two n-dimension points (x1, . . . , xn) and
(y1, . . . , yn) are indiscernible iff (x1, y1) ∈ Eϕ, (x2, y2) ∈ Eϕ,. . . ,(xn, yn) ∈ Eϕ,
i.e. (x1, . . . , xn) ≈ϕ (y1, . . . , yn) ⇔ (xi, yi) ∈ Eϕ, (i = 1, 2, . . . , n). The relation
≈ϕ is reflexive, symmetric and transitive, thus it is an equivalence relation and
determines a partition in 
n, in other words, the points of an n-dimension space
can be divided into the corresponding regions through the mapping ϕ.

Definition 1. Rough Space. Let ≈ϕ is an equivalence relation in n-dimension
space 
n, the set of all equivalence classes formed by the partition induced from
≈ϕ, which denoted by 
n/ ≈ϕ is called a rough space.

Definition 2. Rough Point. Let 
n/ ≈ϕ is a rough space induced from the
equivalence relation ≈ϕ in an n-dimension space 
n, an element in the rough
space, i.e. an equivalence class under the partition of relation ≈ϕ is called a
rough point in the space 
n/ ≈ϕ.

Definition 3. Rough Configuration. Let 
n/ ≈ϕ is a rough space induced
from the equivalence relation ≈ϕ in an n-dimension space 
n, a subset of rough
points in the rough space is called a rough configuration in the space 
n/ ≈ϕ.

2.1: S in �n/ = 2.2: U≈1(S) in �n/ ≈1 2.3: U≈2(S) in �n/ ≈2

Fig. 2. Upper Approximations of A Straight Line in Different Rough Spaces

Definition 4. Rough Subspace. Let 
n/ ≈1 and 
n/ ≈2 are two rough
spaces, if every rough point of 
n/ ≈1 is contained in a rough point of 
n/ ≈2,
the space 
n/ ≈1 is called a rough subspace of 
n/ ≈2, i.e. 
n/ ≈1 is a rough
subspace induced from 
n/ ≈2, and 
n/ ≈2 is called the upper space of 
n/ ≈1.
The relation between such two spaces can be denoted by 
n/ ≈1≤ 
n/ ≈2.

Furthermore, a special rough space 
n/ = is defined as {{(x1, . . . , xn)}|(x1, . . .
, xn) ∈ 
n}, i.e. every equivalence class in the space 
n/ = contains only one
Euclidean point. If the difference between one Euclidean point and the set con-
taining only this point is ignored, the rough space 
n/ = is just the n-dimension
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Euclidean space 
n. Obviously, 
n/ = is a rough subspace of any rough space

n/ ≈ϕ.

Definition 5. Transformation of Upper and Lower Approximation. Let
S is a rough configuration in space 
n/ ≈1, the upper approximation and lower
approximation of S in another rough space 
n/ ≈2 are denoted by U≈2(S)
and L≈2(S) respectively, which defined as U≈2(S) = {P ∈ 
n/ ≈2|P ∩ S �=
∅}, L≈2(S) = {P ∈ 
n/ ≈2|P ⊆ S}, where S is the union of all elements of
configuration S in space 
n/ ≈1. Fig. 2 indicates the transformation of upper
approximation of a Euclidean straight line in rough spaces 
n/ ≈1 and 
n/ ≈2,
where 
n/ ≈1≤ 
n/ ≈2.

2.3 Geometric Invariants of Upper Approximation Transformation

German mathematician Felix Klein had given the most general definition of “ge-
ometry” as the research on geometric invariants under a group of transformations,
such as the projective geometry focuses on the geometric invariants under the pro-
jective transformation. In rough geometry, we will pay attention to the geometric
invariants of configurations under upper approximation in rough spaces, i.e. the
invariant properties of approximate configuration at different granular levels.

In the following paragraphs, some geometric invariants of upper approxima-
tion transformation in rough spaces will be introduced and the concepts such as
“rough line segment”, “rough convex” and “equal rough line segments” will be
further represented in the proofs of the corresponding properties. The monotone
mapping ϕδ : R → Z, x → �x/δ�, where δ ∈ R+ will be adopted to construct the
rough spaces in this section, R, R+ and Z are the real number field, positive real
number field and integer field respectively, and �x� is the operator for returning
the greatest integer less than or equal to real number x. (see Fig. 3).

Fig. 3. Monotone Mapping ϕδ : R → Z

The mapping ϕδ divides R into a queue of intervals such as . . . [−2δ,−δ),
[−δ, 0), [0, δ), [δ, 2δ) . . . The rough space 
n/ ≈ϕδ

induced from the indiscerni-
bility relation ≈ϕδ

, which is defined by the equivalence relation Eϕδ
, is denoted

by SPACE(δ). We can see that SPACE(δ1) ≤ SPACE(δ2) iff δ2 is a multiple
of δ1, 
n/ = is denoted by SPACE(0), and 0 is considered to be divisible by
any real number. Furthermore, the upper approximation of configuration S in
SPACE(δ) will be denoted as Uδ(S) rather than U≈ϕδ

(S) for simplicity.

Theorem 1. Let SPACE(δ) ≤ SPACE(δ1), a rough point in SPACE(δ)
is still a rough point through the transformation of upper approximation from
SPACE(δ) to SPACE(δ1).
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Proof. Let SPACE(δ) ≤ SPACE(δ1), P is a rough point in SPACE(δ), be-
cause δ1 is divisible by δ, so the upper approximation of this point Uδ1(P ) is still
a rough point in space SPACE(δ1), see Fig. 4. �

4.1: SPACE(0.5) 4.2: SPACE(1.5)

Fig. 4. Rough Points in SPACE(0.5) and SPACE(1.5)

Theorem 2. Let SPACE(δ) ≤ SPACE(δ1), the relative location of two rough
points in rough space SPACE(δ) is invariant in space SPACE(δ1) through the
proper transformation of upper approximation.

Proof. Let SPACE(δ) ≤ SPACE(δ1), P (i1, j1) and Q(i2, j2) are two rough
points in SPACE(δ), and i1 ≤ i2 (maybe i1 ≥ i2 or j1 ≤ j2 or j1 ≥ j2),
from Def. 2, the upper approximations of the two points in SPACE(δ1), i.e.
Uδ1(P ) = (l1, t1) and Uδ1(Q) = (l2, t2), also have l1 ≤ l2 (l1 ≥ l2 or t1 ≤ t2 or
t1 ≥ t2). �

Definition 6. Rough Line Segment. Let S be a subset of rough points in
SPACE(δ), if there exists at least one Euclidean line segment l such that S =
Uδ(l), S is called a rough line segment in SPACE(δ).

Theorem 3. LetSPACE(δ) ≤ SPACE(δ1), a rough line segment inSPACE(δ)
is still a rough line segment through the proper transformation of upper approxima-
tion from SPACE(δ) to SPACE(δ1).

Proof. Let SPACE(δ) ≤ SPACE(δ1), S is a line segment in space SPACE(δ),
S

′
= Uδ1(S) is the upper approximation of S in SPACE(δ1), according to Def. 1

and Def. 6, the Euclidean line segment l : S = Uδ(l) also has S
′

= Uδ1(l), so
there must exist a Euclidean line segment whose upper approximation is S

′
in

SPACE(δ1). �

Definition 7. Rough Convexity
Let S be a rough configuration in SPACE(δ), if (i0, j0) ∈ S, let ST (i0) =
max{j|(i0, j) ∈ S}, SR(j0) = max{i|(i, j0) ∈ S}, SB(i0) = min{j|(i0, j) ∈ S},
SL(j0) = min{i|(i, j0) ∈ S}. As illustrated in Fig. 5.1, i0 = 3, j0 = 2, ST (i0) = 3,
SB(i0) = 0, SR(j0) = 6, SL(j0) = 1.

A rough configuration S is called upper-convex, if for any pair of points P =
(iP , jP ) and Q = (iQ, jQ) in S (suppose iP ≤ iQ), there exists at least one line
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segment L in SPACE(δ) passing through P and Q such that ST (i) ≥ LT (i) for
any iP ≤ i ≤ iQ, see Fig. 5.2.

As shown in Fig. 5.3, a rough configuration S will be called lower-convex, if
for any pair of points P = (iP , jP ) and Q = (iQ, jQ) in S (suppose iP ≤ iQ),
there exists at least one line segment L in SPACE(δ) passing through P and Q
that satisfies SB(i) ≤ LB(i) for any iP ≤ i ≤ iQ.

Similarly, a rough configuration S is called right-convex, if for any pair of
points P = (iP , jP ) and Q = (iQ, jQ) in S (suppose jP ≤ jQ), there exists at
least one line segment L in SPACE(δ) passing through P and Q that satisfies
SR(j) ≥ LR(j) for any jP ≤ j ≤ jQ, and left-convex can be defined as follows,
if for any pair of points P = (iP , jP ) and Q = (iQ, jQ) in S (suppose jP ≤ jQ),
there exists at least one line segment L in SPACE(δ) passing through P and Q
that satisfies SL(j) ≤ LL(j) for any jP ≤ j ≤ jQ.

5.1: S in SPACE(0.5) 5.2: Upper-Convexity 5.3: Lower-Convexity

Fig. 5. Convex Configurations in SPACE(0.5)

Theorem 4. A upper-convex rough configuration in a rough subspace SPACE(δ)
is still upper-convex in the upper space SPACE(δ1) of SPACE(δ) through the
proper transformation of upper approximation, the similar results can be obtained
on lower-convex, left-convex and right-convex configurations.

Proof. Let S is an upper-convex configuration in SPACE(δ), from Def. 7, for
any pair of points P = (iP , jP ) and Q = (iQ, jQ) in S (suppose iP ≤ iQ),
there exists a line segment L : PQ in SPACE(δ) such that ST (i) ≥ LT (i),
iP ≤ i ≤ iQ. Thus for any i, (iP ≤ i ≤ iQ), there must exist a point Z = (i, jZ)
satisfying

Z ∈ S ∧ jZ ≥ LT (i) (1)

Let SPACE(δ) ≤ SPACE(δ1), S
′

= Uδ1(S) is the upper approximation of
S in SPACE(δ1), we can also get L

′
= Uδ1(L), P

′
= Uδ1(P ), Q

′
= Uδ1(Q)

and Z
′
= Uδ1(Z). Let ϕδ′ (x) : x → �x/δ

′� is the mapping from SPACE(δ) to
SPACE(δ1), in which

δ
′
=

{
δ1/δ, if δ > 0
δ1, if δ = 0 (2)

Because ϕδ′ (x) is monotone increasing, we have

iP ′ = ϕδ′ (iP ) ≤ i
′
= ϕδ′ (i) ≤ iQ′ = ϕδ′ (iQ) (3)
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jZ′ = ϕδ′ (jZ) ≥ ϕδ′ (LT (i)) = L
′
T (i

′
) (4)

From (3) and (4), we know that for any i
′
, iP ′ ≤ i

′ ≤ iQ′ , there is a point
Z

′
= (i

′
, jZ′ ) such that

Z
′ ∈ S

′ ∧ jZ′ ≥ L
′
T (i

′
) (5)

As mentioned above, it can be inferred that for the pair of points P
′
and Q

′
in

S
′
, there exists a line segment L

′
: P

′
Q

′
in SPACE(δ1) such that S

′
T (i

′
) ≥

L
′
T (i

′
) for any i

′
( iP ′ ≤ i

′ ≤ iQ′ ). So S
′

is still upper-convex in SPACE(δ1).
Through the similar proof, the results on lower-convex, left-convex and right-
convex configuration can also be obtained. �

Definition 8. Configuration Intersection. Let S1 and S2 are two rough con-
figurations in SPACE(δ), if S1 ∩ S2 �= ∅, it is considered that S1 and S2 inter-
sect in SPACE(δ). Let P is a rough point and S is a rough configuration in
SPACE(δ), if P ∈ S, it is considered that S passes the point P .

Theorem 5. Let SPACE(δ) ≤ SPACE(δ1), S1 and S2 are two rough con-
figurations in SPACE(δ), if S1 and S2 intersect in SPACE(δ), Uδ1(S1) and
Uδ1(S2) must intersect in the upper space SPACE(δ1). Suppose S is a rough con-
figuration in SPACE(δ), if S passes the rough point P in SPACE(δ), Uδ1(S)
must pass the point Uδ1(P ) in SPACE(δ1).

Theorem 6. Let SPACE(δ) ≤ SPACE(δ1), configurations S1 and S2 are
symmetric about the origin point or coordinate axis in SPACE(δ), their upper
approximations Uδ1(S1) and Uδ1(S2) in SPACE(δ1) are still symmetric about
the same element through the proper transformation.

Definition 9. Rough Distance. Let P, Q ∈ SPACE(δ) are two rough points,
the upper approximation of the distance between P and Q is defined as

Uδ(P, Q) = ϕδ(max{|AB||A ∈ P, B ∈ Q}) × δ + δ (6)

and the lower approximation of the distance is correspondingly defined as

Lδ(P, Q) = ϕδ(min{|AB||A ∈ P, B ∈ Q}) × δ (7)

i.e. the distance approximation between the two points in rough space is
constructed from the maximum and the minimum distance between the Eu-
clidean points contained in the rough points. The closed interval dδ(P, Q) =
[Lδ(P, Q), Uδ (P, Q)] is considered as the roughness range of the distance be-
tween points P and Q in SPACE(δ).

See Fig. 6, the maximal and the minimal Euclidean distance between two rough
points P = (1, 1) and Q = (5, 3) in SPACE(0.5) are the distances between
Euclidean pints C, D and E, F respectively.

U0.5(P, Q) = ϕ0.5(max{|AB||A ∈ P, B ∈ Q})×0.5+0.5 = ϕ0.5(|CD|)×0.5+
0.5 = 3, L0.5(P, Q) = ϕ0.5(min{|AB||A ∈ P, B ∈ Q})×0.5 = ϕ0.5(|EF |)×0.5 =
1.5, thus the roughness range of the distance between P and Q is d0.5(P, Q) =
[1.5, 3].
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6.1: U0.5(P, Q) 6.2: L0.5(P, Q)

Fig. 6. Rough Distance Between P and Q in SPACE(0.5)

Definition 10. Equal Distance. Let T is an index set, given a set of rough
point pairs {(Pt, Qt)|t ∈ T } in SPACE(δ), the distance of a pair (Pt, Qt) is
the rough distance between Pt and Qt, the distances of the pairs in the set
{(Pt, Qt)|t ∈ T } are considered equal, iff

⋂
t∈T dδ(Pt, Qt) �= ∅.

Theorem 7. Let SPACE(δ) ≤ SPACE(δ1), T is an index set, {(Pt, Qt)|t ∈
T } is a set of rough point pairs in SPACE(δ), Uδ1(Pt) and Uδ1(Qt) are the
upper approximations of Pt and Qt (t ∈ T ) in SPACE(δ1), if the distances of
all rough point pairs in {(Pt, Qt)|t ∈ T } are equal, the distances of the pairs in
set {(Uδ1(Pt), Uδ1(Qt))|t ∈ T } are still equal in SPACE(δ1) through the proper
transformation.

Proof. LetSPACE(δ) ≤ SPACE(δ1), (P, Q) is a rough point pair inSPACE(δ),
we have

max{|A, B||A ∈ P, B ∈ Q} ≤ max{|A, B||A ∈ Uδ1(P ), B ∈ Uδ1(Q)} (8)

min{|A, B||A ∈ P, B ∈ Q} ≥ min{|A, B||A ∈ Uδ1(P ), B ∈ Uδ1(Q)} (9)

Because ϕδ(x) = �x/δ� is monotonically increasing,

ϕδ(max{|A, B||A ∈ P, B ∈ Q}) × δ + δ ≤
ϕδ(max{|A, B||A ∈ Uδ1(P ), B ∈ Uδ1(Q)}) × δ + δ

(10)

As SPACE(δ) ≤ SPACE(δ1) and δ1 is divisible by δ, thus

ϕδ(max{|A, B||A ∈ Uδ1(P ), B ∈ Uδ1(Q)}) × δ + δ ≤
ϕδ1(max{|A, B||A ∈ Uδ1(P ), B ∈ Uδ1(Q)}) × δ1 + δ1

(11)

From (10) and (11), we have Uδ(P, Q) ≤ Uδ1(Uδ1(P ), Uδ1(Q)). Similarly,

ϕδ(min{|A, B||A ∈ P, B ∈ Q}) × δ ≥
ϕδ(min{|A, B||A ∈ Uδ1(P ), B ∈ Uδ1(Q)}) × δ ≥
ϕδ1(min{|A, B||A ∈ Uδ1(P ), B ∈ Uδ1(Q)}) × δ1

(12)
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So Lδ(P, Q) ≥ Lδ1(Uδ1(P ), Uδ1(Q)) , from the formulas above, we can infer that
dδ(P, Q) ⊆ dδ1(Uδ1(P ), Uδ1(Q)).

Given a set of rough point pairs {(Pt, Qt)|t ∈ T } in SPACE(δ), and all
distances of these pairs are equal, according to Def. 10,

⋂
t∈T dδ(Pt, Qt) �= ∅,

because
⋂

t∈T dδ(Pt, Qt) ⊆ dδ1(Uδ1(Pt), Uδ1(Qt)) (t ∈ T ), therefore
⋂

t∈T dδ1(Uδ1

(Pt), Uδ1(Qt)) ⊇ ⋂
t∈T dδ(Pt, Qt) �= ∅. It follows that the distances between the

upper approximations Uδ1(Pt) and Uδ1(Qt) (t ∈ T ) are equal in SPACE(δ1).�

2.4 Problems and Possible Improvement

Mapping to Construct Rough Space

In this section, we suppose that the rough space is constructed by a very simple
mapping ϕδ : R → Z, x → �x/δ�, and the equivalence relation induced from ϕδ

can lead to the regular partition in n-dimension Euclidean space 
n. Although
more complex mappings can be used to construct the rough space and the ap-
proximate configuration formed by the un-regular partition in 
n may be more
appropriate to some practical problems, the analysis of the geometric properties
in such spaces will become a very difficult work and most useful principles in
transformation that mentioned above will be lost.

Proper Transformation

In addition, we must notice that some propositions and definitions introduced
in this section are just tenable under the condition of proper transformation. In
other words, some principles may not stand up in some extreme situations. For
example, a rough line segment will turn to be a rough point when being trans-
formed into the upper space that is rough enough to cover the segment with only
one equivalence class. For some configurations, especially digital character,the
improper transformation into rougher spaces can not guarantee some impor-
tant topological features invariable, such as connectivity and curvature, which
will lead to the recognition error. Furthermore, choosing the proper transfor-
mation space actually belongs to the issue of seeking the proper granular level
for solution, and it should be considered depending on the specific problem. In
the following sections, the methods of computing the proper roughness of up-
per space in transformation will be further introduced according to the specific
applications.

Extension to n-Dimensional Space

The research work in this paper focuses on introducing rough geometry and its
application in digital character recognition, thus the definitions and properties
given above are mainly considered in 2D spaces. The generalization of this theory
from 2D to nD will be our future work considering the specific applications, and
the novel properties discovered will be further compared with the similar research
work in [7].
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3 Application of Rough Geometry

3.1 Application in Equichordal Point Problem

In Euclidean geometry, the Equichordal Point Problem can be formulated in
simple geometric terms. If C is a Jordan curve on the plane and P, Q ∈ C then
the line segment PQ is called a chord of the curve C. A point inside the curve is
called equichordal if every two chords through this point have the same length.
For example, it is a well-known fact that there exits one equichordal point in a
circle and the center of circle is the equichordal point. But can a convex shape
have more than one equichordal point? This question was posed by Fujiwara
in 1916 and independently by BlaschkeRothe and Weizenbock in 1917. Since
then, the problem whether there exists a closed convex curve of two equichordal
points had been a classic issue in traditional geometry until it was resolved by
M.R.Rychlik in 1997 [20]. He proved that there exists no closed convex curve of
more than one equichordal point. The Euclidean curve of two equichordal points
and the analysis of its features are also introduced in the related research work
(see, e.g., [12,20]).

Although the research of M.R.Rychlik is of significant theoretical value, the
closed convex curve of more than one equichordal point can exist in other spaces
rougher than the Euclidean space. Because the representations of the shapes in
the real world are always the approximations of the Euclidean geometric elements
rather than absolutely accurate and abstract, the results from the analysis of the
traditional geometric problem in rough space may be available in some specific
applications. In the following paragraphs, we will introduce how to construct the
proper rough space to represent the convex shape of two equichordal points.

Fig. 10.5 represents the closed convex curve in rough space SPACE(b/600),
where a is the distance between two equichordal points, b is the length of the
common chord and a = 0.3b in Euclidean space. The partition is so fine that we
can denote a and b in the rough space instead of the distance approximation for
simplicity.

The curve of two equichordal points in Euclidean space can be constructed
as follows (see Fig. 7): the two equichordal points are laid on the horizontal
axis symmetrically, the distance between the two points is a and the length of
the common chord is b, given a point in the plane denoted by number 0 as the
initial point, from the initial point 0 a line segment of length b through the left
equichordal point should be drawn, and the other end point of this segment will
be denoted as point 1, then from the point 1 the second line segment of length b
can be made through the right equichordal point and the new end point will be
marked as number 2. In such process, the ordinal line segments passing through
the left and right equichordal points respectively are created repeatedly, and the
coordinates of the n+1th point can be computed from the nth point according to
the iterative formula in the polar coordinate system and complex space [12]. The
related research had proven that for any initial point in the plane, the iteration
will converge to a pair of conjugated points, and all points denoted by the even
numbers that converge to the right equichordal point can form a continuous
curve, similarly, the all points denoted by the odd numbers that converge to the
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Fig. 7. Curve of a = 0.5b

left equichordal point will create another continuous curve, these two curves will
be named even curve and odd curve respectively in the next paragraphs.

The shape formed by the continuous curves that converge to the conjugated
points on horizontal axis is shown in Fig. 8.1, the segment of the even curve
in the first quadrant and the part of the odd curve in the third quadrant are
convex, but the corresponding proportions of the curves in the second and fourth
quadrants are not convex and have pulsation. The even curve and odd curve are
not connected, but when the proper initialization makes the two continuous
curves close enough on the horizontal axis, we can consider the shape as a closed
curve approximately. In this closed curve, the chord is the line segment from
the even number point to the odd number point. The approximate closed curve
constructed by passing the left equichordal point first as mentioned above is
called the right curve see Fig. 8.1, and the similar approximate construction
through the right equichordal point first is called the left curve, see Fig. 8.2.
We can also infer that for any pair of equichordal points on horizontal axis, the
left and right curves that are symmetric with respect to the vertical axis can be
constructed by adopting the symmetric initial points.

Based on the above introduction, the closed curve of two equichordal points
in different rough spaces can be represented. Let the distance between two equi-
chordal points a is 0.5 and the length of the common chord b is 1. Given a rough
space SPACE(δ), when δ = 1/20, the equivalence class in the space is too small
to shield the pulsation, thus the approximation of the closed curve is not convex
in SPACE(1/20), see Fig. 9.1. While δ = 1/9, the left and right curves will have
the common upper approximation that is convex in SPACE(1/9), see Fig. 9.2.

Next we will describe the impacts of the ratio between distance a and the
chord length b to the shape of closed curve in the same space. Given a rough
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8.1: Right Curve 8.2: Left Curve

Fig. 8. Right and Left Curves

9.1: SPACE(1/20) 9.2: SPACE(1/9)

Fig. 9. Closed Curve in Different Spaces

10.1: a = 0.7b 10.2: a = 0.6b 10.3: a = 0.5b

10.4: a = 0.4b 10.5: a = 0.3b

Fig. 10. Right Curves in SPACE(b/600)

space SPACE(δ), where δ = b/600 and the common chord length b is a fixed
value, the different shapes of the right curve according to the variant distance a
are shown in Fig. 10.
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It is apparent that the pulsation of the closed curve is gradually becoming
weaker as the distance a reduces. As illustrated in Fig. 10.1- 10.4, the approx-
imation of the right curve is not convex and not symmetric about the vertical
axis. We can define the convexity of the approximation of the right curve in
the rough space according to its symmetric left curve as follows. If the upper
approximation of the right curve can cover the left, this approximation is the
common representation of both curves of two equichordal points in the rough
space. Because the two curves are symmetric respect to the vertical axis, the
common approximation is symmetric about the vertical axis according to The-
orem 6. As introduced above, the closed curve is convex in the first and third
quadrants, according to Theorem 4, the approximation is still convex in these
quadrants, since its symmetry, the approximate shape is completely convex in
all quadrants. Furthermore, we can obtain the result that the length approx-
imations of all chords in the rough space are equal from Theorem 7. In this
way, a convex closed curve of two equichordal points can be obtained in rough
space. As shown in Fig. 10.5, when the ratio of a to b is 0.3, the pulsation is
completely covered by the convex and symmetric approximation of closed curves
in SPACE(b/600).

From the paragraphs above, we have learnt the important factors that influ-
ence the shape of the closed curve of two equichordal points. It can be inferred
that for any common chord length b and the distance between two equichordal
points a, given any initial point in the plane, there must exists a rough space
in which left and right curves have the common upper approximation, and this
approximation is a convex shape of two equichordal points. Especially when the
corresponding partition in the space is fine enough, the rough configuration may
turn to be a real closed convex curve in our vision. Thus the closed convex curve
of two equichordal points can be constructed in the rough space.

As introduced in this section, the application of rough geometry in the Equi-
chordal Point Problem indicates that the rough configurations in the approx-
imate space have their own properties different from those of the shapes in
Euclidean space, and the novel results may be obtained from observing the tra-
ditional geometric problems in the rough space.

3.2 Application in Principal Curves

The term “Principal Curves” was first proposed by Hastie and Stuetzle in 1984,
and principal curves are usually defined as “self-consistent” smooth curves which
pass through the “middle” of a n-dimensional probability distribution (see,
e.g., [3,4]). Principal curves can provide a nonlinear summary of the data through
reflecting the data distribution in low dimensional space, and the curves’ shape
is suggested by the data. In another view, the principal curves are the skeleton
of data set and the data set is the “cloud” around the curves. They construct
the one-dimensional manifold of the data in high dimensional space and can be
viewed as the nonlinear generation of the principal component analysis (PCA).

Because principal curves can preserve the most information of the data dis-
tribution, they usually serve as an efficient feature extraction tool. The field
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11.1: SPACE(1) 11.2: SPACE(8)

Fig. 11. Principal Curves of ’0’ in Different Spaces

has been very active since Hastie and Stuetzle’s groundbreaking work, numer-
ous alternative methods for estimating principal curves have been proposed and
analyzed (see, e.g., [5,6,23,24]). The applications of this theory in various fields
such as image analysis, feature extraction, and speech processing have demon-
strated that principal curves are not only of theoretical interest, but also have a
legitimate place in the family of practical unsupervised learning techniques (see,
e.g., [13,14,29]).

According to the definition of principal curves given by Hastie and Stuetzle,
the self-consistency means each point of the curves is the average of all points
that project there. Thus, the complexities of the algorithms producing princi-
pal curves are always closely relative to the scale of the data set. But in some
practical problems, it may be not necessary to traverse all initial data points to
produce the skeleton of the data distribution. In fact, the approximate repre-
sentations of the curves that can catch the most important topological features
of the distribution are sufficient for some recognition works, and these approx-
imations can be obtained through only the rough points that can preserve the
object’s primary structure. For example, existing recognition methods of off-line
handwritten characters usually generate the features from all pixels contained
in the configurations, but the objects can be viewed at rougher granular level to
obtain the same results (see Fig. 11).

Depending on the invariants of transformation among the rough spaces in-
troduced in Section 2, such as the invariants of convexity, we can use principal
curves to extract the geometric features of the characters in the spaces rougher
than original images. This process can bring several benefits for the recognition
work as follows: first, the efficiency of the algorithms for generating the skeletons
will be improved as the scale of the original data set is greatly reduced; second,
the detrimental effects of the trivial details produced from the redundant data
in the character figures can be weakened at rougher level, and this result can
also lead to the simplification of the classification rules as the third advantage.

As mentioned above, our exploratory work tries to apply the rough geometry
to the character recognition. In our experiments, the polygonal line algorithm of
the principal curves methods (see, e.g., [5,6]) is adopted to produce the skeletons
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Fig. 12. Process of Off-line Characters Recognition

of the off-line handwritten digits. Furthermore, the proper rough spaces for upper
transformation can be obtained according to the thickness of the character and
the classifier is constructed based on rough sets methods. The flow diagram of
the system is shown in Fig. 12.

As illustrated in Table 1, the skeletons and the recognition results of the
sample digit can be obtained in different rough spaces. One pixel of the original
digital image is considered as the smallest equivalence class in the rough spaces
and the corresponding δ = 1, so the finest rough space constructed from the
pixels is denoted by SPACE(1). The polygonal curves algorithm is used to
extract the skeletons for generating the geometric features of characters at five
different granular levels. The sample figures’ visions, extracted skeletons and
recognition results of two persons’ handwritings in different rough spaces are
displayed in the following table, in which N is the scale of the digital image, P
is the number of points in the skeleton, and K is the components number of the
principal curves extracted from the character.

In the experiment, we discovered that the transformation of upper approxi-
mation just causes little damage of the characters’ geometric features that we
are interested, and the skeletons got from the rough spaces are well enough for
the recognition work. This observation is coincident with the invariants of the
transformation introduced in the Section 2. From the analysis of the experimen-
tal data, we can see that the scales of the original data and the skeletons and
the iteration times in the process for producing the principal curves are greatly
reduced as the rough space transforms. It also should be noticed that the false
recognition result caused by the trivial details can be rectified through the trans-
formation (see Table 1). Accordingly, training with the features generated in the
proper rough spaces, the classifier will be further simplified. As mentioned above,
the efficiency of the recognition algorithm based on principal curves and rough
sets can be effectively improved through the application of rough geometry as
the preprocessing step in feature generation.
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Table 1. Recognition Results of Figure ‘9’ in Rough Spaces

SPACE(1) SPACE(4) SPACE(8) SPACE(12) SPACE(20)

N : 500 × 500 N : 125 × 125 N : 62 × 62 N : 41 × 41 N : 25 × 25

P : 159 P : 60 P : 46 P : 32 P : 24

K : 3 K : 2 K : 2 K : 2 K : 2

Result : 5 Result : 9 Result : 9 Result : 9 Result : 9

N : 500 × 500 N : 125 × 125 N : 62 × 62 N : 41 × 41 N : 25 × 25

P : 150 P : 56 P : 45 P : 32 P : 22

K : 3 K : 3 K : 2 K : 2 K : 2

Result : 9 Result : 9 Result : 9 Result : 9 Result : 9

4 Conclusion and Prospect

In traditional geometry, the geometric elements are defined absolutely abstract
and accurate, but the configurations we see in the real world always have lengths
or sizes. Rough geometry attempts to combine the rough set theory with the geo-
metric methods, generate and analyze the graphics at the rougher granular levels
through the approximation transformation. The aim of the investigation is to
construct the proper geometric spaces more available for problem solving. The
motivation of the research and some principles of rough geometry have been in-
troduced, and we also presented the applications of this theory in the traditional
geometry problem and characters recognition. Although the new geometry is
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expected to be an effective tool for measuring the configurations in approximate
spaces, at present it is just based on the personal views and ideas immature,
perhaps controversial. There is still a long way to go before it turns to be an
integrated system. In our future work, the improvement and the enrichment in
theory will be continued, while the applications of the theory will be studied
further as well. In the next paragraphs, we will describe the questions induced
from our exploratory research according to the basic issues of the granular com-
puting (see, e.g., [25,26]), and expect the possible solutions for these problems
in the future work.

Granulation

How can we construct the optimal approximate space and representation of the
configuration according to the specific application?

This question refers to the constructions of the basic components of the granu-
lar computing: granules, granulated views and hierarchies, and these terms may
correspond to the equivalence classes, rough configurations and rough spaces
respectively in rough geometry. Depending on the existing definitions in rough
geometry, although the upper approximations can preserve some geometric fea-
tures of the original graphics, it also may lose some important information. For
example, the upper approximation can damage the property of connectivity and
increase the number of loops in the graphics, the changes of the topological fea-
tures will bring us the undesirable effects. As the exiting method for constructing
the approximations of the objects needs to be further improved, the following
ideas may be helpful solutions in the future.

The other approximation forms can be adopted in the same rough space de-
fined in Section 2, such as lower approximation, then through combining the
information obtained from different approximations, we can maintain the most
features of the original objects in the approximate representations. In other
words, we can observe the graphics from multiple profiles to get the sufficient
information about the features. The second suggestion for improving the approx-
imation is that we can define the different approximate spaces to catch the most
geometric features in transformation. But it always requires the more complex
mapping to induce the un-regular partitions in the space rather than the simple
construction of the rough space. Although it may be a difficult work, we must
notice that the semantics of the objects are usually ignored in the construction of
the approximate space, it is possible to form the optimal un-regular rough spaces
based on the objects’ contents to preserve the most features in transformation.

Computing with Granules

How can we construct the proper mappings between multi-level approximate
spaces to preserve the most properties of the objects?
How can we decide the optimal granular level for the problem solving?

The key points in the issue of computing with granules are mappings between
different level of granulations, granularity conversion and property preservation,
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and they are also the essential targets of the transformation in rough geome-
try. In this paper, we define the mappings between different spaces from fine to
rough like the upper approximation in rough sets, and it can lead to a simple
transformation. This transformation will make it easy to seek the rules of prop-
erties preservation, but it also can cause the damage of the important geometric
features as introduced above. So a more proper transformation should be defined
according to the specific problems, such as the un-regular transformation may
be defined based on the characters’ structure to catch more geometric properties
in changing spaces. Furthermore, the upper approximation transformation is the
bottom-up way to construct the hierarchy, while the inverse transformation, i.e.
the top-down approaches, may be also useful for features preservation, for ex-
ample, the analysis of the important details in local areas of the whole rough
configuration can rectify the properties’ loss in transformation.

In the practical problems, people usually tend to choose a proper granular level
for solution, and the ability of cruising among the different levels of granularity
with freedom is factually an embodiment of the human intelligence. The issue
also exists in granular computing as a research hotspot. In pattern recognition
process, the optimal granular level is always expected to improve the recognition
results, and at this level, the trivial details will be neglected while the import
features should be preserved even more distinct. Choosing the proper granular
level for problem solving in granular computing corresponds to the computation
about the roughness of the space in rough geometry. We suppose that construct-
ing a proper rough space in rough geometry may be through the following two
ways. The first is to formulate the topological changing of the rough configu-
rations according to the regular transformation, but it may be a difficult work.
The other way is to construct the proper space according to the given param-
eters of roughness based on the specific application, these parameters can be
obtained from data training or the empirical knowledge. For the off-line hand-
writing recognition, the proper rough spaces can be constructed according to the
average thickness of the characters as the prior knowledge. Moreover the optimal
roughness can also be obtained from the data training, and this method often
requires the evaluation criterion of the topological variation.

By the way, it is usually believed that the geometric property values will be-
come more and more accurate as the approximate space transforming from rough
to fine, such as the area value of the closed configuration. But the properties do
not always behave like this, for example, the relative deviation of perimeter for
the digitized polygon will converge to a fixed value when the image resolution
turning big, in which the relative deviation is computed from the absolute differ-
ence between the property values for the approximation of the graphics and that
for the same graphics in Euclidean space [7]. Thus choosing the proper rough
level to catch the geometric features in the approximate space is one of the most
important issues in the rough geometry research.

In this section, we have discussed the existing problems and the future work
on rough geometry depending on the basic issues of granular computing. The
new theory is so immature that it needs further development in many aspects,
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but it will provide a new perspective to observe the geometric elements in reality
and encourage us to analyze the objects in multiple levels and views. Further-
more, the applications of rough geometry in practical problems are also attached
importance in the related work, so the research subject will be valuable in both
theory and application.
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