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Attribute reduction of rough set theory underlies knowledge acquisition and has two hier-
archical types (classification-based and class-specific attribute reducts) and two perspec-
tives from algebra and information theory; thus, there are four combined modes in total.
Informational class-specific reducts are fundamental but lacking and are thus investigated
by correspondingly constructing class-specific information measures. First, three types of
information measures (i.e., information entropy, conditional entropy, and mutual informa-
tion) are novelly established at the class level by hierarchical decomposition to acquire
their hierarchical connection, systematical relationship, uncertainty semantics, and granu-
lation monotonicity. Second, three types of informational class-specific reducts are corre-
spondingly proposed to acquire their internal relationship, basic properties, and heuristic
algorithm. Third, the informational class-specific reducts achieve their transverse connec-
tions, including the strength feature and consistency degeneration, with the algebraic
class-specific reducts and their hierarchical connections, including the hierarchical
strength and balance, with the informational classification-based reducts. Finally, relevant
information measures and attribute reducts are effectively verified by decision tables and
data experiments. Class-specific information measures deepen existing classification-
based information measures by a hierarchical isomorphism, while the informational
class-specific reducts systematically perfect attribute reduction by level and viewpoint iso-
morphisms; these results facilitate uncertainty measurement and information processing,
especially at the class level.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory can effectively perform information processing for imprecise, inconsistent, and incomplete data [34].
Rough set theory has become a basic methodology of data analysis and is widely used in multiple fields of artificial intelli-
gence and machine learning [2,15,26,44,50,56,58,66–68]. As a key topic of rough set theory, attribute reduction reduces
dimensionality based on knowledge granulation to perform feature selection and thus reduces system complexity to pro-
mote knowledge acquisition. Therefore, attribute reduction is critical to rough sets and granular computing, and there are
many relevant approaches in terms of decision tables. For example, Ref. [9] uses a set operational perspective to study
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decision tables and their basic notions. Ref. [10] proposes new perspectives of granular computing in relation geometry
induced by pairings, where a pairing is an abstract mathematical generalization of an information table. Ref. [16] discusses
attribute reduction using the nullity-based matroid of rough sets. Ref. [37] proposes positive approximation to accelerate a
heuristic process of attribute reduction. Ref. [41] investigates association reducts using data-based functional dependencies
between sets of attributes. Ref. [42] uses generalized decision functions to define attribute dependencies and reducts in deci-
sion tables. Ref. [46] builds a matroidal structure of rough set theory by redefining rough approximation operators through
matroidal approaches. Ref. [55] studies rough sets through matroids using graph and matrix approaches, and Ref. [65] pro-
poses a reduct construction method based on discernibility matrix simplification. Regarding attribute reduction, there are
two hierarchical types (classification-based and class-specific attribute reducts) [64] and two metric viewpoints from alge-
bra and information theory [54]; thus, there are four combined modes in total based on these two dimensions (algebraic and
informational classification-based and class-specific reducts), as shown in Fig. 1. In particular, attribute reduction adheres to
granulation computing [8,21,35,39,52,57,60,61], and granulation monotonicity plays a vital role in reduct definition and
algorithm construction [4,13,33,51,53].

A decision table serves as the formal context of attribute reduction and consists of a three-level structure: Macro-Top,
Meso-Middle and Micro-Bottom [24,47,71]. The relevant three-level analysis regarding granular computing is related to
tri-level thinking [62,63]. The classification-based and class-specific reducts are respectively located at Macro-Top and
Meso-Middle, which are respectively called the classification and class levels. Classification-based reducts use classification
optimization and dependency reasoning and have become mainstream [1,3,12,18,20,22,25,43]. Their initial mode resorts to
positive regions and dependency degrees to become algebraic, while their developmental mode uses information measures
to become informational. Information theory provides uncertainty measurements of information contents; thus, relevant
information measures have been introduced into rough set theory to conduct uncertainty representation and information
processing [6,7,11,38,48], and information reduction has been extensively studied [14,19,27,32,40,45,49]. At the classifica-
tion level in particular, information entropy, conditional entropy, and mutual information are systematically developed
and generate informational classification-based reducts and heuristic reduction algorithms [32,54]. Moreover, the possibility
of considering multiple information measures rather than the classical positive region has been investigated in detail in [33],
mainly by preserving given properties in terms of a (changed) discernibility matrix. Targeting pattern applications, class-
specific reducts have recently been proposed to improve classification-based reducts and highlight the class optimization
and corresponding rule extraction [64]. Furthermore, class-specific reducts are mainly researched from the algebraic view-
point and thus have been developed by quantitative region preservation [73], three-way decisions [29], three-way probabil-
ities [36], min–max attribute-object bireducts [28], cost sensitivity [30], and rule-based classifiers [23]. In contrast,
information-driven reports on class-specific reducts are rare. Ref. [72] discusses three-way class-specific reducts from
three-way weighted entropies, whose metric construction comes from bottom-middle integration [71], and Ref. [31] exam-
ines the computational formulations of class-specific reducts in three-way probabilistic rough set models based on fuzzy
entropies.

Against the background of four reduct modes, existing results and desired developments are showed as follows, and both
relevant background and development are described in Fig. 1.

(1) Three old reduct modes (informational classification-based reducts, algebraic classification-based reducts, and alge-
braic class-specific reducts) have been investigated in detail and applied in practice extensively. Regarding mutual rele-
vance, the former two modes have already gained transverse connections [32,54], while the latter two have already
yielded hierarchical connections [64].
(2) In contrast, informational class-specific reducts appear less frequently. Both their transverse connections with alge-
braic class-specific reducts and hierarchical connections with informational classification-based reducts are required but
also lacking.
Fig. 1. Research background and development of four reduct modes.

197



X. Zhang, H. Yao, Z. Lv et al. Information Sciences 563 (2021) 196–225
Clearly, definitions and connections of informational class-specific reducts have become two important issues. In this
paper, they are resolved by constructing new informational class-specific reducts; however, how to mine underlying
class-specific information measures becomes a new question that is both critical and difficult to answer. Because classical
information measures (information entropy, conditional entropy, and mutual information) at the classification level induce
informational classification-based reducts, novel information measures, which include three similar information measures,
at the class level are worthy of being hierarchically determined by the top-middle decomposition to accordingly induce
informational class-specific reducts. This strategy of hierarchical decomposition and systematic simulation becomes natural,
feasible, and scientific for measure mining and reduct construction, and also underlies the further connection analysis of rel-
evant reduct modes. Class-specific information measures and informational class-specific reducts can be novelly constructed
by referring to and simulating traditional notions at the classification level. Then, vertical and horizontal connections
embracing the informational class-specific reducts can be described. As a result, concrete cases will be described in detail
as follows, and three types of variant isomorphisms can be reasonably extracted or perfectly concluded.

(1) Regarding measures, the class-specific information entropy, conditional entropy, and mutual information are deter-
mined to achieve the systematical relationship, uncertainty semantics, and granulation monotonicity. This new system
of class-specific information measures is hierarchically isomorphic to the existing system of classification-based informa-
tion measures.
(2) Regarding reduct constructions, the informational class-specific reducts based on class-specific information entropy,
conditional entropy, andmutual information are proposed to acquire the internal relationship, basic property, and heuris-
tic algorithm.
(3) Regarding transverse reduct connections, the informational class-specific reducts have the strength feature and con-
sistency degeneration, in contrast to the algebraic class-specific reducts. This new system of informational class-specific
reducts is hierarchically isomorphic to the existing system of informational classification-based reducts.
(4) Regarding hierarchical reduct connections, the informational class-specific and classification-based reducts have the
hierarchical strength and balance. The informational reducts with both levels are transversely isomorphic to the algebraic
reducts with both levels, mainly by perspective systems and hierarchical reduct relations.
(5) Finally, the relevant information measures and attribute reducts are effectively verified by both decision tables and
data experiments.
Table 1
A list of basic mathematical symbols.

System Symbol Description

Decision table A;B;C;R;D Condition attribute subsets; decision attribute set
EA; EB; EC ; ER; ED Equivalent relations
½x�A; ½x�B; ½x�C ; ½x�R;Dj Condition classes; decision class
pA;pB;pC ;pR;pD Condition partitions; decision classification

B �!�ðB�AÞA;C �!�ðC�RÞR;R�!�frgR� frg;C �!�fcgC � fcg Attribute deletion

pB �!� pA;pC �!� pR
Granulation coarsening

Sk
t¼1
½x�tC ¼ ½x�R (k P 2)

Representative group of granular merging

� ¼ A;B;C;R; � � � (i.e., � 2 2C � f£g) General representation of condition attribute subsets

Algebra viewpoint POSðDjjp�Þ; c�ðDjÞ Class-specific positive region and dependency degree

REDAV ðDjÞ;COREAV ðDjÞ Class-specific reduct set and attribute core

POSðpDjp�Þ; c�ðDÞ Classification-based positive region and dependency degree

REDAV ðpDÞ;COREAV ðpDÞ Classification-based reduct set and attribute core

Information
viewpoint

HDj
ð�Þ;HðDjÞ;HðDjj�Þ;Hð�jDjÞ; Ið�;DjÞ; IðDj; �Þ Class-specific information entropy, conditional entropy, mutual

information

HW ðDj j�Þ (Hlin
W ðDjj�Þ), HDj

W ð�Þ;HW ð�jDjÞ Likelihood (likelihood-linear), prior, posterior weighted entropies

REDIEðDjÞ;REDCEðDjÞ;REDMIðDjÞ Class-specific reduct sets on three-way information measures

COREIEðDjÞ;CORECEðDjÞ;COREMIðDjÞ Class-specific attribute cores on three-way information measures

SigIEð�; c;DjÞ; SigCEð�; c;DjÞ; SigMIð�; c;DjÞ Class-specific attribute significance on three-way information measures

Hð�Þ;HðDÞ;HðDj�Þ;Hð�jDÞ; Ið�;DÞ; IðD; �Þ Classification-based information entropy, conditional entropy, mutual
information

REDIEðpDÞ;REDCEðpDÞ;REDMIðpDÞ Classification-based reduct sets on three-way information measures

COREIEðpDÞ;CORECEðpDÞ;COREMIðpDÞ Classification-based attribute cores on three-way information measures

] 2 fIE;CE;MIg General representation of three-way information types

RED]ðDjÞ;CORE]ðDjÞ;RED]ðpDÞ;CORE]ðpDÞ Informational class-specific and classification-based reduct sets and
attribute cores

RT;RT IE;RTstrong;RTweak General, entropic, strong, weak reduction targets
Generalized

viewpoint

C �!�ðC�RÞR � RT ,

R�!�frgR� frg2RT;C �!�fcgC � fcg2RT

Reduction target satisfiability or unsatisfiability for attribute deletion

REDRTstrong ;CORERTstrong ;REDRTweak ;CORERTweak Strong and weak reduct sets and attribute cores
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The isomorphism construction of novel class-specific measures and reducts hierarchically deepen existing classification-
based measures and reducts, respectively, while the correlation revelation of informational class-specific reducts systemat-
ically perfects the reduction framework with two-level-horizontal and two-viewpoint-longitudinal reducts.

The remainder of this paper is organized as follows. Section 2 reviews three existing reduct modes: algebraic and infor-
mational classification-based reducts and algebraic class-specific reducts. Section 3 systematically investigates three types of
information measures at the class level: class-specific information entropy, conditional entropy, and mutual information.
Section 4 proposes three types of informational class-specific reducts. Section 5 analyzes the transverse connections between
the informational and algebraic class-specific reducts and the hierarchical connections between the informational class-
specific and classification-based reducts. Section 6 provides examples and experimental verification. Finally, Section 7 con-
cludes the paper. In preparation, Table 1 provides main mathematical notations in advance.

2. Existing attribute reducts from the algebraic and informational viewpoints

As shown in Fig. 1, there are two hierarchical types of attribute reducts (classification-based and class-specific reducts),
which are reviewed below from two transverse viewpoints of algebra and information, as well as from a further generalized
perspective.

2.1. Attribute reducts from the algebraic viewpoint

A decision table is a special data table DT ¼ ðU;C [ D;V ; f Þ [5,17,33,49,59]. In this study, U is a universe with a finite none-
mpty set of objects; C and D are finite nonempty sets of condition and decision attributes, respectively, where
C \ D ¼£;V ¼ S

a2C[D
Va is the total value range, where Va is the value domain for a 2 C [ D; f : U � ðC [ DÞ ! V is an informa-

tion function. An arbitrary subset of condition attributes A#C can define equivalence relation
Table 2
Two lev

Leve

Class
Class

Symbol
EA ¼ fðx; yÞ 2 U � Uj8a 2 A½f ðx; aÞ ¼ f ðy; aÞ�g;

and equivalence class ½x�A ¼ fy 2 UjyEAxg, equivalence partition pA ¼ U=EA ¼ f½x�Ajx 2 Ug. Similarly, the total set of decision
attributes D induces decision relation ED, decision class Dj, and decision classification pD ¼ fDjjj ¼ 1;2; � � � ;mg. The decision
table DT ¼ ðU;C [ D;V ; f Þ can be simply noted as ðU;C [ DÞ and has two forms regarding consistency and inconsistency. In
terms of set inclusion relation # , if EC # ED, then the decision table is consistent; otherwise, it is inconsistent. As usual,
let symbol jj denote the cardinality function of sets.

Within the framework of conditional A and decisional D and their granulation, decision table ðU;C [ DÞ contains three-
level granular structures [71]. The usual two levels are extracted into Table 2 to describe attribute reduction based on mea-
sures. According to [71], the third level is Micro-Bottom ð½x�A;DjÞ, and its category reducts can be transformed into the object-
oriented attribute reducts, which are hierarchically connected with the middle class-specific reducts and top classification-
based reducts. Targeting the top and middle levels, the region, measure, and reduct are discussed from the algebraic perspec-
tive below.

Definition 1 [34]. The positive, negative, and boundary regions of a decision class Dj given partition pA are respectively
defined by:
POSðDjjpAÞ ¼ fxj½x�A #Djg;NEGðDjjpAÞ ¼ fxj½x�A # ~Djg;BNDðDjjpAÞ ¼ U � POSðDjjpAÞ [ NEGðDjjpAÞ: ð1Þ

And the class-specific dependency degree can be determined by:
cAðDjÞ ¼ jPOSðDjjpAÞj
jUj : ð2Þ
Furthermore, the positive and boundary regions of decision classification pD given partition pA are respectively defined by:
POSðpDjpAÞ ¼
[m
j¼1

POSðDjjpAÞ; BNDðpDjpAÞ ¼ U � POSðpDjpAÞ; ð3Þ
and the classification-based dependency degree becomes:
els of decision table and corresponding measures and reducts.

l Structure composition Algebraic dependency degree Information measures Attribute reducts

ification level Macro-Top ðpA;pDÞ cAðDÞ U HðAÞ;HðDjAÞ; IðA;DÞ U Classification-based reducts
level Meso-Middle ðpA;DjÞ cAðDjÞ U HDj

ðAÞ;HðDjjAÞ; IðA;DjÞ ? Class-specific reducts

U means the existence in current references, while symbol ? reflects the innovative construction in this paper.
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cAðDÞ ¼
jPOSðpDjpAÞj

jUj ¼
Xm
j¼1

cAðDjÞ: ð4Þ
Proposition 1 [34]. If A#B#C, then
ðiÞ POSðDjjpAÞ# POSðDjjpBÞ; cAðDjÞ 6 cBðDjÞ;
ðiiÞ POSðpDjpAÞ# POSðpDjpBÞ; cAðDÞ 6 cBðDÞ:

ð5Þ
Regarding the two levels, the positive regions and their dependency degrees have basic derivation/dependency semantics
and good granulation monotonicity; thus, they are naturally utilized to define attribute reducts. An attribute reduct R is a
minimum set of C that produces the same positive region or dependency degree.
Definition 2 [34]. R#C is a classification-based reduct if it satisfies one set of dual conditions regarding sufficiency and
necessity:
ðSÞ POSðpDjpRÞ ¼ POSðpDjpCÞ;
ðNÞ 8r 2 R½POSðpDjpR�frgÞ 	 POSðpDjpRÞ�;

� ðS0Þ cRðDÞ ¼ cCðDÞ;
ðN0Þ 8r 2 R½cR�frgðDÞ < cRðDÞ�:

(

The set of all classification-based reducts is denoted by REDAV ðpDÞ.
Definition 3 [64]. R#C is a class-specific reduct if it satisfies one set of dual conditions regarding sufficiency and necessity:
ðsÞ POSðDjjpRÞ ¼ POSðDjjpCÞ;
ðnÞ 8r 2 R½POSðDjjpR�frgÞ 	 POSðDjjpRÞ�;

� ðs0Þ cRðDjÞ ¼ cCðDjÞ;
ðn0Þ 8r 2 R½cR�frgðDjÞ < cRðDjÞ�:

(

The set of all class-specific reducts is denoted by REDAVðDjÞ.
Via joint sufficiency and individual necessity, classification-based and class-specific reducts are respectively determined

in Definitions 2 and 3 from the algebraic viewpoint, and their hierarchical relationships have been described by [64]. More-
over, the attribute cores serve as an important attribute feature and are concretely defined at two levels by:
COREAV ðpDÞ ¼ fc 2 CjPOSðpDjpC�fcgÞ 	 POSðpDjpCÞg ¼ fc 2 CjcC�fcgðDÞ < cCðDÞg;
COREAV ðDjÞ ¼ fc 2 CjPOSðDjjpC�fcgÞ 	 POSðDjjpCÞg ¼ fc 2 CjcC�fcgðDjÞ < cCðDjÞg:

ð6Þ
According to the granulation monotonicity (Eq. (5)), they are respectively equivalent to
COREAV ðpDÞ ¼
T
REDAV ðpDÞ;

COREAV ðDjÞ ¼
T
REDAV ðDjÞ:

ð7Þ
Regarding the necessity condition of reducts, the concrete value/set relationship and single attribute expression are
mainly used in this paper and are respectively equivalent to the inequality sign description and attribute subset style within
the basic framework of granulation monotonicity.

2.2. Classification-based attribute reducts from the informational viewpoint

Next, information measures and classification-based reducts are recalled from the informational perspective.
At first, we define a mapping on r-algebra 2U , i.e.,
p : 2U ! Q ; pðTÞ ¼ jTjjUj ; 8T#U; ð8Þ
where ðU;2U ; pÞ constitutes a probability space. This mathematical space establishes the usual probability framework of
rough set theory, and informational measures can be systematically constructed by referring to information theory. For gen-
eralization, an arbitrary subset A#C is chosen for representative descriptions. It is assumed that condition partition pA has
number nðAÞ of equivalence classes: A1;A2; � � � ;AnðAÞ, i.e.,
pA ¼ f½x�Ajx 2 Ug ¼ fAiji ¼ 1;2; � � � ;nðAÞg:

We thus have decision classification pD ¼ fDjjj ¼ 1;2; � � � ;mg. In preparation, we provide four related probabilities:
pðAiÞ ¼ jAij
jUj ; pðDjÞ ¼ jDjj

jUj ; pðDjjAiÞ ¼ jAi \ Djj
jAij ; pðAijDjÞ ¼ jAi \ Djj

jDjj : ð9Þ
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Definition 4 ([32,54]). Regarding the classification, the information entropy, conditional entropy, and mutual information
are respectively defined by:
HðAÞ ¼ �
XnðAÞ
i¼1

pðAiÞlog2pðAiÞ; HðDÞ ¼ �
Xm
j¼1

pðDjÞlog2pðDjÞ;

HðDjAÞ ¼ �
XnðAÞ
i¼1

pðAiÞ
Xm
j¼1

pðDjjAiÞlog2pðDjjAiÞ
 !

; HðAjDÞ ¼ �
Xm
j¼1

pðDjÞ
XnðAÞ
i¼1

pðAijDjÞlog2pðAijDjÞ
 !

;

IðA;DÞ ¼ HðDÞ � HðDjAÞ; IðD;AÞ ¼ HðAÞ � HðAjDÞ:

ð10Þ
Proposition 2 ([32,54]). Information measures have a basic relationship:
HðDÞ � HðDjAÞ ¼ IðA;DÞ ¼ IðD;AÞ ¼ HðAÞ � HðAjDÞ: ð11Þ
Proposition 3 ([32,54]). If A#B#C, then
ðiÞ HðAÞ 6 HðBÞ;
ðiiÞ HðDjAÞP HðDjBÞ;
ðiiiÞ IðA;DÞ 6 IðB;DÞ:

ð12Þ
Via information theory, three types of information measures have the fundamental semantics and descriptive function of
uncertainty measurements, and their systematicness is shown in Eq. (11). At the level of classification pD, we are more con-
cerned with only one set of information measures (HðAÞ;HðDjAÞ; IðA;DÞ), and the three main measures also have granulation
monotonicity, as shown in Eq. (12). Therefore, they can be naturally utilized to define attribute reducts, and thus the infor-
mational classification-based reducts emerge to become minimum sets correspondingly preserving the initial and optimal
uncertainty information.
Definition 5 ([32,54]).
(1) R#C is an IE-classification-based reduct (a classification-based reduct on information entropy) if it satisfies two con-
ditions regarding sufficiency and necessity:

ðS1Þ HðRÞ ¼ HðCÞ;
ðN1Þ 8r 2 R½HðR� frgÞ < HðRÞ�:

�

The set of all these reducts is denoted by REDIEðpDÞ.
(2) R#C is a CE-classification-based reduct (a classification-based reduct on conditional entropy) if it satisfies two
conditions:
ðS2Þ HðDjRÞ ¼ HðDjCÞ;
ðN2Þ 8r 2 R½HðDjðR� frgÞÞ > HðDjRÞ�:

�

The set of all these reducts is denoted by REDCEðpDÞ.
(3) R#C is an MI-classification-based reduct (a classification-based reduct on mutual information) if it satisfies two
conditions:
ðS3Þ IðR;DÞ ¼ IðC;DÞ;
ðN3Þ 8r 2 R½IðR� frg;DÞ < IðR;DÞ�:

�

The set of all these reducts is denoted by REDMIðpDÞ.
Proposition 4 ([32,54]). If R#C, then
HðRÞ ¼ HðCÞ () pR ¼ pC : ð13Þ

There are three types of informational classification-based reducts. By Proposition 4, the preservation of information

entropy is equivalent to the preservation of knowledge granulation. Accordingly, an IE-classification-based reduct of decision
table ðU;C [ DÞ is equivalent to the attribute reduct of knowledge/granulation preservation of pC , which is a reduct of an
information sub-table ðU;CÞ without D. In contrast, the latter two types concern the dependency mechanism between con-
ditional and decisional parts; thus, they more adhere to the classification task. Moreover, three types of attribute cores are
determined from the informational viewpoint, i.e.,
201
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COREIEðpDÞ ¼ fc 2 CjHðC � fcgÞ < HðCÞg;
CORECEðpDÞ ¼ fc 2 CjHðDjðC � fcgÞÞ > HðDjCÞg;
COREMIðpDÞ ¼ fc 2 CjIðC � fcg;DÞ < IðC;DÞg:

ð14Þ
Via monotonicity in Eq. (12), they are equivalent to corresponding intersections of reduct sets, i.e.,
COREIEðpDÞ ¼
\

REDIEðpDÞ; CORECEðpDÞ ¼
\

REDCEðpDÞ; COREMIðpDÞ ¼
\

REDMIðpDÞ: ð15Þ
2.3. Attribute reducts from the generalized viewpoint

These algebraic and informational attribute reducts can be promoted from the generalized viewpoint, as introduced
below.

Following [70], we can obtain a kind of generalized reduct from reduction targets, as well as the strong–weak relation-
ships of attribute reducts. A reduction target (RT) is a state-specific preservation condition on attribute deletion, and its sat-
isfiability (unsatisfiability) for the deletion process can be represented by the symbol� (2). For example, the reduction target

of information entropy preservation (RT IE) is defined by that deletion process B �!�ðB�AÞA (8A#B#C) submitting to

HðAÞ ¼ HðBÞ, and thus the relevant satisfiability is denoted by B �!�ðB�AÞA � RT IE. We can also obtain the satisfiability

C �!�ðC�AÞA � RT IE from the initial C and the unsatisfiability B�!�fbg B� fbg2RT IE;C�!�fcg C � fcg2RT IE regarding single-attribute

deletion. According to the reduction target RT, we naturally define a corresponding reduct R#C by two conditions:
C �!�ðC�RÞR � RT;

8r 2 R½R�!�frg R� frg2RT�:

8><
>:
Thus, we can achieve the reduct set REDRT and attribute core CORERT ¼ fc 2 CjC�!�fcg C � fcg2RTg. Now, we let RTstrong and

RTweak be two reduction targets. If B �!�ðB�AÞA � RTstrong ) B �!�ðB�AÞA � RTweak, then we consider that RTstrong is stronger than
RTweak, which is weaker than RTstrong. Furthermore, the strong and weak reduction targets respectively define the strong
and weak reducts, and the latter two have a basic strength-weakness feature as follows.

Proposition 5 [70]. It is assumed that the strong reduction target RTstrong induces CORERTstrong ;REDRTstrong , and the weak

reduction target RTweak generates CORE
RTweak ;REDRTweak . These attribute cores and reduct sets follow the strength relationship:
CORERTstrong 
 CORERTweak ; ð16Þ
8RRTstrong 2 REDRTstrong 9RRTweak 2 REDRTweak such that RRTweak #RRTstrong : ð17Þ
By Proposition 5, parallel connections of reducts can usually be illustrated by the strength-weakness relation [70], which
is reflexive and transitive. Thus, the systematic relationships of classification-based reducts [32,54] can be described as fol-
lows. The type based on information entropy is the strongest, which is supported by Proposition 4. The information types
based on conditional entropy and mutual information are equivalent to offer the middle reduction strength, while the alge-
bra type based on the positive region or dependency degree is the weakest. Moreover, the informational reducts based on
conditional entropy (or mutual information) are necessarily the same as the algebraic reducts for consistent tables and
may be different from the latter for inconsistent decision tables.
3. Systematic information measures at the class level

Based on the review in Section 2 (especially the framework shown in Fig. 1), two levels of attribute reducts (classification-
based and class-specific reducts) and two construction viewpoints from the algebra and information together combine into
four modes of reducts, and only the class-specific reducts from the informational viewpoint need in-depth explorations. For
this topic, this section describes the underlying information measures from the classification level to the class level.

3.1. Hierarchical construction and systematic relationship

According to Definition 4, the classification level concerns six types of information measures (information entropy
HðAÞ;HðDÞ, conditional entropy HðDjAÞ;HðAjDÞ, and mutual information IðA;DÞ; IðD;AÞ (Eq. (10)), where only a set of measures
(HðAÞ;HðDjAÞ; IðA;DÞ) is used for the classification-based reducts according to Definition 5. By observing relevant analytic
expressions in Eq. (10), the classification-based information measures exhibit three main cases of granular summation,
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and thus, we can correspondingly conduct the hierarchical decomposition on class information to extract class-specific
measures.

(1) A measure, such as HðDÞ and HðAjDÞ, may concern the class summation
Pm

j¼1 at the final process and can thus directly

extract internal information on class Dj by deleting external integration on summation
Pm

j¼1.

(2) A measure, such as HðDjAÞ, may concern both the class summation
Pm

j¼1 at the first process and the granular summa-

tion
PnðAÞ

i¼1 at the second process (i.e., it has a form of double summations:
PnðAÞ

i¼1
Pm

j¼1). Thus, the summation commutativ-

ity is first required, and then
Pm

j¼1
PnðAÞ

i¼1 can induce internal Dj-class information based on
PnðAÞ

i¼1 .

(3) A measure, such as HðAÞ, may directly concern not the class summation
Pm

j¼1 but the granular summation
PnðAÞ

i¼1 (i.e., it

has a form of single summation:
PnðAÞ

i¼1 ). Thus, the class summation
Pm

j¼1 must be introduced to achieve the form
Pm

j¼1 or

style
Pm

j¼1
PnðAÞ

i¼1 ; then, Dj-specific information can be extracted by deleting the class summation
Pm

j¼1.

According to these three strategies, we next perform corresponding transformations to extract six systematic class-specific
measures that can be gradually divided into three groups: (1) HðDjÞ and HðAjDjÞ, (2) HðDjjAÞ and IðA;DjÞ, (3) HDj

ðAÞ and IðDj;AÞ.
Definition 6. Information entropy on class Dj and conditional entropy on partition pA given class Dj are respectively defined
by:
HðDjÞ ¼ �pðDjÞlog2pðDjÞ;

HðAjDjÞ ¼ �pðDjÞ
XnðAÞ
i¼1

pðAijDjÞlog2pðAijDjÞ ¼ �
XnðAÞ
i¼1

pðDjÞpðAijDjÞlog2pðAijDjÞ:
ð18Þ
Proposition 6. The information entropy and conditional entropy at the classification and class levels have hierarchical
relationships:
HðDÞ ¼
Xm
j¼1

HðDjÞP HðDjÞ; HðAjDÞ ¼
Xm
j¼1

HðAjDjÞP HðAjDjÞ: ð19Þ
According to the
Pm

j¼1 formula (Eq. (10)), HðDÞ and HðAjDÞ have the direct class summation on class Dj; thus, they are easy
for decomposition and extraction in terms of decision class. By Definition 6, information entropy HðDjÞ and conditional
entropy HðAjDjÞ at the class level are proposed, and their hierarchical connections regarding decomposition/integration
and size with HðDÞ and HðAjDÞ are shown in Proposition 6.

We now focus on HðDjAÞ and IðA;DÞ. The two measures resort to double summations to more closely adhere to Macro-Top
ðpA;pDÞ, and relevant information extractions on decision class Dj are significant for class-specific applications. Relevant
mathematical transformations with summation commutativity are first given.

Lemma 1. Conditional entropy HðDjAÞ and mutual information IðA;DÞ have the following summation forms (with commutativity
or conversion):
HðDjAÞ ¼ �
XnðAÞ
i¼1

pðAiÞ
Xm
j¼1

pðDjjAiÞlog2pðDjjAiÞ
 !

¼
Xm
j¼1

�
XnðAÞ
i¼1

pðAiÞpðDjjAiÞlog2pðDjjAiÞ
 !

;

IðA;DÞ ¼ HðDÞ � HðDjAÞ ¼ �
Xm
j¼1

pðDjÞlog2pðDjÞ �
Xm
j¼1

�
XnðAÞ
i¼1

pðAiÞpðDjjAiÞlog2pðDjjAiÞ
 !

¼
Xm
j¼1

�pðDjÞlog2pðDjÞ þ
XnðAÞ
i¼1

pðAiÞpðDjjAiÞlog2pðDjjAiÞ
 !

:

ð20Þ
Definition 7. Conditional entropy on class Dj given partition pA and mutual information between partition pA and class Dj

are respectively defined by:
HðDjjAÞ ¼ �
XnðAÞ
i¼1

pðAiÞpðDjjAiÞlog2pðDjjAiÞ;

IðA;DjÞ ¼ �pðDjÞlog2pðDjÞ þ
XnðAÞ
i¼1

pðAiÞpðDjjAiÞlog2pðDjjAiÞ:
ð21Þ
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Proposition 7. The conditional entropy and mutual information at the classification and class levels have hierarchical
relationships:
HðDjAÞ ¼
Xm
j¼1

HðDjjAÞP HðDjjAÞ; IðA;DÞ ¼
Xm
j¼1

IðA;DjÞP IðA;DjÞ: ð22Þ
Proposition 8. HðDjÞ;HðDjjAÞ; IðA;DjÞ satisfy a relationship:
IðA;DjÞ ¼ HðDjÞ � HðDjjAÞ: ð23Þ

By Lemma 1, Eq. (20) resorts to the summation commutativity to change the granular order of double summations, and

thus HðDjAÞ and IðA;DÞ at the pD-classification level effectively embrace and express the internal information of class Dj. By
Definition 7, Eq. (21) naturally extracts and defines two corresponding measures at the Dj-class level (i.e., conditional
entropy HðDjjAÞ and mutual information IðA;DjÞ). Their hierarchical connections regarding decomposition/integration and
size become natural in Proposition 7, while their systematic relationship with HðDjÞ is also clear in Proposition 8.

Commutation, decomposition, and extraction are rational because HðDjAÞ; IðA;DÞ;HðAjDÞ;HðDÞ concern the decision parts
and relevant summation

Pm
j¼1. There are two surplus measures (information entropy HðAÞ and mutual information IðD;AÞ),

and HðAÞ concerns only a single summation of the condition part, i.e.,
HðAÞ ¼ �
XnðAÞ
i¼1

pðAiÞlog2pðAiÞ:
Thus, how to extract or define the information entropy for a decision class becomes difficult; furthermore, how to extract or
define IðDj;AÞ by IðD;AÞ ¼ HðAÞ � HðAjDÞ also becomes a relevant question. For these construction issues, the systematic Eq.
(11) regarding classification pD can be used, and we establish in advance a perfect system equation (with a variant
isomorphism):
HðDjÞ � HðDjjAÞ ¼ IðA;DjÞ ¼ IðDj;AÞ ¼ HDj
ðAÞ � HðAjDjÞ: ð24Þ
In other words, Eq. (24) can be rationally required by the hierarchical transmission of system relationships, and its transfor-
mation naturally inspires two natural formulae for definitions:
IðDj;AÞ ¼ IðA;DjÞ;
HDj
ðAÞ ¼ IðDj;AÞ þ HðAjDjÞ ¼ IðA;DjÞ þ HðAjDjÞ: ð25Þ
Next, we make the relevant construction and definition by system switching.

Lemma 2. Entropy HðDjÞ has an expression on granulation summation:
HðDjÞ ¼ �
XnðAÞ
i¼1

pðAiÞpðDjjAiÞlog2pðDjÞ: ð26Þ
Furthermore, IðA;DjÞ yields
IðA;DjÞ ¼ HðDjÞ � HðDjjAÞ ¼ �
XnðAÞ
i¼1

pðDj \ AiÞlog2
jDjj � jAij
jUj � jDj \ Aij ; ð27Þ
and we have
IðA;DjÞ þ HðAjDjÞ ¼ �
XnðAÞ
i¼1

pðDjjAiÞpðAiÞlog2pðAiÞ: ð28Þ
Definition 8. Information entropy of partition pA on class Dj and mutual information between partition pA and class Dj are
respectively defined by:
HDj
ðAÞ ¼ �

XnðAÞ
i¼1

pðDjjAiÞpðAiÞlog2pðAiÞ;

IðDj;AÞ ¼ �
XnðAÞ
i¼1

pðDj \ AiÞlog2
jDj j�jAi j
jUj�jDj\Ai j :

ð29Þ
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Proposition 9. The information entropy and mutual information at the classification and class levels have hierarchical
relationships:
HðAÞ ¼
Xm
j¼1

HDj
ðAÞP HDj

ðAÞ; IðD;AÞ ¼
Xm
j¼1

IðDj;AÞP IðDj;AÞ: ð30Þ
Proof. Only
Pm

j¼1HDj
ðAÞ ¼ HðAÞ is required to be proved, and we have
Xm
j¼1

HDj
ðAÞ ¼ �

Xm
j¼1

XnðAÞ
i¼1

pðDjjAiÞpðAiÞlog2pðAiÞ
 !

¼ �
Xm
j¼1

XnðAÞ
i¼1

pðDjjAiÞpðAiÞlog2pðAiÞ

¼ �
XnðAÞ
i¼1

Xm
j¼1

pðDjjAiÞpðAiÞlog2pðAiÞ
 !

¼ �
XnðAÞ
i¼1

pðAiÞlog2pðAiÞ
Xm
j¼1

pðDjjAiÞ
 !

¼ �
XnðAÞ
i¼1

pðAiÞlog2pðAiÞ ¼ HðAÞ: ð31Þ
�

Proposition 10. At the class level, six types of information measures have a basic relationship:
HðDjÞ � HðDjjAÞ ¼ IðA;DjÞ ¼ IðDj;AÞ ¼ HDj
ðAÞ � HðAjDjÞ: ð32Þ
Lemma 2’s proof is provided in Appendix A. According to the construction of Eqs. (24) (25), Eq. (26) of Lemma 2 transfers

HðDjÞ into a form on
PnðAÞ

i¼1 to match the granulation summation of HðDjjAÞ, and then Eqs. (27) (28) of Lemma 2 respectively

endow IðA;DjÞ and IðA;DjÞ þ HðAjDjÞ with styles on
PnðAÞ

i¼1 . Furthermore, Definition 8 naturally proposes entropy HDj
ðAÞ and

mutual information IðDj;AÞ, Proposition 9 provides relevant hierarchical relationships, while Proposition 10 shows their sys-
tematicness with previous measures.

Herein, HDj
ðAÞ is indirectly defined by a systematic transformation, i.e., Eq. (25), and its direct decomposition from HðAÞ is

indeed difficult based on the hierarchical connection proof (i.e., Eq. (31)).

(1) According to the inverse deduction of Eq. (31), the hierarchical decomposition of HðAÞ actually concerns the decom-

position of both granular summation
PnðAÞ

i¼1 and class summation
Pm

j¼1 as well as relevant commutation; thus, the decom-
position strategy for HDj

ðAÞ is complex.

(2) In contrast, the conversion strategy for HDj
ðAÞ becomes easy because we only need granular summation

PnðAÞ
i¼1 of HðDjÞ

as well as certain subsequent transformations. This conversion strategy is also useful when describing the systematic
relationship.
(3) The direct decomposition and systematic switching respectively correspond to the reverse and forward deductions of
Eq. (31); thus, their degrees regarding difficulty and heuristics are completely different. Based on the final result of Eq.
(31), we can also say that HDj

ðAÞ is hierarchically decomposed from HðAÞ.

The system function in Eq. (32) can be equivalently broken up into three groups of relationships:
IðDj;AÞ ¼ IðA;DjÞ; IðA;DjÞ þ HðDjjAÞ ¼ HðDjÞ; HDj
ðAÞ ¼ IðA;DjÞ þ HðAjDjÞ: ð33Þ
The three connections can gain vivid diagrams, when we introduce five variables:
IðDj; �Þ; Ið�;DjÞ;HðDjj�Þ;Hð�jDjÞ;HDj
ð�Þ ð8 � 2 2C � f£gÞ;
and the geometric characteristics are described in Fig. 2. Fig. 2 describes three groups of connections in Eq. (33) to deeply
embody the systematicness in Eq. (32).

3.2. Comprehensive analysis

Thus far, information entropy HDj
ðAÞ;HðDjÞ, conditional entropy HðDjjAÞ;HðAjDjÞ, and mutual information IðA;DjÞ; IðDj;AÞ

at the class level have been systematically mined in the top-down direction, and they respectively correspond to
HðAÞ;HðDÞ;HðDjAÞ;HðAjDÞ, and IðA;DÞ; IðD;AÞ at the classification level, where the relevant hierarchical decomposition is con-
cerned. As a result, they have a system equation at the class level, and Eq. (32) is completely similar to Eq. (11) at the clas-
sification level. This conclusion can be summarized to a variant isomorphism.

Theorem 1. (Measure isomorphism) In terms of internal relations (i.e., Eqs. (11) (32)), the two information systems at the class
and classification levels offer an isomorphism:
HDj
ðAÞ;HðDjÞ;HðDjjAÞ;HðAjDjÞ; IðA;DjÞ; IðDj;AÞ

� �
ffi HðAÞ;HðDÞ;HðDjAÞ;HðAjDÞ; IðA;DÞ; IðD;AÞð Þ: ð34Þ
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Proof. This result is verified by Propositions 2 and 10. �
This metric isomorphism supports the proposed class-specific information measures in terms of the traditional

classification-based information measures. As an example, the class-specific information measures carry corresponding
uncertainty semantics from the top level to the middle level, and this translational strategy for semantics may outperform
the direct and feasible approach. Concretely, a classification with multiple granules can be viewed as an information source;
thus, the previous measures at Macro-Top ðpA;pDÞ concern two types of information sources, while the current measures at
Meso-Middle ðpA;DjÞ concern only a type of information source and a fixed observation class.

(1) Information entropy HDj
ðAÞ characterizes the average information content and uncertainty of classification pA regard-

ing class Dj, while information entropy HðDjÞ directly represents the uncertainty of class Dj.
(2) Conditional entropy HðDjjAÞ quantifies the average information content and uncertainty of the premise classification
pA and target class Dj, while conditional entropy HðAjDjÞmeasures the average information content and uncertainty of the
classification pA and premise class Dj.
(3) Mutual information IðA;DjÞ measures the information content from classification pA to class Dj, while mutual infor-
mation IðDj;AÞ can be viewed to make a reverse description. IðA;DjÞ and IðDj;AÞ have the same connotation (i.e., IðDj;AÞ
is mainly equal to IðA;DjÞ) because they concern only a sole classification pA. In contrast, IðA;DÞ and IðD;AÞ have different
connotations but commutative equality because they concern two kinds of granulation, i.e., pA and pD.

In summary, the class-specific information measures at the class level have been developed by three types of hierarchical
decomposition and have the relevant analytical structure, uncertainty semantics, hierarchical relationship, and systematic
equation in contrast to the previous classification-based information measures. The complete similarity of both information
systems is related to the isomorphism. This study novelly transfers the information measure system from the classification
level to the class level and thus highlights the class-specific uncertainty measurement and attribute reduction. Following the
classical approach, only a set of class-specific measures (entropy HDj

ðAÞ, conditional entropy HðDjjAÞ, and mutual information
IðA;DjÞ) is more focused on or mainly used, especially when constructing the class-specific attribute reducts.

In Ref. [71], three-way weighted entropies at Meso-Middle ðpA;DjÞ are proposed by the Bayes’ system formula and
bottom-middle integration evolution. These measures at the class level involve (1) likelihood weighted entropy HWðDjjAÞ
(or likelihood-linear weighted entropy Hlin

W ðDjjAÞ), (2) prior weighted entropy H
Dj
W ðAÞ, and (3) posterior weighted entropy

HWðAjDjÞ. Next, close connections between these new measures and previous weighted entropies are shown to reinforce
the rationality and significance of the proposed new measures.

Theorem 2. At the class level, two sets of information measures have the following equivalence:
HDj
ðAÞ � H

Dj
W ðAÞ; HðDjjAÞ � HWðDjjAÞ; HðAjDjÞ � HWðAjDjÞ; IðA;DjÞ � Hlin

W ðDjjAÞ: ð35Þ
Proof. The equivalence is verified by comparing the decomposed definition of three-way information measures in Defini-
tions 6–8 and the integrated definitions of three-way weighted entropies in [71]. �

Theorem 2 describes the equivalence between two systems of information measures. As main measures, information
entropy HDj

ðAÞ, conditional entropies HðDjjAÞ and HðAjDjÞ, and mutual information IðA;DjÞ are respectively equivalent to prior

weighted entropy H
Dj
WðAÞ, likelihood weighted entropy HWðDjjAÞ, posterior weighted entropy HWðAjDjÞ, and likelihood-linear

weighted entropy Hlin
W ðDjjAÞ. The two metric systems originate from two different strategies at three levels: the hierarchical

decomposition in the top-middle direction and the hierarchical integration in the bottom-middle direction. However,
they achieve the equivalence form at the same level regarding Meso-Middle; this conclusion describes both the concordance
of three-level information construction and the rationality of two systems of middle measures. The new system at the
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class level both degrades the classical system of information measures in Definition 4 and promotes the existing
system of weighted entropies in [71], thus retaining the fundamental connection significance between Macro-Top and
Meso-Middle.

According to Theorem 2, class-specific informationmeasures can directly achieve in-depth properties by virtue of relevant
features of three-way weighted entropies. To construct attribute reducts, we mainly focus on the granulation monotonicity.
By referring to corresponding results in [71,72], Corollaries 1 and 2 respectively provide the relevant granulation monotonic-
ity and optimization condition for the primarymeasures: information entropyHDj

ðAÞ, conditional entropyHðDjjAÞ, andmutual

information IðA;DjÞ. In this study, attribute relation A#B#C naturally induces a process of granulation coarsening: pB�!� pA.

This process usually contains multiple groups of granular merging [69]. Thus, attribute deletion C �!�ðC�RÞR and knowledge

coarsening pC �!� pR are presumed to be accompanied by a representative group of granular merging:
[k
t¼1
½x�tC ¼ ½x�R ðk P 2Þ: ð36Þ
This formula implies that k original granules regarding C (i.e., ½x�1C ; � � � ; ½x�kC) are merged into an ultima granule regarding R (i.e.,
½x�R), where granular merging plays an important role in knowledge-based granulation mining [69]. Moreover, the inverse

granulation refinement can gain the symbol �!
 and relevant descriptions.

Corollary 1. Let A#B#C and pD ¼ fD1; � � � ;Dmg. For any j ¼ 1; � � � ;m,
ðiÞ HDj
ðAÞ 6 HDj

ðBÞ;
ðiiÞ HðDjjAÞP HðDjjBÞ;
ðiiiÞ IðA;DjÞ 6 IðB;DjÞ:

ð37Þ
Corollary 2. Regarding R#C and its coarsening pC �!� pR,
HDj
ðRÞ ¼ HDj

ðCÞ () 8ð
[k
t¼1
½x�tC ¼ ½x�RÞ; 8t 2 f1; � � � ; kg pðDj \ ½x�tCÞ ¼ pðDj \ ½x�RÞ ¼ 0

� �
;

HðDjjRÞ ¼ HðDjjCÞ ^ IðR;DjÞ ¼ IðC;DjÞ () 8ð
[k
t¼1
½x�tC ¼ ½x�RÞ; 8t 2 f1; � � � ; kg pðDjj½x�tCÞ ¼ pðDjj½x�RÞ

� �
;

ð38Þ
where
Sk
t¼1
½x�tC ¼ ½x�R (k P 2) denotes an arbitrary group of granular merging. Herein, the two granular probability descriptions on

the right side of Eq. (38) are respectively called IP0-Condition and LPE-Condition [72].
As shown in Corollary 1, the information entropy, conditional entropy, and mutual information at the class level exhibit

relevant granulationmonotonicity (Eq. (37)), and this important feature benefits from the integration ofmonotonicity in gran-
ularmerging. The class-specific granulationmonotonicity cannot directly come from the hierarchical decomposition ofmono-
tonicity at Macro-Top (Eq. (12)); conversely, the formermonotonicity can jointly derive the latter. Moreover, the preservation
condition regarding A#B in Corollary 1 naturally yields the optimization condition regarding R#C in Corollary 2. Regarding

Corollary 2, each group of granular merging
Sk
t¼1
½x�tC ¼ ½x�R is required to satisfy certain probability conditions. As a result, the

two corollaries underlie the monotonic construction and systematic relationship of the following class-specific reducts.

4. Class-specific attribute reducts from the informational viewpoint

In the above section, three types of information measures (the information entropy, conditional entropy, and mutual
information) have been systematically established at the class level and have fundamental uncertainty semantics and perfect
granulation monotonicity. In this section, these measures are fully utilized to constitute a new system with three types of
informational class-specific reducts, and internal relationships and basic properties are first researched after definitions
are provided.

Definition 9.

(1) R#C is an IE-class-specific reduct (a class-specific reduct on information entropy) if it satisfies two conditions regard-
ing sufficiency and necessity:
ðs1Þ HDj
ðRÞ ¼ HDj

ðCÞ;
ðn1Þ 8r 2 R½HDj

ðR� frgÞ < HDj
ðRÞ�:

(
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The set of all these reducts is denoted by REDIEðDjÞ.
(2) R#C is a CE-class-specific reduct (a class-specific reduct on conditional entropy) if it satisfies two conditions:
ðs2Þ HðDjjRÞ ¼ HðDjjCÞ;
ðn2Þ 8r 2 R½HðDjjðR� frgÞÞ > HðDjjRÞ�:

�

The set of all these reducts is denoted by REDCEðDjÞ.
(3) R#C is an MI-class-specific reduct (a class-specific reduct on mutual information) if it satisfies two conditions:
ðs3Þ IðR;DjÞ ¼ IðC;DjÞ;
ðn3Þ 8r 2 R½IðR� frg;DjÞ < IðR;DjÞ�:

�

The set of all these reducts is denoted by REDMIðDjÞ.

Three types of attribute cores are defined by:
COREIEðDjÞ ¼ fc 2 CjHDj
ðC � fcgÞ < HDj

ðCÞg;
CORECEðDjÞ ¼ fc 2 CjHðDjjðC � fcgÞÞ > HðDjjCÞg;
COREMIðDjÞ ¼ fc 2 CjIðC � fcg;DjÞ < IðC;DjÞg:

ð39Þ
At the class level, Definition 9 utilizes the three information measures and two reduction conditions to typically define

three types of class-specific reducts. R#C implies the C-original coarsening pC �!� pR and relevant granulation monotonicity,
and thus corresponding reducts are minimum attribute subsets to maintain optimal information values. The three types of
reducts are similar to those at the classification level in Definition 5.
Lemma 3. Regarding R#C and its coarsening pC �!� pR,
HDj
ðRÞ ¼ HDj

ðCÞ ) HðDjjRÞ ¼ HðDjjCÞ () IðR;DjÞ ¼ IðC;DjÞ: ð40Þ
Proof. At first, HðDjjRÞ ¼ HðDjjCÞ () IðR;DjÞ ¼ IðC;DjÞ naturally holds according to basic relation IðA;DjÞ ¼ HðDjÞ � HðDjjAÞ,
where HðDjÞ is a constant at the fixed level of class Dj. According to Eq. (38),
8ð
[k
t¼1
½x�tC ¼ ½x�RÞ;8t 2 f1; � � � ; kg pðDj \ ½x�tCÞ ¼ pðDj \ ½x�RÞ ¼ 0) pðDjj½x�tCÞ ¼ pðDjj½x�RÞ

� �
: ð41Þ
IP0-Condition thus necessarily leads to LPE-Condition regarding granular merging
Sk
t¼1
½x�tC ¼ ½x�R in Corollary 2. Therefore,

HDj
ðRÞ ¼ HDj

ðCÞ ) HðDjjRÞ ¼ HðDjjCÞ ^ IðR;DjÞ ¼ IðC;DjÞ. �
Theorem 3. IE-class-specific reducts are stronger than CE-class-specific reducts and MI-class-specific reducts, while the latter two
are equivalent. Thus, we have basic relationships:
ð1Þ 8RIE 2 REDIEðDjÞ;9RCE 2 REDCEðDjÞ;9RMI 2 REDMIðDjÞ; s:t:; RCE #RIE; RMI #RIE;

ð2Þ REDCEðDjÞ � REDMIðDjÞ;
ð3Þ COREIEðDjÞ 
 CORECEðDjÞ � COREMIðDjÞ:
Proof. In terms of the strong–weak reduction theory [70], this conclusion can be proven by Lemma 3 regarding reduction
targets and Proposition 5 regarding reduction manifestations. �

Lemma 3 provides the strong–weak relationships of information reduction targets. The preservations of conditional
entropy and multiple information become equivalent, while the preservation of information entropy becomes stronger to
derive the former two. Accordingly, Theorem 3 provides the strong–weak relationships of information reducts as well as rel-
evant descriptions, and these results are similar to those of informational classification-based reducts. According to this
equivalence, the three types of information measures essentially provide only two types of informational class-specific
reducts (IE-class-specific reducts and MI-class-specific reducts (or CE-class-specific reducts)). Because mutual information
has better uncertainty semantics between classification pA and class Dj, MI-class-specific reducts are more focused on than
IE-class-specific reducts, and this new type of class-specific reducts is utilized to completely omit its equivalent CE-class-
specific reducts.

Basic properties of informational class-specific reducts are now discussed via granulation monotonicity. Representative
MI-class-specific reducts are mainly considered, while the two surplus types have similar results.
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Lemma 4. Regarding mutual information, the individual necessity has two equivalent conditions:
ðn3Þ 8r 2 R½IðR� frg;DjÞ < IðR;DjÞ�;
ðn30Þ 8R0 	 R½IðR0;DjÞ < IðR;DjÞ�:
Proof. (1) First consider ðn3Þ ) ðn30Þ. 8R0 	 R; 9r 2 R� R0 	 R, s.t., R0#R� frg. According to granulation monotonicity (Eq.
(37)), IðR0;DjÞ 6 IðR� frg;DjÞ. According to condition ðn3Þ; IðR� frg;DjÞ < IðR;DjÞ. Hence, IðR0;DjÞ < IðR;DjÞ, i.e., condition
ðn30Þ holds. (2) Then prove ðn30Þ ) ðn3Þ. 8r 2 R;R0 ¼ R� frg 	 R. According to condition ðn30Þ; IðR� frg;DjÞ ¼ IðR0;DjÞ <
IðR;DjÞ, so condition ðn3Þ holds. �
Proposition 11. R 2 REDMIðDjÞ if and only if R satisfies two conditions of ðs3Þ and ðn30Þ.
Proposition 12. Regarding MI-class-specific reducts, the core becomes the intersection of all reducts:
COREMIðDjÞ ¼
\

R2REDMIðDjÞ
R:
Proof. (1) If c R
T

R2REDMIðDjÞ
R, so 9R 2 REDMIðDjÞ ðc R RÞ. Thus, IðR;DjÞ ¼ IðC;DjÞ and R#C � fcg 	 C. According to granulation

monotonicity (Eq. (37)), IðC � fcg;DjÞ ¼ IðC;DjÞ, so c R COREMIðDjÞ. Hence,
T

R2REDMIðDjÞ
R 
 COREMIðDjÞ. (2) If c R COREMIðDjÞ, so

IðC � fcg;DjÞ ¼ IðC;DjÞ. Suppose there exists an MI-class-specific reduct R#C � fcg for C � fcg. Thus,

IðR;DjÞ ¼ IðC � fcg;DjÞ ¼ IðC;DjÞ, and R satisfies the individual necessity condition, i.e., ðn3Þ, so R 2 REDMIðDjÞ. However,

c R R and c R
T

R2REDMIðDjÞ
R. Therefore, COREMIðDjÞ 


T
R2REDMIðDjÞ

R. According to the above two items with double inclusions, we

prove COREMIðDjÞ ¼
T

R2REDMIðDjÞ
R. �
Definition 10. Regarding mutual information, the significance of attribute c 2 C � R on R is defined by:
SigMIðR; c;DjÞ ¼ IðR [ fcg;DjÞ � IðR;DjÞ: ð42Þ

In terms of mutual information, SigMIðR; c;DjÞ represents the importance degree of attribute c regarding class Dj when it is

added to basic attribute subset R; thus, it can be utilized to develop a heuristic algorithm for relevant reduction.
Algorithm 1. (MI-CSR) A heuristic algorithm for an MI-class-specific reduct
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Input: A decision table ðU;C [ DÞ and a class index j 2 f1;2; � � � ;mg.

Output: An MI-class-specific reduct R 2 REDMIðDjÞ.

1: Calculate COREMIðDjÞ.

2: Let R ¼ COREMIðDjÞ.

3: while IðR;DjÞ < IðC;DjÞ do

4: 8c 2 C � R, calculate SigMIðR; c;DjÞ; choose c0 ¼ arg max

c2C�R
SigMIðR; c;DjÞ, and let R R [ fc0g.
5: end while

6: R� ¼ R.

7: for each r 2 R� do

8: if IðR� frg;DjÞ ¼ IðR;DjÞ then

9: R ¼ R� frg.

10: end if

11: end for

12: return R.
Algorithm 1 concerns two stages.

(1) The first stage makes the addition construction based on COREMIðDjÞ and the heuristic search based on SigMIðR; c;DjÞ,
and includes Steps 1–5. Step 1 provides COREMIðDjÞ, and Step 2 chooses the core as the starting point for construction. In

Steps 3–5 with a ‘‘while” loop, the addition attribute c0 is chosen by the highest heuristic information of SigMIðR; c;DjÞ to
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perform quick research, and thus a superset of COREMIðDjÞ is constructed to satisfy the reduction condition of joint suf-
ficiency (condition ðs3Þ).
(2) The second stage conducts the backward deletion for attribute redundancy. Step 6 stores R in R� for loop search. Steps
7–11 use a ‘‘for” loop to sequentially delete unnecessary attributes; thus, the remainder subset R satisfies the reduction
condition of individual necessity (condition ðn3Þ).

As a result, Algorithm 1 effectively yields an MI-class-specific reduct that satisfies both conditions ðs3Þ and ðn3Þ as output
in Step 12. In this study, associated actions based on mutual information are viewed as basic operations to estimate the com-
putational complexity regarding condition attributes and their number jCj. For calculation times, Step 1 requires jCj compar-
isons; in the worst case, Step 4 includes jCj subtractions, jCj � 1 comparisons, and 1 renewal. Furthermore, the ‘‘while” loop
in Steps 4–5 concerns ð1þ 2jCjÞjCj operations; the ‘‘for” loop in Steps 7–11 has an upper bound of 2jCj operations. Thus, the
time complexity follows TðjCjÞ ¼ 2jCj2 þ 3jCj in the worst case to offer an asymptotic analysis of polynomial complexity (i.e.,

TðjCjÞ ¼ OðjCj2Þ), while the space complexity similarly exhibits SðjCjÞ ¼ OðjCj2Þ. This algorithm is also feasible in terms of cal-
culation complexity.

Regarding MI-class-specific reducts, Lemma 4 provides an equivalent condition of necessity, and thus Proposition 11 pro-
vides an equivalent form of reducts. Proposition 12 provides the relationship between the core and reduct, and thus the com-
putable core in each reduct serves as an important basis for reduct construction. Accordingly, the core in Eq. (39) and the
attribute significance in Eq. (42) are used to design a heuristic algorithm (i.e., Algorithm 1), which can efficiently seek an
MI-class-specific reduct. Note that these results are conventional and that they can be similarly obtained for IE-class-
specific reducts as well as CE-class-specific reducts. Moreover, relevant descriptions are neglected. In particular, the idea
and framework of Algorithm 1 can be used to develop heuristic algorithms of other reducts based on monotonic measures.
Accordingly, the heuristic algorithms and relevant labels are uniformly used for both the classification-basic and class-
specific reducts based on algebraic dependency degree or information measures, mainly in later examples and experiments.

5. Systematic connections embracing informational class-specific attribute reducts

The informational class-specific reducts have been systematically developed by three types of information measures at
the class level. In this section, we show their relevant mode connections, mainly their transverse connections with the alge-
braic class-specific reducts and their hierarchical connections with the informational classification-based reducts. The two
types of reduct connections have been previously described and are required in Fig. 1 and constitute two subsections.

5.1. Transverse connections between informational and algebraic class-specific attribute reducts

Herein, internal relationships of entire class-specific reducts are discussed from the strength-weakness perspective,
which serves as a basic technology of reduct comparison [70]. For this purpose, multiple reduction targets and their strength
revelation become both key and difficult. The attribute reduction concerns knowledge coarsening. According to [69], knowl-
edge coarsening consists of two types of granular actions: granular preservation and granular merging. However, the former
has no impact on knowledge coarsening; thus, only the latter causes knowledge coarsening and its measurement. In terms of
knowledge coarsening, both the granulation monotonicity and preservation strength can be shown by focusing on only a
representative of granular merging. As previously stated in Corollary 2 and its explanation, the measure preservation of

reduction targets requires knowledge coarsening pC �!� pR and its representative granular merging
Sk
t¼1
½x�tC ¼ ½x�R (k P 2).

Lemma 5. Regarding R#C and its coarsening pC �!� pR,
HðDjjRÞ ¼ HðDjjCÞ () IðR;DjÞ ¼ IðC;DjÞ ) POSðDjjRÞ ¼ POSðDjjCÞ () cRðDjÞ ¼ cCðDjÞ;
POSðDjjRÞ ¼ POSðDjjCÞ () cRðDjÞ ¼ cCðDjÞ;HðDjjRÞ ¼ HðDjjCÞ () IðR;DjÞ ¼ IðC;DjÞ:

ð43Þ
Corollary 3. Regarding R#C and its coarsening pC �!� pR,

(1) If Dj is a consistent class [73], then the preservations of mutual information (conditional entropy) and dependency degree
(positive region) become equivalent, i.e.,
IðR;DjÞ ¼ IðC;DjÞ () HðDjjRÞ ¼ HðDjjCÞ () cRðDjÞ ¼ cCðDjÞ () POSðDjjRÞ ¼ POSðDjjCÞ:
(2) Otherwise, Dj is an inconsistent class [73], and then the preservations of mutual information (conditional entropy) and
dependency degree (positive region) may be different, where the former is stronger than the latter.
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Proof. Regarding the consistent class Dj, which is equivalent to BNDðDjjCÞ ¼£ [73], the latter two cases in Lemma 5’s proof
in Appendix B never emerge, and thus the strength-weakness relation degenerates into the equivalent case. Regarding the
inconsistent class Dj, which is equivalent to BNDðDjjCÞ –£ [73], the latter two cases may exist and thus the strength-
weakness property still holds to imply the difference. �

Lemma 5’s proof is offered in Appendix B, while the consistent and inconsistent classes are proposed in [73] to
respectively represent the restrictive features of consistent and inconsistent decision tables on a specific decision class. Thus,
Lemma 5 and Corollary 3 show the relationships between the preservations of mutual information (conditional entropy) and
positive region (dependency degree). The informational preservation is usually stronger than the algebraic preservation; in
the special case of a consistent class, the former degenerates into the latter to achieve the equivalence. On this basis,
Theorem 4 naturally provides relationships between MI-class-specific/CE-class-specific reducts and algebraic class-specific
reducts (the usual strength-weakness difference and the degenerated equivalence). Furthermore, Corollary 4 derives the
strength-weakness relationship between IE-class-specific reducts and algebraic class-specific reducts because Theorem 3
shows that IE-class-specific reducts are stronger than MI-class-specific/CE-class-specific reducts.
Theorem 4. MI-class-specific/CE-class-specific reducts are stronger than the algebraic class-specific reducts, and thus:
ð1Þ 8R 2 REDMIðDjÞ � REDCEðDjÞ; 9RAV 2 REDAV ðDjÞ; s:t:; RAV #R;

ð2Þ COREMIðDjÞ � CORECEðDjÞ 
 COREAV ðDjÞ:

Particularly, if the decision class is consistent [73], then the three types of reducts are equivalent, and thus:
REDMIðDjÞ � REDCEðDjÞ � REDAV ðDjÞ;
COREMIðDjÞ � CORECEðDjÞ � COREAV ðDjÞ:
Proof. The conclusion holds by using Lemma 5, Corollary 3, and Proposition 5. �
Corollary 4. IE-class-specific reducts are stronger than algebraic class-specific reducts, and thus:
ð1Þ 8RIE 2 REDIEðDjÞ;9RAV 2 REDAV ðDjÞ; s:t:; RAV #RIE;

ð2Þ COREIEðDjÞ 
 COREAV ðDjÞ:

We now summarize the systematic relationships of class-specific reducts by relevant results concluded in Fig. 3. In total,

there are four types of class-specific reducts, which come from the algebraic region/measure, information entropy, condi-
tional entropy, and mutual information, while the latter three constitute the informational class-specific reducts. Theorems
3 and 4 and Corollary 4 are summarized in Fig. 3, wherein arrows denote the reduct relationships from the strong to weak. As
a result, IE-class-specific reducts are strongest, and the algebraic class-specific reducts are weakest, while the middle two
(i.e., MI-class-specific and CE-class-specific reducts) are equivalent and thus have the same reduction strength. The strength
theory of reducts can generate a structural algorithm from a strong reduct to a weak one. As an example, Algorithm 2 yields
an algebraic class-specific reduct in a given MI-class-specific reduct; when considering the basic operations related to con-
dition attributes, there exists only a ‘‘for” loop in Steps 2–6 to have an upper bound 2jRMIj that is less than or equal to 2jCj;
thus, the temporal and spatial complexities are respectively TðjCjÞ ¼ OðjCjÞ and SðjCjÞ ¼ OðjCjÞ in terms of asymptotic
analysis.
Algorithm 2. (MI-CSR!AV-CSR) A constructional algorithm from an MI-class-specific reduct to an algebraic class-
specific reduct
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Input: A decision table ðU;C [ DÞ, a class index j 2 f1;2; � � � ;mg, and an MI-class-specific reduct RMI 2 REDMIðDjÞ.

Output: An algebraic class-specific reduct R 2 REDAV ðDjÞ satisfying R#RMI.
1: Let R ¼ RMI.

2: for each r 2 RMI do

3: if cR�frgðDjÞ ¼ cRðDjÞ then

4: R ¼ R� frg.

5: end if

6: end for

7: return R.



Fig. 3. Strength-weakness relationships of class-specific and classification-based reducts from informational and algebraic viewpoints.
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Theorem 5. (Reduct-level isomorphism) In terms of the reduction strength order, the two hierarchical systems of class-specific
and classification-based reducts offer an isomorphism:
REDAV ðDjÞ;REDMIðDjÞ;REDCEðDjÞ;REDIEðDjÞ
� �

ffi REDAV ðpDÞ;REDMIðpDÞ;REDCEðpDÞ;REDIEðpDÞ
� �

: ð44Þ
Proof. The conclusion holds by observing these relevant results or their summary Fig. 3. �

These systematic relationships of class-specific reducts are in complete accordance with those of classification-based
reducts, which have been reviewed by Refs. [32,54], as discussed in Section 2. The two hierarchical systems of reducts are
described by two horizontal levels in Fig. 3. Thus, the relevant hierarchical isomorphism is concluded in Theorem 5.
Furthermore, regarding the corresponding hierarchical relationships between the two hierarchical systems, another
isomorphism between two reduct perspectives must be investigated. As part of this discussion, we would like to provide a
related conclusion about hierarchical reduction strength: the upper classification-based reducts are stronger than the lower
class-specific reducts in terms of each hierarchical correspondence. This result is also labeled in the longitudinal direction of
Fig. 3. Both the horizontal and longitudinal relationships of reduct strength-weakness are offered in Fig. 3, where the
reduction strength relation actually has transitivity and reflexivity.
5.2. Hierarchical connections between informational class-specific and classification-based attribute reducts

In terms of information measures, we now show the hierarchical connections between the class-specific and
classification-based reducts, mainly the basic strength-weakness connections, the family-based balance, and the final
perspective-transverse isomorphism. At each level of class or classification, there are four types of reducts: the algebraic
mode concerns the dependency degree, while the information mode uses the mutual information, conditional entropy,
and information entropy, as summarized in Fig. 3. For the latter three informational types of hierarchical correspondence,
we use a generic expression. Let ] 2 fMI;CE; IEg broadly denote one information label of MI;CE; IE (i.e., ] implies MI, or CE,
or IE). Thus, a uniform description is developed regarding the three-way informational measures and reducts.

Theorem 6. Regarding the three-way information measures,
HðRÞ ¼ HðCÞ () 81 6 j 6 m½HDj
ðRÞ ¼ HDj

ðCÞ�;
8r 2 R½HðR� frgÞ– HðRÞ� () 8r;91 6 j 6 m½HDj

ðR� frgÞ < HDj
ðRÞ�;

HðDjRÞ ¼ HðDjCÞ () 81 6 j 6 m½HðDjjRÞ ¼ HðDjjCÞ�;
8r 2 R½HðDjðR� frgÞÞ– HðDjRÞ� () 8r;91 6 j 6 m½HðDjjðR� frgÞÞ > HðDjjRÞ�;

IðR;DÞ ¼ IðC;DÞ () 81 6 j 6 m½IðR;DjÞ ¼ IðC;DjÞ�;
8r 2 R½IðR� frg;DÞ – IðR;DÞ� () 8r;91 6 j 6 m½IðR� frg;DjÞ < IðR;DjÞ�:
Proof. This conclusion can be reached by both the hierarchical integration/decomposition in Eqs. (22) and (30) and the gran-
ulation monotonicity in Eq. (37). �
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Corollary 5. Regarding ]-classification-based and ]-class-specific reducts,

(1) Suppose R 2 REDIEðpDÞ and Rj 2 REDIEðDjÞ, and then
R 2 REDIEðDjÞ () 8r 2 R½HDj
ðR� frgÞ < HDj

ðRÞ�;
Rj 2 REDIEðpDÞ () HðRjÞ ¼ HðCÞ:
(2) Suppose R 2 REDCEðpDÞ and Rj 2 REDCEðDjÞ, and then
R 2 REDCEðDjÞ () 8r 2 R½HðDjjðR� frgÞÞ > HðDjjRÞ�;
Rj 2 REDCEðpDÞ () HðDjRjÞ ¼ HðDjCÞ:
(3) Suppose R 2 REDMIðpDÞ and Rj 2 REDMIðDjÞ, and then
R 2 REDMIðDjÞ () 8r 2 R½IðR� frg;DjÞ < IðR;DjÞ�;
Rj 2 REDMIðpDÞ () IðRj;DÞ ¼ IðC;DÞ:
Regarding the three-way informational measures and reducts, Theorem 6 focuses on the reduction targets to clarify the
corresponding hierarchical relationships, mainly regarding the two reduction conditions of joint sufficiency and individual
necessity, while Corollary 5 shows the corresponding transition of hierarchical reducts regarding all decision classes. For
each measure related to ], the information preservation at the classification level is equivalent to the information preserva-
tion at the class level. From the hierarchical perspective, the classification-based reducts become stronger, while the class-
specific reducts can resort to the family of all decision classes to balance and bound the classification-based reducts. Relevant
theories and algorithms are provided next.
Theorem 7. For each type of informational reducts, the classification-based reducts are accordingly stronger than the class-specific
reducts, and thus:
ð1Þ 8R 2 RED]ðpDÞ; 9Rj 2 RED]ðDjÞ; s:t:;Rj #R;

ð2Þ CORE]ðpDÞ 
 CORE]ðDjÞ:
Proof. According to Theorem 6, when considering a fixed type ] of informational reducts, the classification-based reduction
target naturally derives the class-specific reduction target (i.e., the former is stronger than the latter). Hence, this theorem
holds by Proposition 5, which comes from the strong–weak reduction theory [70]. �
Algorithm 3. (MI-CBR!MI-CSR) A construction algorithm from an MI-classification-based reduct to a family of
MI-class-specific reducts
213
Input: A decision table ðU;C [ DÞ and an MI-classification-based reduct R 2 REDMIðpDÞ.

Output: A family of MI-class-specific reducts ðR1;R2; � � � ;RmÞ satisfying 8j 2 f1;2; � � � ;mg½Rj #R�.

1: for j = 1 to m do

2: Rj ¼ R.

3: for each r 2 R do

4: if IðRj � frg;DjÞ ¼ IðRj;DjÞ then

5: Rj ¼ Rj � frg.

6: end if

7: end for

8: end for

9: return ðR1;R2; � � � ;RmÞ.
Theorem 7 yields the strength-weakness conclusion, and all of these hierarchical strength-weakness relationships have
been labeled in Fig. 3. Algorithm 3 utilizes a given MI-classification-based reduct to generate a family of MI-class-specific
reducts; regarding the basic operations related to condition attributes, the inner ‘‘for” loop in Steps 3–7 requires
2jRj 2 0;2jCjð � in the worst case, and the dual loops have an upper bound of 1þ 2jRjð Þm 2
0; ð1þ 2jCjÞmð �# 0; ð1þ 2jCjÞjUjð � where jRj 6 jCj and m 6 jUj; thus, both the temporal and the spatial complexities are
OðjCjjUjÞ in terms of asymptotic analysis. Moreover, similar algorithms can be produced for the other two kinds of reducts
based on information entropy and conditional entropy.

Theorem 8. For each type of informational reducts, the family union of class-specific reducts regarding all decision classes
necessarily includes a classification-based reduct. Thus:
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ð1Þ 8Rj 2 RED]ðDjÞðj 2 f1;2; � � � ;mgÞ;9R 2 RED]ðpDÞ; s:t:;R#
[m
j¼1

Rj;

ð2Þ CORE]ðpDÞ#
[m
j¼1

CORE]ðDjÞ:
Proof. This result comes from the reduct condition connections in Theorem 6 as well as relevant reduct definitions. �
Algorithm 4. (MI-CSR!MI-CBR) A construction algorithm from a family of MI-class-specific reducts to an MI-
classification-based reduct
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Input: A decision table ðU;C [ DÞ and a family of MI-class-specific reducts ðR1; � � � ;RmÞ
(8j 2 f1;2; � � � ;mg;Rj 2 REDMIðDjÞ).
Output: An MI-classification-based reduct R 2 REDMIðpDÞ satisfying R#
[m
j¼1

Rj.
1: R ¼
[m
j¼1

Rj.
2: for each attribute r 2
[m
j¼1

Rj do
3: if IðR� frg;DÞ ¼ IðR;DÞ then

4: R ¼ R� frg;

5: end if

6: end for

7: return R.
Theorem 8 and Algorithm 4 describe the other direction, which is opposite to these strength-weakness from
classification-based reducts to class-specific reducts (family). From the family of class-specific reducts and their union set,
we can seek a classification-based reduct, and Algorithm 4 provides the algorithm regarding mutual information, which
can induce the surplus two algorithms. In terms of the basic operations embracing the sole ‘‘for” loop, this algorithm con-

cerns 2j Sm
j¼1

Rjj 2 0;2jCjð � in the worst case; thus, the temporal and spatial complexities are respectively TðjCjÞ ¼ OðjCjÞ and

SðjCjÞ ¼ OðjCjÞ. By summarizing these two sides, we can directly provide the further balance conclusion.

Theorem 9. For each type of informational reducts, there exists a kind of balance between the classification-based reducts and a
family of class-specific reducts, and then:
ð1Þ 8R 2 RED]ðpDÞ; 9Rj 2 RED]ðDjÞðj 2 f1;2; � � � ;mgÞ; s:t:;R ¼
[m
j¼1

Rj;

ð2Þ CORE]ðpDÞ ¼
[m
j¼1

CORE]ðDjÞ:
Proof. According to Theorem 7, 8R 2 RED]ðpDÞ; 9Rj 2 RED]ðDjÞ, s.t., Rj #R, and thus
Sm

j¼1Rj #R. For this union set and accord-

ing to Theorem 8, 9R0 2 RED]ðpDÞ, s.t., R0#
Sm

j¼1Rj. Hence, we achieve R0#
Sm

j¼1Rj #R. However, R 2 RED]ðpDÞ;R0 2 RED]ðpDÞ,
and R0#R together deduce R0 ¼ R. Therefore, R0 ¼ Sm

j¼1Rj ¼ R.

Moreover, Theorem 7 can derive CORE]ðpDÞ 

Sm

j¼1CORE
]ðDjÞ; with the addition of CORE]ðpDÞ#

Sm
j¼1CORE

]ðDjÞ in

Theorem 8, we can naturally achieve CORE]ðpDÞ ¼
Sm

j¼1CORE
]ðDjÞ. h

Theorem 9 resorts to the reduction strength-weakness and its reverse to provide an in-depth balance conclusion between
two types of hierarchical reducts, where a family of all decision classes is fully used. According to Theorem 9 and its proof,
the ]-classification-based reduct R is input into Algorithm ]-CBR!]-CSR to obtain ]-class-specific reducts’ union

Sm
j¼1Rj. This

union is then input into Algorithm ]-CSR!]-CBR to recover the initial R; thus, the combination of Algorithms ]-CBR!]-CSR
and ]-CSR!]-CBR generates an identity mapping in RED]ðpDÞ. In contrast, the other combination of Algorithms ]-CSR!]-CBR
and ]-CBR!]-CSR cannot yield an identity mapping.
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Based on the family of reducts in RED]ðDjÞ (j ¼ 1;2; � � � ;m), RED]ðpDÞ can gain an upper bound by the union form, which

comes from the balance property of Theorem 9, while RED]ðpDÞ can supplement a lower bound by the intersection strategy
from Theorem 7. The relevant conclusion is stated as follows.

Theorem 10. ]-classification-based and ]-class-specific reducts have the following description of double bounds,
Table 3
Consist

U

x1
x2
x3
x4
x5
x6
x7
x8
x9
\m
j¼1

RED]ðDjÞ#RED]ðpDÞ#
[m
j¼1

RjjRj 2 RED]ðDjÞ; j ¼ 1;2; � � � ;m
( )

: ð45Þ
Proof. In terms of the direct proof, the two subset symbols (i.e., # ) respectively come from Theorems 7 and 9. Moreover, the
double-bound conclusion of the algebra-hierarchical reducts has been proven in Ref. [64], and we can mainly refer to those
deductions on Eqs. (8)–(10) in that paper; thus, the proof can be utilized to similarly and effectively verify the double-bound
result of the information–hierarchical reducts in this study. �

Conversely, all of these hierarchical results of reduct strength, balance, and bound regarding the information reducts are
similar to those regarding the algebraic reducts in [64]. This conclusion describes the similarity of hierarchical development
between the informational and algebraic approaches, as shown in Figs. 1 and 3, and its rationality benefits from the
hierarchical relevance and integrated construction between the two levels of Macro-Top and Meso-Middle. As a result, we
can directly extract a varietal isomorphism conclusion between the transverse viewpoints.
Theorem 11. (Reduct-viewpoint isomorphism) In terms of the reduct-hierarchical relations, the two transverse systems of
informational and algebraic reducts offer an isomorphism:
RED]ðpDÞ;RED]ðDjÞ
� �

ffi REDAV ðpDÞ;REDAV ðDjÞ
� �

: ð46Þ
Proof. This assertion can be completely summarized and verified by comparing these information–hierarchical reducts
results (i.e., Theorems 6–10 and Corollary 5) and the matching algebra-hierarchical reducts conclusions in Ref. [64]. �
6. Example illustration and experiment verification

6.1. Example illustration

These informational measures and reducts at the class level are first shown in decision tables.

Example 1. This example uses a consistent decision table ðU; C [ DÞ, provided in Table 3. Herein, we have
U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g;C ¼ fc1; c2; c3; c4; c5g, while D ¼ fdg generates three decision classes in classification pD:
D1 ¼ fx1; x2; x3g; D2 ¼ fx4; x5; x6g; D3 ¼ fx7; x8; x9g:

The class-specific information measures are first investigated, and their systematicness, hierarchy, and monotonicity

require verification based on attribute subsets and metric calculation. For this purpose, we resort to an attribute-
enlargement chain:
C1 ¼ fc1g 	 C2 ¼ fc1; c2g 	 � � � 	 C jCj ¼ fc1; c2; � � � ; cjCjg; ð47Þ

which can deeply and effectively probe the hierarchical feature and structural information by relevant granulation refining
sequence:
U=pC1 
 U=pC2 
 � � � 
 U=pCjCj : ð48Þ
ent decision table of Example 1.

c1 c2 c3 c4 c5 d

0 1 3 0 0 1
0 1 3 0 0 1
0 1 3 2 2 1
1 0 1 0 1 2
0 0 1 0 1 2
1 0 2 2 0 2
1 0 1 0 2 3
1 0 1 0 2 3
1 1 2 2 1 3
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Table 4
Measured values based on the attribute-addition chain of Example 1.

Measure fc1g fc1; c2g fc1; c2; c3g fc1; c2; c3; c4g fc1; c2; c3; c4; c5g
cCk
ðDÞ 0 0.5556 0.6667 0.6667 1

cCk
ðD1Þ 0 0.3333 0.3333 0.3333 0.3333

cCk
ðD2Þ 0 0.1111 0.2222 0.2222 0.3333

cCk
ðD3Þ 0 0.1111 0.1111 0.1111 0.3333

HðCkÞ 0.9911 1.7527 2.1133 2.4194 2.7255
HD1 ðCkÞ 0.3900 0.5283 0.5283 0.8344 0.8344
HD2 ðCkÞ 0.3184 0.6122 0.8805 0.8805 1.0566
HD3 ðCkÞ 0.2827 0.6122 0.7044 0.7044 0.8344
HðDÞ 1.5850 1.5850 1.5850 1.5850 1.5850
HðD1Þ 0.5283 0.5283 0.5283 0.5283 0.5283
HðD2Þ 0.5283 0.5283 0.5283 0.5283 0.5283
HðD3Þ 0.5283 0.5283 0.5283 0.5283 0.5283
HðDjCkÞ 0.9000 0.4444 0.3061 0.3061 0
HðD1jCkÞ 0.1383 0 0 0 0
HðD2jCkÞ 0.5160 0.2222 0.1761 0.1761 0
HðD3jCkÞ 0.2457 0.2222 0.1300 0.1300 0
HðCkjDÞ 0.3061 0.6122 0.8344 1.1405 1.1405
HðCkjD1Þ 0 0 0 0.3061 0.3061
HðCkjD2Þ 0.3061 0.3061 0.5283 0.5283 0.5283
HðCkjD3Þ 0 0.3061 0.3061 0.3061 0.3061
IðCk;DÞ; IðD;CkÞ 0.6850 1.1405 1.2789 1.2789 1.5850
IðCk;D1Þ; IðD1;CkÞ 0.3900 0.5283 0.5283 0.5283 0.5283
IðCk;D2Þ; IðD2;CkÞ 0.0123 0.3061 0.3522 0.3522 0.5283
IðCk;D3Þ; IðD3;CkÞ 0.2827 0.3061 0.3983 0.3983 0.5283
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By definition calculation, the relevant algebraic and informational measures at the classification and class levels are pro-
vided in Table 4.

Table 4 can be utilized to observe three main conclusions of information measures.

(1) For each attribute subset Ck (k ¼ 1;2;3;4;5), we can achieve:
Thi
IðDj;CkÞ ¼ IðCk;DjÞ; IðCk;DjÞ þ HðDjjCkÞ ¼ HðDjÞ; HDj
ðCkÞ ¼ IðCk;DjÞ þ HðCkjDjÞ: ð49Þ

s, all six types of class-specific information measures indeed satisfy the system function Eq. (33) or Eq. (32).
Thu
(2) For each attribute subset Ck (k ¼ 1;2;3;4;5), we always have:
HðCkÞ ¼
X3
j¼1

HDj
ðCkÞP HDj

ðCkÞ; HðDÞ ¼
X3
j¼1

HðDjÞP HðDjÞ;

HðDjCkÞ ¼
X3
j¼1

HðDjjCkÞP HðDjjCkÞ; HðCkjDÞ ¼
X3
j¼1

HðCkjDjÞP HðCkjDjÞ;

IðCk;DÞ ¼
X3
j¼1

IðCk;DjÞP IðCk;DjÞ; IðD;CkÞ ¼
X3
j¼1

IðDj;CkÞP IðDj;CkÞ:

s fact shows the hierarchical relationships of integration/decomposition and size.

(3) For each decision class Dj (j ¼ 1;2;3), HDj

ðCkÞ and IðCk;DjÞ never decrease while HðDjjCkÞ never increases in the attri-
bute chain from C1 to C5. These results verify the granulation monotonicity in Eq. (37).

Next, we present the informational class-specific reducts and their systematic and hierarchical relationships. According to
the notions and calculations, relevant results of reducts, cores, and algorithms are provided in Table 5, and these results pro-
vide several observations as follows.

(1) Regarding the basic properties of a reduct type, such as the descriptions in Proposition 12 and Algorithm 1, the core is
the intersection of all reducts, while the heuristic algorithm provides one reduct.

(2) The horizontal strength-weakness in Fig. 3, such as those in Theorems 3, 4, Corollary 4, and Algorithm 2, can be nat-
urally verified. IE-class-specific reducts are stronger than MI-class-specific/CE-class-specific and algebraic class-
specific reducts, and the strict strength is reflected by both cases D1 and D2. MI-class-specific/CE-class-specific reducts
are equivalent to algebraic class-specific reducts; this result describes the conclusion of a consistent class in Theorem 4
because the consistency of a decision table implies the consistency of all decision classes. Algorithm MI-CSR!AV-CSR
(i.e., Algorithm 2) is effective, and the similar Algorithms IE-CSR!MI-CSR and IE-CSR!AV-CSR are effective and can be
powerfully obtained by cases D1 and D2.
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Table 5
Reduct results of Example 1.

Level REDAV COREAV Algorithm AV-CBR/CSR REDMI COREMI Algorithm MI-CBR/CSR REDIE COREIE Algorithm IE-CBR/CSR

D
fc2; c5g, fc2; c5g, fc1; c2; c5g,
fc3; c5g, fc5g fc2; c5g fc3; c5g, fc5g fc2; c5g, fc1; c3; c5g, fc1; c5g fc1; c2; c5g
fc4; c5g. fc4; c5g. fc1; c4; c5g.
fc1; c2g, fc1; c2g, fc1; c2; c4g,
fc1; c5g, fc1; c5g, fc1; c5g,

D1 fc2; c5g, £ fc3g fc2; c5g, £ fc3g fc2; c5g, £ fc3; c5g
fc3g, fc3g, fc3; c5g,
fc4; c5g. fc4; c5g. fc4; c5g.

D2

fc2; c5g, fc2; c5g, fc1; c2; c5g,
fc3; c5g, fc5g fc2; c5g fc3; c5g, fc5g fc2; c5g, fc1; c3; c5g, fc1; c5g fc1; c2; c5g
fc4; c5g. fc4; c5g. fc1; c4; c5g.

D3

fc2; c5g, fc2; c5g, fc2; c5g,
fc3; c5g, fc5g fc2; c5g fc3; c5g, fc5g fc2; c5g, fc3; c5g, fc5g fc2; c5g
fc4; c5g. fc4; c5g. fc4; c5g.
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(3) The hierarchical strength-weakness in Fig. 3, such as those in Theorem 7 and Algorithm 3, can be directly verified. In
particular, Algorithm MI-CBR!MI-CSR (i.e., Algorithm 3) is effective, and the similar Algorithm IE-CBR!IE-CSR is also
effective. Via the family function, the inverse relationship and hierarchical balance in Theorems 8, 9 Algorithm 4, as
well as the similar Algorithm IE-CSR!IE-CBR, can be verified. �

The decision table used in Example 1 is consistent; thus, all decision classes consistently show the equivalency between
MI-class-specific/CE-class-specific and algebraic class-specific reducts in Theorem 4. Furthermore, an inconsistent decision
table is provided to verify the difference and strength-weakness of the two types of class-specific reducts.

Example 2. An inconsistent decision table is given in Table 6, where object pairs ðx2; x4Þ and ðx3; x5Þ imply the inconsistency,
and the relevant reduct results are offered in Table 7. According to inconsistent class D1, MI-class-specific/CE-class-specific
and algebraic class-specific reducts are different, while the former are stronger. Thus, Theorem 4 and Algorithm 2 are true.
Regarding D1, Algorithm 2 effectively yields an algebraic class-specific reduct fc2; c3g when inputting MI-class-specific/CE-
class-specific and class-specific reduct fc2; c3g. �
Table 6
Inconsistent decision table of Example 2.

U c1 c2 c3 d

x1 1 0 0 1
x2 0 1 1 1
x3 0 0 1 1
x4 0 1 1 2
x5 0 0 1 2
x6 0 2 1 2
x7 0 1 0 2

Table 7
Reduct results of Example 2.

Level REDAV COREAV Algorithm AV-CBR/CSR REDMI COREMI Algorithm MI-CBR/CSR REDIE COREIE Algorithm IE-CBR/CSR

D fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g
D1 fc1g; fc2; c3g £ fc1g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g
D2 fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g fc2; c3g

Table 8
Basic descriptions of three UCI datasets in terms of decision table ðOB;C [ DÞ.

Label Name Object number jOBj Condition attribute number jCj Decision class number jpD j Consistent

(1) Monk-3 432 6 2 Yes
(2) Tic-Tac-Toe 958 9 2 Yes
(3) CMC 1473 9 3 No
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Table 9
Measured values based on the attribute-addition chain of three UCI datasets.

Measure fc1g fc1; c2g fc1; c2; c3g fc1; . . . ; c4g fc1; . . . ; c5g fc1; . . . ; c6g fc1; . . . ; c7g fc1; . . . ; c8g fc1; . . . ; c9g
(1) cCk

ðDÞ 0 0 0 0.2222 1 1 – – –
cCk
ðD1Þ 0 0 0 0 0.5278 0.5278 – – –

cCk
ðD2Þ 0 0 0 0.2222 0.4722 0.4722 – – –

HðCkÞ 1.5820 3.1699 4.1699 5.7549 7.7549 8.7549 – – –
HD1 ðCkÞ 0.8365 1.6730 2.2008 3.0373 4.0929 4.6206 – – –
HD2 ðCkÞ 0.7485 1.4969 1.9691 2.7176 3.6620 4.1343 – – –
HðDÞ 0.9918 0.9918 0.9918 0.9918 0.9918 0.9918 – – –
HðD1Þ 0.4866 0.4866 0.4866 0.4866 0.4866 0.4866 – – –
HðD2Þ 0.5112 0.5112 0.5112 0.5112 0.5112 0.5112 – – –
HðDjCkÞ 0.9978 0.6788 0.6788 0.6310 0 0 – – –
HðD1jCkÞ 0.4866 0.3071 0.3071 0.2631 0 0 – – –
HðD2jCkÞ 0.5112 0.3717 0.3717 0.3679 0 0 – – –
HðCkjDÞ 1.5850 2.8590 3.8509 5.3881 6.7571 7.7571 – – –
HðCkjD1Þ 0.8365 1.4935 2.0213 2.8138 3.6062 4.1340 – – –
HðCkjD2Þ 0.7485 1.3574 1.8297 2.5743 3.1509 3.6231 – – –
IðCk;DÞ; IðD;CkÞ 0.0000 0.3190 0.3190 0.3668 0.9978 0.9978 – – –
IðCk;D1Þ; IðD1;CkÞ 0.0000 0.1795 0.1795 0.2235 0.4866 0.4866 – – –
IðCk;D2Þ; IðD2;CkÞ 0.0000 0.1395 0.1395 0.1432 0.5112 0.5112 – – –
(2) cCk

ðDÞ 0 0 0.1253 0.1628 0.4188 0.7766 0.9436 1 1
cCk
ðD1Þ 0 0 0.0877 0.1221 0.3173 0.5393 0.6253 0.6534 0.6534

cCk
ðD2Þ 0 0 0.0376 0.0407 0.1013 0.2463 0.3184 0.3466 0.3466

HðCkÞ 1.5281 3.0912 4.5760 6.0351 7.3153 8.4617 9.3530 9.9039 9.9039
HD1 ðCkÞ 0.9972 2.0242 2.9824 3.9399 4.7527 5.5015 6.0967 6.4716 6.4716
HD2 ðCkÞ 0.5309 1.0669 1.5936 2.0951 2.5616 2.9602 3.2563 3.4322 3.4322
HðDÞ 0.9310 0.9310 0.9310 0.9310 0.9310 0.9310 0.9310 0.9310 0.9310
HðD1Þ 0.4011 0.4011 0.4011 0.4011 0.4011 0.4011 0.4011 0.4011 0.4011
HðD2Þ 0.5298 0.5298 0.5298 0.5298 0.5298 0.5298 0.5298 0.5298 0.5298
HðDjCkÞ 0.9174 0.9005 0.7532 0.7057 0.4508 0.2059 0.0564 0 0
HðD1jCkÞ 0.3963 0.3904 0.3317 0.3161 0.2130 0.0987 0.0282 0 0
HðD2jCkÞ 0.5211 0.5101 0.4214 0.3896 0.2378 0.1072 0.0282 0 0
HðCkjDÞ 1.5146 3.0606 4.3982 5.8098 6.8351 7.7366 8.4785 8.9729 8.9729
HðCkjD1Þ 0.9924 2.0135 2.9130 3.8549 4.5655 5.1991 5.7338 6.0705 6.0705
HðCkjD2Þ 0.5222 1.0471 1.4852 1.9549 2.2695 2.5375 2.7547 2.9024 2.9024
IðCk;DÞ; IðD;CkÞ 0.0136 0.0305 0.1778 0.2252 0.4802 0.7251 0.8746 0.9310 0.9310
IðCk;D1Þ; IðD1;CkÞ 0.0049 0.0107 0.0694 0.0850 0.1882 0.3024 0.3729 0.4011 0.4011
IðCk;D2Þ; IðD2;CkÞ 0.0087 0.0198 0.1084 0.1402 0.2920 0.4226 0.5016 0.5298 0.5298
(3) cCk

ðDÞ 0.0576 0.3453 0.5971 0.9353 0.9424 0.9712 0.9856 0.9856 0.9856
cCk
ðD1Þ 0.0360 0.2086 0.2806 0.4173 0.4173 0.4317 0.4388 0.4388 0.4388

cCk
ðD2Þ 0.0072 0.0288 0.1007 0.1871 0.1942 0.1942 0.2014 0.2014 0.2014

cCk
ðD3Þ 0.0144 0.1079 0.2158 0.3309 0.3309 0.3453 0.3453 0.3453 0.3453

HðCkÞ 4.4861 5.0265 5.0612 5.6763 5.8585 5.8931 5.9217 5.9217 5.9217
HD1 ðCkÞ 1.0441 1.2215 1.2362 1.3643 1.3929 1.3929 1.4000 1.4000 1.4000
HD2 ðCkÞ 1.7081 1.8623 1.8623 2.0915 2.1582 2.1782 2.1853 2.1853 2.1853
HD3 ðCkÞ 1.7339 1.9428 1.9627 2.2204 2.3074 2.3221 2.3364 2.3364 2.3364
HðDÞ 1.5517 1.5517 1.5517 1.5517 1.5517 1.5517 1.5517 1.5517 1.5517
HðD1Þ 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914 0.4914
HðD2Þ 0.5307 0.5307 0.5307 0.5307 0.5307 0.5307 0.5307 0.5307 0.5307
HðD3Þ 0.5295 0.5295 0.5295 0.5295 0.5295 0.5295 0.5295 0.5295 0.5295
HðDjCkÞ 1.4133 1.2624 1.2617 1.1191 1.0600 1.0593 1.0450 1.0450 1.0450
HðD1jCkÞ 0.4310 0.3733 0.3729 0.3019 0.2733 0.2733 0.2662 0.2662 0.2662
HðD2jCkÞ 0.4872 0.4348 0.4348 0.3940 0.3647 0.3644 0.3573 0.3573 0.3572
HðD3jCkÞ 0.4951 0.4543 0.4540 0.4232 0.4220 0.4216 0.4216 0.4216 0.4216
HðCkjDÞ 4.3477 4.7372 4.7712 5.2436 5.3668 5.4008 5.4151 5.4151 5.4151
HðCkjD1Þ 0.9836 1.1033 1.1176 1.1748 1.1748 1.1748 1.1748 1.1748 1.1748
HðCkjD2Þ 1.6646 1.7665 1.7665 1.9548 1.9922 2.0119 2.0119 2.0119 2.0119
HðCkjD3Þ 1.6995 1.8675 1.8871 2.1141 2.1998 2.2141 2.2284 2.2284 2.2284
IðCk;DÞ; IðD;CkÞ 0.1384 0.2893 0.2900 0.4326 0.4917 0.4924 0.5067 0.5067 0.5067
IðCk;D1Þ; IðD1;CkÞ 0.0605 0.1181 0.1186 0.1895 0.2181 0.2181 0.2253 0.2253 0.2253
IðCk;D2Þ; IðD2;CkÞ 0.0435 0.0959 0.0959 0.1367 0.1660 0.1663 0.1734 0.1734 0.1734
IðCk;D3Þ; IðD3;CkÞ 0.0344 0.0753 0.0756 0.1063 0.1076 0.1080 0.1080 0.1080 0.1080
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6.2. Experiment verification

The previous theoretical results of informational measures and reducts have been shown in detail and verified by two
decision tables: the consistent Table 3 and inconsistent Table 6. For more sufficient manifestations, data experiments are
finally supplemented to perform similar and further verification.
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Table 10
Reduct results of three UCI datasets.

Level REDAV COREAV A lgorithm AV-CBR/
CSR

REDMI COREMI A lgorithm MI-CBR/
CSR

REDIE COREIE A lgorithm IE-CBR/
CSR

(1) D,
D1;D2

fc2; c4; c5g fc2; c4; c5g fc2; c4; c5g fc2; c4; c5g fc2; c4; c5g fc2; c4; c5g fc1; c . . . ; c6g fc1; c2; . . . ; c6g fc1; c2; . . . ; c6g

(2) D,
D1;D2

C � fc1g C � fc1g C � f g
C � fc2g C � fc2g C � f g
. . . £ C � fc9g . . . £ C � fc9g . . . £ C � fc9g
C � fc9g C � fc9g C � f g

(3) D
fc1; c2; c4; c6; c8g,
fc1; c3; c4; c6; c7g, fc1; c4; c6g fc1; c3; c4; c6; c8g fc1; c2; c3; c4; c6; c8g fc1; c2; c3; c4; c6; c8g fc1; c2; c3; c4; c6; c8g fc1; c c3; c4; c6; c8g fc1; c2; c3; c4; c6; c8g fc1; c2; c3; c4; c6; c8g
fc1; c3; c4; c6; c8g.

(3) D1

fc1; c2; c4; c6; c7g, fc1; c2; c4; c6; c7g,
fc1; c3; c4; c6; c7g, fc1; c4; c6g fc1; c3; c4; c6; c8g fc1; c3; c4; c6; c7g, fc1; c4; c6g fc1; c3; c4; c6; c8g fc1; c c3; c4; c6; c8g, fc1; c2; c4; c6g fc1; c2; c4; c6; c7g
fc1; c3; c4; c6; c8g. fc1; c3; c4; c6; c8g. fc1; c c4; c6; c7g.

(3) D2

fc1; c2; c3; c4; c8g, fc1; c2; c3; c4; c8g, fc1; c c3; c4; c5; c8g,
fc1; c2; c4; c7; c8g, fc1; c2; c4; c7; c8g, fc1; c c4; c5; c7g,
fc1; c3; c4; c6; c8g, fc1; c4g fc1; c3; c4; c8g fc1; c3; c4; c6; c8g, fc1; c4g fc1; c2; c3; c4; c8g fc1; c c4; c6; c8g, fc1; c4g fc1; c3; c4; c6; c7g
fc1; c4; c6; c7; c8g. fc1; c4; c6; c7; c8g. fc1; c c6; c7; c8g.

(3) D3
fc1; c2; c4; c6; c7; c8g, fc1; c4; c6g fc1; c3; c4; c6g fc1; c2; c4; c6; c7; c8g, fc1; c4; c6g fc1; c3; c4; c6g fc1; c c4; c6; c8g fc1; c3; c4; c6; c8g fc1; c3; c4; c6; c8g
fc1; c3; c4; c6g. fc1; c3; c4; c6g.
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Fig. 4. Three-dimensional plane of three-way information measures of three UCI datasets.
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According to the three datasets described in Table 8, Tables 9 and 10, respectively exhibit the measure values and reduct
results. Both tables can be utilized to analyze the theoretical properties. We similarly verify both the three points of mea-
sures and the three aspects of reducts concerned in Example 1, and the related details are omitted. Fig. 4 shows the

three-dimensional points IðA;DÞ;HðAjDÞ;HðAÞð Þ and IðA;DjÞ;HðAjDjÞ;HDj
ðAÞ

� �
and their existent planes, thus presenting the

three-way summations
HðAÞ ¼ IðD;AÞ þ HðAjDÞ; HDj
ðAÞ ¼ IðA;DjÞ þ HðAjDjÞ ð50Þ
in Eqs. (11) and (33), respectively; moreover, Fig. 5 describes the three-way main information measures based on the
attribute-addition chain, thus verifying the granulation monotonicity of two metric groups:
HðAÞ;HðDjAÞ; IðA;DÞ; HðAÞDj
;HðDjjAÞ; IðA;DjÞ ð51Þ
in Proposition 3 and Corollary 1, respectively.

7. Conclusions

Class-specific attribute reducts are useful for pattern recognition and have become a basic type of attribute reduction.
Targeting their scarce information discussions and required system connections, this paper studies the informational
class-specific reducts and their connections with the algebraic class-specific and classification-based reducts, while the
decomposition mining of information measures from the classification level to the class level becomes a basis and a key.
The class-specific information entropy, conditional entropy, and mutual information come from three strategies of hierarchi-
cal decomposition. Opposing the classification-based information measures, these measures obtain similar features, includ-
ing the systematical relationship, uncertainty semantics, and granulation monotonicity, and they embody the hierarchical
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Fig. 5. Information measure monotonicity based on the attribute-addition chain of three UCI datasets.
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isomorphism. Accordingly, we propose three types of informational class-specific reducts (IE-class-specific, CE-class-specific,
and MI-class-specific reducts), and their systematic connections can be uncovered by the hierarchical and transverse
isomorphisms.

(1) Transverse connections are mainly embodied by the strong–weak relation. IE-class-specific reducts are stronger than
equivalent CE-class-specific and MI-class-specific reducts; furthermore, the latter informational class-specific reducts are
stronger than AV-class-specific reducts, and this strong-weak connection degenerates for a consistent class but holds for
an inconsistent class. Therefore, the informational class-specific reducts are isomorphic to the informational
classification-based reducts because the latter have similar descriptions. This hierarchical isomorphism describes two
types of transverse connections, and the same strong-weak relations among the informational class-specific and
classification-based reducts are presented in the horizontal direction of Fig. 3.
(2) Alternately, hierarchical connections are mainly embodied by the strong-weak relation and family-based balance. The
informational class-specific reducts are respectively weaker than the informational classification-based reducts, while
the former resort to their family of all decision classes to balance the latter. The hierarchical strength-weakness and bal-
ance become true from both the informational and algebraic perspectives, and the hierarchical strength-weakness of both
perspectives are described in the vertical direction of Fig. 3. The two-level reduct systems between the informational and
algebraic viewpoints provide a transverse isomorphism regarding the hierarchical strength-weakness and balance.
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Thus, we novelly establish three types of variant isomorphisms: the measure-hierarchical, reduct-level-longitudinal, and
reduct-viewpoint-transverse isomorphisms. The former focuses on the information measures, while the latter two are sym-
metrical to embrace the vertical-horizontal reduction system, and thus all become interesting and deep. As a result, the
class-specific information measures hierarchically deepen the existing classification-based information measures, while
the informational class-specific reducts systematically perfect the attribute reduction framework with two-level and two-
viewpoint modes. The obtained results facilitate uncertainty measurement and information processing, especially at the
class level. The class-specific information measures and attribute reducts are worthy of practical application for pattern
recognition in a future study, especially by combing the hierarchical guidance from Macro-Top; moreover, the measures
and reducts at Micro-Bottom require more detailed research to describe three-level measures and reducts.
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Appendix A. Proof of Lemma 2

Proof. According to Eq. (18),
HðDjÞ ¼ �pðDjÞlog2pðDjÞ ¼ �
XnðAÞ
i¼1

pðAi \ DjÞ
 !

log2pðDjÞ ¼ �
XnðAÞ
i¼1

pðAi \ DjÞlog2pðDjÞ ¼ �
XnðAÞ
i¼1

pðAiÞpðDjjAiÞlog2pðDjÞ: ðA:1Þ
Note that the inverse deduction of above equation becomes clearer. On this basis of Eq. (A.1), we further have
IðA;DjÞ ¼ HðDjÞ � HðDjjAÞ ¼ �
XnðAÞ
i¼1
½pðAiÞpðDjjAiÞlog2pðDjÞ � pðAiÞpðDjjAiÞlog2pðDjjAiÞ�

¼ �
XnðAÞ
i¼1

pðDj \ AiÞlog2
jDjj � jAij
jUj � jDj \ Aij ; ðA:2Þ

IðA;DjÞ þ HðAjDjÞ ¼ �
XnðAÞ
i¼1

pðDj \ AiÞlog2
jDjj � jAij
jUj � jDj \ Aij �

XnðAÞ
i¼1

pðDjÞpðAijDjÞlog2pðAijDjÞ

¼ �
XnðAÞ
i¼1

pðDj \ AiÞlog2
jDjj � jAij
jUj � jDj \ Aij �

XnðAÞ
i¼1

pðDj \ AiÞlog2
jDj \ Aij
jDjj ¼ �

XnðAÞ
i¼1

pðDj \ AiÞlog2
jAij
jUj

¼ �
XnðAÞ
i¼1

pðDjjAiÞpðAiÞlog2pðAiÞ: ðA:3Þ
Appendix B. Proof of Lemma 5

Proof. We emphatically consider the equality conversions on granular merging
Sk
t¼1
½x�tC ¼ ½x�R (k P 2), and this merging

formula represents each group in pC �!� pR. Only IðR;DjÞ ¼ IðC;DjÞ and POSðDjjRÞ ¼ POSðDjjCÞ are considered for the unidirec-
tional derivation because they respectively correspond to HðDjjRÞ ¼ HðDjjCÞ and cRðDjÞ ¼ cCðDjÞ.
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According to Eq. (38) in Corollary 2, the IPE-Condition of IðR;DjÞ ¼ IðC;DjÞ must be analyzed from the three-way regions
(the positive, negative, and boundary regions). There are three and only three cases, and relevant regional derivations are
discussed as follows.

(1) If pðDjj½x�1CÞ ¼ pðDjj½x�2CÞ ¼ � � � ¼ pðDjj½x�kCÞ ¼ 0 and pðDjj½x�RÞ ¼ 0, then we have ½x�1C ; ½x�2C ; . . . ; ½x�kC #NEGðDjjCÞ and
½x�R #NEGðDjjRÞ. In this case, the granular merging concerns only the negative regions (i.e., it never impacts the positive
regions).

(2) If pðDjj½x�1CÞ ¼ pðDjj½x�2CÞ ¼ � � � ¼ pðDjj½x�kCÞ ¼ 1 and pðDjj½x�RÞ ¼ 1, then we have ½x�1C ; ½x�2C ; � � � ; ½x�kC # POSðDjjCÞ and
½x�R # POSðDjjRÞ. In this case, the granular merging concerns only the positive regions but never changes the positive
regions.

(3) Otherwise, pðDjj½x�1CÞ ¼ pðDjj½x�2CÞ ¼ � � � ¼ pðDjj½x�kCÞ 2 ð0;1Þ and pðDjj½x�RÞ ¼ ð0;1Þ, and then we have

½x�1C ; ½x�2C ; . . . ; ½x�kC #BNDðDjjCÞ and ½x�R #BNDðDjjRÞ. In this case, the granular merging concerns only the boundary regions.

The three cases never cause the change in positive regions; thus, the positive regions are never impacted by granular merg-

ing
Sk
t¼1
½x�tC ¼ ½x�R. Furthermore, the positive regions are preserved in pC �!� pR, i.e., POSðDjjCÞ ¼ POSðDjjRÞ. Therefore,

IðR;DjÞ ¼ IðC;DjÞ ) POSðDjjRÞ ¼ POSðDjjCÞ.

Conversely, it is assumed that POSðDjjRÞ ¼ POSðDjjCÞ. By observation,
Sk
t¼1
½x�tC ¼ ½x�R has multiple distributions on three-way

regions; however, there are two and only two special cases of granular merging which destroy the IPE-Condition but not the
positive regions.

(1) If pðDjj½x�1CÞ; pðDjj½x�2CÞ; � � � ; pðDjj½x�kCÞ 2 ð0;1Þ and pðDjj½x�RÞ 2 ð0;1Þ, and if pðDjj½x�1CÞ ¼ pðDjj½x�2CÞ ¼ � � � ¼ pðDjj½x�kCÞ does not
hold, then we have ½x�1C ; ½x�2C ; � � � ; ½x�kC #BNDðDjjCÞ and ½x�R #BNDðDjjRÞ. In this case, the granular merging concerns only the
boundary regions but never satisfies the IPE-Condition in Eq. (38).

(2) If k probabilities pðDjj½x�1CÞ; pðDjj½x�2CÞ; � � � ; pðDjj½x�kCÞ exactly/completely reach two types of interval ð0;1Þ and equal 0,
then granular merging destroys the boundary/negative regions but not the positive regions; this process also affects
the IPE-Condition.

Based on each case, granular merging
Sk
t¼1
½x�tC ¼ ½x�R impacts the IPE-Condition but not the positive regions. Furthermore,

knowledge coarsening pC �!� pR can have the unchanged positive regions and the changed information values (i.e.,
POSðDjjCÞ ¼ POSðDjjRÞ and IðR;DjÞ – IðC;DjÞ). We can thus achieve POSðDjjRÞ ¼ POSðDjjCÞ;IðR;DjÞ ¼ IðC;DjÞ. �
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