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Abstract
The tolerance rough set is developed as one of the outstanding extensions of the Pawlak's
rough set model under incomplete information, and the limited tolerance relation is
developed to overcome the problem that objects leniently satisfy the tolerance relation.
However, the classification based on the limited tolerance relationship cannot reflect the
matching degree of uncertain information of objects. In this article, we explore the in-
fluence of null values in an incomplete system, and propose the constrained tolerance
relation based on the matching degree of uncertain information of objects. The proposed
rough set based on the constrained tolerance relation can provide a more detailed
structure of an object class through threshold. Proofs and example analyses further show
the rationality and superiority of the proposed model.

1 | INTRODUCTION

The classical rough set model [1, 2], proposed by Pawlak in the
early 1980s, is a powerful mathematical tool for data analysis.
The rough set theory has been widely used in pattern recog-
nition, machine learning, decision analysis, knowledge acqui-
sition and data mining [3–10]. In the past few decades, due to
the diversity of data and different requirements of analysis
purposes, the extended rough set models have been developed,
such as the variable precision rough set model [11], probability
rough set model [12, 13], game‐theoretic rough set [14, 15],
fuzzy rough set model [16, 17], local neighborhood rough set
[18] and so on.

However, there are two factors that limit the application of
the rough set: firstly, the classical rough set model and most of
its extensions are basically based on the equivalence relation
which possesses reflexive, symmetric and transitive properties.

The equivalence relation is relatively strict condition in many
practical application, and classes clustering on this relation
cannot well reflect the natural characteristic of the overlapping
data set; secondly, the classical rough set requires the infor-
mation of processed object should be complete, however, quite
a few data objects in practical applications are incomplete or
inconsistent, and even with null values [19].

Many scholars have conducted research works for substi-
tution of the equivalence relation [20–23], some scholars also
describe the concept of target through multiple indiscernibility
relations and propose a multi‐granularity rough set model
[24–27]. In these works, Skowron and Stepniuk [28] replaced
the equivalence relation with the tolerance relation and pro-
posed the tolerance approximation spaces, Skowron and
Stepniuk [28] replaced the equivalence relation with the
tolerance relation and proposed the tolerance approximation
spaces, and Kryszkiewicz [19] defined a similarity relation in
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incomplete information systems. Kryszkiewicz's similarity
relation is an extension of Skowron's tolerance relation,
therefore, both of them are referred to as tolerance relation
collectively by later researchers. The tolerance relation discards
the transitivity requirement of indiscernibility relation in the
classical rough set and relaxes the symmetry requirement for
incomplete information. Hence, the tolerance classes can well
reflect the overlapping relation between groups of objects. Dai
[29] defined the fuzzy tolerance relation in the complete nu-
merical data set and established the fuzzy tolerance rough set;
Kang and Miao [30] proposed an extended version of the
variable precision rough set model based on the granularity of
the tolerance relation. Xu et al. [27] extended the single‐
granulation tolerance rough set model to two types of multi‐
granulation tolerance rough set models from a granular
computing view. Stefanowski and Tsoukias [20] introduced
non‐symmetric similarity relation which can refine the results
obtained using the tolerance relation approach, and they also
proposed valued tolerance relation in order to provide more
informative results; however, Wang [21] found that the sym-
metric similarity relation may lose some important information
and valued tolerance relation requires accurate probability
distribution of all attributes in advance, Wang then proposed
the limited tolerance relation. Deris et al. [31] used conditional
entropy to handle flexibility and precisely data classification in
limited tolerance relation. There are also some scholars who
studied alternatives to missing values. Nakata and Sakai [32]
used possible equivalence classes to approximate the set of
attributes having missing values. Yang [33] computed attribute
reduction with the related family. Hu and Yao [34] introduced a
logic formula to describe incomplete information tables.

In this article, we propose the constrained tolerance rough
set model in the term of matching degree of incomplete in-
formation. The rest of the article is organized into four parts.
In Section 2, we review some related concepts. In Section 3, we
present constrained tolerance relation as an improved version
of limited tolerance relation and analyse the properties of the
proposed rough set model. In Section 4, the method of
measuring the uncertainty of the proposed roughed set model
is given and the superiority of the model is further verified.
Finally, Section 5 concludes the paper.

2 | RELATED CONCEPTS

In this section, we review some basic concepts such as infor-
mation system, Pawlak's rough set, tolerance rough set, limited
tolerance rough set.

Definition 2.1 [19, 31]. An information system (IS)
is a 4‐tuple S ¼ ðU;TA;V ; f Þ, where U¼
fx1; x2;…; xjUjg is a non‐empty finite set of objects,
TA¼ fa1; a2;…; ajTAjg is a non‐empty finite set of
attributes, V ¼ ∪a∈TAV a,V a is the value set of attri-
bute, f : U � TA→ V is a total function such that
f ðx; aÞ ∈ V , for every ðx; aÞ ∈U � TA, called

information function. If U contains at least one object
with an unknown or missing value (so‐called null
value), then S is called incomplete information system
(IIS). The unknown value is denoted as “*” in the
incomplete information system. In this article, we also
use the quadruple S ¼ ðU;TA;V ; f Þ to denote an
incomplete information system. TA¼ C ∪D If, where
C is the set of condition attributes, Dis the set of de-
cision attributes, then S is called Decision Information
System.

Each subset of attributes A ⊆ TA determines a binary
indiscernibility relation INDðAÞ as follows:
INDðAÞ ¼ fðx; yÞ ∈U �Uj ∀ a ∈ A; aðxÞ ¼ aðyÞg.
The relation INDðAÞis an equivalence relation since it is

reflexive, symmetric and transitive.

Definition 2.2 [1, 2]. Let S ¼ ðU;TA;V ; f Þ be an IS,
A ⊆ TA, the lower and upper approximations of an
arbitrary subset X of U are defined as AðXÞ¼
fx ∈U : ½x�A ⊆ Xg and AðXÞ ¼ fx ∈U : ½x�A ∩ X ≠
∅g, respectively, where ½x�A ¼ fy ∈U : ðx; yÞ∈
INDðAÞ is the A‐equivalence class containing x. The
pair

h
AðXÞ;AðXÞ

i
is referred to as the Pawlak's rough

setof Xwithrespect tothesetofattributes A.

Definition 2.3 [19]. Let S ¼ ðU;TA;V ; f Þ be an IIS.
A ⊆ TA, the tolerance relation T is defined as TðAÞ¼
fðx; yÞ ∈U �Uj ∀ a ∈ A; aðxÞ ¼ aðyÞ ∨ aðxÞ¼* ∨ a
ðyÞ ¼ * g.

Obviously, T is reflexive and symmetric, but not transitive.
The tolerance class ITAðxÞ of an object x with reference to

an attribute subset A is defined as ITAðxÞ ¼ fyjy ∈U ∧ ðx; yÞg.

Definition 2.4 [31]. Let S ¼ ðU;TA;V ; f Þ be an
IIS, A ⊆ TA T , is a tolerance relation, the lower and
upper approximations of an arbitrary subset X of U
with reference to attribute subset A respectively can
defined similar to how AT ðXÞ ¼ fx ∈U ∧ ITAðxÞ

⊆Xg and AT ðXÞ ¼ fx ∈U ∧ ITAðxÞ ∩ X ≠ ∅g are

defined. The pair
h
AT ðXÞ;AT ðXÞ

i
is referred to as

the tolerance rough set of X with respect to the set of
attributes A.

Definition 2.5 [21]. Let S ¼ ðU;TA;V ; f Þ be an
IIS, A ⊆ TA, and PAðxÞ ¼ faja ∈ A ∧ aðxÞ ≠ *g. A
binary relation L (limited tolerance relation) defined on
U is given as

LðAÞ ¼ fðx; yÞ ∈U �Uj∀a∈AðaðxÞ ¼ aðyÞ ¼ *Þ
∨ððPAðxÞ ∩ PAðyÞ ≠ ϕÞ∧
∀a∈AððaðxÞ ≠ *Þ ∧ ðaðyÞ ≠ *Þ→ ðaðxÞ ¼ aðyÞÞÞÞg
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L is reflexive and symmetric, but not transitive. The limited
tolerance class ILAðxÞ of an object x with reference to an
attribute subset A is defined as ILAðxÞ ¼ fyjy∈
U ∧ LAðx; yÞg.

Definition 2.6 [31]. Let S ¼ ðU;TA;V ; f Þ be an
IIS, A ⊆ TA, L is a limited tolerance relation, the lower
and upper approximations of an arbitrary subset X
of U with reference to attribute subset A, respectively,
can defined similar to how AL ðXÞ ¼ fx ∈U ∧
ILAðxÞ ⊆ Xg and ALðXÞ ¼ fx ∈U ∧ ILAðxÞ ∩ X ≠ ∅g

are defined. The pair
h
AL ðXÞ;ALðXÞ

i
is referred to as

the limited tolerance rough set of X with respect to the
set of attributes A.

3 | ROUGH SET BASED ON
CONSTRAINED TOLERANCE

From Definition 2.5, we can easily derive an equivalent form of
the limited tolerance relation as following:

∀a∈AðaðxÞ ¼ aðyÞ ¼ *Þ ∨ ððPAðxÞ ∩ PAðyÞ ≠ ϕÞ ∧ ∀a∈A
ðððaðxÞ ≠ *Þ ∧ ðaðyÞ ≠ *ÞÞ→ ðaðxÞ ¼ aðyÞÞÞÞ

⇔∀a∈AðaðxÞ ¼ aðyÞ ¼ *Þ ∨ ððPAðxÞ ∩ PAðyÞ ≠ ϕÞ ∧ ∀a∈A
ð
:
ðððaðxÞ ≠ *Þ ∧ ðaðyÞ ≠ *ÞÞ ∨ ðaðxÞ ¼ aðyÞÞÞÞ

⇔∀a∈AðaðxÞ ¼ aðyÞ ¼ *Þ ∨ ððPAðxÞ ∩ PAðyÞ ≠ ϕÞ

∧ ∀a∈AððaðxÞ ¼ *Þ ∨ ðaðyÞ ¼ *Þ ∨ ðaðxÞ ¼ aðyÞÞÞ

⇔∀a∈AðaðxÞ ¼ aðyÞ ¼ *Þ ∨ ððPAðxÞ ∩ PAðyÞ ≠ ϕÞ

∧ Tðx; yÞÞ

It means that the objects with all attributes being null
will be judged to be limited tolerating and then should be
grouped into the same limited tolerance class. However, in
practical application, the risk of classifying those objects
whose attributes filled with a quit mount of null values
will greatly arise. In fact, we prefer to control the scale of
null‐valued attributes within a certain range. Meanwhile,
the more the properties of the two objects with the same
value, the greater the probability of being divided into
the same class and the higher the classification accuracy.
However, the limited tolerance may group those objects
with only one attribute of the same value into the same
class.

We can illustrate the above phenomena considering the
following example with an IIS described as Table 1.

Example 3.1 Suppose Table 1 is a IIS, where x1; x2;
…; x16, are objects, a1; a2; a3; a4 are four condition
attributes, d is a decision attribute. The domains of
these four condition attributes are all {0, 1, 2, 3}. The
domain of the decision attribute d is {H, J}

Let A¼ fa1; a2; a3; a4g, we can easily obtain the following
results by analysing Table 1 with the limited tolerance relation.

ILAðx1Þ ¼ fx1; x11; x12; x13; x14g

ILAðx2Þ ¼ fx2; x3g

ILAðx3Þ ¼ fx2; x3g

ILAðx4Þ ¼ fx4; x5; x11; x12g

ILAðx5Þ ¼ fx4; x5; x11; x12; x14g

ILAðx6Þ ¼ fx6g

ILAðx7Þ ¼ fx7; x9; x12; x13g

ILAðx8Þ ¼ fx8g

ILAðx9Þ ¼ fx7; x9; x11; x12; x13; x14g

ILAðx10Þ ¼ fx10g

ILAðx11Þ ¼ fx1; x4; x5; x11; x12; x14g

ILAðx12Þ ¼ fx1; x4; x5; x7; x9; x11; x12; x13; x14g

ILAðx13Þ ¼ fx1; x7; x9; x12; x13; x14g

TABLE 1 An incomplete information table

a1 a2 a3 a4 d

x1 3 2 1 0 H

x2 2 3 2 0 H

x3 2 3 2 0 J

x4 * 2 * 1 H

x5 * 2 * 1 J

x6 2 3 2 1 J

x7 3 * * 3 H

x8 * 0 0 * J

x9 3 2 1 3 J

x10 1 * * * H

x11 * 2 * * J

x12 3 2 1 * H

x13 3 * 1 * H

x14 * 2 1 * J

x15 * * * * H

x16 * * * * J
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ILAðx14Þ ¼ fx1; x5; x9; x11; x12; x13; x14g

ILAðx15Þ ¼ fx15; x16g

ILAðx16Þ ¼ fx15; x16g

Thus

HL ¼ fx10g:

HL ¼ fx1; x2; x3; x4; x5; x7; x9; x10; x11; x12; x13;
x14; x15; x16g:

JL ¼ fx6; x8g;

JL ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x11; x12; x13;
x14; x15; x16g

For data analysis, the elements in the lower approxi-
mation of the data set are expected to be representative of
the final classes. In Table 1, all conditional attributes of x15
and x16 are null; intuitively, they should be classified as
outliers (special classes) in most practical applications, but
from the above results, the particularity of x15and x16 is not
shown in the lower approximation of ‘H’ or ‘J’, because the
classification based on the limited tolerance relation is not
able to distinguish the influence degree of the null value
attribute.

In order to improve the accuracy of object classification
based on tolerance relations and reflect the influence degree of
null value, in this article, we propose the constrained tolerance
relation.

Definition 3.1 Let S ¼ ðU;TA;V ; f Þ be an IIS,
and QAðxÞ ¼ faja ∈ A ∧ aðxÞ ¼ *g, A ⊆ C, x; y ∈U ,
the incomplete matching degree ρ of x and y is
defined as

ρAðx; yÞ ¼
jQAðxÞ ∪QAðyÞj

jAj

wherej ·jrepresents the cardinality of the set.
From Definition 3.1, it is clear that0 ≤ ρAðx; yÞ ≤ 1.

Definition 3.2 Let S ¼ ðU;TA;V ; f Þ be an IIS,
A ⊆ TA. The constrained tolerance Tcτ is defined as
follows:

TcτðAÞ ¼
�
ðx; yÞ ∈U �U

�
�∀a∈AðaðxÞ ¼ aðyÞÞ

∨ððρðx; yÞ ≤ τÞ ∧ ∀a∈AððaðxÞ ¼ *Þ ∨ ðaðyÞ ¼ *ÞÞg

where τ ∈ ½0; 1� is a threshold value.

Herein, aðxÞ ¼ aðyÞ involves the situation that
ðaðxÞ ¼ *Þ∧ ðaðyÞ ¼ *Þ.

Obviously, the constrained tolerance relation is symmetric,
reflexive, but not transferable.

Since ∀a∈AðaðxÞ ¼ aðyÞ ≠ *Þ means that ρAðx; yÞ ¼ 0 is
always true. Thus, similar to the limited tolerance relation, we
can easily derive an equivalent form of the constrained toler-
ance relation.

TcτðAÞ ¼
�
ðx; yÞ ∈U �U

�
�∀a∈AðaðxÞ ¼ aðyÞÞ

∨ððρðx; yÞ ≤ τÞ ∧ ∀a∈AððaðxÞ ¼ *Þ ∨ ðaðyÞ ¼ *ÞÞg
¼fðx; yÞ ∈U�Uj∀a∈AðaðxÞ ¼ aðyÞÞ ∨ ððρðx; yÞ ≤ τÞ∧

∀a∈AððaðxÞ ¼ *Þ ∨ ðaðyÞ ¼ *Þ ∨ ðaðxÞ ¼ aðyÞÞÞg

then

TcτðAÞ ¼
�
ðx; yÞ ∈U �U

�
�∀a∈AðaðxÞ ¼ aðyÞÞ

∨ððρðx; yÞ ≤ τÞ ∧ Tðx; yÞÞg

or

TcτðAÞ ¼
�
ðx; yÞ ∈U �U

�
�∀a∈AðaðxÞ ¼ aðyÞÞ ∨ ððρðx; yÞ ≤ τÞ

∧ ∀a∈AððaðxÞ ≠ *Þ ∧ ðaðyÞ ≠ *Þ→ ðaðxÞ ¼ aðyÞÞÞg

Proposition 3.1.Give an IIS S ¼ ðU;TA;V ; f Þ, A ⊆ TA,
if τ ∈ ½0; 1Þ, then TcτðAÞ ⊆ LðAÞ.

Proof.
∀ðx; yÞ ∈ TcτðAÞ then ∀a∈AðaðxÞ ¼ aðyÞÞ orQAðxÞ∪QAðyÞ

j Aj ≤
τ holds;

(a) If ∀a∈AðaðxÞ ¼ aðyÞÞ holds, according to Defini-
tion 2.5, we then have ðx; yÞ ∈ LðAÞ;

(b) If QAðxÞ∪QAðyÞ
j Aj ≤ τ holds, since,

jQAðxÞ ∪QAðyÞj ¼ j ∼ PAðxÞ ∪ ∼PAðyÞj

¼j Aj − jPAðxÞ ∩ PAðyÞj;

then

jQAðxÞ ∪QAðyÞj
jAj

¼ 1 −
jPAðxÞ ∩ PAðyÞj

jAj
≤ τ

Due to τ ∈ ½0; 1Þ; thus, 0 < PAðxÞ∩PAðyÞ
j Aj holds, it implies that

PAðxÞ ∩ PAðyÞ ≠ ∅.
We then have ðx; yÞ ∈ LðAÞ.
Therefore, TcτðAÞ ⊆ LðAÞ.
From above proof, we can give an equivalent representa-

tion of the incomplete matching degree as
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ρAðx; yÞ ¼ 1 −
jPAðxÞ ∩ PAðyÞj

jAj
:

Definition 3.3 Let S ¼ ðU;TA;V ; f Þ be an IIS,
and, A ⊆ TA. Tcτ is the constrained tolerance on A,
The constrained tolerance class I T

c
τ

τ ðxÞ of an object x
with reference to an attribute subset A is defined as:
I T

c
τ

τ ðxÞ ¼ fy
�
�y ∈U ∧ TcτAðx; yÞg.

Proposition 3.1 reveals the relationship between the
constrained tolerance relation and limited tolerance
relation when τ ∈ ½0; 1Þ, then if τ ¼ 1, what structure
the constrained tolerance relation may have?

From Definition 3.2, we know the inequality ρðx; yÞ ≤ 1 is
always true when τ ¼ 1. If ρðx; yÞ ¼ α, where α is a constant
for a given pairðx; yÞ, and α < 1, from Proposition 3.1, we have
ðx; yÞ ∈ Tc

τðAÞ⇒ ðx; yÞ ∈ LðAÞ; If ρðx; yÞ ¼ 1, it means that,
for any α ∈ A, at least one of aðxÞand aðyÞ is null. At this
point, x and y become outliers of each other's class in terms of
the constrained tolerance class or the limited tolerance class.

That is, when τ ¼ 1, the constrained tolerance relation will
retrograde into the tolerance relation and the constrained
tolerance class will retrograde into the tolerance class.

Proposition 3.2 Given an IIS S ¼ ðU;TA;V ; f Þ,
A ⊆ TA, Then, the following properties hold:

(1) ∀x ∈U; IT
c
τ
A ðxÞ ⊆ ILAðxÞ;

(2) if ifτ1 ≤ τ2; thenI
Tcτ1
A ðxÞ ⊆ I

Tcτ2
A ðxÞ;

Proof.

(1) ∀ y ∈ I T
c
τ

A ðxÞ, then ðx; yÞ ∈ Tc
τðAÞ. If ρðx; yÞ ≤ τ, from

Proposition 3.1, we have ðx; yÞ ∈ LðAÞ, thus y ∈ ILAðxÞ;
otherwise, ∀ a ∈ A, aðxÞ ¼ aðyÞ ¼ *holds, from Defini-
tion 2.6, then ðx; yÞ ∈ LðAÞholds, thus y ∈ ILAðxÞ.

Therefore, I T
c
τ

A ðxÞ ⊆ ILAðxÞ.

(2) ∀ y ∈ I
Tcτ1
A ðxÞ, If ρðx; yÞ ≤ τ1 holds, since τ1 ≤ τ2,

then ρðx; yÞ ≤ τ2 holds, thus, ∀ y ∈ I
Tcτ2
A ðxÞ; otherwise,

∀ a ∈ A, aðyÞ ¼ aðxÞholds, it means that y ∈ I
Tcτ2
A ðxÞ.

Therefore, I
Tcτ1
A ðxÞ ⊆ I

Tcτ2
A ðxÞ.

Definition 3.4 Let S ¼ ðU;TA;V ; f Þ be an IIS,
A ⊆ TA. Tcτ is the constrained tolerance on A. The
lower and upper approximations of an arbitrary sub-
set X of U with reference to attribute subset A
respectively can defined as are defined as

AT
c
τ ðXÞ ¼ fx ∈U ∧ IT

c
τ
A ðxÞ ⊆ Xg and AT

c
τðXÞ ¼ fx∈

U ∧ IT
c
τ
A ðxÞ ∩ X ≠ ∅g. The pair

�

AT
c
τ ðXÞ;AT

c
τðXÞ

�

is

referred to as the constrained tolerance rough set of X
with respect to the set of attributes A.

Proposition 3.3 Give an IIS S ¼ ðU;TA;V ; f Þ,

A ⊆ TA, then AT
c
τðXÞ ¼ ∪f IT

c
τ
A ðxÞ

�
�
�x ∈ Xg.

Proof.

∀ x ∈ AT
c
τðXÞ, from Definition 3.4, we know that

x ∈U ∧ IT
c
τ
A ðxÞ ∩ X ≠ ∅, since the constrained tolerance

relation is symmetric, then x ∈ IT
c
τ
A ðxÞ, thus x ∈ IT

c
τ
A ðxÞ∧

x ∈ X . That isx ∈Uf IT
c
τ
A ðxÞ

�
�
�x ∈ Xg. Hence, AT

c
τðXÞ ⊆U

f IT
c
τ
A ðxÞ

�
�
�x ∈ Xg, and vice versa.

Therefore, AT
c
τðXÞ ¼Uf IT

c
τ
A ðxÞ

�
�
�x ∈ Xg.

From the Definition 3.4, we have the following properties
of the constrained tolerance rough set.

Proposition 3.4 Given an IIS S ¼ ðU;TA;V ; f Þ,
A ⊆ TA, X;Y ⊆U. The following properties hold

(1) AT
c
τ ðXÞ ⊆ X ⊆ AT

c
τðXÞ;

(2) AT
c
τ ðϕÞ ¼ AT

c
τðϕÞ ¼ ϕ;AT

c
τ ðUÞ ¼ AT

c
τðUÞ ¼U;

(3) AT
c
τ ð∼XÞ ¼ ∼AT

c
τðXÞ;AT

c
τð∼XÞ ¼ ∼AT

c
τ ðXÞ;

(4) AT
c
τ ðX ∩ Y Þ ¼ AT

c
τ ðXÞ ∩ AT

c
τ ðY Þ;

AT
c
τ ðX ∪ Y Þ ⊇ AT

c
τ ðXÞ ∪ AT

c
τ ðY Þ;

(5) AT
c
τðX ∩ Y Þ ⊆ AT

c
τðXÞ ∩ AT

c
τðY Þ;

AT
c
τðX ∪ Y Þ ¼ AT

c
τðXÞ ∪ AT

c
τðY Þ

(6) if X ⊆ Y ; then AT
c
τ ðXÞ ⊆ AT

c
τ ðY Þ and AT

c
τðXÞ ⊆ AT

c
τ

ðY Þ;
(7) if τ1 ≤ τ2; then AT

c
τ2 ðXÞ ⊆ AT

c
τ1 ðY Þ and AT

c
τ1 ðXÞ ⊆ AT

c
τ2

ðXÞ;

Proof.

(1a) ∀x ∈ AT
c
τ ðXÞ, From the Definition 3.4, x ∈ I T

c
τ

A ðxÞ ⊆ X
holds. Hence AT

c
τ ðXÞ ⊆ X.

(1b) ∀ x ∈ X, since the constrained tolerance relation is sym-
metric, we have x ∈ IATc

τðxÞ, then x ∈ IATc
τðxÞ∩

X ≠ ∅, that is, x ∈ ATc
τðXÞ. Hence X ⊆ ATc

τðXÞ.
(2a) From (1), we know that AT

c
τ ð∅Þ ⊆ ∅, and ∅ ⊆ AT

c
τ ð∅Þ

(because the empty set is a subset of any set). Hence,
AT

c
τ ð∅Þ ¼∅.

(2b) Suppose AT
c
τðXÞ ≠ ∅, then, there exists x ∈ AT

c
τð∅Þ,

hence IT
c
τ

A ðxÞ ∩ ∅ ≠ ∅. It contradicts the statement that
the intersection of an empty set with any set is an empty
set. Thus, the assumption is not true. Therefore,

AT
c
τð∅Þ ¼∅.
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(3a) From Definition 3.4, AT
c
τ ð∼XÞ ¼ ∼ATc

τðXÞ obviously
holds.

(3b) From (3a), AT
c
τ ð∼Y Þ ¼ ∼ATc

τðY Þ holds, then ATc
τðY Þ¼

∼AT
c
τ ð∼Y Þ. Let Y ¼ ∼X, then we have ATc

τð∼XÞ¼
∼AT

c
τ ðXÞ.

(4a) AT
c
τ ðX ∩ Y Þ ¼ fx ∈U ∧ IT

c
τ
A ðxÞ ⊆ X ∩ Yg

¼ x ∈U ∧ IT
c
τ
A ðxÞ ⊆ X ∧ IT

c
τ
A ðxÞ ⊆ Y

¼fx ∈U ∧ IT
c
τ
A ðxÞ ⊆ Xg ∩ f x ∈U ∧ IT

c
τ
A ðxÞ ⊆ Yg

¼AT
c
τ ðXÞ ∩ AT

c
τ ðY Þ

(4b) Since ∀ x ∈ AT
c
τ ðXÞ, we have x ∈ IT

c
τ
A ðxÞ ⊆ X ,

since X ⊆ X ∪ Y , then we have x ∈ IT
c
τ
A ðxÞ ⊆ X∪

Y , that is x ∈ AT
c
τ ðX ∪ Y Þ. Thus, AT

c
τ ðXÞ ⊆ AT

c
τ

ðX ∪ Y Þ.

Similarly, AT
c
τ ðY Þ ⊆ AT

c
τ ðX ∪ Y Þ holds.

Therefore, AT
c
τ ðXÞ ∪ AT

c
τ ðY Þ ⊆ AT

c
τ ðX ∪ Y Þ

(5a) ∀ x ∈ AT
c
τðX ∩ Y Þ, we have x ∈U ∧ IT

c
τ
A ðxÞ ∩ ðX ∩

Y Þ ≠ ∅, then x ∈U ∧ IT
c
τ
A ðxÞ ∩ X ≠ ∅ and x ∈U∧

IT
c
τ
A ðxÞ ∩ Y ≠ ∅ hold, that is ðx ∈ AT

c
τðXÞÞ ∧ x ∈ AT

c
τ

ðY ÞÞ, thus x ∈ AT
c
τðXÞ ∩ AT

c
τðY Þ.

(5b) AT
c
τðX ∪ Y Þ ¼ fx

�
�
�x ∈U ∧ IT

c
τ
A ðxÞ ∩ ðX ∪ Y Þ ≠ ϕg

AT
c
τðX ∩ Y Þ ¼ fx

�
�
�x ∈U ∧ IT

c
τ
A ðxÞ ∩ ðX ∩ Y Þ ≠ ϕg

¼fx
�
�
�x ∈U ∧ IT

c
τ
A ðxÞ ∩ X ≠ ϕ ∩ Y Þg

¼ fx
�
�
�x ∈U ∧ ðIT

c
τ
A ðxÞ ∩ X ≠ ϕ ∨ IT

c
τ
A ðxÞ ∩ X ≠ ϕÞg

¼AT
c
τðXÞ ∪ AT

c
τ ðY Þ

(6a) ∀ x ∈ AT
c
τ ðXÞ, since the constrained tolerance relation

is symmetric, we then have x ∈ IT
c
τ
A ðxÞ ⊆ X. Since

X ⊆ Y , then x ∈ IT
c
τ
A ðxÞ ⊆ Y , hence ∀ x ∈ AT

c
τ ðY Þ.

Therefore, AT
c
τ ðXÞ ⊆ AT

c
τ ðY Þ holds.

(6b) ∀ x ∈ AT
c
τðXÞ, we have x ∈ IT

c
τ
A ðxÞ ∩ X ≠ ∅. Since

X ⊆ Y , then x ∈ IT
c
τ
A ðxÞ ∩ Y ≠ ∅ holds, hence

x ∈ AT
c
τðY Þ.

Therefore, AT
c
τðXÞ ⊆ AT

c
τðY Þ holds.

(7a) ∀ x ∈ AT
c
τ2 ðXÞ, we then have ∀ x ∈ AT

c
τ2 ðXÞ ⊆ X , for

∀ y ∈ AT
c
τ2 ðXÞ then ∀a∈AðaðxÞ ¼ aðyÞÞ or ðρðx; yÞ

≤τ2Þ ∧ TAðx; yÞ. Since τ1 ≤ τ2, if ρðx; yÞ ≤ τ1, then

ðρðx; yÞ ≤ τ1Þ ∧ TAðx; yÞ holds, that is, y ∈ I
Tcτ1
A ðxÞ,

from Proposition 3.1, I
Tcτ1
A ðxÞ ⊆ I

Tcτ2
A ðxÞ, hence, y∈

I
Tcτ1
A ðxÞ ⊆ X , thus, x ∈ AT

c
τ1 ðXÞ; if τ1 < ρðx; yÞ < τ2,

then x is a singleton in term of this constrained

tolerance class withτ1, thus, I
Tcτ1
A ðxÞ ¼ fxg. Due to

I
Tcτ2
A ðxÞ ⊆ X, according to the reflexive property of the

constrained tolerance class, we can know that

x ∈ I
Tcτ2
A ðxÞ ⊆ X , then fxg ⊆ X , that is, I

Tcτ1
A ðxÞ ⊆ X ,

thus, x ∈ AT
c
τ1 ðXÞ.

Therefore, AT
c
τ2 ðXÞ ⊆ AT

c
τ1 ðXÞ.

(7b) ∀ x ∈ AT
c
τ1 ðXÞ, then ∃y ∈U , such that, ∀a∈AðaðxÞ

¼ aðyÞÞ ∨ ððρðx; yÞ ≤ τ1Þ ∧ Tðx; yÞÞ, and y ∈ X. Since
τ1 ≤ τ2, then ρðx; yÞ ≤ τ2 holds, thus,∀a∈AðaðxÞ
¼ aðyÞÞ ∨ ððρðx; yÞ ≤ τ2Þ ∧ Tðx; yÞÞ holds, that is,

∀x ∈ AT
c
τ2 ðXÞ:

Theorem 3.1 Given an IIS S ¼ ðU;TA;V ; f Þ, A⊆
TA, and X is an arbitrary subset of U, then AL ðXÞ⊆
AT

c
τ ðXÞ, AT

c
τðXÞ ⊆ ALðXÞ.

Proof.
According to definitions, AL ðXÞ ¼ fx ∈U ∧ ILAðxÞ⊆

Xg, AT
c
τ ðXÞ ¼ fx ∈U ∧ IT

c
τ
A ðxÞ ⊆ Xg, where ILAðxÞ ¼ fyjy

∈U ∧ LAðx; yÞg, I
Tcτ
A ðxÞ ¼ fy

�
�y ∈U ∧ ððy¼ xÞ∨ ICτAðx; yÞÞg.

(1) ∀x ∈ AL ðXÞ, we have ILAðxÞ ⊆ X .

For any y ∈ ILAðxÞ ⊆ X , if ρðx; yÞ ≤ τ, then ðx; yÞ∈
TC

τ ðAÞ. From Proposition 3.2, IT
c
τ
A ðxÞ ⊆ ILAðxÞ holds, then we

have IT
c
τ
A ðxÞ ⊆ X , thus x ∈ AT

c
τ ðXÞ;

Otherwise, x is a singleton in the term of the constrained

tolerance relation, then I T
c
τ

A ðxÞ ¼ fxg, and then x ∈ I T
c
τ

A ðxÞ
⊆X.Thus, x ∈ AT

c
τ ðXÞ.

Therefore, AL ðXÞ ⊆ AT
c
τ ðXÞ.

(2) ∀ x ∈ AT
c
τðXÞ, such that I T

c
τ

A ðxÞ ∩ X ≠ ∅. From Proposi-

tion 3.2, we get I T
c
τ

A ðxÞ ⊆ ILAðxÞ, then I
L
AðxÞ∩ X ≠ ∅, thus,

x ∈ ALðXÞ.

Therefore, AT
c
τðXÞ ⊆ ALðXÞ.

To clear depict the above concepts, we illustrate through an
example from Table 1.

Example 3.2 Let τ ¼ 0:25; 0:5 and 0:75, respectively.
By analysing Table 1 with the concept of the con-
strained tolerance class, we can get the following
constrained tolerance classes.

(1) When τ ¼ 0:25;

IT
c
0:25
A ðx1Þ ¼ fx1; x12g

IT
c
0:25
A ðx2Þ ¼ fx2; x3g
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IT
c
0:25
A ðx3Þ ¼ fx2; x3g

IT
c
0:25
A ðx4Þ ¼ fx4; x12g

IT
c
0:25
A ðx5Þ ¼ fx5g

IT
c
0:25
A ðx6Þ ¼ fx6g

IT
c
0:25
A ðx7Þ ¼ fx7g

IT
c
0:25
A ðx8Þ ¼ fx8g

IT
c
0:25
A ðx9Þ ¼ fx9; x12g

IT
c
0:25
A ðx10Þ ¼ fx10g

IT
c
0:25
A ðx11Þ ¼ fx11g

IT
c
0:25
A ðx12Þ ¼ fx1; x9; x12g

IT
c
0:25
A ðx13Þ ¼ fx13g

IT
c
0:25
A ðx14Þ ¼ f x14g

IT
c
0:25
A ðx15Þ ¼ fx15g

IT
c
0:25
A ðx16Þ ¼ fx16g

Thus

HT
c
0:25 ¼ fx1; x4; x7; x10; x13; x15g;

HT
c
0:25 ¼ fx1; x2; x3; x4; x7; x9; x10; x12; x13; x15g

JT
c
0:25 ¼ fx5; x6; x8; x11; x14; x16g;

JT
c
0:25 ¼ fx2; x3; x5; x6; x8; x9; x11; x12; x14; x16g

(2) When τ ¼ 0:5;

IT
c
0:5
A ðx1Þ ¼ fx1; x12; x13; x14g

IT
c
0:5
A ðx2Þ ¼ fx2; x3g

IT
c
0:5
A ðx3Þ ¼ fx2; x3g

IT
c
0:5
A ðx4Þ ¼ fx4; x5g

IT
c
0:5
A ðx5Þ ¼ fx4; x5g

IT
c
0:5
A ðx6Þ ¼ fx6g

IT
c
0:5
A ðx7Þ ¼ fx7; x9g

IT
c
0:5
A ðx8Þ ¼ fx8g

IT
c
0:5
A ðx9Þ ¼ fx7; x9; x12; x13; x14g

IT
c
0:5
A ðx10Þ ¼ fx10g

IT
c
0:5
A ðx11Þ ¼ fx1; x4; x5; x11; x12; x14g

IT
c
0:5
A ðx12Þ ¼ fx1; x9; x11; x12; x13; x14g

IT
c
0:5
A ðx13Þ ¼ fx1; x9; x12; x13g

IT
c
0:5
A ðx14Þ ¼ fx1; x9; x11; x12; x14g

IT
c
0:5
A ðx15Þ ¼ fx15g

IT
c
0:5
A ðx16Þ ¼ fx16g

Thus

HT
c
0:5 ¼ f x10; x15g;

HT
c
0:5¼ fx1; x2; x3; x4; x5 ; x7; x9; x10; x11; x12;

x13; x14; x15g

JT
c
0:5 ¼ f x6; x8; x16g;

JT
c
0:5 ¼ fx1; x2; x3; x4; x5 ; x6; x7; x8; x9; x11; x12;

x13; x14; x16g

(3) When τ ¼ 0:75;

IT
c
0:75
A ðx1Þ ¼ fx1; x11; x12; x13; x14g

IT
c
0:75
A ðx2Þ ¼ fx2; x3g

IT
c
0:75
A ðx3Þ ¼ fx2; x3g

IT
c
0:75
A ðx4Þ ¼ fx4; x5; x11; x12g

IT
c
0:75
A ðx5Þ ¼ fx4; x5; x11; x12; x14g

IT
c
0:75
A ðx6Þ ¼ fx6g

IT
c
0:75
A ðx7Þ ¼ fx7; x9; x12; x13g

IT
c
0:75
A ðx8Þ ¼ fx8g

IT
c
0:75
A ðx9Þ ¼ fx7; x9; x11; x12; x13; x14g
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IT
c
0:75
A ðx10Þ ¼ fx10g

IT
c
0:75
A ðx11Þ ¼ fx1; x4; x5; x11; x12; x14g

IT
c
0:75
A ðx12Þ ¼ fx1; x4; x5; x7; x9; x11; x12; x13; x14g

IT
c
0:75
A ðx12Þ ¼ fx1; x4; x5; x7; x9 ; x11; x12; x13; x14g

IT
c
0:75
A ðx13Þ ¼ fx1; x7; x9; x12; x13; x14g

IT
c
0:75
A ðx14Þ ¼ fx1; x5; x9; x11; x12; x13; x14g

IT
c
0:75
A ðx15Þ ¼ fx15; x16g

IT
c
0:75
A ðx16Þ ¼ fx15; x16g

Thus

HT
c
0:75 ¼ f x10g;

HT
c
0:75 ¼ fx1; x2; x3; x4; x5 ; x7; x9; x10; x11; x12;

x13; x14; x15 ; x16g

JT
c
0:75 ¼ f x6; x8g;

JT
c
0:75 ¼ fx1; x2; x3; x4; x5 ; x6; x7; x8; x9; x11; x12;

x13; x14; x15; x16g

From the above results, we can find that the scale of lower
approximation of ‘H’ (or ‘J’) decreases when the threshold τ
increases. It intuitively indicates that the classification bound-
ary area or the classification uncertainty of objects will increase
with the increment of τ. It echoes exactly to Proposition 3.3.
With a further discuss, due to the objects in Table 1 only have
four condition attributes, τ ¼ 0:75 means that two objects can
be of the same constrained tolerance class if there are no more
than three attribute values between them that are alternately or
simultaneously null. That is, the two objects have no less than
one attribute value being simultaneously non‐null and
completely satisfy the judgement criteria of the limited toler-
ance class. Thus, under this condition, the produced classes of
objects and the upper and lower approximations of ‘H’ or ‘J’
are the same as what Example 3.1 shows.

4 | MEASUREMENTS IN
CONSTRAINED TOLERANCE ROUGH
SET

There may be uncertainty of an object set (category) because of
the existence of a borderline region. The greater the borderline
region of set, the lower may be the accuracy of the set. In order
to measure such uncertainty, similarly to literatures [1, 27, 35],

we develop the accuracy measure of the constrained tolerance
rough set.

Definition 4.1 Let S ¼ ðU;TA;V ; f Þ be an IIS,
A ⊆ TA, ∀X ⊆U ðX ≠ ∅Þ. The accuracy measures of
X in constrained tolerance rough set is defined as

αTcτðA;XÞ ¼

�
�
�AT

c
τ ðXÞ

�
�
�

�
�
�
�A
TcτðXÞ

�
�
�
�

:

Similarly, we can give the accuracy measures of X in limited
tolerance rough set as follows:

αLðA;XÞ ¼

�
�
�AL ðXÞ

�
�
�

�
�
�ALðXÞ

�
�
�

:

Theorem 4.1 Given an IIS S ¼ ðU;TA;V ; f Þ,
A ⊆ TA. Then, the following properties hold:

ð1Þ αLðA;XÞ ≤ αTcτðA;XÞ;

ð2Þ if τ1 ≤ τ2; then αTcτ2ðA;XÞ ≤ αTcτ1ðA;XÞ:

Proof.

(1) From Theorem 3.1, we have AL ðXÞ ⊆ AT
c
τ ðXÞ and

AT
c
τðXÞ ⊆ ALðXÞ, hence

�
�
�AL ðXÞ

�
�
� ≤
�
�
�AT

c
τ ðXÞ

�
�
� and

�
�
�
�A
TcτðXÞ

�
�
�
� ≤
�
�
�ALðXÞ

�
�
� hold. Thus,

�
�
�AL ðXÞ

�
�
�

�
�
�ALðXÞ

�
�
�

≤

�
�
�AT

c
τ ðXÞ

�
�
�

�
�
�
�A
TcτðXÞ

�
�
�
�

:

Therefore, αLðA;XÞ ≤ αTcτðA;XÞ.

(2) From Proposition 3.3, we have AT
c
τ2 ðXÞ ⊆ AT

c
τ1 ðXÞ

and AT
c
τ1 ðXÞ ⊆ AT

c
τ2 ðXÞ, hence

�
�
�AT

c
τ2 ðXÞ

�
�
� ≤
�
�
�
� A

Tcτ1 ðXÞ
�
�
�
�

and
�
�
�
� A

Tcτ1 ðXÞ
�
�
�
� ≤
�
�
�
�A
Tcτ2 ðXÞ

�
�
�
� hold. Thus,

�
�
�AT

c
τ2 ðXÞ

�
�
�

�
�
�
�A
Tcτ2 ðXÞ

�
�
�
�

≤

�
�
�AT

c
τ1 ðXÞ

�
�
�

�
�
�
�A
Tcτ1 ðXÞ

�
�
�
�

:
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Therefore, αTcτ2ðA;XÞ ≤ αTcτ1ðA;XÞ.
The above theorem delivers a further understanding of the

relationship between limited tolerance sets and constrained
tolerance sets.

Example 4.1 From the results of Examples 3.1 and
3.2, we can directly calculate accuracy measures of the
limited relation rough set and the constrained rough set
as shown in Table 2.

5 | CONCLUSION

The tolerance rough set is developed as one of extensions of
Pawlak's rough set model under incomplete information. Wang
[20] proposed the limited tolerance relation to overcome the
problem that objects leniently satisfy tolerance relation.
However, the classification based on the limited tolerance
relationship cannot reflect the matching degree of uncertain
information of objects, while, in some practical applications,
the matching degree of uncertain information of objects is of
great influence on the final classification.

In this article, we propose the constrained tolerance rough
set model in the term of matching degree of incomplete in-
formation. The proposed rough set not only inherits the merit
of the limited tolerance rough set, but also provides a more
detailed structure of object class through threshold.

Further research may include the multi‐granulation version
of the constrained tolerance rough set and extensions of other
rough set under constrained tolerance.
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