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a b s t r a c t

In terms of neighborhood rough sets, the tri-level granular structure of neighborhood system (carrying
the neighborhood granule, swarm, and library) establishes a granular computing mechanism for
knowledge-based learning. However, its hierarchical exploration is inadequate, while its measurement
can be extended for robust applications. Regarding this tri-level granular structure, the double-
quantification technology is novelly introduced to make a thorough investigation, especially on the
double-quantitative distance measurement and classification learning. Firstly, the size valuation and
logical operation are hierarchically supplemented at higher levels. Secondly, the relative and absolute
distances of bottom neighborhood granules are linearly combined to a double-quantitative distance,
and all the three types of distances are promoted to both the middle swarm level and the top
library level. Finally, the double-quantitative distance powerfully characterizing the difference of
neighborhood granules is utilized to generate a double-quantitative classifier KNGD, and relevant data
experiments show that this new classifier outperforms or balances two existing classifiers, i.e., the
relative classifier KNGR and absolute classifier KNGA. By theory, example, and experiment, this study
hierarchically perfects the tri-level granular structure of neighborhood system, and the corresponding
double-quantification integration and extension offer the robust knowledge measurement and effective
classification learning.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation from tri-level granular structure of neighborhood
system

Rough sets effectively implement knowledge-based reasoning
nd learning. Classical rough sets consider only the partition-
ranulation knowledge to mainly process symbolic data with
iscrete values [1], and thus the relevant utilization of continuous
alues in information system needs the discretization pretreat-
ent, which is usually accompanied with information loss and
ffect decrease. To overcome the limitation, neighborhood rough
ets introduce the distance measurement and radius parame-
er to flexibly utilize the covering-granulation knowledge [2,3],
nd thus they can robustly deal with numeric and even hybrid
ata with continuous values. Nowadays, neighborhood rough sets
ave been extensively applied for classification and clustering [4–
], feature selection [10–13], attribute reduction [14–18], gene
election [19,20], and outlier detection [21] etc.

∗ Corresponding author.
E-mail address: xianyongzh@sina.com.cn (X. Zhang).
ttps://doi.org/10.1016/j.knosys.2021.106799
950-7051/© 2021 Elsevier B.V. All rights reserved.
Granular computing is a methodology of cognitive computing
and uncertainty analysis by virtue of granulation processing and
hierarchy solving [22,23], and it involves multiple fields including
fuzzy sets, rough sets, three-way decisions, etc. A granule acts
as a basic information unit with characteristics, and its division
processing is called information granulation; thus, granular com-
puting means the combination and transformation at distinctive
layers, and the associative structure of all granular levels con-
stitutes a granular structure [24]. In fact, neighborhood rough
sets are closely related to granular computing, and thus their
underlying neighborhood system serves as an important formal
context for relevant information granulation and measurement
computing. The neighborhood system was proposed by Lin [25]
and it motivated granular computing in terms of data mining,
and it acquires subsequent studies and applications [26–29]. In
particular, the neighborhood system establishes two types of tri-
level granular structure by Zhou et al. [30] and Chen et al. [31];
by contrast, the former describes both the condition and decision
granulation by their interaction [30], while the latter places em-
phasis on only the condition granulation by its aggregation [31].
Note that these tri-level granular structures closely follow the
sprint of granular computing, especially the tri-level thinking

discussed by Yao [32,33].

https://doi.org/10.1016/j.knosys.2021.106799
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Fig. 1. Research framework of this paper.
Fig. 2. Tri-level information structure of double-quantification construction.

Now focus on the tri-level granular structure of neighborhood
ystem, proposed by Chen et al. [31] from the perspective of
ranular computing. By an observation point, the bottom neigh-
orhood granule collects clustering objects in information system
o become a basic cognition unit, and its set constitutes the mid-
le neighborhood swarm; furthermore, neighborhood swarms
rom multiple observation points construct the top neighborhood
ibrary. As a result, this tri-level granular structure provides a
ranular computing mechanism for knowledge-based learning.
owever, its hierarchical exploration is inadequate, while its
easurement can be extended for robust applications. The hier-
rchical blank and valuable extension generate the motivation of
his paper, and they are clarified in Fig. 1 mainly by the items
abeled by symbol ‘‘?’’.

(1) The existing studies (including those on the size assessment,
logical operation, and distance measurement) stay at lower
levels [31], and thus the surplus cases at higher levels are
worth completing. The relevant feasibility is ensured by the
hierarchy mechanism of tri-level granular structure.

(2) Distance measures, including those in neighborhood system,
are important for classification learning and complexity re-
duction. In [31], the distance discussions concern both the
relative and absolute distances and their corresponding clas-
sifiers KNGR and KNGA, and thus the double-quantification
thought can be naturally introduced to establish a double-
quantitative distance and its corresponding classifier for
better measurement and performance.

Since the above distance construction refers to the double-
uantification, let us simply introduce this methodology. Within
he framework of rough sets [1], the double-quantification was
irst proposed by Zhang et al. [34] to quantify the approximate
2

space. Then, the double-quantification strategy was deeply de-
veloped, and nowadays it has been extensively utilized to re-
search the uncertainty modeling [35–43], approximation mea-
surement [44,45], information fusion [46–48], knowledge acqui-
sition [49,50], etc. The double-quantification mainly comes from
two sides of single quantification, i.e., the relative and absolute
quantification, and it embodies a basic mechanism of hierarchical
construction. As shown in Fig. 2, it actually adheres to a kind of
tri-level information structure.

(1) The bottom level provides basic or inseparable data atoms,
and it is usually microscopic to underlie further macroscopic
quantification and applications.

(2) The middle level concerns two symmetrical measurement
patterns. Both the relative and absolute quantification syn-
thesize bottom data to offer information concentration, but
they have different perspectives and emphases. The rel-
ative quantification focuses on the measurement relativ-
ity regarding a particular range, and thus it usually re-
sorts to contrastive ratios to concern the locality and re-
striction; in contrast, the absolute quantification considers
the measurement absoluteness without a particular restric-
tion or in a general scope, and thus it usually adopts di-
rect and outstanding values to embody the globality and
unconstraint.

(3) The relative and absolute quantification have their own
representation superiorities and application environments,
and they constitute two distinctive sides of measurement to
observe a dialectical relationship. For example, they cannot
be mutually determined or deduced to become linearly
independent. Accordingly, they are worth systematically
combining, and the double-quantification emerges by inte-
grating the both single-quantification patterns. The double-
quantification is located at the top level to synthesize the
two types of middle measurement as well as their merits,
so it comprehensively provides a more complete and robust
measurement pattern.

The double-quantification carries the above tri-level structure to
serve as a basic model of tri-level analysis (related to three-way
decisions [32,33,51]), and its relevant tri-level thinking (such as
the integrated construction) becomes innovative and significant
for measurement and optimization. In this paper, the double-
quantification technology will be used for expanding and deep-
ening the tri-level granular structure of neighborhood system,
mainly in terms of the distance measurement and classification
learning. In particular, the double-quantitative distance refers to
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nd comes from the information fusion of two types of single-
uantitative distances, i.e., the relative and absolute quantita-
ive distances which are calculated by the underlying data ele-
ents, and it concerns the measure integration at the top layer
ithin the hierarchical framework of tri-level information struc-
ure based on information granulation; as a result, the double-
uantitative distance performs the powerful information mea-
urement to underlie effective classification learning.

.2. Research contents and innovations

Against the above background, the tri-level granular struc-
ure of neighborhood system serves as an important basis for
nowledge-based learning of neighborhood covering generaliza-
ion, and its hierarchy construction and measurement applica-
ion are worth researching. In this paper, the tri-level granular
tructure of neighborhood system is investigated, and its double-
uantitative distance measurement and classification learning
re emphatically implemented by deftly utilizing the double-
uantification, a basic methodology for measurement and reason-
ng.

Concretely, we will basically complete the hierarchical con-
truction by several focuses (including the size assessment, logical
peration, and distance measurement), and we will further ex-
end the single-quantitative distances and classifiers to a double-
uantitative distance and classifier, respectively. The detailed re-
earch framework about bases and developments is clarified in
ig. 1. As shown by Fig. 1, the main discussions concern four
pecific contents, i.e.,

• the size assessment and logical operation at higher levels,
• the double-quantification extension and hierarchical pro-

motion of single-quantitative distances,
• the double-quantitative classifier design based on a double-

quantitative distance,
• the example illustration for theoretical construction and ex-

periment verification for double-quantitative classification
performance.

n particular, the distance measurement and classification learn-
ng based on the double-quantification become the emphasis
nd difficulty, and thus they will fully resort to the double-
uantification method. According to these research contents, our
orks exhibit two basic innovations regarding the tri-level gran-
lar structure of neighborhood system, and the two points or
ontributions exactly match the above motivation, which is also
eflected by Fig. 1.

(1) In terms of theory, the size assessment, logical operation,
and distance measurement of tri-level granular structure are
hierarchically deepened and completed.

(2) In terms of applications, the distance measurement is
double-quantitatively extended, and thus double-
quantitative classifier KNGD is constructed to integrate and
promote single-quantitative classifiers KNGR and KNGA.

s a result, this study hierarchically perfects the tri-level gran-
lar structure of neighborhood system, and the related double-
uantification integration and extension improve the knowledge
easurement and classification achievement.
The three-way decisions proposed by Yao [33,52] have many

tudies; for example, the three-way fuzzy concept lattice repre-
entation on the uncertainty and incompleteness was proposed
y using neutrosophic sets [53]. From the perspective of three-
ay decisions, our research work on the tri-level thinking and
nalysis can be further supported by or connected with some
elevant works. The double-quantitative distance measurement
mbraces the tri-level granular structure, but its neighborhood
3

system mainly requires the Euclidean distance; thus, we refer
to the quantitative threshold measurement in [54] and the Eu-
clidean distance application in [55], which are both based on
the three-way decisions. As a main part, the granular computing
for neighborhoods is incorporated, and it is related to the pro-
cessing based on interval sets in [56,57]; in particular, the usual
granulation level depends on attribute subsets [58], the relevant
attribute reduction process concerns the power set of attribute
set to cause a major issue of exponential time complexity [59], the
information granules have the multilevel and multiview [60], and
all these results provide us more thoughts on the neighborhood
granulation and information processing.

The remainder of this paper is organized as follows. Sec-
tion 2 makes the preliminary tri-level analysis of neighborhood
system, including the review of neighborhood system and its tri-
level structure, the hierarchical construction of size assessment
and logical operation, and the example illustration. Section 3
focuses on the distance measurement of tri-level granular struc-
ture, including the double-quantitative extension, the hierarchical
promotion, and the example illustration. Section 4 turns to the
classification learning based on the double-quantitative distance
of neighborhood granules, including the classifier algorithm de-
sign and data experiment verification. Finally, Section 5 concludes
this paper to underlie the future explorations.

2. Preliminary tri-level analysis of neighborhood system

Neighborhood rough sets come into play mainly by the neigh-
borhood system and its inherent granule structure. As a pre-
liminary discussion, the neighborhood system next acquires its
tri-level analysis.

2.1. Granulation of neighborhood system

The neighborhood system and its granulation are first re-
viewed by Ref. [61].

A neighborhood system is denoted by NS = (U, A, V , f , δ).
Herein, U = {x1, x2, . . . , x|U |} is the universe with samples, A
is a set of attributes, V =

⋃
a∈A Va collects all attribute values

where Va implies attribute values of a ∈ A, f : U × A →
V is an information function, and δ ∈ R+ ∪ {0} serves as a
neighborhood radius. The neighborhood granulation focuses on
an attribute subset and its distance function. Regarding subset
B = {a1, a2, . . . , an} ⊆ A, a usual distance function is defined
by

DB(x, y) =

[
n∑

l=1

(|f (x, al)− f (y, al)|)p
] 1

p

. (1)

This distance satisfies the distance axioms with non-negativity
(identity), symmetry, and triangular inequality; DB(x, y) is called
the Manhattan distance when p = 1, while it becomes the
Euclidean distance when p = 2.

In this paper, neighborhood system NS = (U, A, V , f , δ) serves
as the formal context for discussions, and thus we first provide
several symbol assumptions, i.e., x, y ∈ U , B ⊆ A, and 2B

= {R|R ⊆
B} = {∅, R1, . . . , Rm} where m = 2|B| − 1. Moreover, |.| denotes
the set cardinality.

Definition 1 ([61]). In NS = (U, A, V , f , δ), the δ-neighborhood
(class) of object x ∈ U regarding attribute subset B ⊆ A is defined
by

nδ
B(x) = {y ∈ U |DB(x, y) ≤ δ}, (2)

the neighborhood relation regarding B ⊆ A is defined by

NR (B) = {(x, y) ∈ U × U |D (x, y) ≤ δ}, (3)
δ B
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hile the neighborhood covering regarding B ⊆ A is defined by

U/NRδ(B) = {nδ
B(x)|x ∈ U}. (4)

The granulation of neighborhood system is completed by dis-
tance function and neighborhood radius. The neighborhood acts
as a basic granule unit for constructions, the neighborhood rela-
tion is a sort of similarity relation with both the reflexivity and
symmetry, while the neighborhood covering gathers neighbor-
hoods to constitute a kind of granulation structure underlying
knowledge reasoning. The neighborhood granulation offers both
the theoretical extension and practical adjustment, because δ =
0 causes the degeneration for classical classification-granulation
(with the equivalent class, relation, and partition) while δ > 0
tends to yield application performances.

Definition 2 ([61]). In NS = (U, A, V , f , δ), the neighborhood
lower and upper approximations of X ⊆ U regarding B ⊆ A are
defined by{

B(X)δ = {x ∈ U |nδ
B(x) ⊆ X},

B(X)δ = {x ∈ U |nδ
B(x) ∩ X ̸= ∅}.

(5)

By virtue of neighborhood granulation, the dual neighborhood
approximations bi-directionally approach a basic concept to con-
stitute neighborhood rough sets, where B(X)δ ⊆ X ⊆ B(X)δ , while
he latter can induce the further dependency-based classification.

The granulation and its monotonicity play an important role in
etric measurement and knowledge reasoning [62–65], and they
oncern two basic cases in neighborhood system.

(1) In terms of attribute granulation, ∅ ⊂ P ⊆ Q ⊆ A offers
the refining nδ

P (x) ⊇ nδ
Q (x) and monotonicity P(X)δ ⊆ Q (X)δ ,

P(X)δ ⊇ Q (X)δ .
(2) In terms of radius granulation, 0 ≤ γ ≤ δ ≤ 1 leads to the

coarsening nγ

B (x) ⊆ nδ
B(x) and monotonicity B(X)γ ⊇ B(X)δ ,

B(X)γ ⊆ B(X)δ .

.2. Tri-level granular structure of neighborhood system

The neighborhood system contains many attributes; thus, a
eighborhood focuses on certain attributes to establish an ob-
ervation point, while further granular collections provide steady
tructural platforms for representations and applications. In par-
icular, Chen et al. [31] proposed a tri-level granular structure of
eighborhood system, and the relevant hierarchical study is next
ecalled and developed.

efinition 3 ([31]). In NS = (U, A, V , f , δ), three granular lev-
ls of neighborhood granule, swarm, and library are defined as
ollows.

(1) gδ
B (x) = nδ

B(x) is a neighborhood granule of x regarding B;
(2) Gδ

B =
(
nδ
B(x1), . . . , n

δ
B(x|U |)

)
is a neighborhood swarm of B;

(3) K δ
B =

(
Gδ
R1

, . . . ,Gδ
Rm

)
is a neighborhood library of B, where

{R1, . . . , Rm} = 2B
− {∅} collects all non-empty subsets of B.

o exactly present the potential repeatability regarding universe
bjects or attribute subsets, Gδ

B uses granule group
(
nδ
B(x1), . . . ,

δ
B(x|U |)

)
rather than granule set (i.e., neighborhood covering)

nδ
B(x)|∀x ∈ U}, while K δ

B uses group family
(
Gδ
R1

, . . . ,Gδ
Rm

)
rather

han set family {Gδ
R|∀∅ ̸= R ⊆ B}.

The neighborhood granule, swarm, and library constitute a
ri-level granular structure of neighborhood system. Next, we
rovide a relevant frame diagram – Fig. 3 – to make an in-depth
larification. Fig. 3 has two parts; subfigure (a) directly focuses
4

n the general construction of Definition 3, while subfigure (b)
eeply embodies the concrete organization of top neighborhood
ibrary. By Fig. 3’s (a), gδ

B (x), Gδ
B, K δ

B exhibit a good granular
ierarchy.

(1) At the bottom, a neighborhood granule is exactly the neigh-
borhood class, where gδ

B (x) = nδ
B(x), and thus it provides a

basic observation side to gather adjacent samples.
(2) At the middle, a neighborhood swarm collects all neighbor-

hood classes related to the universe object and neighbor-
hood covering, and thus it forms a kind of applied knowl-
edge with traceability.

(3) At the top, a neighborhood library includes all groups of
traceable knowledge (i.e., all neighborhood swarms) on all
non-empty attribute subsets, and thus it provides a sort of
complete knowledge base.

he relevant construction adopts the collection function to closely
ollow the hierarchial integration in the bottom-middle-top direc-
ion, which is a basic strategy of granular computing, so it exhibits
development of abstraction and generalization.

(1) The bottom granule concerns a micro description. gδ
B (x) de-

pends on x and B to become numerous, and their number is
related to sample cardinality |U |.

(2) The middle swarm places emphasis on a meso viewpoint. Gδ
B

relies on B to offer only number 1 but carries |U | neighbor-
hoods.

(3) The top library refers to a macro change. K δ
B is also related

to B to exhibit only number 1, and it contains m = 2|B| − 1
types of swarms or coverings.

n contrast, the reverse strategy in the top-middle-bottom can
lso be concerned to provide a sort of hierarchial decomposition.
his decomposition direction can be used to observe the neigh-
orhood library, which has a complex structure. By Fig. 3’s (b),
he top library K δ

B =
(
Gδ
R1

, . . . ,Gδ
Rm

)
carries m = 2|B| − 1 middle

swarms or m|U | bottom granules. In summary, the tri-level struc-
ture firmly underlies the subsequent hierarchial processing based
on neighborhood knowledge, and it differs from the three-layer
granular structures of a decision table [51] and of a neighborhood
system [30].

2.3. Size assessment of tri-level granular structure

In neighborhood system, the above tri-level granular structure
is worth measuring for applications. The size measures of both
the bottom granule and middle swarm have been offered in [31],
and the top level of neighborhood library will be endowed with
a corresponding measure.

Definition 4 ([31]). In NS = (U, A, V , f , δ), the size of neighbor-
hood granule gδ

B (x) is defined by

S(gδ
B (x)) =

|gδ
B (x)|
|U |

=
|nδ

B(x)|
|U |

, (6)

while the size of neighborhood swarm Gδ
B is defined by

GM(Gδ
B) =

1
|U |

|U |∑
i=1

S(gδ
B (xi)) =

1
|U |2

|U |∑
i=1

|gδ
B (xi)|

=
1
|U |2

|U |∑
|nδ

B(xi)|.

(7)
i=1
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Fig. 3. Organizational chart of tri-level granular structure of neighborhood system.
a

roposition 1 ([31]). In NS = (U, A, V , f , δ), we have the following
ranulation monotonicity (regarding both attribute and radius).

(1) At the bottom level, if ∅ ⊂ P ⊆ Q then gδ
P (x) ⊇ gδ

Q (x)
and S(gδ

P (x)) ≥ S(gδ
Q (x)), while if 0 ≤ γ ≤ δ ≤ 1 then

gγ

B (x) ⊆ gδ
B (x) and S(gγ

B (x)) ≤ S(gδ
B (x)).

(2) At the middle level, if ∅ ⊂ P ⊆ Q then GM(Gδ
P ) ≥ GM(Gδ

Q ),
while if 0 ≤ γ ≤ δ ≤ 1 then GM(Gγ

B ) ≤ GM(Gδ
B).

Both the bottom granule and middle swarm acquire their size
easures in [31], as discussed by Definition 4. Bottom measure
(gδ

B (x)) denotes the proportion of granule gδ
B (x) in contrast to

he whole universe U , while middle measure GM(Gδ
B) reflects

he arithmetic mean by counting all samples and their sizes of
eighborhood granules. Eqs. (6) and (7) also reflect both the
ottom-middle connection and neighborhood essence, and thus
he measure range and optimization implementation are given
s follows:

S(gδ
B (x)) ∈ [

1
|U |

, 1],

S(gδ
B (x)) =

1
|U |
⇐⇒ gδ

B (x) = {x},

S(gδ
B (x)) = 1⇐⇒ gδ

B (x) = U;

GM(Gδ
B) ∈ [

1
|U |

, 1],

GM(Gδ
B) =

1
|U |
⇐⇒ Gδ

B =
(
{x1}, . . . , {x|U |}

)
,

GM(Gδ
B) = 1⇐⇒ Gδ

B =
(
U, . . . ,U

)
.

(8)

Furthermore, the two types of size measures have the funda-
mental granulation monotonicity regarding both the attribute and
radius.

However, the top library never achieves its size measure [31],
and here we make a corresponding realization.

Definition 5. In NS = (U, A, V , f , δ), the size of neighborhood
ibrary K δ

B is defined by

KM(K δ
B ) =

1
m

m∑
j=1

GM(Gδ
Rj ), (9)

where Rj means the non-empty subset of B to have the total
umber m = 2|B| − 1.
5

Proposition 2. In NS = (U, A, V , f , δ), we have

KM(K δ
B ) =

1
m|U |

m∑
j=1

|U |∑
i=1

S(gδ
Rj (xi)) =

1
m|U |2

m∑
j=1

|U |∑
i=1

|gδ
Rj (xi)|

=
1

m|U |2

m∑
j=1

|U |∑
i=1

|nδ
Rj (xi)|,

(10)

nd thus

KM(K δ
B ) ∈ [

1
|U |

, 1],

KM(K δ
B ) =

1
|U |
⇐⇒ ∀Rj ⊆ B

[
Gδ
Rj =

(
{x1}, . . . , {x|U |}

)]
⇐⇒ ∀Rj ⊆ B,∀xi ∈ U

[
gδ
B (xi) = {xi}

]
,

KM(K δ
B ) = 1⇐⇒ ∀Rj ⊆ B

[
Gδ
Rj =

(
U, . . . ,U

)]
⇐⇒ ∀Rj ⊆ B,∀xi ∈ U

[
gδ
B (xi) = U

]
.

(11)

The size construction of top library follows the hierarchical
integration thought of middle swarm.

(1) Since middle swarm Gδ
B contains |U | bottom granules, its size

GM(Gδ
B) is defined by the arithmetic mean of size values of

all neighborhood granules (Definition 4 [31]). Thus, measure
GM(Gδ

B) represents the statistical characteristic of the middle
swarm system.

(2) Similarly, since top library K δ
B contains m middle swarms, its

size KM(K δ
B ) is defined by the arithmetic mean of size values

of all m neighborhood swarms (Definition 5), i.e., KM(K δ
B )

refers to the arithmetic mean of size values of m|U | neigh-
borhood granules (Eq. (10)). Hence, measure KM(K δ

B ) repre-
sents the statistical characteristic of the top library system.

The top size measure becomes continuous and reasonable to per-
fectly have the hierarchical mechanism and statistical semantics.
Its top-middle and top-bottom connections are revealed in Eqs.
(9) and (10), respectively. The latter formula also exhibits the
statistical essence of multiple neighborhoods, which are carried
by m neighborhood swarms (each swarm contains |U | gran-
ules). Furthermore, KM(K δ

B ) also belongs to closed interval [ 1
|U | , 1]

because both S(gδ
B (x)) and GM(Gδ

B) are in this range (Eq. (8)).
Now focus on the basic topic of granulation monotonicity/non-

monotonicity. Note that the top library and its size respectively
concern multiple middle swarms and their size average. Thus,
the change and correspondence of swarms regarding covering
granulation become a key question, and they carry the complexity
and difficulty. The case of radius granulation is simple, because
the same observed attribute subset B has the same non-empty
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ttribute sets R1, . . . , Rm ⊆ B to determine internal m swarms.
owever, the other case of attribute granulation becomes com-
lex, because attribute enlargement B ⊆ Q causes the subset
ddition 2B

⊆ 2Q and the swarm addition. For the above purpose
nd issue, the radius-granulation monotonicity is directly proved,
hile the attribute-granulation non-monotonicity will be deeply
ined and proved by two lemmas. Concretely, Lemma 1 clarifies

he enlargement distribution of attribute enlargement B ⊂ B ∪
a∗} = Q ⊆ A when adding only a single attribute a∗ ∈ A, and
hus Lemma 2 provides two cases of size inequation by adopting
wo special cases of neighborhood knowledge (i.e., the finest
nd coarsest coverings). Note that proofs of the two lemmas are
espectively placed in Appendices A and B.

emma 1. Regarding the addition of single attribute, we have
he following enlargement distribution of non-empty subsets, which
efers to the structure correspondence of power sets. That is,

Q = B ∪ {a∗} ⊃ B ̸= ∅ H⇒

2Q
− {∅} = (2B

− {∅}) ∪ {R1 ∪ {a∗}, . . . , Rm ∪ {a∗}} ∪ {{a∗}}
= {R1, . . . , Rm} ∪ {R1 ∪ {a∗}, . . . , Rm ∪ {a∗}} ∪ {{a∗}}.

(12)

emma 2. In NS = (U, A, V , f , δ) with ∅ ⊂ B ⊂ A, generally
uppose that all non-empty subsets Rj (j = 1, . . . ,m) of B reach
either the finest nor coarsest coverings, i.e.,

∀Rj ∈ 2B
− {∅}(

U/NRδ(Rj) ̸= {{x1}, {x2}, . . . , {x|U |}} ∧ U/NRδ(Rj) ̸= {U}
)

.

(13)

ext, an attribute a∗ ∈ A is added to B, and thus B ⊂ B ∪ {a∗} =
⊆ A.

(1) If attribute a∗ acquires the finest covering, i.e., U/NRδ({a∗}) =
{{x1}, {x2}, . . . , {x|U |}}, then KM(K δ

B ) > KM(K δ
Q ).

(2) If a∗ corresponds to the coarsest covering, i.e., U/NRδ({a∗}) =
{{U}}, then KM(K δ

B ) < KM(K δ
Q ).

roposition 3. In NS = (U, A, V , f , δ), the top size exhibits
he attribute-granulation non-monotonicity and radius-granulation
onotonicity.

(1) Regarding the attribute granulation, if ∅ ⊂ P ⊆ Q then neither
KM(K δ

P ) ≥ KM(K δ
Q ) nor KM(K δ

P ) ≤ KM(K δ
Q ) necessarily holds.

(2) Regarding the radius granulation, if 0 ≤ γ ≤ δ ≤ 1 then
KM(K γ

B ) ≤ KM(K δ
B ).

roof. (1) According to Lemma 2, setting up P = B ⊂ B∪{a∗} = Q
an theoretically acquire two possible cases: KM(K δ

P ) < KM(K δ
Q )

nd KM(K δ
P ) > KM(K δ

Q ), so we cannot always achieve KM(K δ
P ) ≥

M(K δ
Q ) or KM(K δ

P ) ≤ KM(K δ
Q ).

(2) Libraries K γ

B and K δ
B include the same number m = 2|B|−1

f middle swarms regarding R1, . . . , Rm. According to Proposi-
ion 1(2), we have ∀Rj ⊆ B

(
GM(Gγ

Rj
) ≤ GM(Gδ

Rj
)
)
; according to

efinition 5,

KM(K γ

B ) =
1
m

m∑
j=1

GM(Gγ

Rj
) ≤

1
m

m∑
j=1

GM(Gδ
Rj ) = KM(K δ

B ). □

Lemmas 1 and 2 embody interesting and skillful constructions.
They focus on a special case of attribute granulation based on the
single-attribute addition, and they also adopt a special case of
extreme assumptions of the finest/coarsest covering (as well as a
6

general precondition). As a result, they fully prove the attribute-
granulation non-monotonicity by mining counter examples. With
the addition of radius-granulation monotonicity, Proposition 3
becomes true. The relevant conclusions of top size measure go
beyond our expectation, i.e., they differ from the corresponding
results of size measures at lower levels (Proposition 1). In other
words, it is surprising but objective to discover that the attribute
granulation has not the monotonicity but the non-monotonicity,
which is mainly caused by the structure feature of attribute
subsets.

We can focus on the particular feature of non-monotonicity in
Proposition 3 from a statistical perspective. According to the rel-
evant mechanism, attribute enlargement Q ⊇ P may supplement
non-empty subsets and their swarms, but it cannot necessarily
increase/decrease the initial size average of middle swarms. Thus,
the size KM(K δ

Q ) on Q cannot necessarily increase/decrease initial
KM(K δ

P ) on P . In fact, if all additional swarms provide little size
alues (including the minimum 1

|U | related to the finest cover-
ing) then KM(K δ

Q ) more tends to be less than KM(K δ
P ), while if

ll additional swarms provide large size values (including the
aximum 1 related to the coarsest covering) then KM(K δ

Q ) more
tends to be larger than KM(K δ

P ). In summary, KM(K δ
Q ) < KM(K δ

P )
and KM(K δ

Q ) > KM(K δ
P ) become two possible cases, and the

ctual size relationships between KM(K δ
Q ) and KM(K δ

P ) depend
n the average statistics to exhibit a sort of uncertainty, which
eneralizes and transcends the non-monotonicity.

.4. Logical operations of tri-level granular structure

Logical operations are basic for a collection system. They are
efined for the bottom granule in [31], and they are further
upplemented for the remaining middle swarm and top library.

efinition 6 ([31]). In NS = (U, A, V , f , δ), two granules gδ
B (x) and

gδ
B (y) regarding B ⊆ A have the following logical operations:

(1) AND: gδ
B (x) ∧ gδ

B (y) = nδ
B(x) ∩ nδ

B(y),

(2) OR: gδ
B (x) ∨ gδ

B (y) = nδ
B(x) ∪ nδ

B(y),

(3) DIF: gδ
B (x)− gδ

B (y) = nδ
B(x)− nδ

B(y),

(4) XOR: gδ
B (x)⊕ gδ

B (y) = nδ
B(x) ∪ nδ

B(y)− nδ
B(x) ∩ nδ

B(y),

(5) NOT: ¬gδ
B (x) = U − nδ

B(x).

(14)

Proposition 4. In NS = (U, A, V , f , δ), the usual system of bottom
logical operations does not have the closeness on the underlying
covering, i.e.,[

gδ
B (x) ∈ U/nδ

B

]
∧

[
gδ
B (y) ∈ U/nδ

B

]
⇏

[
gδ
B (x) ∧ gδ

B (y) ∈ U/nδ
B

]
∧

[
gδ
B (x) ∨ gδ

B (y) ∈ U/nδ
B

]
∧

[
gδ
B (x)− gδ

B (y) ∈ U/nδ
B

]
∧

[
gδ
B (x)⊕ gδ

B (y) ∈ U/nδ
B

]
∧

[
¬gδ

B (x) ∈ U/nδ
B

]
.

(15)

At the bottom level, the neighborhood granule has the set
essence, so the five usual types of logical operations are naturally
defined by the set operations regarding intersection, union, and
complement. However, there is no the operation closeness re-
garding a fixed attribute subset, i.e., the result of logical operation
may not be necessarily a neighborhood.

Definition 7. In NS = (U, A, V , f , δ), swarm Gδ
B (regarding B ⊆ A)

and swarm Gδ (regarding B′ ⊆ A) have the following logical
B′
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perations:

(1) AND: Gδ
B ∧ Gδ

B′ = Gδ
B∩B′ ,

(2) OR: Gδ
B ∨ Gδ

B′ = Gδ
B∪B′ ,

(3) DIF: Gδ
B − Gδ

B′ = Gδ
B−B′ ,

(4) XOR: Gδ
B ⊕ Gδ

B′ = Gδ
B⊕B′ ,

(5) NOT: ¬Gδ
B = Gδ

A−B,

(16)

while library K δ
B (regarding B ⊆ A) and library K δ

B′ (regarding
B′ ⊆ A) have the following logical operations:

(1) AND: K δ
B ∧ K δ

B′ = K δ
B∩B′ ,

(2) OR: K δ
B ∨ K δ

B′ = K δ
B∪B′ ,

(3) DIF: K δ
B − K δ

B′ = K δ
B−B′ ,

(4) XOR: K δ
B ⊕ K δ

B′ = K δ
B⊕B′ ,

(5) NOT: ¬K δ
B = K δ

A−B.

(17)

Proposition 5. In NS = (U, A, V , f , δ), the usual system of mid-
dle/top logical operations has the closeness regarding all attribute
subsets. Let Gδ

= {Gδ
B|B ⊆ A} and Kδ

= {K δ
B |B ⊆ A}, where

Gδ
∅
= null and K δ

∅
= null represent the emptiness, and thus[

Gδ
B ∈ Gδ

]
∧

[
Gδ
B′ ∈ Gδ

]
⇒

[
Gδ
B ∧ Gδ

B′ ∈ Gδ
]
∧

[
Gδ
B ∨ Gδ

B′ ∈ Gδ
]

∧
[
Gδ
B − Gδ

B′ ∈ Gδ
]
∧

[
Gδ
B ⊕ Gδ

B′ ∈ Gδ
]
∧

[
¬Gδ

B ∈ Gδ
]
,[

K δ
B ∈ Kδ

]
∧

[
K δ
B′ ∈ Kδ

]
⇒

[
K δ
B ∧ K δ

B′ ∈ Kδ
]
∧

[
K δ
B ∨ K δ

B′ ∈ Kδ
]
∧

[
K δ
B − K δ

B′ ∈ Kδ
]

∧
[
K δ
B ⊕ K δ

B′ ∈ Kδ
]
∧

[
¬K δ

B ∈ Kδ
]
.

(18)

Since middle swarms are completely determined by attribute
ubsets, their logical operations are basically defined by cor-
esponding logical operations regarding attribute subsets. This
efinition strategy is not only simple and direct but also effective,
nd thus Proposition 5 offers the closeness merit on the collection
et Gδ . The top library has the similar case and analysis for logical
perations. In terms of knowledge base, the top level can also
onsider interaction between internal swarms on 2B and 2B′ , so to
explore other logical operations between K δ

B and K δ
B′ . Moreover,

these logical operations come from the set operations rather
than the hierarchical integration; in contrast, the hierarchical
integration is more related to the tri-level structure, so it is
worth introducing and discussing for further works on logical
operations.

2.5. Illustrative example I

Based on a neighborhood system, an example is provided to
illustrate the above relevant notions and results, including the
tri-level granular structure and its size assessment and logical
operation.

Example 1. The neighborhood decision system (U, A∪{d}, V , f , δ)
is given in Table 1, and it internally includes a neighborhood
system (U, A, V , f , δ). Herein, U = {x1, x2, x3, x4, x5, x6}, A =
{a, b, c}, and d implies the sole decision attribute. For neighbor-
hood granulation, the Euclidean distance (i.e., p = 2 in Eq. (1))
and distance radius δ = 0.3 are utilized; next, each non-empty
subset B ⊆ A is focused on, and there are in total 7 subsets.

As a basis, Table 2 exhibits neighborhoods of all 6 universe
objects regarding 7 attribute subsets. Thus, an arbitrary attribute
subset B ⊆ A can generate a tri-level granular structure; fur-
thermore, the corresponding neighborhood granule, swarm, and
7

Table 1
A neighborhood decision system.
U a b c d

x1 1 0.8 1 N
x2 1 0 0.3 Y
x3 0.8 1 0.6 N
x4 0.3 0.8 0 Y
x5 0.2 0.6 0 Y
x6 0 0.4 0 N

library can be measured, and Table 3 provides all size values. As
an example, we choose a representative subset B = {a, b} to make
detailed explanations.

(1) The bottom granules concern 6 neighborhoods, i.e., gδ
B (x1) =

{x1, x3}, . . . , gδ
B (x6) = {x5, x6}. They exhibit 6 values, i.e.,

S(gδ
B (x1)) = 0.3333, . . . , S(gδ

B (x6)) = 0.3333.
(2) The middle swarm has only number 1 to carry 6 neighbor-

hoods, i.e., Gδ
B =

(
{x1, x3}, . . . , {x5, x6}

)
, and it corresponds

to covering U/NRδ(B) = {{x1, x3}, {x2}, {x4, x5}, {x4, x5, x6},
{x5, x6}} with only 5 different neighborhoods. The size
GM(Gδ

B) becomes the arithmetic mean of all 6 values of
S(gδ

B (xi)) (i = 1, 2, . . . , 6) to gain value 0.3333.
(3) The top library has only number 1 to carry 3 swarms regard-

ing non-empty subsets {a}, {b}, {a, b}. It offers

K δ
B =

(
Gδ
{a},G

δ
{b},G

δ
{a,b}

)
=

(
({x1, x2, x3}, . . . , {x4, x5, x6}),

({x1, x3, x4, x5}, . . . , {x5, x6}), ({x1, x3}, . . . , {x5, x6})
)
,

and it is related to knowledge base (with 3 coverings)(
U/NRδ({a}),U/NRδ({b}),U/NRδ({a, b})

)
=

(
{{x1, x2, x3}, {x4, x5, x6}}, {{x1, x3, x4, x5}, . . . , {x5, x6}},

{{x1, x3}, . . . , {x5, x6}}
)

.

Furthermore, the size KM(K δ
B ) becomes the arithmetic mean

of all 3 values of Gδ
{a}, G

δ
{b}, G

δ
{a,b} to gain value 1

3 (0.5+ 0.5+
0.3333) = 0.4444.

The tri-level results regarding B = {a, b} come from the relevant
definitions, and the last top library and its size need the complex
computation. Moreover, the relevant hierarchical relationship can
be clearly observed.

Herein, Table 3 is utilized to analyze the size features, espe-
cially the granulation monotonicity/non-monotonicity. First, the
range [ 1

|U | , 1] = [0.1667, 1] indeed includes all values. All subsets
of A constitute multiple types of covering-knowledge granulation,
and thus we easily verify the attribute-granulation monotonicity
in Proposition 1. Regarding Proposition 3, the radius-granulation
monotonicity can be verified by adding other radii. In contrast,
the attribute-granulation non-monotonicity can present only one
manifestation by observing all subsets, i.e.,

∀ ∅ ⊂ P ⊆ Q ⊆ A
[
KM(K δ

P ) > KM(K δ
Q )

]
.

On the other side, we want to provide a further case by showing
and verifying Lemmas 1 and 2.

Table 3 can be updated to a new table by replacing c with a∗.
hus, we let B = {a, b} ⊂ {a, b}∪{a∗} = {a, b, a∗} = Q . 2B

−{∅} =

{{a}, {b}, {a, b}} and 2Q
− {∅} = {{a}, {b}, {a, b}, {a, a∗}, {b, a∗},

{a, b, a∗}, {a∗}}, and the latter 23
− 1 = 7 subsets enlarge the

former 22
−1 = 3 subsets to exhibit 3 groups; this result verifies

Lemma 1. Regarding Lemma 2, there are two cases.

(1) a∗ can enough discretize each sample to become a neigh-
borhood (such as f (x , a ) = 0.33(i−1) (i = 1, . . . 6)), i.e., it
i ∗
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T
A

able 2
ll neighborhoods of Table 1.
U {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}

x1 {x1, x2, x3} {x1, x3, x4, x5} {x1} {x1, x3} {x1} {x1} {x1}
x2 {x1, x2, x3} {x2} {x2, x3, x4, x5, x6} {x2} {x2} {x2} {x2}
x3 {x1, x2, x3} {x1, x3, x4} {x2, x3} {x1, x3} {x3} {x3} {x3}
x4 {x4, x5, x6} {x1, x3, x4, x5} {x2, x4, x5, x6} {x4, x5} {x4, x5} {x4, x5, x6} {x4, x5}
x5 {x4, x5, x6} {x1, x4, x5, x6} {x2, x4, x5, x6} {x4, x5, x6} {x4, x5, x6} {x4, x5, x6} {x4, x5, x6}
x6 {x4, x5, x6} {x5, x6} {x2, x4, x5, x6} {x5, x6} {x5, x6} {x4, x5, x6} {x5, x6}
Table 3
All size values of tri-level granular structure of Table 1.
Hierarchical subject Size measure {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}

Bottom granule

S(gδ
B (x1)) 0.5 0.6667 0.1667 0.3333 0.1667 0.1667 0.1667

S(gδ
B (x2)) 0.5 0.1667 0.8333 0.1667 0.1667 0.1667 0.1667

S(gδ
B (x3)) 0.5 0.5 0.3333 0.3333 0.1667 0.1667 0.1667

S(gδ
B (x4)) 0.5 0.6667 0.6667 0.3333 0.3333 0.5 0.3333

S(gδ
B (x5)) 0.5 0.6667 0.6667 0.5 0.5 0.5 0.5

S(gδ
B (x6)) 0.5 0.3333 0.6667 0.3333 0.3333 0.5 0.3333

Middle swarm GM(Gδ
B) 0.5 0.5 0.5556 0.3333 0.2778 0.3333 0.2778

Top library KM(K δ
B ) 0.5 0.5 0.5556 0.4444 0.4444 0.4630 0.3968
leads to the finest covering. Thus,

KM(K δ
Q ) =

1
7

(
0.4444× 3+ 0.1667× 3+ 0.1667× 1

)
= 0.2857 < 0.4444 = KM(K δ

B ).

(2) When a∗ endows all objects with the same value (such
as f (xi, a∗) = 0.5 (i = 1, . . . , 6)), it causes the coarsest
covering. Thus,

KM(K δ
Q ) =

1
7

(
0.4444× 3+ 0.4444× 3+ 1× 1

)
= 0.5238 > 0.4444 = KM(K δ

B ).

Therefore, Lemma 2 is verified to be true, and the above
two inequations also support the attribute-granulation non-
monotonicity in Proposition 3.

Finally, we analyze the logical operations at the three levels,
and B = {a, b} and B′ = {b, c} are utilized to focus on some
fragments.

(1) At the middle level of granule, gδ
B (x4) = {x4, x5} and gδ

B (x6) =
{x5, x6}, and thus

gδ
B (x4) ∧ gδ

B (x6) = {x5} /∈ U/nδ
B,

gδ
B (x4) ∨ gδ

B (x6) = {x4, x5, x6} ∈ U/nδ
B,

gδ
B (x4)− gδ

B (x6) = {x4} /∈ U/nδ
B,

gδ
B (x4)⊕ gδ

B (x6) = {x4, x6} /∈ U/nδ
B,

¬gδ
B (x4) = {x1, x2, x3, x6} /∈ U/nδ

B.

These results verify the bottom conclusion, as given in Def-
inition 6 and Proposition 4.

(2) At the middle level of swarm, Gδ
= {null,Gδ

{a},G
δ
{b},

Gδ
{c},G

δ
{a,b},G

δ
{b,c},G

δ
{a,c},G

δ
{a,b,c}}, and thus

Gδ
B ∧ Gδ

B′ = Gδ
{b} ∈ Gδ,Gδ

B ∨ Gδ
B′ = Gδ

{a,b,c} ∈ Gδ,

Gδ
B − Gδ

B′ = Gδ
{a} ∈ Gδ,

Gδ
B ⊕ Gδ

B′ = Gδ
{a,c} ∈ Gδ,¬Gδ

B = Gδ
{c} ∈ Gδ.

These results verify the middle conclusion, as given in Def-
inition 7 and Proposition 5.

(3) The top case of library is similar to the above item (2).
8

3. Distance measurement of tri-level granular structure

Distance measurement is fundamental for the uncertainty
quantification and system classification, and thus it is emphat-
ically researched for the above tri-level granular structure, in-
cluding the bottom neighborhood granule, middle neighborhood
swarm, and top neighborhood library. Only the bottom and mid-
dle levels have acquired their distances in [31]. Next, distances
at the two levels will be powerfully enlarged by the double-
quantification fusion, while distances at the surplus top level will
be further supplemented by hierarchical construction.

3.1. Distance measurement of bottom neighborhood granules

Aiming at bottom-level granules, the relative and absolute dis-
tances are recalled to be integrated into a double-quantitative dis-
tance. According to the granular essence, the neighborhood gran-
ules mainly use their set operations, which equivalently replace
the previous style of logical operations [31].

Definition 8 ([31]). In NS = (U, A, V , f , δ), the relative and
absolute distances between two bottom neighborhood granules
s = gδ

B (x) and t = gδ
B (y) are respectively defined by

d(s, t) =
|s⊕ t|
|s ∪ t|

=
|gδ

B (x) ∪ gδ
B (y)− gδ

B (x) ∩ gδ
B (y)|

|gδ
B (x) ∪ gδ

B (y)|
,

h(s, t) =
|s⊕ t|
|U |

=
|gδ

B (x) ∪ gδ
B (y)− gδ

B (x) ∩ gδ
B (y)|

|U |
.

(19)

Proposition 6 ([31]). In NS = (U, A, V , f , δ), measures d(s, t) ∈
[0, 1] and h(s, t) ∈ [0, 1] conform to the distance axioms regarding
non-negativity (identity), symmetry, and triangular inequality. In
terms of triviality based on ∅,U, we have

d(s,∅) = 1, h(s,∅) =
|s|
|U |

,

d(s,U) = 1−
|s|
|U |

, h(s,U) = 1−
|s|
|U |

,

and thus they represent the neighborhood granule size as follows:

S(s) = h(s,∅), S(s) = 1− d(s,U) = 1− h(s,U). (20)
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Fig. 4. Construction mechanism of double-quantitative distance.
The structural framework of information atom regarding sys-
em (U, s, t) is described in Fig. 4(a). Here, s ⊕ t = (s − t) ∪
t−s) implies the difference and separability between two neigh-
orhood granules s and t , and thus its cardinality |s⊕ t| =
s− t|+|t − s| closely adheres to the granule distance. To fall into
the normal metric interval [0, 1], different ranges are chosen as
denominators to construct two types of basic distances, as given
in Definition 8 and Proposition 6.

(1) s ⊕ t has a relative range s ∪ t , i.e., s ⊕ t is in union s ∪ t
while the latter s ∪ t relies on s, t to have the locality
and variability. Thus, d(s, t) adopts the proportion between
|s⊕ t| and |s ∪ t| to correspond to the relative distance and
quantification.

(2) s ⊕ t has an absolute range |U |, i.e., s ⊕ t is in universe
U while the latter U never depends on s, t to exhibit the
globality and stationarity. Thus, h(s, t) adopts the proportion
between |s⊕ t| and |U | to embody the absolute distance and
quantification.

ccording to the double-quantification thought (given in Sec-
ion 1.1 and Fig. 2), a double-quantitative distance is worth min-
ng by integrating d(s, t) and h(s, t), thus providing more powerful
easurement and effective applications.

emma 3. The relative and absolute distances have two systematic
elationships, i.e.,

∀s = gδ
B (x) ∈ U/NRδ(B),∀t = gδ

B (y) ∈ U/NRδ(B),

(1) α
s,t
d × d(s, t)+ α

s,t
h × h(s, t) = 0⇐⇒ α

s,t
d ≡ 0 ≡ α

s,t
h ,

(2) d(s, t) ≥ h(s, t),
(21)

where combination coefficients satisfy α
s,t
d , α

s,t
h ∈ R+ ∪ {0}.

According to Lemma 3, the two distances are linearly in-
dependent, and they follow a fixed size relationship. We next
construct a good double-quantitative distance by the weighted
combination, and the relevant mechanism is clarified as follows,
where Fig. 4(b) can provide some auxiliary instructions.

(1) A linear combination serves as a basic operation and an
efficient technology for metric fusion, and thus it is chosen
to fuse d(s, t) and h(s, t). In terms of measurement, d(s, t)
and h(s, t) mean two types of distance measures in metric
range [0, 1], but they place emphasis on two dialectical sides
of relativity and absoluteness. They have the homogeneity
and heteromorphism to offer the linear independence, so
their linear combination is feasible.

(2) Regarding two granules, their systematic action area (or
their whole function scope) usually goes beyond their union
but also is less than the universe, i.e., we can offer a general
9

description: s ∪ t ⊆ Domain(s, t) ⊆ U . Based on the core
information |s⊕ t| related to distance difference semantics,
the former d(s, t) adopts a stricter range s ∪ t or |s ∪ t|
to tend to a greater value, while the latter h(s, t) adopts a
looser range U or |U | to tend to a less value; this fact can
be partly supported by the identical relationship d(s, t) ≥
h(s, t). Thus, a compromise based on linear combination is
required and valuable. At first, the linear combination can
resort to equal and fixed coefficient 0.5 to provide a com-
mon and simple statistic, i.e., arithmetic mean d(s,t)+h(s,t)

2 =

0.5 × d(s, t) + 0.5 × h(s, t). By corresponding adjustments,
we next choose distinctive weights to generate a reasonable
compromise distance. Concretely, d(s, t) comes from local
region s ∪ t , while h(s, t) is related to global universe U;
thus, they respectively use weights |s∪t|

|s∪t|+|U | and |U |
|s∪t|+|U | ,

which respectively reflect the corresponding relativeness
and absoluteness.

The above double-quantification development of distance mea-
surement is systematically reflected by Fig. 4, and the relevant
tri-level structure of double-quantification concentrate mainly on
Fig. 4(b), which accords with the double-quantification frame-
work of Fig. 2.

Definition 9. In NS = (U, A, V , f , δ), the double-quantitative
distance between two bottom neighborhood granules s = gδ

B (x)
and t = gδ

B (y) is defined by

dh(s, t) = w
s,t
d × d(s, t)+ w

s,t
h × h(s, t) =

2|s⊕ t|
|s ∪ t| + |U |

, (22)

where two weight coefficients submit to

w
s,t
d =

|s ∪ t|
|s ∪ t| + |U |

∈ (0, 1), w
s,t
h =

|U |
|s ∪ t| + |U |

∈ (0, 1),

w
s,t
d +w

s,t
h = 1.

(23)

Corollary 1. dh(s, t) = 2 |s∪t|−|s∩t|
|s∪t|+|U | .

Lemma 4. If 0 ≤ p ≤ q and r ≥ 0, then p
q ≤

p+r
q+r .

Proposition 7. In NS = (U, A, V , f , δ), measure dh(s, t) has the
metric range [0, 1], and it conforms to the distance axioms regarding
non-negativity (identity), symmetry, and triangular inequality, i.e.,

(1) dh(s, t) ≥ 0, and dh(s, t) = 0 if and only if s = t;
(2) dh(s, t) = dh(t, s);
(3) dh(s, k)+ dh(k, t) ≥ dh(s, t).

In terms of triviality based on ∅,U, we have

dh(s,∅) =
2|s|

, dh(s,U) = 1−
|s|

,

|s| + |U | |U |
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nd thus they represent the neighborhood granule size as follows:

S(s) =
dh(s,∅)|U |
2− dh(s,∅)

, S(s) = 1− dh(s,U). (24)

Proof. According to weight descriptions in Eq. (23), the features
of integrated distance dh(s, t) can be derived from corresponding
properties of initial distances d(s, t) and h(s, t).

As an example, we prove only the triangular inequality:

dh(s, k)+ dh(k, t) ≥ dh(s, t) (25)

in a direct way based on essential analytical formulas. According
to Corollary 1 and Lemma 4, we have the equation given in Box I
Therefore, the required Eq. (25) holds. □

Proposition 8. In NS = (U, A, V , f , δ), the double-quantitative
distance is located between the relative and absolute distances. That
is,

∀s = gδ
B (x) ∈ U/NRδ(B),∀t = gδ

B (y) ∈ U/NRδ(B),
dh(s, t) ∈ [h(s, t), d(s, t)], i.e.,d(s, t) ≥ dh(s, t) ≥ h(s, t).

(26)

Regarding the double-quantitative distance, Definition 9 and
Corollary 1 respectively offer the defined and equivalent formu-
las, while Propositions 7 and 8 respectively provide the met-
ric axiom and size property. According to these discussions,
dh(s, t) utilizes distributional weights w

s,t
d , w

s,t
h to linearly com-

bine two distances d(s, t), h(s, t), and it exactly becomes a dis-
tance called as the double-quantitative distance. As a result,
dh(s, t) ∈ [h(s, t), d(s, t)] makes a systematic and skillful compro-
mise of d(s, t), h(s, t), and it becomes a robust measure to better
characterize the granule distance by integrating two merits of rel-
ative and absolute measurement. Herein, the advance of double-
quantitative measurement is basically illustrated by two special
cases. Let (s1, t1) and (s2, t2) be two groups of neighborhood
granules.

(1) If |s1⊕t1|
|s1∪t1|

=
|s2⊕t2|
|s2∪t2|

but |s1 ⊕ t1| ̸= |s2 ⊕ t2|, i.e., d(s1, t1) =
d(s2, t2) but h(s1, t1) ̸= h(s2, t2), then the two granule
groups (s1, t1) and (s2, t2) have the necessary difference but
they cannot be effectively discriminated by only the relative
measure. Accordingly, dh(s1, t1) and dh(s2, t2) respectively
supplement the absolute measurement to resolve this issue.

(2) The opposite case concerns |s1 ⊕ t1| = |s2 ⊕ t2| but
|s1⊕t1|
|s1∪t1|

̸=

|s2⊕t2|
|s2∪t2|

, i.e., h(s1, t1) = h(s2, t2) but d(s1, t1) ̸= d(s2, t2). Thus,
(s1, t1) and (s2, t2) can be effectively identified by not the
absolute distance but the double-quantitative distance, and
the latter introduces the relative measurement information
to improve the former.

n the later studies on classification learning, the double-
uantitative distance will be verified to can have optimal per-
ormances, where three types of distances are adopted and com-
ared. In summary, the double-quantitative distance dh(s, t) re-
orts to a weighted combination to act as a fusion measure
f relative-quantitative distance d(s, t) and absolute-quantitative
istance h(s, t), while the latter two distances are computed by
ottom neighborhood granules s, t and their cardinalities; thus,
he distance development benefits from the tri-level construction
ased on information granulation shown in Fig. 4, and dh(s, t)
ecomes powerful and advanced based on and in contrast to
(s, t), h(s, t), especially in later classification discussions.

.2. Distance measurement of both middle neighborhood swarms
nd top neighborhood libraries

The above bottom distances, including the relative, absolute,
nd double-quantitative types, characterize the difference be-
ween neighborhood granules. As shown by Fig. 3, neighborhood
10
granules constitute neighborhood swarms, while the latter fur-
ther construct neighborhood libraries. Therefore, these granule
distances at the bottom level can be naturally promoted to estab-
lish distances at middle and top levels, so to evaluate correspond-
ing differences between both swarms and libraries. Next, the
middle swarms and top libraries are respectively endowed with
three corresponding types of distances, where only the absolute
distance at the swarm level has been obtained in [31].

Definition 10. In NS = (U, A, V , f , δ) with S, T ⊆ A, the
relative, absolute, and double-quantitative distances between two
middle neighborhood swarms Gδ

S =
(
gδ
S (x1), g

δ
S (x2), . . . , g

δ
S (x|U |)

)
and Gδ

T =
(
gδ
T (x1), g

δ
T (x2), . . . , g

δ
T (x|U |)

)
are respectively defined by

D(Gδ
S,G

δ
T ) =

1
|U |

|U |∑
i=1

d(gδ
S (xi), g

δ
T (xi)),

H(Gδ
S,G

δ
T ) =

1
|U |

|U |∑
i=1

h(gδ
S (xi), g

δ
T (xi)),

DH(Gδ
S,G

δ
T ) =

1
|U |

|U |∑
i=1

dh(gδ
S (xi), g

δ
T (xi)).

(27)

Lemma 5. In NS = (U, A, V , f , δ) with S, T ⊆ A,

∀xi ∈ U, d(gδ
S (xi), g

δ
T (xi)) ∈ [0, 1−

1
|U |
],

h(gδ
S (xi), g

δ
T (xi)) ∈ [0, 1−

1
|U |
],

dh(gδ
S (xi), g

δ
T (xi)) ∈ [0, 1−

1
|U |
].

(28)

roof. ∀xi ∈ U , we have xi ∈ gδ
S (xi) and xi ∈ gδ

T (xi), so xi ∈
gδ
S (xi) ∩ gδ

T (xi) ⊆ gδ
S (xi) ∪ gδ

T (xi). Thus, g
δ
S (xi) ⊕ gδ

T (xi) = gδ
S (xi) ∪

gδ
T (xi)− gδ

S (xi) ∩ gδ
T (xi) is located between ∅ and U − {xi}, and we

have |gδ
S (xi)⊕ gδ

T (xi)| ∈ [0, |U | − 1].
According to relevant definitions, we can obtain d(gδ

S (xi),
gδ
T (xi)) ∈ [0, 1 −

1
|U | ] and h(gδ

S (xi), g
δ
T (xi)) ∈ [0, 1 −

1
|U | ]. By

definition and property of weighted combination, we further
obtain dh(gδ

S (xi), g
δ
T (xi)) ∈ [0, 1−

1
|U | ]. □

Proposition 9. The three types of middle distances have the
following properties, where S, K , T ⊆ A in NS = (U, A, V , f , δ).

(1) They have the same range [0, 1 − 1
|U | ], such as DH(Gδ

S,G
δ
T ) ∈

[0, 1− 1
|U | ].

(2) They satisfy the distance axioms (i.e., the non-negativity (iden-
tity), symmetry, and triangular inequality), such as the double-
quantitative case:

DH(Gδ
S,G

δ
T ) ≥ 0, DH(Gδ

S,G
δ
T ) = 0⇐⇒ Gδ

S = Gδ
T ,

DH(Gδ
S,G

δ
T ) = DH(Gδ

T ,G
δ
S),

DH(Gδ
S,G

δ
K )+ DH(Gδ

K ,Gδ
T ) ≥ DH(Gδ

S,G
δ
T ).

(29)

(3) In terms of triviality, we have

D(Gδ
S,Gnull) = 1,H(Gδ

S,Gnull) =
1
|U |

|U |∑
i=1

|gδ
S (xi)|
|U |

,

DH(Gδ
S,Gnull) =

1
|U |

|U |∑
i=1

2|gδ
S (xi)|

|gδ
S (xi)| + |U |

,

D(Gδ
S,Gfull) = H(Gδ

S,Gfull) = DH(Gδ
S,Gfull) = 1−

1
|U |

|U |∑ |gδ
S (xi)|
|U |

,

i=1
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t
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dh(s, k)+ dh(k, t)− dh(s, t)

=2
|s ∪ k| − |s ∩ k|
|s ∪ k| + |U |

+ 2
|k ∪ t| − |k ∩ t|
|k ∪ t| + |U |

− 2
|s ∪ t| − |s ∩ t|
|s ∪ t| + |U |

=2
[(

1−
|s ∩ k| + |U |
|s ∪ k| + |U |

)
+

(
1−
|k ∩ t| + |U |
|k ∪ t| + |U |

)
−

(
1−
|s ∩ t| + |U |
|s ∪ t| + |U |

)]
=2

(
1−
|s ∩ k| + |U |
|s ∪ k| + |U |

−
|k ∩ t| + |U |
|k ∪ t| + |U |

+
|s ∩ t| + |U |
|s ∪ t| + |U |

)
≥2

(
1−
|s ∩ k| + |U | + (|t| − |t ∩ (s ∪ k)|)
|s ∪ k| + |U | + (|t| − |t ∩ (s ∪ k)|)

−
|k ∩ t| + |U | + (|s| − |s ∩ (k ∪ t)|)
|k ∪ t| + |U | + (|s| − |s ∩ (k ∪ t)|)

+
|s ∩ t| + |U |
|s ∪ k ∪ t| + |U |

)
=2

(
1−
|s ∩ k| + |t| − (|s ∩ t| + |k ∩ t| − |s ∩ k ∩ t|)+ |U |

|s ∪ k ∪ t| + |U |
−
|k ∩ t| + |s| − (|s ∩ k| + |s ∩ t| − |s ∩ k ∩ t|)+ |U |

|s ∪ k ∪ t| + |U |
+
|s ∩ t| + |U |
|s ∪ k ∪ t| + |U |

)
=2
|s ∪ k ∪ t| − |s ∩ k| − |t| + |s ∩ t| + |k ∩ t| − |s ∩ k ∩ t| − |k ∩ t| − |s| + |s ∩ k| + |s ∩ t| − |s ∩ k ∩ t| + |s ∩ t|

|s ∪ k ∪ t| + |U |

=2
|s ∪ k ∪ t| − (|s| + |t|)+ 3|s ∩ t| − 2|s ∩ k ∩ t|

|s ∪ k ∪ t| + |U |

=2
|s ∪ k ∪ t| − (|s ∪ t| + |s ∩ t|)+ 3|t ∩ s| − 2|s ∩ t ∩ k|

|s ∪ k ∪ t| + |U |

=2
(
|s ∪ k ∪ t| − |s ∪ t|
|s ∪ k ∪ t| + |U |

+ 2
|s ∩ t| − |s ∩ k ∩ t|
|s ∪ k ∪ t| + |U |

)
≥0.

Box I.
and thus they represent the neighborhood swarm size as fol-
lows:

GM(Gδ
S) = H(Gδ

S,Gnull),

GM(Gδ
S) = 1− D(Gδ

S,Gfull) = 1− H(Gδ
S,Gfull) = 1− DH(Gδ

S,Gfull),

(30)

where Gnull =
(
∅,∅, . . . ,∅

)
and Gfull =

(
U,U, . . . ,U

)
.

Proof. (1) This result directly comes from the basic range [0, 1−
1
|U | ] in Lemma 5 and average operation 1

|U |

∑
|U |
i=1 in Definition 10.

(2) The distance axioms of middle swarms can be derived from
he distance axioms and average integration of bottom granules.
s an example, By Proposition 7 and Definition 10, we can deduce
riangular inequality regarding the double-quantitative distance,
.e.,

DH(Gδ
S,G

δ
K )+ DH(Gδ

K ,Gδ
T )

=
1
|U |

|U |∑
i=1

dh(gδ
S (xi), g

δ
K (xi))+

1
|U |

|U |∑
i=1

dh(gδ
K (xi), g

δ
T (xi))

=
1
|U |

|U |∑
i=1

[
dh(gδ

S (xi), g
δ
K (xi))+ dh(gδ

K (xi), g
δ
T (xi))

]
≥

1
|U |

|U |∑
i=1

dh(gδ
S (xi), g

δ
T (xi))

=DH(Gδ
S,G

δ
T ).

(3) This triviality assertion can be derived from the corre-
sponding pairs in Propositions 6 and 7, the average function
1
|U |

∑
|U |
i=1 in Definition 10, as well as the size formula in Eq. (7). □

Corollary 2. At the middle swarm level, the relative, absolute, and
double-quantitative distances follow an inequation, i.e.,

δ δ δ δ δ δ (31)
D(GS,GT ) ≥ DH(GS,GT ) ≥ H(GS,GT ).

11
According to the bottom-middle construction from granules
to swarms, the middle distances are established by hierarchi-
cally integrating bottom distances of all samples, as given in
Definition 10; their arithmetic mean form 1

|U |

∑
|U |
i=1 provides the

good fusion mechanism and clear measurement semantics, so
they effectively characterize the difference between swarms. Of
course, they have three types of different viewpoints and forms.
By quantification delivery or feature heredity, the middle single-
quantitative and double-quantitative distances respectively ad-
here to the relativity/absoluteness and completeness, and they
also have similar but developmental properties, as shown in
Proposition 9 and Corollary 2. In particular, the absolute distance
and its properties have been given in [31], so the relative and
double-quantitative distances become new contents for perfec-
tion. In terms of system, the relative distance is parallel and
symmetrical to the absolute distance, while the comprehensive
double-quantitative distance conducts a double-quantification
compromise.

Thus far, the relative, absolute, and double-quantitative dis-
tances are offered at the bottom granule level, and then the three
types are hierarchically promoted to the middle swarm level
by the average integration, where two arbitrary neighborhood
swarms adhere to a one-to-one correspondence due to the same
granular dimensionality regarding |U |. Now, we sequentially con-
sider the systematic distances at the library level by the middle-
top integration. However, two neighborhood libraries may have
different numbers of internal swarms, so the correspondence
complexity causes a difficulty of definition. Next, a special case
of number correspondence is preliminarily considered.

Lemma 6. Let S, T ⊆ A. If |S| = |T |, then 2S
− {∅} and

2T
− {∅} follow a one-to-one correspondence regarding non-empty

subsets, and this correspondence can be concretized by the complete
lattice isomorphism (2S,∩,∪) ∼= (2T ,∩,∪), which is derived from
a one-to-one correspondence by sorting S and T .
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efinition 11. In NS = (U, A, V , f , δ) with S, T ⊆ A, suppose
|S| = |T | and denotem′ = 2|S|−1 = 2|T |−1. The relative, absolute,
and double-quantitative distances between top neighborhood li-
braries K δ

S =
(
Gδ
S1

, gδ
S2

, . . . ,Gδ
Sm′

)
and K δ

T =
(
Gδ
T1

,Gδ
T2

, . . . ,Gδ
Tm′

)
are respectively defined by

D(K δ
S , K δ

T ) =
1
m′

m′∑
j=1

D(Gδ
Sj ,G

δ
Tj ),

H(K δ
S , K δ

T ) =
1
m′

m′∑
j=1

H(Gδ
Sj ,G

δ
Tj ),

DH(K δ
S , K δ

T ) =
1
m′

m′∑
j=1

DH(Gδ
Sj ,G

δ
Tj ),

(32)

here {S1, S2, . . . , Sm′} = 2S
−{∅} and {T1, T2, . . . , Tm′} = 2T

−{∅}

dopt the one-to-one correspondence in Lemma 6.

orollary 3. The three types of top distances have the following
properties, where S, K , T ⊆ A, |S| = |K | = |T |, m′ = 2|S| − 1 =
|K |
− 1 = 2|T | − 1 in NS = (U, A, V , f , δ).

(1) They have the same range [0, 1− 1
|U | ].

(2) They satisfy the distance axioms (i.e., the non-negativity (iden-
tity), symmetry, and triangular inequality), such as the double-
quantitative case:

DH(K δ
S , K δ

T ) ≥ 0, DH(K δ
S , K δ

T ) = 0⇐⇒ K δ
S = K δ

T ,

DH(K δ
S , K δ

T ) = DH(K δ
T , K δ

S ),

DH(K δ
S , K δ

K )+ DH(K δ
K , K δ

T ) ≥ DH(K δ
S , K δ

T ).

(33)

(3) They represent the neighborhood library size as follows:

KM(K δ
S ) = H(K δ

S , Knull),

KM(K δ
S ) = 1− D(K δ

S , Kfull) = 1− H(K δ
S , Kfull) = 1− DH(K δ

S , Kfull),

(34)

where Knull =
(
(∅,∅, . . . ,∅), . . . , (∅,∅, . . . ,∅)

)
and Kfull =(

(U,U, . . . ,U), . . . , (U,U, . . . ,U)
)
.

Corollary 4. At the top library level, the relative, absolute, and
double-quantitative distances follow an inequation, i.e.,

D(K δ
S , K δ

T ) ≥ DH(K δ
S , K δ

T ) ≥ H(K δ
S , K δ

T ), (35)

where |S| = |T |.

In Definition 11, we characterize the library difference by
virtue of the same swarm scale (i.e., by virtue of the same car-
dinality of attribute subset), and the one-to-one correspondence
mainly adopts the strategy of Lemma 6 where the set sorting
needs to be provided in advance. Thus, the single-quantitative
and double-quantitative distances naturally utilize the average
integration regarding all internal swarms, and they transmit the
middle distance features, as given by Corollaries 3 and 4. As
an example, the top size valuation utilizes the same average
structure (Eq. (9)), so its relationship with the top distance also
directly promotes the previous connection at the middle level
(Eq. (30)). Moreover, the general distance studies on different
swarm numbers (i.e., |S| ̸= |T |) remain to become a new question.

3.3. Illustrative example II

Herein, an example is given to illustrate the distance measure-
ment, including the tri-level and double-quantification measure-
ment.
12
Example 2. The previous Example 1 (with radius δ = 0.3) is
unceasingly considered for distance measurement.

(1) At the granule level, representative subset B = {a, b} ⊂ A
is still chosen for calculation and verification, and we focus on
three granules:

s = gδ
B (x1) = {x1, x3}, k = gδ

B (x2) = {x2}, t = gδ
B (x3) = {x1, x3}.

Thus, the relative, absolute, and double-quantitative distances
offer

d(s, k) =
|{x1, x3} − {x2}| + |{x2} − {x1, x3}|

|{x1, x3} ∪ {x2}|
=

3
3
= 1,

d(k, t) = 1, d(s, t) = 0,

h(s, k) =
|{x1, x3} − {x2}| + |{x2} − {x1, x3}|

|U |
=

3
6
= 0.5,

h(k, t) = 0.5, h(s, t) = 0,

dh(s, k) = 2
|{x1, x3} − {x2}| + |{x2} − {x1, x3}|

|{x1, x3} ∪ {x2}| + |U |
=

6
9
= 0.6667,

dh(k, t) = 0.6667, dh(s, t) = 0,

where weighted coefficients become

(ws,k
d , w

s,k
h ) = (

3
9
,
6
9
) = (0.3333, 0.6667),

(wk,t
d , w

k,t
h ) = (0.3333, 0.6667),

(ws,t
d , w

s,t
h ) = (0.25, 0.75).

These results accord with the range [0, 1], triangular inequal-
ities:
d(s, k)+ d(k, t) ≥ d(s, t), h(s, k)+ h(k, t) ≥ h(s, t),

dh(s, k)+ dh(k, t) ≥ dh(s, t),

and the relationship inequation:

d(s, k) ≥ dh(s, k) ≥ h(s, k), d(k, t) ≥ dh(k, t) ≥ h(k, t),
d(s, t) ≥ dh(s, t) ≥ h(s, t).

(2) At the swarm level, consider three attribute subsets B′ =
{a}, B = {a, b}, A = {a, b, c}. They generate three middle neigh-
borhood swarms related to the hierarchical structure of bottom
granules, i.e.,

Gδ
B′ = ({x1, x2, x3}, {x1, x2, x3}, {x1, x2, x3}, {x4, x5, x6},
{x4, x5, x6}, {x4, x5, x6}) ,

Gδ
B = ({x1, x3}, {x2}, {x1, x3}, {x4, x5}, {x4, x5, x6}, {x5, x6}) ,

Gδ
A = ({x1}, {x2}, {x3}, {x4, x5}, {x4, x5, x6}, {x5, x6}) ,

and each one resorts to its neighborhood covering to exhibit a
one-to-one correspondence to universe

U = {x1, x2, x3, x4, x5, x6}.

Thus, the relative, absolute, and double-quantitative distances
become

D(Gδ
B′ ,G

δ
B) =

1
6

6∑
i=1

d(gδ
B′ (xi), g

δ
B (xi)) = 0.3333,

D(Gδ
B,G

δ
A) = 0.1667,D(Gδ

B′ ,G
δ
A) = 0.4444,

H(Gδ
B′ ,G

δ
B) =

1
6

6∑
i=1

h(gδ
B′ (xi), g

δ
B (xi)) = 0.1667,

H(Gδ
B,G

δ
A) = 0.0278,H(Gδ

B′ ,G
δ
A) = 0.2222,

DH(Gδ
B′ ,G

δ
B) =

1
6

6∑
i=1

dh(gδ
B′ (xi), g

δ
B (xi)) = 0.2222,

δ δ δ δ
DH(GB,GA) = 0.0833,DH(GB′ ,GA) = 0.2963,
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nd the hierarchical calculation regarding arithmetic mean is
larified in Table 4.
These results can verify all properties of swarm distances.

or example, they embody the theoretical range [0, 1 − 1
|U | ] =

[0, 0.8333], the triangular inequalities based on
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and the relationship inequation based on
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δ
A).

(3) At the library level, we offer S = {a, b}, K = {b, c},
T = {a, c} with the same set cardinality 2 and non-empty subset
number m′ = 3. The above natural order and correspondence
are chosen for S, K , T , and thus Lemma 6 generates a one-to-one
correspondence:

2S
= {{a}, {b}, {a, b}} ←→ 2K

= {{b}, {c}, {b, c}}

←→ 2T
= {{a}, {c}, {a, c}}.

Thus, S, K , T produce 3 neighborhood libraries with correspond-
ing 9 swarms:

K δ
S = (Gδ

{a},G
δ
{b},G

δ
{a,b}), K

δ
K = (Gδ

{b},G
δ
{c},G

δ
{b,c}),

K δ
T = (Gδ

{a},G
δ
{c},G

δ
{a,c}).

The relative, absolute, and double-quantitative distances be-
come

D(K δ
S , K δ

K ) = 0.4343,D(K δ
K , K δ

T ) = 0.2009,D(K δ
S , K δ

T ) = 0.3074,

H(K δ
S , K δ

K ) = 0.2963,H(K δ
K , K δ

T ) = 0.1296,H(K δ
S , K δ

T ) = 0.2037,

DH(K δ
S , K δ

K ) = 0.3453,DH(K δ
K , K δ

T ) = 0.1557,

DH(K δ
S , K δ

T ) = 0.2390.

As an explanation, we provide the relevant formulas for the
double-quantitative part, i.e.,
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DH(K δ
K , K δ

T ) =
1
m′

n∑
j=1

DH(Gδ
Kj ,G

δ
Tj )

=
1
3

[
DH(Gδ

{a},G
δ
{b})+ DH(Gδ

{c},G
δ
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]
= 0.1557,

DH(K δ
S , K δ

T ) =
1
m′

n∑
j=1

DH(Gδ
Sj ,G

δ
Tj )

=
1
3

[
DH(Gδ

{a},G
δ
{a})+ DH(Gδ

{b},G
δ
{c})+ DH(Gδ

{a,b},G
δ
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]
= 0.2390.

ore details of hierarchical calculation regarding arithmetic mean
re given in Table 5. These results effectively verify those prop-
rties of top library distances, such as the range, the triangular
nequality, and the relationship inequation.
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4. Classification learning based on the double-quantitative
distance of neighborhood granules

In [31], the above relative and absolute distances of bottom
neighborhood granules are utilized to implement classification
learning, and they respectively induce classifiers KNGR and KNGA
to outperform the traditional classifier KNN, which denotes the K-
nearest neighbor classifier based on the Euclidean distance [66].
In this section, the above double-quantitative distance of granules
is naturally adopted to further focus on classification learning,
and thus it produces a new classifier KNGD, i.e., a K-nearest
neighbor classifier based on the double-quantitative distance. The
better or compromised classification achievement of classifier
KNGD (in contrast to classifiers KNGR and KNGA) will be finally
verified by data experiments.

4.1. Classification algorithm design

In machine learning, classifier KNN contains a simple but
mature strategy for classification tasks. Concretely, for a sample,
if its K nearest neighbors in the feature space belong to a certain
category, then it also belongs to this category. On this basis, a
general algorithm framework can be generated by introducing
the granulation and distance, and it can use different types of
distances to construct multiple classifiers. For comparison and
generation, we provide the following computing procedure by
referring to that in [31]. The relevant algorithm framework is
given in Fig. 5, and there are 7 steps including (1) data prepro-
cessing, (2) training–testing division, (3) training set granulation,
(4) testing set granulation, (5) K-nearest neighbor discriminant,
(6) testing sample determination, (7) discriminant-determination
circulation.

(1) Remove data related to missing values, and make the data
normalization to reach the standard range [0, 1].

(2) Divide the normal data into a training set and a testing set.
The percentage of both parts can be artificially set up, and
we adopt a special value 4 : 1.

(3) Granulate the training set, and generate training granules by
setting up the neighborhood radius.

(4) Granulate the testing set, and each testing sample resorts
to its Euclidean distance regarding the training objects and
radius threshold to generate a testing granule.

(5) Aiming at a testing object, compute its granular distance
with each training granule (by a specific distance function).
By the total order of distance values, acquire the K-nearest
neighbors from the training set.

(6) Endow the testing object with the optimal category la-
bel by virtue of the maximal distribution of the K-nearest
neighbors.

(7) Completely classify all testing samples. Concretely, turn back
to Step 5 to circularly classify the surplus testing object.

The above calculation process mainly includes four parts of
preprocessing, granulation, matching, and classification, and they
correspond to Step (1), Steps (2)–(4), Step (5), Step (6), respec-
tively. This classification method refers to the classical thought
of KNN, and it can use different distance functions to gener-
ate different classifiers. As a result, the relative (absolute) dis-
tance is utilized to give classifier KNGR (KNGA) in [31], while
the double-quantitative distance naturally motivates a classifier
noted as KNGD. Regarding algorithm parameters, there are only
two, i.e., neighborhood radius δ and nearest-neighbor number K .

As a detailed example, Algorithm 1 provides the pseudo-
code description of classifier KNGD by concretizing relevant parts
of Fig. 5. Steps 3–10 complete the training set granulation by
Euclidean distance D , where the training granule nδ (x )|
C C Train TrainSet
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able 4
ierarchical construction of middle swarm distances regarding three groups of swarms.

(B′, B) (B, A) (B′, A)

U d h dh d h dh d h dh

x1 0.3333 0.1667 0.2222 0.5 0.1667 0.25 0.6667 0.3333 0.4444
x2 0.6667 0.3333 0.4444 0 0 0 0.6667 0.3333 0.4444
x3 0.3333 0.1667 0.2222 0.5 0.1667 0.25 0.6667 0.3333 0.4444
x4 0.3333 0.1667 0.2222 0 0 0 0.3333 0.1667 0.2222
x5 0 0 0 0 0 0 0 0 0
x6 0.3333 0.1667 0.2222 0 0 0 0.3333 0.1667 0.2222

Average D = d :
0.3333

H = h :
0.1667

DH = dh :
0.2222

D = d :
0.1667

H = h :
0.0278

DH = dh :
0.0833

D = d :
0.4444

H = h :
0.2222

DH = dh :
0.2963
Table 5
Hierarchical construction of top library distances regarding three groups of libraries.

(S, K ) (K , T ) (S, T )

Distance ({a},
{b})

({b},
{c})

({a, b},
{b, c})

Average ({a},
{b})

({c},
{c})

({b, c},
{a, c})

Average ({a},
{a})

({b},
{c})

({a, b},
{a, c})

Average

D 0.4917 0.6 0.1667 D :
0.4343

0.4917 0 0.1111 D :
0.2009

0 0.6 0.2778 D :
0.3074

H 0.3333 0.5 0.0556 H :
0.2963

0.3333 0 0.0556 H :
0.1296

0 0.5 0.1111 H :
0.2037

DH 0.3929 0.5596 0.0833 DH :
0.3453

0.3929 0 0.0741 DH :
0.1557

0 0.5596 0.1574 DH :
0.2390
Algorithm 1 Classification algorithm of KNGD

Input: Neighborhood system NS = (U, A, V , f , δ) with radius δ and nearest-neighbor parameter K .
Output: Classification of testing set.
1: Data preprocessing.
2: Make an object division to establish a training set TrainSet and a testing set TestSet .
3: for xTrain ∈ TrainSet do
4: nδ

C (xTrain)|TrainSet= ∅.
5: for yTrain ∈ TrainSet do
6: if DC (xTrain, yTrain) ≤ δ then
7: nδ

C (xTrain)|TrainSet← nδ
C (xTrain)|TrainSet∪{yTrain}.

8: end if
9: end for

10: end for
11: for xTest ∈ TestSet do
2: nδ

C (xTest )|TrainSet= ∅.
13: for xTrain ∈ TrainSet do
4: if DC (xTest , xTrain) ≤ δ then

15: nδ
C (xTest )|TrainSet← nδ

C (xTest )|TrainSet∪{xTrain}.
6: end if
7: end for
8: end for
9: for xTest ∈ TestSet do
0: Set up an initial distance-queue Q (xTest ) = null.
1: for xTrain ∈ TrainSet do
2: By Eq. (22), calculate the granular double-quantitative distance:

dh(nδ
C (xTest )|TrainSet , n

δ
C (xTrain)|TrainSet ) =

2
⏐⏐nδ

C (xTest )|TrainSet⊕n
δ
C (xTrain)|TrainSet

⏐⏐⏐⏐nδ
C (xTest )|TrainSet∪n

δ
C (xTrain)|TrainSet

⏐⏐+ ⏐⏐U⏐⏐ . (36)

3: The above distance dh(nδ
C (xTest )|TrainSet , n

δ
C (xTrain)|TrainSet ) is added to update list Q (xTest ) by relevant sorting or positioning.

4: end for
5: According to the final distance-list Q (xTest ), extract the smallest K distances and their corresponding neighbors (i.e., training

granules), and the decision label with maximum distribution regarding K nearest neighbors is given for sample xTest .
6: end for
7: return Corresponding category labels for all testing objects.
e
i
q

becomes {yTrain ∈ TrainSet|DC (xTrain, yTrain) ≤ δ} = nδ
C (xTrain) ∩

rainSet . Steps 11–18 realize the testing set granulation, where
δ
C (xTest )|TrainSet= {xTrain ∈ TrainSet|DC (xTest , xTrain) ≤ δ} =
δ (x ) ∩ TrainSet . In Steps 19–26, a testing sample x is
C Test Test t

14
mbraced, and its granular distances with all training granules
nduce its K nearest neighbors, where Eq. (36) is the double-
uantitative distance from Eq. (22); thus, xTest is endowed with
he category label by considering the maximum distribution of
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Fig. 5. Algorithm framework of relevant classifiers related to K-nearest neighbor.
the above K nearest neighbors. In particular, Algorithm 1 can
motivate the other two classifiers of KNGR and KNGA by alterna-
tively using the single-quantitative distances (Eq. (19)) in Step 22,
and it can simultaneously provide the three classifiers of KNGR,
KNGA, KNGD if the three related types of quantitative distance
are parallelly adopted in Step 22.

4.2. Data experiments

To verify the effectiveness and advantage of classifier KNGD,
six UCI datasets are chosen to make classification experiments,
i.e., Fertility, Wdbc, Wine, Lymphography, SolarFlare, Cmc [67],
and their basic information is presented in Table 6. The classi-
fication ability serves as a main estimation index in theory and
applications, so it is still utilized for comparison and revelation.
According to the two classifier parameters, we next design suffi-
cient experiments by three cases changing only δ, only K , and the
two parameters, respectively.

First consider experiments impacted by only radius δ. We use
a radius-increase sequence from 0.05 to 1 with step length 0.05
15
and step number 20, i.e.,

δ : 0.05→ 0.1→ 0.15→ · · · → 0.95→ 1. (37)

On the other hand, fixed nearest-neighbor number K is deter-
mined by experiments, and its concrete value respectively be-
comes 5, 5, 1, 10, 5, 5 for the six datasets.

Regarding the six datasets, relevant classification accuracy
values based on classifiers KNGR, KNGA, KNGD are given in Ta-
ble 7, and corresponding two-dimensional figures are shown in
Fig. 6. Regarding (1) Fertility, KNGR, KNGA, KNGD acquire the
almost coincident effect, except when δ = 0.65. Regarding
(2) Wdbc, (3) Wine, (4) Lymphography, the three algorithms
exhibit some common phenomena; KNGR, KNGA, KNGD exhibit
the same accuracy when δ is small, and for the consistency,
the three datasets respectively correspond to radius intervals
δ ∈ [0.05, 0.2], δ ∈ [0.05, 0.45], δ ∈ [0.05, 0.8]; when δ is
great, KNGR is usually superior to KNGA, while KNGD reaches
a midvalue to approach KNGR and outperform KNGA, and the
three algorithms present the significant difference for accuracy.
Regarding surplus (5) SolarFlare and (6) Cmc, the three algorithms
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asic descriptions of six UCI datasets.
No. Name or abbreviation Sample number Condition attribute number Decision class number

(1) Fertility 100 9 2
(2) Wdbc 569 31 2
(3) Wine 178 13 3
(4) Lymphography 148 18 4
(5) Solar Flare (SolarFlare) 1066 9 6
(6) Contraceptive Method Choice (Cmc) 1473 9 3
Table 7
Classification accuracy with changed δ and fixed K .
Dataset
(Parameter K )

Algorithm δ = 0.05 0.1 0.15 0.2 · · · 0.7 0.75 0.8 0.85 0.9 0.95 δ = 1

(1) Fertility
(K = 5)

KNGR 0.9000 0.9000 0.9000 0.9000 · · · 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
KNGA 0.9000 0.9000 0.9000 0.9000 · · · 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
KNGD 0.9000 0.9000 0.9000 0.9000 · · · 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

(2) Wdbc
(K = 5)

KNGR 0.2281 0.2281 0.2281 0.2456 · · · 0.9211 0.9298 0.9298 0.9298 0.9298 0.9386 0.9649
KNGA 0.2281 0.2281 0.2281 0.2281 · · · 0.8070 0.8421 0.8860 0.8860 0.9298 0.9211 0.9386
KNGD 0.2281 0.2281 0.2281 0.2368 · · · 0.8070 0.8684 0.9123 0.8947 0.9211 0.9211 0.9386

(3) Wine
(K = 1)

KNGR 0.0000 0.0000 0.0000 0.0000 · · · 0.9167 0.9444 0.9444 0.9167 0.9722 0.9444 0.9167
KNGA 0.0000 0.0000 0.0000 0.0000 · · · 0.8056 0.8333 0.8333 0.8333 0.8611 0.8333 0.8333
KNGD 0.0000 0.0000 0.0000 0.0000 · · · 0.8333 0.8611 0.8333 0.8611 0.8889 0.8611 0.9167

(4) Lymphography
(K = 10)

KNGR 0.6000 0.6000 0.6000 0.6000 · · · 0.6000 0.6000 0.6333 0.7333 0.6333 0.6333 0.4667
KNGA 0.6000 0.6000 0.6000 0.6000 · · · 0.6000 0.6000 0.6333 0.6333 0.5667 0.5333 0.4667
KNGD 0.6000 0.6000 0.6000 0.6000 · · · 0.6000 0.6000 0.6333 0.6667 0.5667 0.5667 0.5000

(5) SolarFlare
(K = 5)

KNGR 0.6197 0.6197 0.6197 0.6056 · · · 0.6432 0.6338 0.6244 0.5962 0.5915 0.6338 0.6432
KNGA 0.6197 0.6197 0.6197 0.6056 · · · 0.6526 0.6291 0.6150 0.6009 0.5962 0.6338 0.6620
KNGD 0.6197 0.6197 0.6197 0.6056 · · · 0.6573 0.6338 0.6150 0.6009 0.5915 0.6338 0.6526

(6) Cmc
(K = 5)

KNGR 0.1356 0.2034 0.2339 0.2373 · · · 0.3254 0.3356 0.3153 0.3220 0.3017 0.3085 0.3051
KNGA 0.1322 0.1898 0.2169 0.2102 · · · 0.3356 0.3356 0.3119 0.2881 0.3017 0.3017 0.3017
KNGD 0.1356 0.2102 0.2237 0.2305 · · · 0.3356 0.3322 0.3119 0.2915 0.3017 0.3085 0.3085
Fig. 6. Contrast diagram of classification results with changed δ and fixed K .
enerally have no significant difference; KNGA is sometimes bet-
er than KNGR while KNGD sometimes becomes the best, and
ach algorithm actually has the region and possibility for the
ptimal performance.
Then consider experiments by changed parameter K . We use

natural series from 1 to 10 with step length 1 and step number
16
10, i.e.,

K : 1→ 2→ 3→ · · · → 9→ 10. (38)

On the other hand, the neighborhood radius is fixed at δ = 0.85
for each dataset.

Regarding the six datasets, relevant classification accuracy val-
ues based on classifiers KNGR, KNGA, KNGD are given in Table 8
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lassification accuracy with fixed δ and changed K .
Dataset
(Parameter δ)

Algorithm K = 1 2 3 4 5 6 7 8 9 K = 10

(1) Fertility
(δ = 0.85)

KNGR 0.8000 0.7500 0.8500 0.8500 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
KNGA 0.8000 0.7500 0.8500 0.8500 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
KNGD 0.8000 0.7500 0.8500 0.8500 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

(2) Wdbc
(δ = 0.85)

KNGR 0.8947 0.9298 0.9298 0.9474 0.9298 0.9561 0.9298 0.9474 0.9211 0.9474
KNGA 0.9035 0.9298 0.9035 0.9298 0.8860 0.9211 0.8860 0.9123 0.8860 0.9123
KNGD 0.8947 0.9298 0.9035 0.9298 0.8947 0.9298 0.9035 0.9211 0.8947 0.9211

(3) Wine
(δ = 0.85)

KNGR 0.9167 0.8889 0.9444 0.9167 0.9722 0.9167 0.9722 0.9722 0.9722 0.9722
KNGA 0.8333 0.7778 0.8611 0.7222 0.8056 0.7222 0.7778 0.7778 0.8333 0.7778
KNGD 0.8611 0.7778 0.8889 0.7500 0.8056 0.7778 0.7778 0.7778 0.8333 0.7778

(4) Lymphography
(δ = 0.85)

KNGR 0.6000 0.6000 0.4333 0.6667 0.6667 0.7000 0.6333 0.6333 0.6333 0.7333
KNGA 0.6000 0.6000 0.4333 0.5667 0.5667 0.6000 0.5667 0.5667 0.5667 0.6333
KNGD 0.6000 0.6000 0.4333 0.6000 0.5667 0.6000 0.6000 0.5667 0.6000 0.6667

(5) SolarFlare
(δ = 0.85)

KNGR 0.6714 0.6854 0.6761 0.6573 0.5962 0.6385 0.6526 0.6620 0.6573 0.6714
KNGA 0.6714 0.6854 0.6761 0.6714 0.6009 0.6432 0.6385 0.6620 0.6573 0.6573
KNGD 0.6714 0.6854 0.6761 0.6761 0.6009 0.6432 0.6385 0.6620 0.6573 0.6620

(6) Cmc
(δ = 0.85)

KNGR 0.3458 0.2610 0.2915 0.3153 0.3220 0.3254 0.3390 0.3254 0.3254 0.3288
KNGA 0.3559 0.2644 0.2915 0.2746 0.2881 0.3017 0.3186 0.3153 0.3186 0.3186
KNGD 0.3525 0.2644 0.2814 0.2881 0.2915 0.3085 0.3254 0.3153 0.3119 0.3119
Fig. 7. Contrast diagram of classification results with fixed δ and changed K .
nd are described in Fig. 7. Regarding (1) Fertility, KNGR, KNGA,
NGD acquire the same result. Regarding (2) Wdbc, (3) Wine,
4) Lymphography, KNGD becomes suboptimal to fall in between
NGR and KNGA, where KNGR is usually better than KNGA, and
he relevant difference of accuracy is obvious. Regarding surplus
5) SolarFlare and (6) Cmc, the three algorithms generally have no
ignificant difference, and KNGR, KNGA, KNGD all have the case
nd possibility to achieve the optimal result.
Finally, test the influence from both parameters δ and K .

erein, a new radius chain

δ : 0.1→ 0.2→ 0.3→ · · · → 0.9→ 1 (39)

s considered by coarsening the previous radius chain in Eq. (37),
nd it is further combined with the previous K sequence in
q. (38). In other words, we will resort to Eqs. (38) and (39) to

enerate a two-dimensional parameter net with scale 10 × 10,

17
and relevant classification accuracy values in the third dimension
can more thoroughly reveal the achievement relationships of the
three algorithms.

All accuracy values of three methods KNGR, KNGA, KNGD are
vividly depicted in Fig. 8 in the three-dimensional space. For
the six datasets, Fig. 8 can yield the following observation and
analysis on the statistical area of parameters δ ∈ [0.1, 1] and
K ∈ [1, 10], especially from the viewpoint of algorithm KNGD.
Regarding (1) Fertility, KNGD can acquire the maximal accuracy
in most cases, such as when δ is small or K is great, while KNGR or
KNGA can also reach the relevant optimal accuracy for the surplus
cases. Regarding (2) Wdbc, only KNGR acquires the best effect
in main regions, while KNGA or KNGD can generate the optimal
result in a very few part. Regarding (3) Wine, only KNGR achieves
the optimal result in majority regions, while KNGD (rather than
KNGA) gains the classification performance in the surplus part.
Regarding (4) Lymphography, KNGD can optimally cover the most
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Fig. 8. Contrast diagram of classification results with changed δ and K .
ases, while KNGR or KNGA determines the surplus region. Re-
arding (5) SolarFlare, KNGD can play the optimal role in almost
alf regions, while KNGR, KNGA can come into play in the sur-
lus part. Regarding (6) Cmc, KNGR, KNGA, KNGD respectively
lay a main, minor, and auxiliary roles. By these discussions,
e can draw a general conclusion, which also summarizes the
revious two cases with only a single-parameter change. That
s, KNGD can reach the optimum accuracy in many cases to
18
outperform KNGR or KNGA, and it sometimes achieves a com-
promised classification performance between KNGR and KNGA;
thus, the double-quantitative classifier KNGD has the practical
application space, where the single-quantification measurement
is weakened.

In summary, algorithm KNGD generally acquires the improve-
ment or comprise for existing two algorithms KNGR and KNGA,
so it is effective for classification learning. Moreover, the relevant
efficiency can be analyzed. For the same dataset (even exceeding
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000 objects), three algorithms KNGR, KNGA, and KNGD almost
ave the similar level of run time (where algorithm KNGD is
lightly slower), and this is because they have the same algo-
ithm framework but the different quantification distances. For
he same classification algorithm (of KNGR, KNGA, or KNGD),
he change of object scale necessarily causes the obvious time
ifference, while the change of attribute scale does not easily lead
o the significant time change. In other words, the sample size
f dataset becomes the main factor of time complexity for these
lassification algorithms, and this is because relevant classifiers
oncern multiple times of object loops to get the relevant cov-
ring granulation and distance utilization (where attributes are
ixed at the whole set).

. Conclusions

The tri-level granular structure of neighborhood system be-
omes significant by its bottom neighborhood granule, middle
eighborhood swarm, and top neighborhood library [31], but it
as the theoretical incomplete construction and applied potential
romotion. As shown by Fig. 1, this paper mainly makes both the
heory perfection and application extension.

(1) The size assessment and relevant granulation
non-monotonicity are supplemented at the top library level,
while the logical operation and single-quantitative distance
are supplemented at both the middle swarm level and top
library level.

(2) The tri-level double-quantitative distances utilize the
double-quantification technology to combine and extend
corresponding single-quantitative distances, so they offer
the more powerful measurement and more robust applica-
tions.

(3) The double-quantitative distance of neighborhood granules
is utilized to conduct the classification learning, and its cor-
responding classifier KNGD outperforms or balances the ex-
isting two classifiers KNGR and KNGA, as verified by data ex-
periments. The good performance of KNGD mainly benefits
from the optimization of reasonable double-quantification
fusion and compromise.

y virtue of relevant theory discussion, example illustration, and
xperiment verification, this study hierarchically perfects the
ri-level granular structure of neighborhood system, and the cor-
esponding double-quantification integration and extension offer
he robust knowledge measurement and effective classification
earning. In view of the fusion characteristic and measurement
uperiority of double-quantification, the double-quantitative
easurement and classifier are mainly applicable for a com-
rehensive and systematic scenario, where neither the relative
uantification nor the absolute quantification plays a leading role.
According to relevant contents, there are three issues are

emained for future explorations.

(1) Regarding the logical operations, they lack the closeness at
the bottom level, and they are directly defined by the initial
attribute subsets. Thus, they are worth further researching
by essential neighborhood coverings and hierarchical inte-
gration connections, based on the tri-level granular struc-
ture of neighborhood system.

(2) Regarding the distance measurement at the top library level,
a basic precondition of equal cardinality is used to estab-
lish a one-to-one correspondence between internal swarms.
Thus, the general case needs in-depth considerations. In
other words, how to define and develop distances between
top neighborhood libraries K δ

S and K δ
T (where |S| ̸= |T |)

becomes an open question.
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(3) Regarding tri-level applications, only the bottom distance of
neighborhood granules is concerned, i.e., the
single-quantitative and double-quantitative distances and
their induced classifiers are effectively used for classifica-
tion learning. Furthermore, potential applications should be
mined at the middle and top levels. The middle swarm is re-
lated to the knowledge covering, and thus relevant attribute
significance and uncertainty information can be concerned;
the top library implies the knowledge base, and thus optimal
processing and reasoning can be discussed. For example, the
feature selection, which is related to the middle knowledge
and the top knowledge base, can be utilized in advance
before the classification learning at the bottom level, and
thus, the corresponding attribute reduction is worth hier-
archically exploring at the tri-level granular structure of
neighborhood system; in particular, a recent study on hier-
archical, systematic, and informational attribute reducts [68]
can provide some reference.
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Appendix A. Proof of Lemma 1

Proof. Regarding non-empty subsets and their numbers, B has
m = 2|B| − 1 ones: R1, . . . , Rm, while Q = B ∪ {a∗} has 2|B|+1 − 1
ones. Note that 2|B|+1−1 = (2|B|−1)+(2|B|−1)+1. By combination
observation, non-empty subsets of Q can be divided into three
groups related to R1, . . . , Rm.

(1) The first group concerns initial subsets of Q , i.e., R1, . . . , Rm,
and it offers number 2|B| − 1.

(2) The second group involves the union of initial R1, . . . , Rm
and additional a∗, i.e., R1 ∪ {a∗}, . . . , Rm ∪ {a∗}, and it also
offers number 2|B| − 1.

(3) The third group contains not R1, . . . , Rm but the additional
attribute a∗, i.e., {a∗}, and it submits to number 1.

y repeatability examination, the above three groups of non-
mpty subsets exactly constitute 2Q

−{∅}, i.e., Eq. (12) holds. □
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roof. At first, a general range KM(K δ
B ) ∈ ( 1

|U | , 1) is determined by
he basic range in Eq. (11) and the general assumption in Eq. (13).

Regarding initial B, library K δ
B has m swarms based on R1, . . . ,

m. The other Q has three groups of non-empty subsets according
o Lemma 1, so library K δ

Q further adds both m swarms based
n R1, . . . , Rm and 1 swarm based on {a∗}. Thus, KM(K δ

B ) and
M(K δ

Q ) can be calculated and compared, and we mainly utilize
he neighborhood realization about single attributes, i.e.,

nδ
B′ (x) =

⋂
a∈B′⊆A

nδ
{a}(x). (B.1)

(1) When the added attribute a∗ corresponds to U/NRδ({a∗}) =
{{x1}, {x2}, . . . , {x|U |}}, each increased swarm becomes(
{x1}, {x2}, . . . , {x|U |}

)
(according to Eq. (B.1)) to offer size

value 1
|U | . Since

1
|U | < KM(K δ

B ), we can achieve

KM(K δ
Q ) =

1
2m+ 1

(
KM(K δ

B )×m+
1
|U |
×m+

1
|U |
× 1

)
<

1
2m+ 1

(
KM(K δ

B )×m+ KM(K δ
B )×m+ KM(K δ

B )× 1
)

= KM(K δ
B ),

(B.2)

i.e., KM(K δ
B ) > KM(K δ

Q ).
(2) When a∗ is accompanied with U/NRδ({a∗}) = {U}, Eq. (B.1)

leads to two cases for increased swarms. The increased
swarm on the latter subset Rj ∪ {a∗} is equivalent to the
former swarm on subset Rj to provide the repetitive size
value, where j = 1, . . . ,m, while the surplus increased
swarm on {a∗} becomes

(
U,U, . . . ,U

)
to offer size value 1.

Since 1 > KM(K δ
B ), we can achieve

KM(K δ
Q ) =

1
2m+ 1

(
KM(K δ

B )×m+ KM(K δ
B )×m+ 1× 1

)
>

1
2m+ 1

(
KM(K δ

B )×m+ KM(K δ
B )×m+ KM(K δ

B )× 1
)

= KM(K δ
B ),

(B.3)

i.e., KM(K δ
B ) < KM(K δ

Q ). □
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