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A B S T R A C T

Semi-supervised learning (SSL) methods, which exploit both the labeled and unlabeled data, have attracted a
lot of attention. One of the major categories of SSL methods, graph-based semi-supervised learning (GBSSL)
learns labels of unlabeled data on an adjacency graph, where neighborhood sparse graph is often used to reduce
computational complexity. However, the neighborhood size is difficult to set. Instead of assigning a concrete
value of neighborhood size, we propose a new label propagation algorithm called multi granularity based
label propagation (MGLP) and developed from the view of granular computing. In MGLP, labels of unlabeled
data are learned by two classic label propagation processes with diverse neighborhood size 𝑘, where granular
computing delivers a guiding strategy to leverage multiple level neighborhood information granules, and three-
way decision acts as an active learning strategy to select the unlabeled data for further annotating. Through
the iterative procedures of label propagating, data annotating and data subset updating, the ultimate pseudo
label accuracy of unlabeled data may be higher. Theoretically, the accuracy of pseudo labels is enhanced in
some scenarios. Experimentally, the results of simulation studies on ten benchmark datasets, show that the
proposed method MGLP can rise pseudo labels accuracy by 8.6% than LP (label propagation), 6.5% than
LNP (linear neighborhood propagation), 6.4% than LPSN (label propagation through sparse neighborhood),
4.5% than Adaptive-NP (adaptive neighborhood propagation) and 4.6% than CRLP (consensus rate-based label
propagation). It also provides a novel way to annotate data.
1. Introduction

Nowadays, procurement of a deluge of data from various sources
is easy. How to make full use of these data and reveal potential
information from them plays a key role in many aspects of society.
Machine learning, which can learn from and make predictions on data,
received a lot of attention in industry and academia. Typically, depend-
ing on whether the labels of data are available, machine learning tasks
are classified into three categories: supervised learning, unsupervised
learning and semi-supervised learning.

Raw data are easily obtained, while annotating all of them is time-
consuming and laborious. Semi-supervised learning (SSL) tackles this
problem by trying to effectively combine a large amount of unlabeled
data with labeled data to learn and predict (Hu et al., 2018; Zhu, 2008).
Up to present, many SSL methods were proposed, thereinto the graph-
based semi-supervised learning (GBSSL) methods (Gan et al., 2018;
Wang & Zhang, 2008; Yu & Kim, 2018; Zhou et al., 2004; Zhu, 2002;
Zhu et al., 2003; Zoidi et al., 2018) form a major category, and are
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applied in several fields (Dornaika et al., 2020; Francisquini et al.,
2017; Giasemidis et al., 2020; Hong et al., 2019; Huang et al., 2020;
Sun et al., 2018). In GBSSL techniques, it is often assumed that two
close nodes in the instance space should have the same label, which
refers to smoothness assumption, and two points which are connected
by a path going through dense regions should have the same label,
which refers to cluster assumption (Zhou, 2018). On account of these
assumptions, labels can be learned through the graph.

Generally speaking, the crux of GBSSL methods come with two
procedures: constructing graph and then learning labels. As for con-
structing graph, vertices refer to data (labeled and unlabeled) and edges
represent the similarities of data. In term of learning labels, the pseudo
labels of unlabeled data can be learned according to the optimization
of the objective function (Zhou et al., 2004; Zhu et al., 2003). How-
ever, uncertainties arise in these two processes. For example, what is
the suitable value of neighborhood size parameter when constructing
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graph? How to effectively measure the similarities between data? What
is the precise form of objective function to fit data? Recently, some
sparse reconstruction based methods are proposed (Cheng et al., 2010;
Jia et al., 2016; Zang & Zhang, 2012; Zhang et al., 2018, 2020,
2015) to avoid determining parameters and assigning weights. In l1-
graph (Cheng et al., 2010) and sparse neighborhood graph (Zang &
Zhang, 2012), the graph structure and edge weight are obtained simul-
taneously. Adaptive-NP (Jia et al., 2016), AELP-WL (Zhang et al., 2018)
and ALP-TMR (Zhang et al., 2020) are unified frameworks integrating
weight learning and label propagation. In this paper, we will only show
solicitude for uncertainties caused by constructing graph from the view
of granular computing.

Granular computing (Pedrycz, 2013), which has appeared in many
fields, and manifested as fuzzy sets (Zadeh, 1997), rough sets (Yao,
1999, 2020a), shadowed sets (Pedrycz & Vukovich, 2002), formal
concept analysis (Wu et al., 2009; Yao, 2020a) and alike, has been an
important paradigm to tackle uncertainties. Granular computing em-
braces theories, methodologies, techniques, tools for structured think-
ing, structured problem solving and structured information processing.
As it exactly coincides with the procedure of problem abstracting
and resolving of we human beings explicitly or implicitly, granular
computing has attracted the attention of many scholars (Ouyang et al.,
2019; Qian et al., 2020; Zhang & Miao, 2016; Zhou et al., 2020).
Selecting a suitable level of information granularity and constructing
corresponding information granules is one of the fundamental issues in
granular computing. From the standpoint of data-driven, Pedrycz and
Homenda (2013) proposed the notion of justifiable granularity, and
pointed out that information granules should be justified in light of
experimental evidence and have specific enough meaning semantics.
That is to say that an information granule has the characteristics of
coverage and specificity (Xu et al., 2018), where coverage refers to
consisting as many data as possible, and specificity involves a compact
data field.

It is fairly straightforward to associate information granule with the
local neighborhood size in graph-based label propagation methods, and
the granularity of a neighborhood information granule is intimately
connected with the value of neighborhood size parameter 𝑘. The value
of 𝑘 influence the results of pseudo labels of unlabeled data: if it is too
large to cover the field outside the manifold, the information granule
will lose its specificity, and if it is too small to cover limited area, the
information granule will lose its coverage. However, there are few of
studies about the value of 𝑘, that empirically suggest that 𝑘 should be
small (Fan et al., 2018; Zhu, 2008), but determining its exact value is
still an open problem.

For the sake of reducing the uncertainty caused by the value of 𝑘
and improving the pseudo label accuracy, a novel label propagation
algorithm called multi granularity based label propagation (MGLP) is
proposed by employing multiple level granularity. The workflow of
the proposed algorithm MGLP is: first, we learn the pseudo labels of
unlabeled data through two classic label propagation algorithms with
diverse 𝑘, next, applying three-way decision (Yao, 2020a, 2020b) in ac-
tive learning (Settles, 2010) to choose and annotate the unlabeled data
with different pseudo labels learned by the first step, then add these
data into the labeled dataset, finally iteratively execute the whole steps
mentioned above till convergency. In short, the basic steps in MGLP
include label propagating, data annotating and data subset updating.

Main innovations of MGLP can be identified as follows:
(1) Granular computing offers some guidelines for sound structured

thinking, to leverage multiple level neighborhood information granules
in graph-based semi-supervised learning.

(2) Learn labels of unlabeled data by two classic label propagation
processes with diverse 𝑘, to strike a balance between the coverage and
specificity of neighborhood information granules.

(3) Iteratively adopt three-way decision as an active learning strat-
egy to select the unlabeled data with distinct pseudo labels for further
2

annotating.
Table 1
Key notations and corresponding descriptions.
Notation Description

𝐶 Number of classes
 Training data matrix of size 𝑛 × 𝑑
𝐿 Labeled data matrix of size 𝑙 × 𝑑
𝑈 Unlabeled data matrix of size 𝑢 × 𝑑
𝑊 Weight matrix of size 𝑛 × 𝑛
 Label matrix of size 𝑛 × 𝐶
𝐿 Given label matrix of size 𝑙 × 𝐶 for 𝐿
𝑈 Pseudo label matrix of size 𝑢 × 𝐶 for 𝑈
𝐷 Diagonal degree matrix of size 𝑛 × 𝑛
𝑃 Probabilistic transition matrix of size 𝑛 × 𝑛

The paper is organized as follows: To make the study self-contained,
in Section 2, we outline some basic notations and review related
works. In Section 3, we present the proposed multi granularity based
label propagation algorithm with three-way decision, and some dis-
cussions are included. Extensive simulation experiments on several
datasets are conducted and results analyzed in Section 4. Moreover,
final conclusions are drawn in Section 5.

2. Related works

In this section, we briefly review some preliminaries which are
closely related to this paper. For convenience, key notations and corre-
sponding descriptions are shown in Table 1.

Assuming a C-classification task, let the training data matrix be
 = [𝐿;𝑈 ] ∈ 𝑅𝑛×𝑑 , where 𝐿 = [𝑥1, 𝑥2,… , 𝑥𝑙]𝑇 represents the
labeled data subset, 𝑈 = [𝑥𝑙+1, 𝑥𝑙+2,… , 𝑥𝑙+𝑢]𝑇 (𝑙 + 𝑢 = 𝑛) stands
for the unlabeled data subset, and the labels of the labeled data are
𝑦𝑖 ∈ {1, 2,… , 𝐶} , 𝑖 ∈ {1, 2,… , 𝑙}. The goal of GBSSL is to learn
the labels of unlabeled data

{

𝑦𝑙+1, 𝑦𝑙+2,… , 𝑦𝑙+𝑢
}

through labeled data
{

⟨𝑥1, 𝑦1⟩, ⟨𝑥2, 𝑦2⟩,… , ⟨𝑥𝑙 , 𝑦𝑙⟩
}

over the graph, which are consistent with
the labeled data and it should be smooth on the whole graph 𝑔 = ( , ).
In the graph 𝑔, the vertices  =

{

𝑥1, 𝑥2,… , 𝑥𝑛
}

represent all the
instance data, and the edges  correspond to similarities (distances)
between instances. The similarities are often defined in the form of an
weight matrix 𝑊 ∈ 𝑅𝑛×𝑛, where the entry 𝑤𝑖𝑗 ≥ 0 characterizes the
similarity between the vertices 𝑥𝑖 and 𝑥𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛), and 𝑤𝑖𝑗 = 0
if there is no edge 𝑒 ∈  connects 𝑥𝑖 and 𝑥𝑗 . 𝑤𝑖𝑗 can be defined by a
Gaussian kernel (Zhu et al., 2003):

𝑤𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑒𝑥𝑝
(

− ‖𝑥𝑖−𝑥𝑗‖2

2𝜎2

)

𝑥𝑖 ∈ 𝑁(𝑥𝑗 ) and 𝑥𝑗 ∈ 𝑁(𝑥𝑖)

0 otherwise.
(1)

where 𝜎 is a bandwidth hyper-parameter, ‖ ∙ ‖ refers to the Euclidean
norm, and 𝑁(∙) denotes the neighbors of 𝑥𝑖(𝑖 = 1, 2,… , 𝑛). The neigh-
bors could be the 𝑘 nearest neighbors (𝑘-NN) or 𝜖 nearest neighbors (𝜖-
NN). Another method to construct 𝑊 is applying zero–one weighting:

𝑤𝑖𝑗 =

{

1 𝑥𝑖 ∈ 𝑁(𝑥𝑗 ) and 𝑥𝑗 ∈ 𝑁(𝑥𝑖)
0 otherwise.

(2)

Denote a label matrix  = [𝐿;𝑈 ] = (𝑦𝑖𝑗 )𝑛×𝐶 , where 𝐿, 𝑈
corresponding to labeled and unlabeled data respectively. For labeled
data, 𝑦𝑖𝑗 = 1 if 𝑥𝑖 is labeled as 𝑗 and 𝑦𝑖𝑗 = 0 otherwise, and for
unlabeled data, the initial value of 𝑦𝑖𝑗 could be arbitrary, but should
satisfy ∑𝐶

𝑗=1 𝑦𝑖𝑗 = 1, 𝑖 ∈ {𝑙 + 1, 𝑙 + 2,… , 𝑛}. Then, the objective function
with respect to the constructed graph can be obtained by minimizing
the following general cost (Belkin et al., 2006; Chapelle et al., 2006):

̂∗ = arg min
̂

(

‖̂𝐿 − 𝐿‖
2 + 𝜆1𝑡𝑟(̂𝑇𝐿̂) + 𝜆2‖̂‖

2) , (3)

where 𝜆1 and 𝜆2 (𝜆1, 𝜆2 ≥ 0) are regularization parameters. The small
regularization term ‖̂‖

2 in (3) is to avoid overfitting, and the first term
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Fig. 1. An illustration of label propagation: pseudo labels of unlabeled data are
iteratively updated until convergence occurs.

measures the consistency with the labels of labeled data, which is given
as:

‖̂𝐿 − 𝐿‖
2 =

𝑙
∑

𝑖=1
‖𝑦𝑖 − 𝑦𝑖‖

2. (4)

The second term of (3) regularizes the smoothness, where 𝐿 = 𝐷 −𝑊
is called graph Laplacian, 𝐷 is the diagonal degree matrix with each
elements 𝐷𝑖𝑖 =

∑𝑛
𝑗=1 𝑊𝑖𝑗 , which can be represented as:

𝑡𝑟(̂𝑇𝐿̂) = 𝑡𝑟(̂𝑇 (𝐷 −𝑊 )̂)

= 1
2

(

2
𝑛
∑

𝑖=1
𝑦̂2𝑖

𝑛
∑

𝑗=1
𝑊𝑖𝑗 − 2

𝑛
∑

𝑖,𝑗=1
𝑊𝑖𝑗 𝑦̂𝑖𝑦̂𝑗

)

= 1
2

𝑛
∑

𝑖,𝑗=1
𝑊𝑖𝑗

(

𝑦̂𝑖 − 𝑦̂𝑗
)2 ,

(5)

In a nutshell, the whole process of GBSSL can be decomposed into
two subproblems: graph construction and label propagation. When con-
structing Laplacian weight graphs, there are usually two main strate-
gies: 𝑘-NN and 𝜖-NN, where 𝑘 is the number of instances in the
neighborhood, 𝜖 refers to the radius of neighborhood, and their values
are often not easy to be determined. As for label propagation, various
methods may be reduced to the framework as shown in (3), involving
the variants of the terms or different trade-off between the terms.

Label propagation algorithm (Zhu, 2002) propagates labels based
on the known labels and a weighted graph through dense data regions
iteratively until convergence has occurred (see Fig. 1), and the output
are pseudo labels of unlabeled data. It is noted that there should be no
noise in the available labels, namely the known labels will not change
during the propagation process.

While the labels of labeled data are fixed in LP, the fitness term
∑𝑙

𝑖=1 ‖𝑦𝑖−𝑦𝑖‖
2 of (3) is zero, then the objective function mainly depends

on the smoothness term 1
2
∑𝑛

𝑖,𝑗=1 𝑊𝑖𝑗
(

𝑦̂𝑖 − 𝑦̂𝑗
)2, and the expression 𝑦̂𝑖 ≈

𝑦̂𝑗 should hold for those node pairs with large 𝑊𝑖𝑗 . That is to say, larger
weights enable labels to travel through the graph more easily, and the
label of an instance can be obtained by its nearest neighbors, which can
be written as:

𝑦𝑖 =
∑

𝑥𝑗∈𝑁(𝑥𝑖)
𝑤𝑖𝑗𝑦𝑗 . (6)

Define the probabilistic transition matrix as 𝑃 = (𝑃𝑖𝑗 )𝑛×𝑛, and

𝑃𝑖𝑗 = 𝑃 (𝑖 ← 𝑗) =
𝑊𝑖𝑗

∑𝑛
𝑘=1 𝑊𝑘𝑗

. (7)

In fact, 𝑃 is a row-normalized affinity matrix and 𝑃 = 𝐷−1𝑊 . The
diffusion process of labels to all nodes on the graph can be formulated
as:

 ← 𝑃 , (8)

and the process is iteratively executed until the label probability dis-
tribution of instances has converged. Then one can obtain the pseudo
labels of unlabeled data using the following formula:

𝑦∗𝑖 = arg max
𝑗

(

𝑦𝑖𝑗
)

, (9)

where 𝑖 ∈ {𝑙 + 1, 𝑙 + 2,… , 𝑛} and 𝑗 ∈ {1, 2,… , 𝐶}. As the labels of
labeled data may be differ from the initial ones after propagation, they
need to be clamped in each iteration to avoid fading away, which act
as sources being pushed out to unlabeled data.
3

3. Problem statement and proposed method

3.1. Uncertainties of label propagation algorithms

Many graph-based label propagation algorithms have been pro-
posed, however there are still several open problems with these meth-
ods. The main challenges can be categorized as: 1⃝ how to construct
appropriate graph to reflect the topology structure of instances, 2⃝ how
to calculate the weight matrix to show the geometry relationship of
data, and 3⃝ how to set sound strategy to propagate labels over the
weighted graph.

As the uncertainty principle proposed by German physicist Werner
Heisenberg indicates, it is impossible to achieve precise values, and this
is the intrinsic property of nature. There are also many uncertainties
in graph-based label propagation methods, and they will affect the
methods’ effectiveness.

For graph construction, the uncertainty mainly lies in the edges
and nodes of a graph. Since over a full-connected graph, it is of-
ten time-consuming to compute in propagation process, and some
semantically-unrelated information between instances beyond local re-
gion may be conveyed, 𝑘-NN or 𝜖-NN sparse graph (Zhu, 2008) is
often used, where 𝑘 and 𝜖 are free local nearest neighbor parame-
ters. However, the graph-based label propagation methods suffer from
choosing the optimal local neighborhood size. If the value of local
neighborhood size is too large, the edges span outside the manifold
may be included in the graph, and if the value of local neighborhood
size is too small, the local topology may be not preserved (Wang &
Zhang, 2008). Furthermore, it is harder or even vainfruitlessly to set
neighborhood size when there exist bridge points or overlapping region
among classes (Wang & Zhang, 2008; Zhou et al., 2018), because
through such points labels from one class could be wrongly propagated
to the nodes from another class.

As to weight matrix calculation, the uncertainty will reside with the
similarity measure between nodes. As depicted in Section 2, Gaussian
kernel based similarity measure 𝑒𝑥𝑝

(

−‖𝑥𝑖 − 𝑥𝑗‖2∕(2𝜎2)
)

, which relies
on Euclidean distance, is often used. But the variable 𝜎 is a bandwidth
hyper-parameter, and its value is not easy to set. Some other similarity
measures are also used, such as geodesic distance, Kullback–Leibler
divergence (Fan et al., 2018), Jensen–Shannon divergence (Chen et al.,
2006), and cosine distance (Yu et al., 2019; Zhang et al., 2019). Based
on the assumption that the original linearly inseparable instances can
be linearly separated in a higher-dimensional space, the pairwise simi-
larity between 𝑥𝑖 and 𝑥𝑗 can be measured as ⟨𝜙(𝑥𝑖), 𝜙(𝑥𝑗 )⟩ in the kernel
space 𝐾, where 𝜙 ∶ 𝑥 ∈  → 𝜙(𝑥) ∈ 𝐾 is the nonlinear mapping (Zhang
et al., 2019). On the contrary, in feature low-dimensional subspace (Li
et al., 2019), similarity measurement is implemented based on the
feature subsets of data. In adaptive graph, the similarities can be
calculated and updated during the model selection processing (Zhao
et al., 2019). All in all, diverse methods are applied to decrease the
uncertainty caused by similarity measure.

The main uncertainty in label propagation processing stems from
the model definition (Belkin et al., 2006), including the terms of a
model and corresponding trade-off parameters of each term. The opti-
mal model selection approach or solution process of a model (Chapelle
et al., 2006) may also greatly affect the efficiency and effectiveness of
a graph-based label propagation method.

From the above analysis, uncertainty can be seen as an essential
characteristic in graph-based semi-supervised learning.

3.2. Illustrative examples

In what follows, a series of experiments are conducted on an artifi-
cial dataset to illustrate the uncertainties of the classic label propaga-
tion algorithm based on pseudo labels, and since the graph is the crux
of the graph-based methods, we concentrate only on the diverse local
neighborhood size 𝑘 when constructing graph.
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Fig. 2. Various propagation results according to diverse nearest neighbor parameter 𝑘 on the toy dataset. (a) Toy data with two labeled data for each class (large triangle, diamond
with red edge) and 122 unlabeled data (small triangle, diamond). (b)–(f) Classification results after label propagation, and the pseudo label accuracy varies according to different
value of 𝑘.
The two-class dataset in Fig. 2(a) consists of 126 data, among which
four are labeled (two for each class) and the other 122 are unlabeled.
The labels of unlabeled data are predicted by adopting classic label
propagation procedure (viz. Algorithm 1), where Euclidean distance-
based similarities are used and the weight matrix 𝑊 is defined by
zero–one weighting (see (2)). Classification results after label propa-
gation are shown in Fig. 2(b)–(f), and we can figure out the relativity
between pseudo label accuracy and nearest neighbor parameter 𝑘
n this toy dataset. The pseudo label accuracy of unlabeled data is
omparatively low when 𝑘 ≤ 3, and with the rise of 𝑘’s value, the
ccuracy increases rapidly, meanwhile, the accuracy is 100% when
∈ {6, 7,… , 30}, see Fig. 4(a), then it oscillates and declines as 𝑘 ≥ 31.

As for real world datasets, there may exist outliers or data located in
verlapping region of classes, and they are considered as bridge nodes
n graph. If the bridge nodes are originally labeled in dataset, their
abels may be more easily propagated to more than one class, conse-
uently, the pseudo label accuracy will be affected. Fig. 3 visualizes
he same dataset as Fig. 2(a) all but a bridge node shown in red solid
ircle, and it pertains to a labeled datum. After propagation, the pseudo
abel accuracy of unlabeled data with respect to neighborhood size 𝑘 is
hown in Fig. 4(b). Comparing to the original dataset with no bridge
ode (see Fig. 4(a)), the pseudo label accuracies are impacted more by
, especially when 𝑘 ∈ {15, 16,… , 37}, furthermore, the curve varies
apidly as 𝑘 = 17 and 28.

In a nutshell, the value of local neighborhood size 𝑘 is pivotal to
he classification results of unlabeled data by giving a thorough insight
nto the results. Empirically, it is suggested that the value of 𝑘 should
e set small to obtain better performance with lower computational
omplexity (Fan et al., 2018; Zhu, 2008). But determining the exact
alue remains to be an open problem.

.3. Multi granularity label propagation

In light of the analysis made above, it is obvious that uncertainty
s entrenched in GBSSL methods and their performance needs to be
urther improved. Zhou (2018) expounds that in order to achieve better
4

Fig. 3. Toy data as in Fig. 2(a) except for a bridge node.

performance, ensemble mechanisms are often incorporated in semi-
supervised learning method. In this section, we will adopt the ensemble
strategy to improve the classic label propagation algorithm from the
multiple level granularity point of view.

When constructing a neighborhood information granule with re-
spect to a datum according to the local neighborhood size 𝑘, the granule
will scale as the value of 𝑘 varies: a smaller 𝑘 presents more specific
neighborhood information granules with finer granularity, however,
a greater 𝑘 presents more expansive neighborhood information gran-
ules with coarser granularity. In label propagation algorithm, if the
neighborhood information granule of a datum is too coarse to cover
the data points outside the manifold, the pseudo label of this datum
propagated by its neighbors is likely to inaccurate, similarly, if the

neighborhood information granule is too specific to contain only a
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Fig. 4. Pseudo label accuracy of unlabeled data with respect to nearest neighbor parameter 𝑘 after label propagation. (a) Results of the original dataset as shown in Fig. 2(a). (b)
Results of the dataset with a bridge node as shown in Fig. 3.
b
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o

l

few data points, the pseudo label of this datum will be inaccurate
as lack of information (see Fig. 4). In order to give consideration to
both the coverage and specificity of information granules, we propose a
novel label propagation algorithm called multi granularity based label
propagation (MGLP) to enhance pseudo label accuracy by employing
multiple level granularity.

In a formal manner, let LP𝑘1 and LP𝑘2 be two label propagation
algorithms with different neighborhood granularity, after propagation
by applying these algorithms, we separate the unlabeled dataset 𝑈 to
three parts:

⎧

⎪

⎨

⎪

⎩

𝑈1 =
{

𝑥 ∈ 𝑈 |𝑦
𝐿𝑃𝑘1 = 𝑦𝐿𝑃𝑘2 = 𝑦

}

,

𝑈2 =
{

𝑥 ∈ 𝑈 |𝑦
𝐿𝑃𝑘1 = 𝑦𝐿𝑃𝑘2 ≠ 𝑦

}

,

𝑈3 =
{

𝑥 ∈ 𝑈 |𝑦
𝐿𝑃𝑘1 ≠ 𝑦𝐿𝑃𝑘2

}

.

(10)

where 𝑈1, 𝑈2 and 𝑈3 are pairwise disjoint, and 𝑈1
⋃

𝑈2
⋃

𝑈3 =
𝑈 . 𝑦𝐿𝑃𝑘1 and 𝑦𝐿𝑃𝑘2 are pseudo labels of 𝑥 learned by the two label
ropagation algorithms respectively, besides 𝑦 is the authentic label of
. In detail, 𝑈1 denotes the dataset in which the two pseudo labels
f every datum are just the same as the authentic label, and 𝑈2
enotes the dataset in which the two pseudo labels of every datum
re the same but not equal to the authentic label, nevertheless, 𝑈3
efers to the dataset in which the two pseudo labels of every datum
re different. Since the real labels of unlabeled data are unknown, we
annot distinguish 𝑈1 and 𝑈2 directly, and we take 𝑈3 for further
onsideration. For this most uncertain subset, the diverse pseudo labels
f data indicate ambiguous results after label propagation carried out
ith diverse value of 𝑘, so we can annotate them and add them into the

abeled dataset to decline the uncertainty, thus through iteratively label
ropagation, data annotating and dataset updating, the pseudo label
ccuracy will be enhanced comparing to the regular label propagation.

The procedure of the multi granularity based label propagation
see Algorithm 1) algorithm is described as follows: the pseudo la-
els of unlabeled data are obtained by two classic label propagation
lgorithms with diverse 𝑘, then according to the pseudo labels, the
nlabeled dataset are divided into three disjoint subsets, among which
e apply three-way decision to choose the unlabeled data that have
ifferent pseudo labels and annotate them. Add these annotated data
nto the initial labeled dataset and update labeled dataset and unla-
eled dataset, then iterate the procedures mentioned, namely propa-
ation and annotation, till all the pseudo labels learned by two label
ropagation algorithms are the same. The iteration processes leverage
ultiple neighborhood information granules to learn the pseudo labels

f unlabeled data.

heorem 1. The MGLP algorithm is convergent.

roof. First, assume that the probabilistic transition matrix 𝑃 is
partitioned into four block matrices:

𝑃 =
[

𝑃𝐿𝐿 𝑃𝐿𝑈
]

, (11)
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𝑃𝑈𝐿 𝑃𝑈𝑈
Algorithm 1 Multi granularity based label propagation (MGLP)

Input: Training data  = [𝐿;𝑈 ] ∈ 𝑅𝑛×𝑑 , given labels 𝑦𝑙 , 𝑙 ∈
{1, 2,⋯ , 𝑙}, 𝑘-NN numbers 𝑘1 and 𝑘2, parameter 𝜎.

Output: Pseudo labels of all the unlabeled data 𝑦𝑢, 𝑢 ∈
{

𝑙′ + 1, 𝑙′ + 2,⋯ , 𝑛
}

(𝑙′ ≥ 𝑙).

1: Call LP𝑘1, LP𝑘2 to obtain 𝐿𝑃𝑘1
𝑈 , 𝐿𝑃𝑘2

𝑈 respectively;
2: while 𝐿𝑃𝑘1

𝑈 ≠ 𝐿𝑃𝑘2
𝑈 do

3: For every 𝑥 ∈ 𝑈
4: if 𝑦𝐿𝑃𝑘1 ≠ 𝑦𝐿𝑃𝑘2 then
5: Annotate 𝑥;
6: 𝐿 = 𝐿

⋃

{𝑥};
7: 𝑈 = 𝑈 − {𝑥};
8: end if
9: Call LP𝑘1, LP𝑘2 to obtain 𝐿𝑃𝑘1

𝑈 , 𝐿𝑃𝑘2
𝑈 respectively;

10: end while
11: return 𝑦𝑢;

the LP𝑘 algorithm is convergent, and the pseudo labels matrix of unla-
eled data 𝑈 converges to (𝑰 −𝑃𝑈𝑈 )−1𝑃𝑈𝐿𝐿 after propagation (Zhu,
002).

After that, we prove the convergence of MGLP algorithm, in which,
ne can achieve two pseudo labels matrices 𝐿𝑃𝑘1

𝑈 and 𝐿𝑃𝑘2
𝑈 , then

manually label the unlabeled data with diverse pseudo labels. Take the
worst case into account, if ∀𝑥 ∈ 𝑈 , 𝑦𝐿𝑃𝑘1 ≠ 𝑦𝐿𝑃𝑘2 , all the unlabeled
data will be annotated by oracle, and the number of iterations could
be the greatest as |𝑈 |. Obviously, MGLP algorithm is convergent in
this scenario, let alone in the situation of 𝑈1

⋃

𝑈2 ≠ ∅. □

3.4. Some discussions about MGLP

As the computational complexity of LP𝑘 algorithm is 𝑂(𝑘𝑛2), in
the worst case, the computational complexity of MGLP algorithm is
𝑂((𝑘1 + 𝑘2)𝑢𝑛2), namely, 𝑂(𝑘𝑢𝑛2).

Let |𝑈1| = 𝑢1, |𝑈2| = 𝑢2, and |𝑈3| = 𝑢3, the accuracy of pseudo
labels 𝑎𝑐𝑐 satisfies the following inequality:

𝑢1
𝑢1 + 𝑢2 + 𝑢3

≤ 𝑎𝑐𝑐 ≤ 𝑢1 + 𝑢3
𝑢1 + 𝑢2 + 𝑢3

, (12)

then, after the data in subset |𝑈3| are annotated and added into
abeled dataset, the accuracy of updated pseudo labels will satisfy:
𝑢1′

𝑢1 + 𝑢2
≤ 𝑎𝑐𝑐′ ≤ 𝑢1′ + 𝑢3′

𝑢1 + 𝑢2
. (13)

where 𝑢1 + 𝑢2 = 𝑢1′ + 𝑢2′ + 𝑢3′.
Since
𝑢1′ ≥ 𝑢1′ , (14)
𝑢1 + 𝑢2 𝑢1 + 𝑢2 + 𝑢3
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Fig. 5. The accuracy results of diverse groups of 𝑘1 and 𝑘2.
Table 2
Summary of datasets.
Name #Instances #Attributes #Classes

Wine 178 13 3
Ionosphere 351 34 2
Breast 286 9 2
Heart 303 14 5
Yeast 1484 8 10
Image 2310 19 7
Wireless 2000 7 4
QSAR 1055 41 2

if 𝑢1′ ≥ 𝑢1 + 𝑢3, it can be deduced that 𝑎𝑐𝑐′ ≥ 𝑎𝑐𝑐 holds, namely the
pseudo label accuracy of MGLP is definitely higher than that of regular
label propagation. However in other cases, clear relationship between
𝑎𝑐𝑐′ and 𝑎𝑐𝑐 cannot be given theoretically.

It is rather intuitive that as the labeled ratio increases, the accuracy
of pseudo labels improves, but in fact, this is not always the case, which
has been reported experimentally in the literature. Therefore, the data
initially chosen to be annotated also play an important role in semi-
supervised learning paradigm, and MGLP algorithm provides another
way to annotate data.

4. Experiments

In this section, we set up several simulation experiments completed
for eight real datasets from the UCI repository1 to validate the ef-
fectiveness of the proposed method MGLP. Specifically, experimental
datasets are prepared at first, and then some comparative experiments
are conducted.

4.1. Datasets and experiment settings

The eight classification datasets are: Wine, Ionosphere, Breast Can-
cer (Breast for short), Heart Disease (Heart for short), Yeast, Image
Segmentation (Image for short), Wireless Indoor Localization (Wireless
for short) and QSAR biodegradation (QSAR for short). They are shown
in Table 2, and preprocessed as follows: 1⃝ encode the nominal values
with dummy variables (one-hot coding), 2⃝ normalize every value of
attributes with Z-score normalization. All the experiments are imple-
mented in MATLAB on a PC with CPU 2.6 GHz and 8 GB memory.

1 http://archive.ics.uci.edu/ml
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For convenience, in each of the following experiments, the con-
vergence thresholds max𝑡 and min𝜀 are set to be 100000 and 1e-10
respectively, and Euclidean distance-based similarities are adopted and
the weight matrix 𝑊 is defined by zero–one weighting (see (2)).
Moreover, to maintain the distribution information of the original data,
we assume the instances of different class in the labeled data subset are
of the same proportion as the instances of different class in the original
dataset.

4.2. Impact of information granularity

As the neighborhood size parameter 𝑘 presents the granularity of
an information granule, in this section, we explore the impact of
information granularity on pseudo label accuracy of unlabeled data by
setting different groups of 𝑘1 and 𝑘2. The process of experiment is as
below: firstly, specify the labeled ratio of dataset to be 0.1, and select
the initial labeled data randomly. Then, MGLP algorithm is applied
to the dataset to get the pseudo labels according to 𝑘1, 𝑘2 and other
parameters provided in Section 4.1. Finally, calculate the pseudo label
accuracy to measure the performance of various level granularity. We
repeat each experiment ten times and obtain the average values of
pseudo label accuracies, as shown in Tables 3 and 4, where the bold
ones are the greatest of the dataset.

In Table 3, the value of 𝑘1 is fixed as 3, and the value of 𝑘2 varies
(𝑘2 = 5, 7, 9, 11, 13). The results show that the pseudo label accuracies
of dataset Heart, Image and QSAR change greatly, especially in Heart,
from 0.4067 as the lowest to 0.7393 as the highest. However, in the
other five datasets, the changes are mild comparatively. For Table 4,
the value of 𝑘1 is fixed to 5, and as the values of 𝑘2 altering (𝑘2 =
7, 9, 11, 13, 15), the pseudo label accuracies of dataset Heart change a lot,
and values in other seven datasets change mildly. In sum, the pseudo
labels of unlabeled data in dataset Heart are influenced enormously by
information granularity, and the impact of information granularity to
dataset Wireless is limited.

We can also see the impact of the ten groups of 𝑘1 and 𝑘2 on pseudo
label accuracy for each dataset in Fig. 5, where 1, 2, 3, 4, 5 refer to
the value of 𝑘2, namely, 5, 7, 9, 11, 13 when 𝑘1 = 3 and 7, 9, 11,
13, 15 when 𝑘1 = 5 respectively. The polygonal lines fluctuate slightly
when 𝑘1 = 5 in dataset Ionosphere, Image and Wireless, while in other
circumstances, the tendency of lines may be affected significantly by
the values of 𝑘.

So, it can be concluded that the impact of information granularity
is different for diverse datasets, and the values of 𝑘1 and 𝑘2 need to be
selected based on specific datasets in real applications.

http://archive.ics.uci.edu/ml
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Fig. 6. Comparison of MGLP and classic label propagation.
Table 3
The accuracy results of pseudo labels on the eight datasets (𝑘1 = 3).
Dataset Accuracy

𝑘2 = 5 𝑘2 = 7 𝑘2 = 9 𝑘2 = 11 𝑘2 = 13

Wine 0.9384 ± 0.0822 0.9735 ± 0.0096 0.9754 ± 0.0099 𝟎.𝟗𝟖𝟏 ± 𝟎.𝟎𝟎𝟔𝟔 0.9784 ± 0.0079
Ionosphere 0.732 ± 0.0704 0.7431 ± 0.0957 𝟎.𝟕𝟕𝟏𝟑 ± 𝟎.𝟏𝟎𝟏𝟗 0.747 ± 0.0974 0.7203 ± 0.0905
Breast 0.7134 ± 0.0292 0.7231 ± 0.0363 𝟎.𝟕𝟑𝟕𝟑 ± 𝟎.𝟎𝟒𝟏𝟔 0.7342 ± 0.0397 0.7323 ± 0.032
Heart 0.4067 ± 0.0589 0.4825 ± 0.089 0.5713 ± 0.0854 0.6714 ± 0.0697 𝟎.𝟕𝟑𝟗𝟑 ± 𝟎.𝟎𝟒𝟔𝟖
Yeast 0.5786 ± 0.0181 0.5948 ± 0.0149 0.6076 ± 0.0173 𝟎.𝟔𝟏𝟐 ± 𝟎.𝟎𝟐𝟑𝟒 0.6112 ± 0.0169
Image 0.7993 ± 0.0273 0.9288 ± 0.0315 0.9583 ± 0.0331 0.9642 ± 0.0232 𝟎.𝟗𝟔𝟕𝟔 ± 𝟎.𝟎𝟏𝟖𝟓
Wireless 0.961 ± 0.0139 0.9892 ± 0.0045 0.9904 ± 0.0029 𝟎.𝟗𝟗𝟏𝟕 ± 𝟎.𝟎𝟎𝟐𝟖 0.9913 ± 0.0029
QSAR 0.691 ± 0.031 0.7862 ± 0.0411 0.8035 ± 0.0286 0.8176 ± 0.0248 𝟎.𝟖𝟐𝟎𝟓 ± 𝟎.𝟎𝟑𝟐
7
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Fig. 7. Impact of labeled ratio on pseudo label accuracy.
4.3. Impact of data chosen strategy

Here, several experiments are conducted to illustrate the superiority
of the proposed method MGLP compared to the classic label propaga-
tion algorithm. In particular, we scrutinize the impact of strategy to
choose, annotate and add unlabeled data into labeled subset. In MGLP
algorithm, after propagating, the initially unlabeled data in 𝑈3, will
be annotated and then added into the labeled dataset, actually, the
labeled ratio increases in this procedure. So, we annotate the same
number of unlabeled data and add them into the labeled dataset in
8

each iteration of classic label propagation algorithm, but these data are
selected randomly from the initially unlabeled dataset contrasting to
finding out 𝑈3 based on the three-way decision strategy in MGLP.

In the experiment of this section, the initial labeled ratio is also
0.1, while let the neighborhood parameters be 𝑘1 = 3 and 𝑘2 =
11. Each experiment is executed ten times and the average pseudo
label accuracies of eight datasets are shown in Fig. 6, where MGLP𝐾1
and MGLP𝐾2 refer to annotating unlabeled data according to MGLP
algorithm, however, RANLP𝐾1 and RANLP𝐾2 refer to annotating the

same number of unlabeled data randomly.
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Table 4
The accuracy results of pseudo labels on the eight datasets (𝑘1 = 5).
Dataset Accuracy

𝑘2 = 7 𝑘2 = 9 𝑘2 = 11 𝑘2 = 13 𝑘2 = 15

Wine 𝟎.𝟗𝟔𝟐𝟖 ± 𝟎.𝟎𝟏𝟎𝟕 0.939 ± 0.0903 0.9402 ± 0.091 0.9375 ± 0.089 0.9448 ± 0.0926
Ionosphere 𝟎.𝟖𝟒𝟐𝟔 ± 𝟎.𝟎𝟔 0.8392 ± 0.0656 0.8374 ± 0.0655 0.8318 ± 0.0638 0.8337 ± 0.0637
Breast 0.7163 ± 0.0278 0.7241 ± 0.0274 0.7368 ± 0.0384 𝟎.𝟕𝟓𝟎𝟖 ± 𝟎.𝟎𝟐𝟗𝟗 0.7429 ± 0.0328
Heart 0.5224 ± 0.0754 0.5903 ± 0.0883 0.6154 ± 0.0963 0.6423 ± 0.0717 𝟎.𝟔𝟔𝟏𝟑 ± 𝟎.𝟎𝟕𝟕𝟒
Yeast 0.5828 ± 0.013 0.6002 ± 0.0145 0.6129 ± 0.0192 0.6215 ± 0.0278 𝟎.𝟔𝟐𝟗𝟏 ± 𝟎.𝟎𝟐𝟐𝟒
Image 0.9208 ± 0.0081 0.9473 ± 0.0071 0.9535 ± 0.0094 𝟎.𝟗𝟔𝟏𝟒 ± 𝟎.𝟎𝟎𝟑𝟐 0.9596 ± 0.0042
Wireless 0.9839 ± 0.0036 0.9859 ± 0.0021 𝟎.𝟗𝟖𝟕𝟕 ± 𝟎.𝟎𝟎𝟐𝟓 0.9866 ± 0.0029 0.9875 ± 0.0018
QSAR 0.8079 ± 0.0223 0.8318 ± 0.0221 0.8513 ± 0.0245 𝟎.𝟖𝟓𝟗𝟔 ± 𝟎.𝟎𝟐𝟐𝟔 0.8574 ± 0.015
From Fig. 6, we can see the following phenomenons: 1⃝ All the
pseudo label accuracies of MGLP𝐾1 and MGLP𝐾2 increase monotoni-
cally as the number of iterations rises, except for the sixth iteration
of MGLP𝐾1 in dataset Heart. 2⃝ The results of RANLP𝐾1 and RANLP𝐾2
ecrease in many situations, such as the second iteration of RANLP𝐾1 in
ataset Ionosphere, the second iteration of RANLP𝐾1 in dataset Breast,
nd the third iteration of RANLP𝐾2 in dataset Heart etc. 3⃝ When

MGLP converges, the pseudo label accuracies are all higher than the
results of regular label propagation (the values of the first iteration),
and they are also higher than the results of regular label propagation
with randomly annotating unlabeled data (RANLP𝐾1 and RANLP𝐾2). 4⃝
Evidently, there exist some monotonical decrease cases of annotating
unlabeled data randomly, for example, from the second to the fourth
iteration of RANLP𝐾1 in dataset Ionosphere, from the second to the
seventh iteration of RANLP𝐾2 in dataset Heart. 5⃝ Also, some vibration
phenomena appear in annotating unlabeled data randomly, such as
from the second to the seventh iteration of RANLP𝐾1 in dataset Heart,
and from the second to the sixth iteration of RANLP𝐾1 in dataset Yeast.

What is shown in Fig. 6 illustrates that the proposed is superior than
the classic label propagation algorithm from the accuracy perspective.
The pseudo label accuracies of MGLP increase ordinarily in the proce-
dure of iteration, however they may vibrate, or even decrease when
annotating unlabeled data randomly. Maybe bridge nodes or outliers
should be responsible. If the labels of these data are propagated, the
labels of their neighbors may be wrong, and as the iterations go, the
wrong labels will propagate cumulatively to affect the accuracies of all
the dataset. It also proves that as the number of labeled data increases,
the accuracy of pseudo labels does not necessarily increase. So, the
three-way decision strategy in MGLP is important to select data to be
labeled compared with random selection.

4.4. Impact of labeled ratio

To verify the relationship of the pseudo label accuracies of MGLP
and labeled ratio, some experiments are conducted here. The labeled
ratio increases from 0.1 to 0.6, and the compartment is 0.05. We
compare two kinds of results: the first is based on the data labeled
randomly according to the given ratio, and the second is based on
the data annotated by MGLP. In detail, the annotating process is as
follows: firstly, annotate initial data with the ratio 0.1 randomly and
execute MGLP, next, compare the number of unlabeled data needed to
be annotated (and will be added into the labeled dataset) in MGLP and
the target number of labeled data. If the former is bigger, annotate all
the selected data by MGLP and quit the iteration procedure. If the latter
is bigger, annotate all the selected data by MGLP and the differential
number of data randomly.

The algorithms are evaluated 100 times, and the average values of
pseudo label accuracies are shown in Fig. 7. On the whole, the curves in
the figure show that pseudo label accuracies of MGLP are increased as
the labeled ratio rises. Specifically, they are strict increased in dataset
Heart, Yeast and QSAR. Furthermore, they decrease occasionally in the
other five datasets, for instance, when ratio=0.2 in dataset Wine, ra-
9

tio=0.5 in dataset Ionosphere, ratio=0.35 in dataset Breast, ratio=0.45
Table 5
Parameters for different methods.
Method Parameters

MGLP 𝑘1 = 3, 𝑘2 = 11
LP 𝑘 = 3
LNP 𝑘 = 3, 𝛼 = 0.8
LPSN 𝜖 = 1𝑒 − 4
Adaptive-NP 𝛼 = 1𝑒 − 5, 𝛽 = 1𝑒 − 5, iteration=10
CRLP 𝐵 = 100, 𝛼 = 0.8

and ratio=0.6 in dataset Image, ratio=0.25 in dataset Wireless, how-
ever, the changes are small. Contrast to the relatively smooth curves of
MGLP, the curves of random data labeling according to the given ratio
jitter greatly, and there are no overt change tendencies. Some definite
changes are: ratio=0.35 to ratio=0.4 in dataset Wine, ratio=0.4 to
ratio=0.45 in dataset Breast, ratio=0.45 to ratio=0.5 in dataset Image,
etc.

From the results described above, we can see that if we label data
randomly according to the labeled ratio, the accuracy of pseudo labels
may be likely to decrease or fluctuate as the labeled ratio increases.
But the accuracy of pseudo labels in MGLP is more stable, and increases
normally. The conclusion exactly coincides with the one in Section 4.3.

As a result, based on the guidelines of multiple level granularity and
active learning strategy of three-way decision, the propose algorithm
MGLP is not only an effective means to obtain pseudo labels with higher
accuracy of unlabeled data, but it also can be viewed as a novel way
to annotate data through the iteration procedure and we can apply it
in real applications.

4.5. Comparisons with some typical methods

In addition, we also conduct some experiments to verify the per-
formance of MGLP comparing to some typical methods, including
LP (classic label propagation) (Zhu, 2002), LNP (linear neighborhood
propagation) (Wang & Zhang, 2008), LPSN (label propagation through
sparse neighborhood) (Zang & Zhang, 2012), Adaptive-NP (adaptive
neighborhood propagation) (Jia et al., 2016) and CRLP (consensus
rate-based label propagation) (Yu & Kim, 2018).

Besides the eight datasets mentioned in Table 2, two real image
datasets are added here. The COIL20 database has 1440 gray ob-
ject images for 20 different subjects, and the size of each image is
32 × 32 pixels. There are 9298 images with 16 × 16 grayscale pixels
in handwritten database USPS.

The initial labeled ratio is 0.1, and the other parameters of the
six methods are shown in Table 5. In MGLP, the values of 𝑘1 and 𝑘2
are the same as in Section 4.3. In CRLP, 𝐵 is the number of random
subspaces, 𝛼 is the coefficient to control the tradeoff between spreading
and retaining, and they are set referring to Yu and Kim (2018). In LNP,
𝛼 is the same as in CRLP. The values of 𝑘 in LP and LNP are set to 3 as 𝑘1
in MGLP. In LPSN, the radius of sparse neighborhood 𝜖 is fixed at 1e-4
as Zang and Zhang (2012). In Adaptive-NP, the trade-off parameters 𝛼
and 𝛽 are set to be 1e-5, and the number of iterations is 10 according

to Jia et al. (2016).
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Table 6
Mean pseudo label accuracies of different methods.
Dataset MGLP LP LNP LPSN Adaptive-NP CRLP

Wine 𝟎.𝟗𝟕𝟓𝟒 ± 𝟎.𝟎𝟏𝟏𝟑 0.8918 ± 0.0136 0.9001 ± 0.0153 0.8955 ± 0.0141 0.9199 ± 0.0126 0.9079 ± 0.0090
Ionosphere 0.7749 ± 0.0194 0.7733 ± 0.0195 0.7736 ± 0.0225 0.7684 ± 0.0326 𝟎.𝟕𝟕𝟔𝟓 ± 𝟎.𝟎𝟏𝟖𝟒 0.7693 ± 0.0085
Breast 𝟎.𝟕𝟒𝟏𝟏 ± 𝟎.𝟎𝟏𝟏𝟗 0.6796 ± 0.0106 0.6848 ± 0.0128 0.6765 ± 0.0057 0.7095 ± 0.0162 0.6884 ± 0.0114
Heart 𝟎.𝟔𝟐𝟖𝟏 ± 𝟎.𝟎𝟏𝟖𝟎 0.5118 ± 0.0139 0.5641 ± 0.0122 0.5137 ± 0.0364 0.5646 ± 0.0241 0.5267 ± 0.0265
Yeast 𝟎.𝟔𝟏𝟑𝟐 ± 𝟎.𝟎𝟎𝟔𝟑 0.5135 ± 0.0063 0.5331 ± 0.0056 0.5496 ± 0.0057 0.5529 ± 0.0039 0.5116 ± 0.0053
Image 𝟎.𝟗𝟔𝟖𝟏 ± 𝟎.𝟎𝟎𝟑𝟗 0.9025 ± 0.0042 0.9038 ± 0.0040 0.9247 ± 0.0048 0.9403 ± 0.0041 0.9389 ± 0.0037
Wireless 𝟎.𝟗𝟖𝟐𝟐 ± 𝟎.𝟎𝟎𝟎𝟔 0.9214 ± 0.0043 0.9238 ± 0.0039 0.9318 ± 0.0012 0.9348 ± 0.0042 0.9325 ± 0.0044
QSAR 0.8196 ± 0.0110 0.7726 ± 0.0068 0.7857 ± 0.0067 0.7843 ± 0.0081 𝟎.𝟖𝟐𝟒𝟑 ± 𝟎.𝟎𝟏𝟓𝟑 0.7709 ± 0.0307
COIL20 𝟎.𝟗𝟏𝟎𝟑 ± 𝟎.𝟎𝟒𝟑𝟐 0.8423 ± 0.0328 0.8649 ± 0.0421 0.8917 ± 0.0427 0.8786 ± 0.0532 0.8332 ± 0.0395
USPS 𝟎.𝟖𝟗𝟑𝟐 ± 𝟎.𝟎𝟓𝟕𝟔 0.8359 ± 0.0412 0.8632 ± 0.0645 0.8664 ± 0.0448 0.8421 ± 0.0643 0.8217 ± 0.0611
average 𝟎.𝟖𝟑𝟎𝟔 ± 𝟎.𝟎𝟏𝟖𝟑 0.7645 ± 0.0153 0.7797 ± 0.0190 0.7803 ± 0.0196 0.7944 ± 0.0216 0.7701 ± 0.0200
Fig. 8. Execution time ratio of different methods to LP.

Since the labeled ratio will increase in MGLP, we augment the
labeled subset in other five methods by selecting unlabeled data ran-
domly to the same labeled ratio as MGLP. Every method is evaluated
20 times, and the mean pseudo label accuracies are shown in Table 6.

It can be observed that the pseudo label accuracies of MGLP are
definitely higher than the other five methods on all the ten datasets
except for Ionosphere and QSAR. Especially in dataset Heart and Yeast,
the increased accuracies are more than 10 percent. On average, the
accuracy of MGLP rise by 8.6% than LP, 6.5% than LNP, 6.4% than
LPSN, 4.5% than Adaptive-NP and 7.8% than CRLP.

Fig. 8 summarizes the ratio of the methods’ execution time to the
time of LP. As it can be seen, the computational cost of MGLP is higher
than that of LP and LNP in all the ten datasets, lower than that of CRLP,
Adaptive-NP and LPSN in most of the ten datasets.

The experimental results demonstrate that the proposed algorithm
MGLP is effective, and outperforms other methods on most of the ten
benchmark datasets with higher computational complexity. It can be
supposed that the proposed method may reveal intrinsic data structure
more effectively by employing multi neighborhood granules and active
learning with three-way decision.

5. Conclusions

In this paper, we propose a novel label propagation algorithm called
multi granularity based label propagation (MGLP) to determine the
pseudo labels of unlabeled data. In this method, the concept of multiple
level granularity is adopted to set neighborhood size, and three-way
decision works as a active learning strategy to choose unlabeled data.
Specific procedure and some discussions of the proposed method are
given. Experimental results show that through the iterative process of
propagating labels, annotating particular unlabeled data and adding
them into labeled dataset, the pseudo label accuracy will be improved
in comparison with the random data labeling and some other typical
10
methods. It is also demonstrated that we can apply the proposed
method to annotate data. Therefore, MGLP is effective.

Since the graphs used in MGLP are only 𝑘-NN graphs in this work,
we will investigate the feasibility of applying different graphs in this
model to make MGLP as a more general framework. In addition, the
multi granularity based label propagation evaluated in this work is
transductive, for future work, we can focus on extending the model to
out-of-sample scenario. There often exist big data, real-time streaming
data and class-imbalance data in many practical applications, so in the
future, it will also be interesting to investigate the effectiveness and
modifications of MGLP to these kinds of data.
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