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Abstract—Person Re-identification (ReID) aims to retrieve the
pedestrian with the same identity across different views. Existing
studies mainly focus on improving accuracy, while ignoring
their efficiency. Recently, several hash based methods have been
proposed. Despite their improvement in efficiency, there still
exists an unacceptable gap in accuracy between these methods
and real-valued ones. Besides, few attempts have been made
to simultaneously explicitly reduce redundancy and improve
discrimination of hash codes, especially for short ones. Inte-
grating Mutual learning may be a possible solution to reach
this goal. However, it fails to utilize the complementary effect
of teacher and student models. Additionally, it will degrade the
performance of teacher models by treating two models equally.
To address these issues, we propose a salience-guided iterative
asymmetric mutual hashing (SIAMH) to achieve high-quality
hash code generation and fast feature extraction. Specifically,
a salience-guided self-distillation branch (SSB) is proposed to
enable SIAMH to generate hash codes based on salience regions,
thus explicitly reducing the redundancy between codes. Moreover,
a novel iterative asymmetric mutual training strategy (IAMT) is
proposed to alleviate drawbacks of common mutual learning,
which can continuously refine the discriminative regions for
SSB and extract regularized dark knowledge for two models as
well. Extensive experiment results on five widely used datasets
demonstrate the superiority of the proposed method in effi-
ciency and accuracy when compared with existing state-of-the-
art hashing and real-valued approaches. The code is released at
https://github.com/Vill-Lab/SIAMH.

Index Terms—Person re-identification, hashing, self distilla-
tion, mutual learning.
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I. INTRODUCTION

ERSON Re-Identification (RelD), refers to the work of

retrieving the correct target from a large collection of
person images, which has received increasing attention due
to its great potential in real-world applications. Tremendous
progress has been achieved in the last few years. However,
it remains a challenging task owing to various factors,
such as viewpoints, severe occlusions and posture variations.
To address these issues, existing person ReID methods [1]-[9]
mainly focus on performing robust identity-invariable repre-
sentation learning by facilitating prior knowledge or design-
ing sophisticated frameworks. Most of these methods mainly
adopt complex models and extract high-dimensional real-
valued features to pursue high performance. However, high
computational cost comes with these issues, making the most
state-of-the-art models unsuitable for real-world applications,
such as security surveillance. Moreover, several large-scale
ReID benchmark datasets have been proposed to simulate
real-world scenarios recently, which contain a large number
of gallery data. It will be very time-consuming for existing
real-valued approaches to retrieve the target person in these
datasets.

Recently, hashing [11]-[22] has been proved to be a
promising way for large-scale image retrieval and applied
in a wide range of real-world scenarios. By mapping high-
dimensional features into compact binary codes, they can
perform fast retrieval in the low-dimensional Hamming space.
To guarantee the even distribution and discrimination of
hash codes, Lin et al. [18] propose an unsupervised hash net-
work. Lai et al. [19] introduce a simultaneous feature learn-
ing framework that aims to preserve the similarity during
the projection. Inspired by them, several supervised hashing
ReID methods [23]-[27] have been proposed, which bring
remarkable reduction to the memory cost and the query time.
However, due to the large information loss in the binarization
process, there still exists a large gap between hashing methods
and real-valued methods in terms of accuracy. Two main
crucial factors can be taken into account for explaining the
gap: a) Existing approaches mainly adopt simple frameworks
for fast feature extraction, leading to low-quality real-valued
features. Therefore, it limits further boosts in accuracy as well,
b) To generate discriminative hash codes, they mainly focus
on minimizing quantization loss, while ignoring redundancy
reduction and guaranteeing compactness of hash codes, thus
resulting in deteriorated performance.
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Fig. 1.  Tlustration of hashing RelD: (a) Traditional methods, (b) Deep
hashing methods, (c) The proposed method.

Recently, online knowledge distillation [28], [29] has been
widely used for model acceleration. Inspired by the recent
advance in online knowledge distillation, we make an attempt
to integrate mutual learning into the proposed framework.
However, common mutual learning has two crucial draw-
backs which limit its application. Firstly, it does more harm
than good to the performance of large models by impos-
ing strong constraints for minimizing the output difference
between two models. Besides, the complementary effect of
two models cannot be fully utilized by treating two models
equally. Therefore, to tackle these challenges, we design a
salience-guided iterative asymmetric mutual hashing network.
As shown in Fig.1, the proposed method optimizes hash codes
from two distinct views: a) reducing information redundancy
across models, b) minimizing quantization loss within models.
Specifically, STAMH enables the network to generate hash
codes based on the most informational regions, thus explicitly
reducing the information redundancy and guaranteeing the
compactness of hash codes. Besides, it can alleviate the
drawbacks brought by mutual learning through asymmetric
training, in which the student model can learn discriminative
dark knowledge and meanwhile impose implicit regularization
on the teacher model, resulting in complementary effects.
Additionally, a diverse partition module and a self-distillation
quantization loss are employed to extract effective real-valued
features and close the discrepancy of similarity structure in the
quantization process for a single model respectively. Finally,
compared with existing methods, SIAMH can largely slow
down the speed of accuracy decrease with code length becom-
ing shorter by explicitly reducing the redundancy, as shown
in Fig.2. The main contributions are summarized as follows:

1) We present a new salience-guided iterative asymmetric
hashing framework, called STAMH, in which a novel salience-
guided self-distillation branch (SSB) is designed to make
SIAMH generate binary codes from the continuously refined
salient regions. By explicitly reducing the information redun-
dancy, SSB can bring significant improvements for hash codes,
especially for short ones.
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Fig. 2. Compared with 2048-bits results, accuracy decrease percentage of
different bit length for SIAMH and DLBC [10].

2) A novel iterative asymmetric mutual training strategy,
called IAMT, is proposed in which two models learn regu-
larized dark knowledge and provide complementary effects
for each other through asymmetric training to alleviate the
drawbacks of mutual learning, thus further boosting final
performance.

3) Extensive experiments on five widely used datasets show
that the proposed method achieves superior performance to
existing hashing ReID methods. For the state-of-the-art real-
valued methods, STAMH further closes the gap with them in
terms of accuracy while significantly improves the retrieval
efficiency.

The remainder of the paper is organized as follows:
In Section II, we review some related works about knowledge
distillation and hashing ReID and analyze their drawbacks.
Section III elaborates on the proposed salience-guided iterative
asymmetric mutual hashing network. Section IV presents
the experimental results of the comparisons and evaluations.
Finally, the conclusions are drawn in Section V.

II. RELATED WORK

Since the proposed method mainly focuses on the design
of hash based ReID networks and knowledge distillation,
we briefly review related works in this section.

A. Traditional Person Re-Identification

Traditional person RelD methods [1]-[8], [30], [31] mainly
address the pedestrian matching problems from two perspec-
tives: 1) learning robust and effective view-invariant represen-
tations, which focus on dealing with cross-view appearance
changes brought by various factors such as background clutter,
occlusions, 2) constructing sophisticated and powerful feature
extraction networks. Among them, Yu et al. [1] propose
a hard-aware point-to-set loss to solve problems brought
by traditional sampling. Bai et al. [2] develop a manifold-
preserving algorithm by integrating manifold-based affinity
learning. Li et al. [3] focus on integrating multiple attentions
from diverse levels and optimizing multi-scale attention fea-
tures selectiveness to enrich final results. In [4], a part-based
baseline is proposed to maintain part-level content consistency
for accurate part location. Bryan ef al. [5] attempt to model
long-range region relation by utilizing second-order statistics
within features. Fu et al. [6] propose a horizontal pyramid
matching strategy to alleviate influence brought by crucial
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body parts missing problems. Zhang et al. [7] design a sophis-
ticated alignment approach and jointly optimize global and
local features in the proposed framework. Lin et al. propose
a correspondence structure to address spatial misalignments
brought by camera-view changes. More recently, [8] design
an attentive but diverse network, aiming to fully promote
the complementary powers of attention and feature diversity.
Nevertheless, to achieve high matching accuracy, all of these
works need complex frameworks to obtain high-dimensional
real-valued features, resulting in a slow retrieval process.
They are not scalable for a large number of gallery images.
Consequently, it grows rapidly for the response time and
memory costs with the size of the gallery set becoming larger.

B. Hash Based Person Re-Identification

Previous hash based ReID methods can be roughly divided
into two categories: traditional methods [23], [27], deep
hashing methods [10], [24]-[26], [32]-[34]. 1) As shown in
Fig.1 (a), traditional methods aim to learn subspace transfor-
mation and binary coding schemes, which utilize multiple pro-
jection matrices to map high-dimensional real-valued features
into Hamming space. These methods generally take each cam-
era view as one modality and exploit the correlations between
distinct camera sources to produce view-invariant representa-
tions. Among them, cross-view binary identities (CBI) [27]
minimizes the intra-person Hamming distance and maximizes
the cross-covariance to construct two sets of hash functions,
while cross-camera semantic binary method (CSBT) [23]
tries to alleviate the intrinsic cross-view variations. However,
the objectives of these methods generally require complex non-
convex optimization and need to explicitly design the compli-
cated loss functions, resulting in unstable training processes
and poor performance. 2) The basic framework of deep hash-
ing methods is shown in Fig.1 (b). These approaches generally
insert hashing layers at the end of networks to generate
approximate binary codes. Specifically, hashing layers are
mostly fully connected layers with tan-like activation. Among
them, Bit-scalable deep hashing (DSRCH) [32] proposes a
novel formulation of relative similarity comparison based
on the triplet-based model, pursuing generating bit-scalable
results. PDH [24] integrates a part-based model into deep
hashing frameworks to improve local discrimination, while
in [25], ABC designs an adversarial learning based implicit
binary transformation strategy. Specifically, it uses Bernoulli
distribution to implicitly guide the network to produce samples
conforming to the same distribution. By explicitly encoding
local visual entails, DLBC [10] formulates a binary-local
semantic mutual information maximization term to close the
gap with real-valued methods. CPDH [33] focuses on pre-
serving consistency between hash codes and optimizes high-
dimensional features in more robust directions. To accelerate
the matching process, a coarse-to-fine search strategy is pro-
posed by CtF [26] to enhance the quality of short codes.

Nevertheless, none of them focus on reducing the redun-
dancy and guaranteeing compactness of hash codes, which
is rather crucial for binary results, especially for short
codes. Besides, they generally adopt simple networks for fast
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feature extraction. However, it limits the performance of real-
valued features, leading to deteriorated hash codes. As a result,
there exists a large gap in matching accuracy between hash
based RelD methods and real-valued approaches. To address
these problems, differing from existing frameworks, our
work simultaneously optimizes the information redundancy
and improves the discrimination of real-valued features.
Concretely, the proposed salience-guided self-distillation
branch and flexible iterative asymmetric mutual training strat-
egy work collaboratively to further close the gap with real-
valued methods in accuracy.

C. Knowledge Distillation

Knowledge distillation refers to the work of transferring
knowledge from one (teacher) to another (student), which was
first proposed by Hinton er al. [35]. It has been widely used
in model compression and unsupervised learning in recent
years. Existing methods of knowledge distillation can be
roughly divided into three categories: online distillation, self-
distillation, offline distillation. In online distillation, the stu-
dent model and the teacher model are updated simultaneously
and trained in an end-to-end mode. In the last two years,
several online knowledge methods [29], [36] have been pro-
posed. In [36], Zhang et al. propose to make a set of neural
networks work collaboratively. As for the self-distillation [37],
the teacher and student models share the same network. By uti-
lizing the “soft targets” extracted from teacher models, online
distillation can obtain latent “dark knowledge” to enhance the
performance of the student model. The “soft targets” are often
in the form of prediction results or intermediate features and
contain pivotal similarity information for guiding the training
process of the student model during distillation.

Recent progresses of online distillation have demonstrated
its superiority over offline ones. Inspired by these methods,
we make an attempt to integrate mutual learning strategy
into the proposed framework. However, directly combining
mutual learning may result in sub-optimal results. Two main
factors can be obtained through analysis: 1) Firstly, due to
the discrepancy in learning ability of two models, equally
imposing constraints for closing their gap will harm the
performance of the large model, thus producing deteriorated
results. 2) Besides, common mutual learning cannot fully use
the different advantages of two models. For example, large
models perform well on training sets and are much more
discriminative, while light models perform well on generaliza-
tion tasks. Therefore, simply combining mutual learning will
treat two models equally, thus reducing complementary effects.
To address these issues, we propose a salience-guided iterative
asymmetric mutual training strategy, which can fully enhance
the performance of two models through iterative interaction.

III. SALIENCE-GUIDED ITERATIVE
ASYMMETRIC HASHING

A. Framework Overview

In this section, the framework of the proposed SIAMH
method will be described in detail. For convenience, some fre-
quently used notations are introduced firstly. Specifically, we
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denote global average pooling and global max pooling as GAP
and GMP respectively. Fully connected layers and convolution
layers are simplified as Fc and Conv. Besides, the whole
training set is indicated as {P;, y,-}f.V: |» where P; denotes the
i-thimage, y; € {1, 2,3, ..., Ny} represents the corresponding
person identity, N and N; indicate the image number and the
number of pedestrian identities in the training set respectively.
Besides, H are the real-valued features and B indicate hash
codes. C is the batch size. IIH and ISH denote the prediction
results of real-valued features from the teacher model and
the student model respectively, while /8 and I? indicate the
corresponding classification results of binary codes. Subscript
s and t represent the result is from the student model and
the teacher model respectively. sgn(-) is an element-wise sign
function, which outputs -1 for positive values and 1 otherwise.
tanh(-) is calculated as follows:
et —e "
tanh(x) = pranper: (1)
As shown in Fig.3, the proposed STAMH adopts the general
pipeline of deep hashing methods within a single model.
Concretely speaking, a widely-used convolution network is
utilized as the backbone to generate feature maps. Specifi-
cally, ReNeSt-50 and ResNet-50 are exploited here for the
teacher and student model respectively. Afterward, a pooling
layer is followed to produce high-quality but redundant real-
valued features. Finally, it is successively inputted into Fc
layer for dimension consistency with binary codes and then
transformed into discrete hash codes B; € {—1, 1}9 via hash
layers H(-), where ¢ indicates the length of hash codes.

Specifically, we denote the real-valued features before hash
layers as H; € RY. Owing to the ill-gradient problem of sgn(-),
hash layers are generally Fc layers with tanh-like activation,
resulting in sub-optimal approximate discrete codes and an
extra quantization procedure in the testing stage. Unlike them,
the above hash layers are replaced with greedy hash layers in
SIAMH to directly generate completely discrete results.
Different from existing hashing ReID methods, STAMH per-
forms binary code optimization from two distinct perspectives:
quantization loss minimization within single models, redun-
dancy reduction across models. For the first view, a diverse
partition module and a self-distillation quantization loss are
employed. The former focuses on generating highly approx-
imate discrete real-valued features. Besides, it can explicitly
establish the connections between final hash codes and multi-
granularity visual details. The self-distillation quantization
loss aims at closing the gap in similarity structure between
hash codes and real-valued features. The above components
work collaboratively for quantization loss minimization within
single models and enhancing the quality of codes as a result.
For the second view, a salience-guided iterative asymmetric
training strategy is designed. Firstly, a salience-guided self-
distillation branch (SSB) is proposed to maintain salience
region consistency in the mutual learning process, which
enables the student model to generate salience-based features
and reduce information redundancy as a result. Additionally,
the training of STAMH is conducted in a novel iterative asym-
metric mutual training mode, which can alleviate drawbacks
of common mutual learning. Specifically, two models learn
collaboratively and transfer regularized dark knowledge for
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each other throughout the training process. For the following
content of this section, we will mainly describe the two above
procedures of STAMH, together with the optimization of the
whole framework.

B. Self-Distillation Quantization Loss Minimization

1) Diverse Partition Module: Previous work [10], [38] has
proved that high-quality real-valued features lead to smaller
quantization loss. Therefore, to address this issue, a diverse
partition module (DPM) is designed in the teacher model,
which can improve features diversity and alleviate the influ-
ence of misalignment and occlusion meanwhile. As shown
in Fig.4, the DPM consists of two branches: the global branch,
the part branch in our implementation. In the global branch,
two different pooling strategies are adopted to obtain global
representations. Firstly, the initial 2048 x 24 x 8-tensor is
transformed into two 2048-dimension vectors via GAP and
GMP respectively. Afterward, to optimize the embeddings
from different spaces, a BNNeck [39] is employed for two
branches, which consists of a classification layer and a batch
normalization layer. Results of GAP and GMP strategies are
indicated as fgoap/fomp € R?04% respectively. For the part
branch, it is composed of two branches as well. Firstly, the ini-
tial 2048 x 24 x 8-tensor is split into three parts horizontally and
vertically, which focuses on learning sub-features of different
regions and explicitly encoding local visual clues. Therefore,
5 2048-dimension sub-features are obtained totally. Finally,
these sub-features are concatenated into a single vector as
final outputs of local branches, denoted as f),. These global
and local features are then inputted into the divide-and-encode
module, which aims at guaranteeing the bit-independence of
hash codes, thus reducing the quantization loss. Specifically,
the feature is divided into g slices with equal length, where
q denotes the length of hash codes. Then a fully-connected
layer is used to map each slice into a one-dimension vector.
Afterward, these one-dimension vectors are concatenated as
the final output of the diverse partition module.

2) Self-Distillation Quantization: Existing methods mainly
impose L2-norm constraints to close the gap between real-
valued features and hash codes. However, since the discrep-
ancy between them in information capacity, such hard explicit

principles may inevitably harm the performance of real-valued
features. Instead, we choose to mimic the difference in predic-
tion distribution. The prediction scores of real-valued features
are used as a form of softened class scores to guide the
self-distillation process, where the former is detached from
training when fed into loss functions. Specifically, the classical
Kullback-Leibler divergence loss is utilized for it, which is
shown below:

m1(ci)
ma(c;)

Ng
Lyt (m1,ma) = D mi(ci) log(
i=1

) 2)

where m1, my denote prediction results from the student and
teacher models respectively, ¢; is the i-th class. Moreover,
the greedy hash layer is utilized to perform discrete optimiza-
tion and directly generate binary codes. Specifically, sgn(-) is
used as the activation function of hash layers. By minimizing
loss function as Eq.(3), the framework can foresee the error
in testing and propagate gradients of hash codes to the former
layer. As a result, real-valued features and binary codes can
be optimized in similar paces, thus further closing their gap.

3)

where p is p-norm. Therefore the self-distillation quantization
loss can be found in Eq.(4).

Lqua = Lgr + Lkl

Lgr =||H — BHI];

“)

C. Salience-Guided Iterative Asymmetric Mutual Training

The salience-guided iterative asymmetric mutual train-
ing (SIAMT) framework aims to simultaneously enhance the
discrimination of hash codes and reduce information redun-
dancy across models, as shown in Fig.3. Specifically, it con-
sists of two crucial components: salience-guided distillation
branch and iterative asymmetric mutual training strategy. The
former focuses on enabling the light-weight student model
to generate codes based on the salient regions, thus reducing
redundancy between codes, while the latter performs iterative
asymmetric mutual training, in which two models provide
different outputs as dark knowledge for each other to alleviate
the drawbacks of common mutual learning and fully utilize
the complementary advantages of two models meanwhile.
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1) Salience-Guided Self-Distillation Branch: Most hashing
methods generally ignore the information redundancy between
hash codes and perform feature extraction based on the whole
image. As a result, visual clues that are irrelevant to final
retrieval e.g. the clutter background are also included between
hash codes, resulting in severe redundancy. Due to the weak
information capacity of binary codes, such feature extraction
procedures may harm the performance, especially for short
codes. To address this issue, a salience-guided self-distillation
branch (SSB) is proposed in our model. Specifically, feature
maps from two branches of the teacher model are added and
averaged firstly. Afterward, the results are fed into the salience
generation block to produce class activation maps. Subse-
quently, the obtained maps are transformed into probability
maps through Softmax function. The values in the maps are
set to zero when they are lower than the predefined threshold,
otherwise remain the same. Then these weighed maps are
resized and multiplied with feature maps of the student model
to filter out background disturbances. The above process can
be summarized as follows:

Fsai = Re (In (Lcam)) O F ©)

where F € REXH>*W g the original feature maps of chan-
nel number C, height H and width W. © is the dot-wise
multiply operation. Lcap € R3*H1 Wi denotes the activation
maps, H;, Wy indicate the height and width of input images.
In(-) and Re(-) are the interpolation and reshape operations,
which are used to convert the activation maps to the same size
as feature maps. Fy,; denotes the transformed results. A GAP
layer is followed to flatten the former result and obtain single
vectors. Finally, the classification scores of SSB are utilized
as pseudo labels to explicitly guide the training of the GAP
branch, which is used for the final generation of hash codes.
The corresponding loss is shown as below:

Lsai = Lkl(lgap, Isal) (6)

where Igqp, Isq are the prediction results of the GAP and
salient branches respectively. In this way, the GAP branch
can alleviate the negative effects of uninformative issues
and generate hash codes based on the salient regions, thus
explicitly reducing the redundancy. Finally, in the prediction
stage, the student model does not rely on activation maps from
the teacher model. Therefore, it brings no extra time costs.
2) Iterative Asymmetric Mutual Training: On the one hand,
owing to the constraint of fast feature extraction, the structure
of student model should be lightweight. However, it limits fur-
ther boost in performance within a single model. On the other
hand, due to the gap in learning ability between two models,
directly integrating mutual learning cannot fully exploit their
complementary effects and may even harm their performance.
Therefore, to tackle these issues, an iterative asymmetric
mutual training strategy is proposed. Firstly, to fully utilize
the powerful learning ability of the teacher model, the student
model is trained from multiple views based on multi-level
outputs of the teacher model, including feature maps, real-
valued features, hash codes. The first view mainly focuses
on minimizing the discrepancy in activation patterns for the
teacher and student models when receiving similar inputs.
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To be specific, directly optimizing the Euclidean distance
between their feature maps may bring large model bias,
thus resulting in overfitting to outputs of the teacher model.
Instead, the pairwise activation similarities of input samples
between them are adopted to be mimicked, which are shown as
below:

2
F, - F,T F,-FT

L Fs, F) = -
SR I TV A N T

)

"Iz e

where Fy, F; are feature maps from the student model and the
teacher model. I denotes the Frobenius-norm. Concerning the
real-valued features level, it is optimized from three perspec-
tives: classification score, pairwise and cosine similarities. For
the former, a similar function as Eq.(2) is used. The cosine
similarities between real-valued features from two models are
optimized as well, whose formulation is in Eq.(8).

M - A ) ®)

L (H,H):n(l—i
cosie T Il Hyll I Hell

where 7 is a weight parameter. Finally, the pairwise similarities
are also included as below:

1 2
Lim =3, | B~ B ©)
i,j

where E,l’J /E;’j is the Euclidean distance between Hti and HY,
H//H! is the feature of image x; from the teacher/student
model. q denotes the feature length. For real-valued feature
level, the losses can be summarized as follows:

Liin = Lii + Leos + Lgim (10)

As for hash codes, a similar operation to real-valued feature
level is adopted. Therefore, to be summarized, the objec-
tive function of student model in the TAMT is shown as
follows:

Liuir = Lmin (HS5 Ht) + Lin (Bs; Bt) + Lmap (FS» Ft) (11)

Additionally, to fully utilize the generalization of light-
weight student models, the classification scores I,H s I,B from
the student model are used as dark knowledge to impose
regularization on the teacher model, which can maintain its
discrimination meanwhile. Therefore, the objective function
of teacher model in the IAMT is shown as follows:

Loats = Lu (1 1) + L (17, 17) (12)

Finally, as shown in Fig.5, the weight maps from SSB can
boost the performance of hash codes from the student model,
thus enabling it to generate better classification results. Mean-
while, these results will impose stronger regularization effects
on the teacher model. With the gradient backpropagation, more
discriminative feature maps can be obtained, thus making the
SSB generate more refined weighted maps. Therefore, in this
way, SSB can be trained in a positive loop iteration mode,
in which the salient regions can be continuously mined and
refined to further improve the discrimination of final results.
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Fig. 5. The proposed iterative asymmetric training strategy.

D. Optimization

1) Overall Objective Function: Inspired by the recent pro-
gresses of classification and triplet losses on RelD, they are
included in our objective function. Specifically, the classifica-
tion loss is calculated as follows:

ewﬁf;er,;
T .
2711 e it

c
1
Lsy = —C E yi log (13)
i=1

where W, b are the weights and bias for classification layers.
The formulation of triplet losses can be found in Eq.(14).

C

Liri= Y [m+D(fop(I"), fo(I'")) = D(fo(I'"), fo(I'"))]+
i=1

(14)

where m is the margin parameter. fy(-) denotes the feature
extraction process. I« is the i — th image in the batch,
I'r and I' indicate the hardest positive and negative image
of I'e. D(-) is the Euclidean distance function. For conve-
nience, the sum of the above loss for H and B is denoted as
follows:

Liyi=Lss(I®, y)+Leg(I", y)+Liyi(H, y)+Liri(B, y) (15)

Therefore, the overall objective function for the teacher
model can be summarized as follows:

Lin = Lt + Luis + Lqua (16)

The loss function for the student model is listed as below:

Lsty = Lt + Lyt + Lqua + Lsa (17)

2) Training and Testing: The whole training process is
summarized as Algorithm.1. The whole framework is trained
in an iterative asymmetric mutual learning mode. In the
prediction stage, final hash codes for out-of-sample images can
be directly obtained through the GAP branch of the lightweight
student model, while having no extra binarization operation.
Finally, the target images are retrieved using the Hamming
distance metric.

IV. EXPERIMENTS

In this section, we first describe datasets and evaluation
protocols. Specifically, for fair comparison in retrieval time,

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Algorithm 1 Learning Algorithm for SIAMH

Input: P = {pi}f\i ;: images for training; y: person identities
for training images; student model: S; teacher model: T;
learning rate for S: py; learning rate for 7: y,; random
sample: R; batch size: M; number of iteration k«O0;
maximum iteration number: K;

Output: Parameters of S: 6,

1: Initialize parameters of S and T: 6, and 8, with pre-trained
parameters on ImageNet.
2: repeat

{1, — R(P)

B Hy Fr, IP I < T({p'}})

Fsal < Re (Il’l (LCAM)) OF

Bg,Hy, F, If, 13H — S(Fsal’ {Pi}f-z])

Compute L, by Eq.16.

Compute Ly, by Eq.17.

Update 65 < 05 — /JSB%YLM,

10:  Update 6; — 6; — pt; 5 Lin

11: until £ > K

12: return 6,

R A

we introduce the hardware platform that our method is imple-
mented on. Then we evaluate the proposed SIAMH and con-
duct comparisons with state-of-the-art real-valued and hashing
person RelD methods to demonstrate the effectiveness and
efficiency of SIAMH.

A. Datasets and Evaluation Measures

We conduct experiments on five off-the-shelf datasets
Market1501 [49], DukeMTMC-ReID [50], CUHKO3 [51],
MSMT [52], and LaST [53]. The details are shown as follows.

Market1501 includes 32,688 bounding boxes
of 1,501 pedestrians captured from 2-6 cameras. We split
12,936 images of 751 persons for training, and use the
3,368 images for the query. The left 19,732 images are
utilized for the gallery.

DukeMTMC-ReID contains 36,411 images from
1,812 persons under 8 cameras. It provides a fixed training/
split strategy with 16,522 images of 702 persons for training,
2,288 images for the query, and the left 17,611 images for
the gallery.

CUHKO3 consists of 14,096 images of 1,467 identities
captured by 6 surveillance cameras. For the dataset, we fol-
low the widely utilized protocol proposed in [50] with the
20 training/testing splits.

MSMT17 contains 126,441 images of 4,101 identities.
All the images are captured from 15 cameras. Following the
standard protocol [52], 1,041 identities are split for training
and the rest for test.

LaST contains 228,156 images of 10,862 identities.
70,923 images of 5,000 identities are split as the training set,
while 20,584 images of 56 identities are used as the evaluation
set. The rest 133,214 images from 5,803 identities are adopted
as the test set.

Evaluation Metrics: Following the standard evaluation
protocol in ReID, we use the Cumulated Matching
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TABLE I

COMPARISON WITH STATE-OF-THE-ART REAL-VALUED METHODS ON MARKET-1501, DUKEMTMC-REID, AND MSMT17. B AND R DENOTE BINARY
AND REAL-VALUED FEATURES RESPECTIVELY. BEST RESULT IS SHOWN IN BOLD FORMAT. Q.TIME DENOTES TIME COSTS FOR QUERY

Methods Code Market-1501 DukeMTMC-relD MSMT17
Type Length | R1 (%) | mAP (%) | Q.Time (s) | Rl (%) | mAP (%) | Q.Time (s) | R1 (%) | mAP (%) | Q.Time (s)
PN-GAN[40] R 1024 89.4 72.6 - 73.6 532 - - - -
IDE[41] R 2048 88.1 72.8 - 69.4 55.4 - - - -
BoT[39] R 2048 94.1 85.7 22 86.4 76.4 2.0 - - }
SPRelD[42] R 10240 925 81.3 - 84.4 71 - - - -
PCB[4] R 12288 93.8 81.6 6.9 83.3 69.2 6.3 68.2 40.4 1.4x102
VPM[43] R 14336 93 80.8 - 83.6 72.6 - - - -
ABD-Net[8] R 3072 95.6 88.3 2.8 89.0 78.6 2.5 82.3 60.8 7.7x10!
RGA-SC[44] R 2048 96.1 88.4 2.4 - - - 80.3 57.5 6.3x10!
SCSN[45] R 1536 95.7 88.5 - 90.1 79.0 - 83.0 58.0 -
SONA([5] R 1536 95.7 88.8 - 89.6 78.3 - - - -
Osnet[46] R 512 94.8 84.9 1.8 86.6 73.5 15 78.7 52.9 4.3x10!
DGNet[47] R 1024 94.8 86.0 - 86.6 74.8 - 71.2 52.3 -
IANet[48] R 2048 94.4 83.1 - 87.1 73.4 - 75.5 46.8 -
SIAMH B 2048 95.4 88.8 2.8x107! 90.1 79.4 2.0x107! 83.2 62.5 6.8x107!
TABLE II

Characteristics (CMC) curve and the mean average preci-
sion (mAP) to evaluate the performance. The single query
setting is applied in all experiments.

B. Implementation Details

We conduct experiments based on Fastreid [54], a popular
framework for deep-learning RelD in Pytorch. The standard
Adam [55] algorithm is adopted. Initial learning rate is set to
3.5x10™* and decaying to 0.1 at 20 and 40 epochs. For a
fair comparison, the backbone networks for all the compared
methods and experiments are ResNet-50 and pre-trained on the
ImageNet dataset. The input images are resized to 384 x128.
The batch size in the training stage is 64 and we set the batch
size for testing to 128. The training epoch number is set to
120. The images for training are augmented by random erasing
and random flipping. Besides, the XBM [56] training strategy
is adopted. The hardware platform for our method and all the
compared methods is a PC with Intel Core i5 CPUs (2.6GHz),
and three NVIDIA GTX 2080Ti GPUs with 11G memory.

In our evaluations, we use the Local Maximal Occur-
rence (LOMO) feature [S57] and deep features extracted by
ResNet-50 to evaluate the non-deep hashing methods. Follow-
ing the standard protocol, we randomly choose 1,000 samples
from the training set as the anchor images in KSH [58],
SDH [12] to construct kernels. For computational efficiency,
as for the LOMO feature, we use PCA to reduce the feature
dimension to 3,000. For all the hashing and real-valued meth-
ods, we follow the suggestion of the corresponding authors to
set the related hyper-parameters. The source code of KSH,
SDH is not available, so we carefully re-implement them
according to the setting of their authors. For STAMH, we set
£=0.1 for both teacher and student models. We set 1=1.5,
n=0.3 to make the distillation loss contribute more to the total
loss.

COMPARISON WITH STATE-OF-THE-ART METHODS ON LAST. B AND r
DENOTE BINARY AND REAL-VALUED FEATURES RESPECTIVELY.
BEST RESULT IS SHOWN IN BOLD FORMAT

LaST
Methods
Type | R1 (%) | R5 (%) | R10 (%) | mAP (%)

PCB[4] R 50.6 68.0 73.9 15.2

Osnet[46] R 64.3 78.9 82.6 21.0
ABD-Net[8] R 48.5 67.6 74.4 16.1

CtF[26] B 70.0 83.3 86.7 26.5

SIAMH B 72.1 85.1 88.3 30.2

C. Comparisons With Real-Valued Methods

As shown in Table I and II, we compare our method with
state-of-the-art real-valued RelD methods, which generally
adopt high-dimensional real-valued features for better perfor-
mance. The results show that SIAMH outperforms the majority
of real-valued methods and meanwhile largely improves the
matching efficiency. Specifically, compared with the popular
method BoT, SIAMH achieves 3.05%, 3.01% improvement
in Rank-1 on two datasets. Though SONA and ABD-Net
produce slightly better results than SIAMH, it further closes
the gap between real-valued methods and binary methods and
even achieves better results than most real-valued methods in
some cases. Additionally, it can be discovered that methods
with longer features generally show better performance but
suffer from low matching efficiency. For example, as for
methods adopting features shorter than 2048-dimension, they
all achieve Rank-1 scores less than 90% and 80% on Mar-
ket1501 and DuekMTMC-relD respectively. However, meth-
ods using features longer than 10,240-dimension generally
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TABLE III

COMPARISON WITH TRADITIONAL HASH BASED METHODS IN map(%). “sdh”/“sdh+cnn” DENOTES sdh USING HAND-CRAFT
AND DEEP FEATURES RESPECTIVELY. BEST PERFORMANCE IS SHOWN IN BOLDFACE

Methods Market1501 DukeMTMC-RelD CUHKO03
32bits  64bits  96bits  128bits | 32bits  64bits  96bits  128bits | 32bits  64bits  96bits  128bits

COSDISH[11] 1.89 3.68 4.83 5.94 1.02 2.39 3.81 5.11 0.82 1.54 2.59 3.01
SDH[12] 1.65 2.93 3.78 4.06 0.98 1.89 2.25 2.42 1.00 1.24 1.32 1.65
KSHI[58] 4.66 5.62 6.16 6.20 2.13 2.67 331 3.34 2.86 2.53 2.11 1.75
ITQ[59] 1.70 3.00 3.83 443 0.91 1.41 1.77 2.16 0.68 0.76 0.82 0.95
LSH[13] 0.44 0.83 1.18 1.68 0.40 0.58 0.83 1.06 0.37 0.46 0.44 0.68
COSDISH+CNN 0.79 1.06 1.47 1.82 0.62 1.09 1.42 1.79 0.39 0.57 0.63 0.62
SDH+CNN 0.73 1.26 1.55 1.67 0.66 0.89 1.06 1.40 0.44 0.65 0.63 0.63
KSH+CNN 0.77 0.74 0.54 0.68 0.30 0.37 0.44 0.46 0.49 0.41 0.33 0.41
ITQ+CNN 0.77 1.07 1.21 1.29 0.56 0.92 1.21 1.34 0.38 0.38 0.43 045
LSH+CNN 0.50 0.77 1.04 1.27 0.48 0.74 0.99 1.17 0.33 0.35 0.35 0.42
SIAMH 45.6 65.7 73.9 78.4 334 53.30 61.9 64.6 36.1 54.3 61.8 67.4

achieve higher than 92% results in Rank-1. Besides, meth-
ods using longer features generally need much longer time
for a single query. Take PCB as an example, it adopts
12,288-dimension features and needs 6.9s and 6.3s for a
single query on two datasets respectively. In contrast, BoT
only takes around 2.0 seconds. Finally, it can be revealed
from the table that binary codes of SIAMH can achieve
nearly the same performance with state-of-the-art real-valued
methods but bring a large reduction to query times costs.
When applied in larger gallery set such as MSMT17 and LaST,
SIAMH shows more outstanding advantages both in accuracy.
Specifically, when compared with the ABD-Net, the proposed
SIAMH outperforms it by 0.9% and 1.7% in Rank-1 and mAP
on MSMT17 respectively.

D. Comparisons With Hashing Methods

In this section, we compare SIAMH with other state-of-
the-art hashing methods including traditional and deep hash
approaches, which are shown in Table III and IV. Because
all methods have the same query time when the code length
is the same, here we only compare time costs for feature
extraction. As the results reveal, traditional hashing methods
generally perform much more poorly than deep hashing ones.
For example, KSH and ITQ perform best among traditional
methods, while achieving half the worst result in deep hashing
methods. Additionally, when using deep features, traditional
features even perform worse. Two factors may account for it:
1) Firstly, deep features contain biased knowledge of deep
networks and complex semantic structure, which is rather
abstract for traditional methods. Therefore, discriminative
information cannot be fully extracted from deep features for
them. 2) Besides, training processes of traditional methods
are hard to converge. By contrast, low-level visual clues
are utilized to extract hand-crafted features, which can be
easily repeated by calculating projection matrixes. As a result,
compared with deep features, hand-craft ones are more suitable
for traditional methods. Besides, owing to limited information

capacity of binary codes, there still exists a gap between
real-valued methods and hashing ones, especially for short
codes. For example, when adopting 2048-dimension features,
DLBC and CtF achieve relatively high performance. However,
their accuracy drops rapidly and has a large gap with real-
valued methods when using codes shorter than 512 bits,
which is mainly due to the severe information redundancy
between their codes. By contrast, SIAMH can achieve higher
performance for long hash codes owing to its discriminative
feature extraction. Additionally, by explicitly reducing the
redundancy between hash codes, STAMH can alleviate the
performance deterioration and further close the gap in accuracy
between these two types of methods, especially for short
codes. Specifically, compared with the state-of-the-art hashing
method DLBC, SIAMH outperforms it by 5.5% and 1.4%
in mAP when using codes of 512 and 2048 dimensions.
More importantly, with the code length reducing, the gap
between SIAMH and DLBC becomes larger as well. When
comes to more challenging datasets such as DukeMTMC and
MSMT, SIAMH shows greater advantages than DLBC. As for
CtF, though it can extract multiple hash codes in a single
framework, SIAMH outperforms it both in accuracy and time
costs for feature extraction. With regard of other hashing
methods, SIAMH can achieve better performance than the
majority of them even when they use longer codes. For exam-
ple, ABC using 2048-dimension codes achieves 64.7% and
81.4% for Rank-1 and mAP on Market-1501 while STAMH
of 128 bits obtains 78.4% and 90.6% respectively, which
boosts the former by 13.7% and 9.2%. Finally, compared
with existing methods, SITAMH shows great model flexibility
by integrating iterative asymmetric mutual learning, which
will be verified in the following experiments. Apart from
the mAP and Rank-1, we compare some of these methods
with SIAMH in CMC-50 curve, which is a more intuitive
form. As shown in Fig.6, STAMH outperforms the binary and
real-valued methods across all the coordinates, which further
demonstrates the superiority of STAMH.
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COMPARISON WITH STATE-OF-THE-ART DEEP HASHING METHODS ON MARKET-1501, DUKEMTMC-REID, AND msmt17 IN RANK-1(%), mAP(%) AND
QUERY TIME(s). BEST RESULT IS SHOWN IN BOLDFACE. F.TIME DENOTES TIME COSTS FOR FEATURE EXTRACTION

Method Code Market-1501 DukeMTMC-relD MSMT17
ethods
Length | Rl (%) | mAP (%) | FTime (s) | Rl (%) | mAP (%) | FTime (s) | Rl (%) | mAP (%) | F.Time (s)
DRSCH [32] 512 17.1 11.5 - 19.3 13.6 - - - -
DSRH [14] 512 27.1 17.7 - 25.6 18.6 - - - -
HashNet [60] 512 29.2 19.1 - 40.8 28.6 - - - -
DCH [15] 512 40.7 20.2 - 574 37.3 - - - -
CSBT [23] 512 429 20.3 - 472 33.1 - - - -
PDH [24] 512 44.6 243 - - - - - - -
DeepSSH [20] 512 46.5 24.1 - - - - - - -
ABC [25] 2048 81.4 64.7 3.3x 1072 82.5 61.2 3.0x 1072 - - -
CPDH [33] 2048 89.5 77.1 - 81.6 66.4 - . } _
32 60 37.7 3.9% 1072 495 28.7 3.7%x 1072 33.0 14.7 4.0x 1072
o [26] 128 88.9 71 3.8x 1072 78.6 59.4 3.7% 1072 64.2 37.9 4.0x 1072
t
512 92.8 82.2 3.8x 1072 85.4 71.6 3.8x 1072 73.2 49.0 4.0x 1072
2048 93.7 85.4 3.9%x 1072 87.7 75.7 3.7% 1072 76.7 525 4.0x 1072
64 82.7 62.5 - 72.4 50.6 - _ } j
128 89.7 72.8 - 80.5 62.2 - _ B} _
DLBC [10]
512 92.1 81.2 - 84.5 68.8 - _ B} _
2048 94.6 87.4 - 88.7 78.5 - 78.2 55.6 -
32 65.6 45.6 3.2x 1072 53.9 33.4 3.0x 1072 33.4 15.1 3.5% 1072
64 83.0 65.6 3.3% 1072 72.5 53.3 3.0x 1072 54.2 29.8 3.5% 1072
SIAMH 128 90.6 78.4 3.3% 1072 81.2 64.6 3.0x 1072 69.2 425 3.5% 1072
512 94.8 86.7 3.3% 1072 88.7 713 3.0x 1072 78.7 54.5 3.5% 1072
2048 95.4 88.8 3.3x 1072 90.1 79.4 3.0x 1072 83.2 62.5 3.5x 1072
1.00 +
) 000000000 WS T Y
0.981 0.95
0.96 1
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o o
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Component Analysis: In this section, extensive ablation
studies are performed for both teacher and student models
to verify the effect of each component. Concretely, the net-
work which only consists of ResNet-50 and a greedy hash

Top N

(a) CMC-50 on Market-1501

Top N

(b) CMC-50 on DukeMTMC-relD

Fig. 6. The CMC-50 Curve results on Market-1501 and DukeMTMC-relD.

layer is selected as the RelD baseline. Moreover, we con-
duct experiments to verify the effectiveness of self-distillation
quantization loss (SD), salience-guided self-distillation branch
(SSB), and the iterative asymmetric mutual training (IAMT).
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TABLE V
ABLATION STUDIES OF STAMH ON MARKET-1501 WITH 128 BITS

Methods Market-1501
R1 (%) | RS (%) | R10 (%) | mAP (%)
baseline 82.04 93.62 96.50 65.12
baseline+MT 77.38 90.94 94.24 59.30
baseline+SD 82.71 94.20 96.55 65.73
baseline+IAMT 85.60 95.75 97.18 74.73
baseline+DPM+IAMT 86.41 96.12 97.30 73.92
baseline+SSB 84.80 95.24 96.93 68.27
SIAMH 90.59 96.70 98.51 78.43
TABLE VI

ABLATION STUDIES OF THE TEACHER MODEL ON MARKET-1501 WITH
128 BITS. “TEACHER1-4” DENOTE THE VARIANTS OF THE TEACHER
MODEL. “TEACHER” IS THE MODEL THAT USES
ALL THE COMPONENTS

Market-1501
Methods
R1 (%) | R5 (%) | R10 (%) | mAP (%)

Teacher-1 88.09 95.58 97.36 73.12
Teacher-2 87.00 95.04 97.00 72.36
Teacher-3 86.70 95.31 97.18 72.55
Teacher-4 89.58 96.41 97.71 74.45
Teacher 91.72 96.97 98.13 80.15

Additionally, we add successive experiments, which focus
on evaluating the impact of the diverse partition module to
IAMT. Besides, we also list the performance of the common
symmetric mutual learning strategy. Finally, we compare the
results of all the variants with SIAMH. As summarized
in Table V, symmetric mutual learning does harm to the
performance of the baseline model owing to its drawbacks.
As a comparison, the proposed IAMT can bring 3.6%/7.6%
improvements to the baseline on Market-1501. The DPM
can further boost the performance, which aims at encoding
local visual clues to improve the discrimination of real-valued
features. Additionally, SD and SSB can also enhance the per-
formance of SIAMH by optimizing the quantization loss and
explicitly reducing the information redundancy respectively.
When seamlessly integrating these components, SIAMH can
achieve its best performance. Besides the ablation study of
SIAMH, we also conduct extensive experiments on the com-
ponents of the teacher model to verify their effectiveness.
As shown in Table. VI, Teacher-1 denotes the model without
the local branch, while Teacher-2 is the model which removes
the GAP branch from the original framework. Teacher-3 rep-
resents the model without the GMP branch and Teacher-4 is
the variant without the Divide-and-Encode module. The results
of Table. VI can effectively demonstrate the improvement of
each component in the teacher model to the final performance.
Finally, we conduct cross-domain experiments to verify the
effect of IAMT on the teacher model, as shown in Table. VII.
As the results show, by adopting the IAMT, the generalization
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TABLE VII

THE 128-BITS PERFORMANCE OF TEACHER MODEL
ON CROSS-DOMAIN TASKS

DukeMTMC->Market1501
Methods
R1 (%) | R5 (%) | R10 (%) | mAP (%)
Teacher 31.38 52.05 60.78 13.90
Teacher+IAMT 32.54 52.91 60.90 14.52
(a) Impact of A (b) Impact of n

Fig. 7. Impact to the performance on two datasets of A and 7.

TABLE VIII

REPLACING THE FEATURE EXTRACTION NETWORK OF STAMH ON
MARKET-1501 DATASET. THE LENGTH OF HASH CODES IS
128-BITS. “S” DENOTES THE PROPOSED STAMH

Market-1501
Methods
R1 (%) | R5 (%) | R10 (%) | mAP (%) | Q.Time (s)
S&Osnet 88.09 95.12 97.98 76.17 3.3%x 1072
S&MGN 82.47 92.30 94.14 69.36 3.3%x 1072
S&PCB 86.82 94.11 95.75 75.01 3.3%x 1072
S 90.59 96.70 98.51 78.43 3.3%x 1072

capability of the teacher model is improved, which demon-
strates the complementary effect of IAMT to both the teacher
and student models.

E. Ablation Study

1) Parameter Sensitivity: In this part, we evaluate the
influence of 4 and 5. As shown in Fig.7, the performance
of SIAMH is not sensitive to A. Besides, when 1 = 0.1,
SIAMH achieves the best accuracy and Rank-1. As for 7,
the performance reaches its highest point when 7 increases
to 0.01. Though there exists a slight drop, SIAMH is not
sensitive to the value of # overall. Therefore, in all the
experiments of SIAMH, we set 4 = 1.5 and = 0.3
respectively.

2) Model Flexibility: To verify the model flexibility of
SIAMH, we replace the teacher network with existing off-
the-shelf real-valued methods, including PCB [1], MGN [8],
Osnet [46]. As is revealed in Table VIII, SIAMH can also
obtain similar results when combining with these methods,
while has no additional time costs. Therefore, compared with
existing hashing methods, SIAMH shows great advantages in
model flexibility.
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Fig. 8. Activation maps visualization of feature maps. From left to right,
(i) Original images, (ii) Activation map of common mutual learning, and
(iii) Activation map of IJAMT. In the heat map, the response increases from
blue to red.

SIAMH

CtF

BoT

Fig. 9. Retrieval results of SIAMH, CtF, and BoT. The images in the left
column are query sets. Blue/red boxes indicate correct/false matches.

3) Qualitative Results: Apart from the accuracy, we visu-
alize the salience and ranked instance retrieval results to
provide more convincing insights into SIAMH. In Fig.8§,
we compare the difference of salience maps from the student
model. As the figure shows, the results of common methods
are slightly coarse, which are mainly due to two mentioned
drawbacks: 1) In the common mutual learning framework,
the gap of learning ability between two models does harm to
the teacher model, 2) it cannot fully utilize the complementary
advantages of two models. To address these issues, IAMT is
proposed, in which two model are trained in an asymmetric
positive iterative mode. Therefore, compared with the former
results, the extracted salience maps of IAMT are more refined,
in which the outline of human bodies is more complete. As a
result, binary codes are always extracted from the weighted
salient regions, thus boosting the performance of SIAMH.
Fig.9 shows some instance retrieval results of SIAMH.
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As it illustrates, STAMH shows good performance in handling
occlusions and distinguishing persons with similar appearance,
due to it powerful ability in refining discriminative salience
regions.

V. CONCLUSION

In this paper, we propose a novel deep hashing method
for fast person re-identification, called salience-guided itera-
tive asymmetric hashing (SIAMH). Concretely, different from
existing works, STAMH addresses the problem of informa-
tion redundancy by presenting a new salience-guided self-
distillation branch. Moreover, an iterative asymmetric mutual
training strategy is developed to alleviate drawbacks of com-
mon mutual learning and fully exploit the complementary
effect of two models, in which salient regions from the teacher
model are continuously refined through iterative training, thus
providing a positive circular effect. Extensive experiments
on benchmarks show that by explicitly reducing the redun-
dancy of hash codes, STAMH further closes the gap between
real-valued methods and hashing methods in accuracy,
whilst significantly reduces the memory cost and response
time.
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