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Abstract
This paper develops a weak-label-based global and local multi-view multi-label learning with three-way clustering (WL-
GLMVML-ATC) to solve multi-view multi-label data sets and exploit more authentic global and local label correlations of 
both the whole data set and each view simultaneously. Different from the traditional learning methods, WL-GLMVML-ATC 
pays more attention to the solutions of weak-label cases and uncertain relationships of clusters with the usage of Universum 
and active three-way clustering. According to Universum notion, even though the size of labeled instances is much more 
smaller than the unlabeled ones, the useful sample information can still be enhanced. Through the active three-way cluster-
ing strategy, the belongingness of instances to a cluster depend on the probabilities of uncertain instances belonging to core 
regions. This strategy brings a more authentic local label correlation since many traditional methods suppose that instances 
and the corresponding clusters always exhibit certain relationships such as belong-to definitely and not belong-to definitely. 
This hypothesis is not ubiquitous in real-world applications. According to the experiments, we can see WL-GLMVML-ATC 
(1) achieves a better performance, be superior to the classical multi-view learning methods and multi-label learning methods 
in statistical, advances the development of these learning methods in final; (2) won’t add too much running time; (3) has a 
good convergence and ability to process multi-view multi-label data sets.

Keywords Three-way clustering · Multi-view multi-label · Label correlation · Weak label

1 Introduction

1.1  Intention and motivation

In real-world applications, multi-view, multi-label, and 
multi-view multi-label data sets are three ubiquitous data 
sets [1–5] and there are many related tasks to process these 
data sets are put forward. Among these tasks, two of them 
are of a general nature, i.e., clustering and classification and 
in order to process these two tasks, there are many learning 
methods are developed [4, 6, 7]. But it is found that although 
these methods performed better when they were put forward, 
there are some key problems need to be solved at present 
as below.

First, for the clustering tasks, previous related methods 
always assume the instances (a data set is composed of many 
instances) and the corresponding clusters exhibit certain 
relationships. Namely, an instance belongs (or not belong) 
to a cluster definitely. While in real-world applications, 
instances and the clusters might have gradual relationships. 
In other words, there are three types of relationships between 
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an instance and a cluster, namely, belong-to definitely, not 
belong-to definitely, and uncertain. In most of the existing 
studies, a cluster is represented by a single set. Any set natu-
rally divides the space into two regions. Instances belong to 
the cluster if they are elements of the set, otherwise they do 
not. Here, only two relationships are considered, no matter in 
hard clustering or in soft clustering. They are typically based 
on two-way (i.e., binary) decisions. While for the third rela-
tionship, which means the instance may or may not belong 
to the cluster, one cannot make decisions based on the pres-
ently obtained knowledge, i.e, two-way decisions, and finally 
the improvement of clustering performance is limited.

Second, for the classification tasks, previous related 
methods do not take or exploit the global and local label 
correlations of both the whole data set and each view simul-
taneously. Indeed, among labels of instances may exist some 
correlations, for example, label ‘nature’ and label ‘rural’ 
have a belonging relationship. If the label correlations are 
shared by all instances, the correlations are global. While if 
they are shared only by a data subset, they should be local. 
Even though some latest methods including global and 
local multi-view multi-label learning (GLMVML) [8] can 
exploit global and local label correlations of the whole data 
set and each view simultaneously, while they adopt two-way 
decision (for example, k-means) to exploit local label cor-
relations which are a little inauthentic. This also limits the 
improvement of classification performance.

Third, as we know, with the development of the tech-
nology, trade, finance, etc., more and more data sets are 
generated with a rapid speed, for example, news data set or 
Youtube data set. While with the limitation of manpower, 
people cannot label all instances. Indeed, only few instances 
are labeled and such a data set is named weak-label data set. 
For the previous methods including GLMVML, they cannot 
process weak-label case well.

There is no doubt, these problems will disturb the pro-
cessing of real-world applications and degrade the perfor-
mances of corresponding clustering and classification learn-
ing methods. Moreover, since these three kinds of data sets 
and two kinds of tasks are representative and ubiquitous, 
thus researching and solving the above mentioned problems 
are essential and important. This is also the original inten-
tion and motivation of our work.

1.2  Tasks and targets

In order to solve the above mentioned problems, we start our 
research and try to finish the below tasks.

First, in real-world applications, there are three types 
of relationships between an instance and a cluster, namely, 
belong-to definitely, not belong-to definitely, and uncertain. 
While many present clustering methods only make decisions 
based on the two-way decisions (namely consider the first 

two relationships) and always ignore the uncertain relation-
ship, thus our work wants to use a method to consider such 
an uncertain relationship.

Second, local label correlations are useful for improving 
classification performances. But some latest methods cannot 
exploit authentic local label correlations since they don’t 
consider the uncertain relationship between instances and 
clusters. Thus our work aims to research that how to exploit 
a more authentic local label correlations.

Third, with the limitation of manpower, many data sets 
consist of few labeled instances and abundant unlabeled 
instances and such a weak-label case leads to a poor clas-
sification or clustering performance. Due to many present 
methods cannot solve this issue well, thus our work try to 
propose a method to process weak-label case.

Once we solve the above tasks, we want to realize the 
corresponding targets, namely, considering an uncertain 
relationship and processing weak-label case. With the con-
sideration of such an uncertain relationship, we want to 
exploit a more authentic local label correlations. Meanwhile, 
with the solution of weak-label case, we want to expand the 
scope of application of the present learning methods and 
make them be feasible for the data sets consisting of few 
labeled instances and abundant unlabeled instances. Finally, 
we expect that the performance of a multi-view multi-label 
learning method to process clustering and classification 
tasks can be enhanced and we can advance the development 
of multi-view multi-label learning.

1.3  Proposal and solution

1.3.1  Proposal

In order to finish the above mentioned three tasks and real-
ize the targets, we select GLMVML as the basic method 
and develop a weak-label-based global and local multi-view 
multi-label learning with three-way clustering (WL-GLM-
VML-ATC). Here, the reason we select GLMVML is that 
it encounters the same key problems mentioned as before.

1.3.2  Solution

Then, we know that for the uncertain relationship between 
instances and clusters, we cannot make decisions based on 
two-way decisions. But we can make further decisions once 
more information becomes available. This method is referred 
to as three-way decisions suggested by Yao [9] and advanced 
by other scholars [10–27]. Thus, we use an active three-way 
clustering (ATC) which is one kind of three-way decisions 
developed by Yu et al. [28] to produce the group partition 
of the data set and improve clustering performance. With 
the usage of ATC, we can take the uncertain relationship 
and each instance belongs to a cluster with a probability 
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rather than certainly. This accords to the real scenes. Moreo-
ver, replacing k-means which is used to exploit local label 
correlations in GLMVML with ATC, we can exploit more 
authentic local label correlations. In other words, with the 
usage of ATC which is a three-way decision, we can finish 
the first and second tasks.

Furthermore, in order to solve the weak-label case and 
finish the third task, we adopt the notion of Universum learn-
ing and develop a method named unlabeled instance gener-
ated (UIG).

In summary, with the combination of UIG, ATC, and 
GLMVML, we realize WL-GLMVML-ATC, solve the 
above mentioned problems, and enhance the ability to pro-
cess clustering and classification tasks.

1.4  Originality and contributions

1.4.1  Originality

WL-GLMVML-ATC adopts ATC to divide the data set 
into several clusters and each instance belongs to a clus-
ter according to a probability. Then, on the base of GLM-
VML, with the usage of ATC, the belongings of instances 
to clusters are consistent with the real scenes and we can 
obtain more authentic local label correlations. Moreover, 
with the usage of UIG which is developed on the notion 
of Universum, we can process weak-label case. Although 
on the surface, the WL-GLMVML-ATC is the combina-
tion of the existing work Universum, ATC, and GLMVML, 
but in the field of multi-view multi-label learning, it is the 
first attempt for the combination of global and local label 
correlations, the three-way decisions, and Universum. The 
proposed method can improve the classification and cluster-
ing performances simultaneously.

1.4.2  Contributions

The contributions of WL-GLMVML-ATC are (1) it can 
reflect the global and local label correlations simultaneously 
and it can exploit more authentic local label correlations; (2) 
it has a better ability to process multi-view multi-label data 
sets, especially for weak-label case; (3) it moves forward 
research of multi-view multi-label learning.

1.5  Framework

The paper is structured as follows. Section 2 elaborates on 
the ATC approach. Section 3 describes the UIG approach. 
Section 4 presents the framework of the developed WL-
GLMVML-ATC. Section 5 covers experimental results. 
Conclusions and future studies are presented in Sect. 6.

2  Active three‑way clustering (ATC) [28]

In order to describe and exploit the three types of relation-
ships between instances and clusters, we adopt ATC which 
is one of three-way decisions in our work. Similar with 
[28], before we elaborate on the ATC approach, we briefly 
review the basic knowledge of ATC including the three-
way representation of clustering and pairwise constraints 
as below.

2.1  Three‑way representation of clustering

Suppose the  g roup par t i t ion of  the  data  set 
X = {x1, ..., xi, ..., xn} i s  C = {C1, ...,Cm, ...,Cg} and xi 
represents the ith instance. Then for each cluster in the 
group partition, namely, Cm , it can be represented by 
Cm = (Co(Cm),Fr(Cm)) . Here, Co(Cm) = CoreRegion(Cm) ⊂ X 
and Fr(Cm) = FringeRegion(Cm) ⊂ X  . Let Tr(Cm) = X−

Co(Cm) − Fr(Cm) = TrivialRegion(Cm) . Then Co(Cm),Fr(Cm),Tr(Cm) 
naturally form the three regions related to Cm as core 
region, fringe region and trivial region respectively. Spe-
cifically, if x ∈ CoreRegion(Cm) , the instance x belongs to 
cluster Cm definitely; if x ∈ FringeRegion(Cm) , the instance 
x might belong to cluster Cm ; if x ∈ TrivialRegion(Cm) , 
the instance x does not belong to cluster Cm definitely. 
Under these definitions, for each cluster, we have 
X = Co(Cm)

⋃
Fr(Cm)

⋃
Tr(Cm) ,  Co(Cm)

⋂
Fr(Cm) = ∅ , 

Co(Cm)
⋂

Tr(Cm) = ∅  ,  Tr(Cm)
⋂

Fr(Cm) = ∅  .  T h e n 
C = {(Co(C1),Fr(C1)), ..., (Co(Cg),Fr(Cg))} and it can be 
treated as the three-way representation of clustering for 
X.

2.2  Pairwise constraints

According to [28] and [29], pairwise constraints offer 
typical prior information for semi-supervised cluster-
ing. In their work, they introduce must-link (positive 
association) and cannot-link (negative association) to 
reflect the constraint relations between the data points, 
i.e., instances. For the data set X = {x1, ..., xi, ..., xn} , 
let Y = {y1, ..., yi, ..., yn} indicate the label matrix and 
yi denotes the class label of xi . Then must-link con-
straint requires that the two instances must belong 
to the same cluster, and this relation is denoted by 
ML = {(xi, xj)|yi = yj, for i ≠ j, xi, xj ∈ X, yi, yj ∈ Y}  . 
Cannot-link constraint requires that the two instances must 
belong to different clusters, and this relation is denoted by 
CL = {(xp, xq)|yp ≠ yq, for p ≠ q, xp, xq ∈ X, yp, yq ∈ Y} . For 
instances xi, xj, xg ∈ X , [30] said that must-link constraint 
shows the following transitivity properties on instances.
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Then in [28], we set a matrix R ∈ ℝ
n×n to store the constraint 

pairs and the update of R is given below. First, R is initialized 
as ∅ . Then, when a pair of instances are must-link constraint 
relation, namely (xi, xj) ∈ ML , the corresponding value of 
element in R is updated to 1; when a pair of instances are 
cannot-link constraint relation, namely (xi, xj) ∈ CL , the cor-
responding value of element in R is updated to 0. At the end 
of each iteration, we update R according to the response of 
expert and the transitivity properties of Eq. (1).

Next, one updates the consensus similarity matrix W⋆ 
with Eq. (2). Here, W⋆ = (Z⋆ + (Z⋆)T )∕2 where Z⋆ is a 
consensus low-rank matrix which is derived from X. The 
method to get Z⋆ can refer to [28].

2.3  Description of algorithm ATC 

ATC is an iteration processing and it consists of the below 
five procedures, namely, the spectral clustering processing, 
initial core regions construction, to extend core regions 
and construct fringe regions, to select the most informa-
tive instance from fringe regions and to construct pairwise 
query. According to the below procedures, we know that 
the three-way clustering results are constructed by two 
steps. First, we produce a preliminary result. Second, we 
extend core regions and construct fringe regions.

2.3.1  Spectral clustering processing

Spectral clustering processing is a kind of clustering and 
it aims to produce a preliminary clustering result and opti-
mize the result by iterations. In our work, we refer to [28] 
and adopt the same spectral clustering algorithm so as to 
produce a preliminary clustering result of X. The details 
of this algorithm can be found in [28]. Here, we should 
notice that the reason we adopt spectral clustering pro-
cessing is just to produce a preliminary clustering result. 
This operation can be replaced by other existing clustering 
approaches. Due to we will use the below four steps to 
optimize the clustering result, thus we needn’t to pay too 
much attention to the choice of the clustering algorithm 
in this step.

(1)

(xi, xj) ∈ ML & (xj, xg) ∈ ML

⇒ (xi, xg) ∈ ML

(xi, xj) ∈ ML & (xj, xg) ∈ CL

⇒ (xi, xg) ∈ CL

(2)
if (xi, xj) ∈ ML, then wij = wji = 1

if (xi, xj) ∈ CL, then wij = wji = 0

2.3.2  Initialize core regions construction

According to the preliminary clustering result of X, we ini-
tialize core regions construction. The method to realize the 
initialization is farthest-first traversal scheme [31] and this 
scheme aims to select the core instances. Core instances 
indicate the ones which locate on the fringe of a cluster and 
contain more information than instances in the center of a 
cluster. The basic idea of farthest-first traversal of a set of 
instances is to find K instances such that they are far from 
each other. Details are given below.

First, we let the original X be the CandidateSet and l 
count the number of constructed core regions. Initial value 
of l is 1. Second, for each cluster (Co(Cm),Fr(Cm)) , it is 
initialized as ∅ , namely, Co(Cm) = ∅ and Fr(Cm) = ∅ . 
Third, we select a starting instance x from X at random and 
put x into the Co(C1) . Fourth, we choose the next instance to 
be farthest from the untraversed set CandidateSet by Eq. (3). 
Being specific, AllCo is the set of all core instances, namely, 
AllCo =

⋃g

m=1
Co(Cm) . According to min-max criterion 

[32] ,  the  distance between x  and AllCo  i s 
d(x,AllCo) = min

y∈AllCo
||x − y|| . Then, the farthest one is deter-

mined as follows.

After that, we should decide whether x and an instance 
xi ∈ Co(Cm) (1 ≤ m ≤ g) are in the same cluster. We make 
pair-wise queries through the form as: do instances x and xi 
belong to the same cluster? If the ML constraint is satisfied, 
x is assigned to Co(Cm) and it should be removed from Can-
didateSet. If no one ML constraint is satisfied after traversing 
all core regions, a new core region Co(Cg+1) is constructed 
and assign x to the new core region Co(Cg+1) . With the above 
procedure, we can divide the CandidateSet into g clusters.

2.3.3  Extend core regions and construct fringe regions

Once we execute the spectral clustering processing and ini-
tialize the core regions construction as long as it is not in 
the first iteration, we extend these core regions and construct 
fringe regions. Concretely speaking, set N(x) be a set of q 
neighbor instances of x and N(x) can be built by the last 
iteration result. Then we extend the core regions by observ-
ing the relationship between the x (which is an unlabeled 
instance) and xi (which is a labeled random instance from 
Co(Cm) ). Namely, if x is the neighbor of xi and xi is also the 
neighbor of x, then we can say that x is much similar with 
xi and they should both belong to the core region. If x is the 
neighbor of xi , but xi is not the neighbor of x, we say they 

(3)
x ← arg max

x∈CandidateSet
d(x,AllCo) =

arg max
x∈CandidateSet

( min
y∈AllCo

||x − y||)
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are not similar and x should belong to the fringe region. 
Otherwise, if x is not the neighbor of xi , we think it is trivial 
to the cluster. So, according to this, we have the following 
three-way decision rules.

2.3.4  Select the most informative instance x⋆ from fringe 
regions

Then we adopt the active learning strategy to improve the 
performance of clustering. The objective of this strategy is to 
select the most informative instance x⋆ from fringe regions. 
Concretely speaking, we measure the uncertainty of instance 
based on the similarity firstly. Namely, on the base of con-
sensus similarity matrix W⋆ , let w.j denote the similarity 
between x and xj and U =

⋃g

m=1
Fr(Cm) denote all uncertain 

instances currently, then we adopt the following formula to 
estimate the probability of an uncertain instance x belong-
ing to a core region Co(Cm) where ||Co(Cm)

|| is the number of 
instances in the core region Co(Cm).

Second, we use Eq. (6) to measure the uncertainty of an 
instance by the entropy.

where x ∈ U.
Then, the most informative instance x⋆ is selected by Eq. 

(7).

2.3.5  Construct pairwise query

Finally, we construct pairwise query with the following 
method. First, we sort the clusters by P(x⋆ ∈ Co(Cm)) in 
descending order where 1 ≤ m ≤ g . Second, for each clus-
ter, we select one instance xi from Co(Cm) in random and 
query the constraint relationship between x⋆ and xi . If 
(x⋆, xi) ∈ ML , then Co(Cm) = Co(Cm) ∪ {x⋆} . At last, we 
adopt Eq. (1) to update the matrix R and Eq. (2) to update 
the matrix W⋆.

(4)

if (x ∈ N(xi)) ∧ (xi ∈ N(x)),

then Co(Cm) = Co(Cm) ∪ {x}

if (x ∈ N(xi)) ∧ (xi ∉ N(x)),

then Fr(Cm) = Fr(Cm) ∪ {x}

(5)P(x ∈ Co(Cm)) =

1

�Co(Cm)�
∑

xj∈Co(Cm)
w.j

∑g

s=1

1

�Co(Cs)�
∑

xj∈Co(Cs)
w.j

(6)H(x) = −
1

g

g∑
m=1

(P(x ∈ Co(Cm))log2P(x ∈ Co(Cm)))

(7)x⋆ = argmax
x∈U

H(x)

With iteration processing about the above five 
steps, we can divide X into g clusters, namely, 
C = {(Co(C1),Fr(C1)), ..., (Co(Cg),Fr(Cg))}.

3  Unlabeled instance generated (UIG)

In real-world applications, many data sets are generated 
with a rapid speed. While with the limitation of manpower, 
only few instances can be labeled and this leads to a weak-
label case. As we know, compared with unlabeled instances, 
labeled ones can bring more useful sample information. So 
weak-label case will bring a poor performance for learning 
methods. In order to overcome such a case, scholars develop 
a series of Universum learning methods. In terms of Univer-
sum, it was proposed by Vapnik and Kotz firstly [33] and 
have been developed by other scholars [34–37]. Universum 
aims to encode prior knowledge by given instances. With 
Universum learning, one collects some instances which do 
not belong to any class of data, but do belong to the same 
domain as the problem. These collections are named Uni-
versum instances which reflect some prior knowledge. By 
Universum, we can obtain a robust decision hyperplane.

Due to Universum learning can generate Universum 
instances which provide some useful sample information, 
thus on the base of the notion of Universum, we propose a 
method named unlabeled instance generated (UIG) to add 
more useful sample information. The processing is given 
below. 

(1) In each clsuter, we set a parameter nm ( nm should 
smaller than the number of labeled instances in this 
cluster). For each labeled instance xi in this cluster, we 
get the nm labeled instances which locate nearest from 
this labeled instance.

(2) According to those nm nearest labeled instances, we 
compute the information entropy of xi.

(3) Select K ( K ≤ nm ) labeled instances which informa-
tion entropies are smallest and for each selected labeled 
instance xj ( j ∈ [1,K] ), we get the p unlabeled instances 
in this cluster which locate nearest or farthest from xj.

(4) In terms of each unlabeled instance xul ( l ∈ [1, p] ) and 
corresponidng labeled instance xj , we compute the mid-
point of them to construct an Universum instance x⋆

jl
 

( j ∈ [1,K] and l ∈ [1, p]).
(5) Collect all generated Universum instances to create the 

corresponding Universum set X⋆ so as to enhance the 
useful sample information.

Here, we should notice that the Universum instances are not 
labeled, but since they are generated by labeled and unla-
beled instances and the labeled ones have small information 
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entropies and high certainties, thus those Universum 
instances can possess more useful sample information.

4  Weak‑label‑based global and local 
multi‑view multi‑label learning with active 
three‑way clustering

On the base of ATC, UIG, and GLMVML, we develop WL-
GLMVML-ATC as below and its main block diagram is 
given in Fig. 1.

4.1  Data preparation

Suppose X = {x1, ..., xi, ..., xn} =

⎛
⎜⎜⎜⎜⎜⎝

X1

⋮

Xj

⋮

Xv

⎞
⎟⎟⎟⎟⎟⎠

∈ ℝ
d×n is a data set 

with v views and n instances where i ∈ [1, n] and j ∈ [1, v] . 
For jth view, its data matrix Xj ∈ ℝ

dj×n consists of informa-
tion from n instances, namely, Xj = {x

j

1
, ..., x

j

i
, ..., x

j
n} and 

x
j

i
= {x

j

i1
, ..., x

j

ip
, ..., x

j

idj
}T ∈ ℝ

dj×1 represents the information 
of jth view for ith instance. pth feature of xj

i
 is xj

ip
 where 

p ∈ [1, dj] and dj is the feature dimension of jth view. For ith 
instance,  i .e ,  xi ∈ ℝ

d×1 can be represented by 
xi = {x1

i

T
, ..., x

j

i

T
, ..., xv

i

T}T where d =
∑v

j=1
dj.

Furthermore, X is also a multi-label data set and in differ-
ent views, an instance always possesses different labels, thus 
suppose yj

i
∈ ℝ

lj×1 is a label vector of ith instance in the jth 
view and each component of yj

i
 indicates the label of xj

i
 for 

the corresponding class. lj represents that at jth view, 
instances have lj classes. If the rth component of yj

i
 , namely, 

y
j

ir
= 1 , it means xj

i
 belongs to rth class definitely. If yj

ir
= −1 , 

this indicates that xj
i
 does not belong to rth class definitely. 

If yj
ir
= 0 , this means whether xj

i
 belongs to rth class or not 

is not available. Then yi = {y1
i

T
, ..., y

j

i

T
, ..., yv

i

T}T represents 
the label of ith instance, Yj = {y

j

1
, ..., y

j

i
, ..., y

j
n} ∈ ℝ

lj×n rep-
resents the label matrix of jth view, and we let 

Y =

⎛
⎜⎜⎜⎜⎜⎝

Y1

⋮

Yj

⋮

Yv

⎞
⎟⎟⎟⎟⎟⎠

∈ ℝ
l×n indicates the label matrix for X where 

l =
v∑

j=1

lj . Furthermore, since in many cases, instances have 

two kinds of labels, one is predicted labels and the other is 
real labels. So here, we let Y, Yj , yj

i
 , yi represent the predicted 

ones and Ỹ  , ̃Yj , ̃yj
i
 , ỹi represent the real ones. Definitions of 

�⋆ is similar with the ⋆.

4.2  Processing of WL‑GLMVML‑ATC 

4.2.1  Preprocessing with UIG and ATC 

For X, we adopt UIG to generate some Universum instances 
X⋆ which provide useful sample information. Then we 
carry out ATC on X and produce its group partition, i.e., 
C = {(Co(C1),Fr(C1)), ..., (Co(Cg),Fr(Cg))} which rep-
resents g clusters. Then we treat instances in each cluster 
Cm as Xm and still adopt UIG to generate some Universum 
instances X⋆

m
 where m ∈ [1, g].

Fig. 1  The main block diagram 
of WL-GLMVML-ATC 
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Similarly, for each view Xj , we also adopt UIG to gener-
ate Universum instances Xj⋆ . Then, we also adopt ATC to 
d i v i d e  Xj  i n t o  gj  c l u s t e r s ,  n a m e l y , 
Cj = {(Co(C

j

1
),Fr(C

j

1
)), ..., (Co(C

j

gj
),Fr(C

j

gj
))} and for each 

C
j
m , on the base of its instances Xj

m , we can also generate 
Universum instances Xj⋆

m  where m ∈ [1, gj].
Here, dimensions of X⋆ , Xj⋆ , Xm , X⋆

m
 , Xj

m , Xj⋆
m  are d × n⋆ , 

dj × nj⋆ , d × nm , d × n⋆
m
 , dj × n

j
m , dj × n

j⋆
m  , respectively where 

n⋆ , nj⋆ , nm , n⋆
m

 , njm , nj⋆m  are the corresponding numbers of 
instances in X⋆ , Xj⋆ , Xm , X⋆

m
 , Xj

m , Xj⋆
m .

After that, for convenience, we let 𝕏 = [X,X⋆] ∈ ℝ
d×(n+n⋆) , 

𝕏
j = [Xj,Xj⋆] ∈ ℝ

dj×(n
j+nj⋆) , 𝕏m = [Xm,X

⋆

m
] ∈ ℝ

d×(nm+n
⋆

m
) and 

𝕏
j
m = [X

j
m,X

j⋆
m ] ∈ ℝ

dj×(n
j
m+n

j⋆
m ).

Finally, according to the processing of X and Xj s, Y and 
Yj can also be updated as 𝕐 ∈ ℝ

l×(n+n⋆) , 𝕐 j ∈ ℝ
lj×(n

j+nj⋆) , 
𝕐m ∈ ℝ

l×(nm+n
⋆

m
) , 𝕐 j

m ∈ ℝ
lj×(n

j
m+n

j⋆
m ) . At the same time, in terms 

of the Ỹ  and ̃Yj , their processing are same, and we treat the 
processing results as �̃  , ̃� j , �̃m , ̃� j

m . The dimensions of them 
are same as the ones of �  , � j , �m , � j

m , respectively. Here, we 
should notice that since Universum instances are not labeled, 
thus their corresponding labels are set to be 0.

4.2.2  Construction of the optimization problem

On the base of the above preprocessing results, we construct 
the optimization problem of WL-GLMVML-ATC. Since [8] 
had described the details of GLMVML and the significant 
difference between WL-GLMVML-ATC and GLMVML is 
that in order to introduce the local label correlation, WL-
GLMVML-ATC divides the data set into several groups 
with ATC rather than k-means, thus we describe the way 
to construct the optimization problem directly as below and 
other information can refer to [8]. 

1. If �̃  and ̃� j are low-rank and we get rank(�̃ ) = k and 
rank( ̃� j) = kj , then we can rewrite them as �̃ = UV  and 
̃� j = UjVj where U ∈ ℝ

l×k or Uj ∈ ℝ
lj×kj has a function 

to project the original labels to the latent label space 
while V ∈ ℝ

k×(n+n⋆) or Vj ∈ ℝ
kj×(n

j+nj⋆) can be treated 
as the latent labels that are more compact and more 
semantically abstract than the original labels. Due to in 
real-world applications, weak-label cases are universal, 
thus we want to minimize the reconstruction error on the 
predicted labels, i.e., 

 where ||⋆||2
F
 represents the square of Frobenius norm 

for ⋆ , Ω ( Ωj ) consists of indices of the observed labels 

(8)

min
U,V ,Uj,Vj

||||⨿Ω(� − UV)||||2F+
v∑

j=1

|||
|||⨿Ωj (� j − UjVj)

|||
|||
2

F

in �  ( � j ). Then if (i, j) ∈ Ω , we have [||||⨿Ω(A)
||||]ij = Aij , 

otherwise, [||||⨿Ω(A)
||||]ij = 0 (similar to Ωj case).

2. We should adopt a linear mapping W ∈ ℝ
d×k 

( Wj ∈ ℝ
dj×kj ) to map instances to the latent labels and 

we use the following problem to learn the W ( Wj ). 

3. We should introduce the global and local label cor-
relations and construct the corresponding problem 
to enhance the performances of methods. Thus, for 
� , the prediction on instance xi is sign(f (xi)) where 
f (xi) = UWTxi ∈ ℝ

l×1 , so we let F0 = UWT
𝕏 ∈ ℝ

l×(n+n⋆) 
represents the output matrix of � . Similar, 
F
j

0
= UjWjT

𝕏
j ∈ ℝ

lj×(n
j+nj⋆) , Fm = UWT

𝕏m ∈ ℝ
l×(nm+n

⋆

m
) , 

F
j
m = UjWjT

𝕏
j
m ∈ ℝ

lj×(n
j
m+n

j⋆
m ) represent the output matri-

ces of �j , �m , �j
m.

  After that, we compute the label correlation matrices 
on the base of � , �j , �m , �j

m , �  , � j , �m , � j
m . Take � for 

example, we let S0 = {[S0]pq} denote the global label 
correlation matrix and its Laplacian matrix is L0 . Here, 
[S0]pq =

yp,∶y
T
q,∶

||yp,∶||||yq,∶|| represents the global label correla-

tion of pth label w.r.t. qth label and yp,∶ ( yq,∶ ) is the pth 
(qth) row of �  . Similar, Sm = {[Sm]pq} , S

j

0
= {[S

j

0
]pq} , 

S
j
m = {[S

j
m]pq} are the corresponding local label correla-

tion matrix of �m , global label correlation matrix of �j , 
local label correlation matrix of �j

m , respectively. Their 
corresponding Laplacian matrices are Lm , Lj

0
 , Ljm , 

respectively. The dimensions of S0 , Sm , Sj
0
 , Sjm , L0 , Lm , 

L
j

0
 , Ljm are l × l , l × l , lj × lj , lj × lj , l × l , l × l , lj × lj , lj × lj , 

respectively.
  According to the above definitions, we construct the 

corresponding problem as below on the base of these 
correlation matrices where tr(A) denotes the trace of the 
matrix A. 

4. We should introduce a consensus multi-view representa-
tion to encode the complementary information from dif-
ferent views. In simple speaking, we use Eq. (11) to find 
a comprehensive multi-view representation and Eq. (12) 
to measure the independence between different views 
where HSIC is a Hilbert-Schmidt independence crite-
rion estimator [38], P represents a consensus multi-view 

(9)

min
W,V ,Wj,Vj

|||
|||V −WT

�
|||
|||
2

F
+

v∑
j=1

|||
|||V

j −WjT
�

j|||
|||
2

F

(10)

min tr(FT
0
L0F0) +

g∑
m=1

tr(FT
m
LmFm)+

v∑
j=1

(tr(F
j

0

T
L
j

0
F
j

0
) +

gj∑
m=1

tr(Fj
m

T
Lj
m
Fj
m
))
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representation, Bj is the basic matrix corresponding to 
jth view. 

According to the above contents, the optimization problem 
of WL-GLMVML-ATC is given below.

where △ = {U,V ,W,Uj,Vj,Wj,P,Bj} , � s ( �j s) are trade-
off parameters and ℜ(U,V ,W,Uj

,Vj
,Wj

,P,Bj) = ||U||2
F
+

||V||2
F
+ ||W||2

F
+ ||||Uj||||2F + ||||Vj||||2F + ||||Wj||||2F + ||P||2

F
+ ||||Bj||||2F.

4.2.3  Solution of the optimization problem

In order to solve the optimization problem, i.e., Eq. (13), 
we refer to [8] and also adopt alternating optimization tech-
nology. According to this technology, in each iteration, we 
update an variable � in △ with gradient descent and leave 
the others fixed. The update formula is

where � is the step size. Through the continuous updating 
until convergence or maximum number of iterations, we can 
get the optimal W, U, V and use WTUV  to predict the label 
matrix of � . Similarly, for �j , �m , �j

m , we can also predict 
their corresponding label matrices with the optimized results 
including Wj , Uj , Vj.

4.2.4  Computational complexity

According to [28] and [8], the computational complexity of 
ATC is O(ng2) + O(Frng) + max(O(Fr),O(g)) where Fr is 
the number of instances in all fringe regions and the com-
putational complexity of GLMVML is O(Gn2) where G is a 

(11)
v∑

j=1

|||
|||�

j − BjP
|||
|||
2

F

(12)
∑
j≠t

−HSIC(Bj,Bt)

(13)

min
△

||||⨿Ω(� − UV)||||2F + �0

|||
|||V −WT

�
|||
|||
2

F

+ �1ℜ(U,V ,W,Uj,Vj,Wj,P,Bj)

+

v∑
j=1

(�2
|||
|||⨿Ωj (� j − UjVj)

|||
|||
2

F
+ �3

|||
|||V

j −WjT
�

j|||
|||
2

F
)

+ �4tr(F
T
0
L0F0) + �5

g∑
m=1

tr(FT
m
LmFm)

+

v∑
j=1

(�
j

6
tr(F

j

0

T
L
j

0
F
j

0
) + �

j

7

gj∑
m=1

tr(Fj
m

T
Lj
m
Fj
m
))

+ �8

v∑
j=1

|||
|||�

j − BjP
|||
|||
2

F
+ �9

∑
j≠t

−HSIC(Bj,Bt)

(14)� ∶= � − �∇
�

constant. In terms of UIG, its computational complexity is 
O(n2) . Then in general, the total computational complexity 
of WL-GLMVML-ATC is still smaller than O(n3).

5  Experiments

5.1  Experimental setting

5.1.1  Data set

We adopt three kinds of data sets for experiments so as to 
validate the superiority of WL-GLMVML-ATC.

First are 6 multi-view data sets, i.e., Mfeat, 1 Reuters, 2 
Corel3, Pascal VOC 2007 (VOC), 4 MIR-Flickr (MIR), 5 
3Source6 and their brief descriptions are given in Table 1.

Second are 29 multi-label data sets which are also 
adopted in [5, 39, 40]. Table 2 shows information of them 
and label/instance represents the average number of labels 
possessed by each instance.

Third is a classical multi-view multi-label data set, NUS-
WIDE [41, 42]. This data set include 810 images (instances). 
Each instance can be represented with 6 views and 81 labels.

5.1.2  Compared method

In order to process the used data sets, some learning methods 
are adopted. Concretely speaking, MVMLSS [43], LMSC 
[44], MLDL [45] are adopted for processing multi-view 
data sets while LF-LPLC [46], MLCHE [47], GLOCAL 
[5] are used to process multi-label data sets. In terms of 

Table 1  Detailed information of multi-view data sets

Data set No. instances No. label No. views

Mfeat 2000 10 6
Reuters 111740 6 5
Corel 1000 10 4
VOC 9963 20 2
MIR 23691 38 2
3Source 169 3 3

1 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Multi ple+ Featu res
2 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Reute rs+ RCV1+ RCV2+ 
Multi lingu al% 2C+ Multi view+ Text+ Categ oriza tion+ Test+ colle ction
3 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Corel+ Image+ Featu res
4 http:// host. robots. ox. ac. uk/ pascal/ VOC/
5 http:// press. liacs. nl/ mirfl ickr/
6 http:// mlg. ucd. ie/ datas ets/ 3sour ces. html

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual%2C+Multiview+Text+Categorization+Test+collection
http://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual%2C+Multiview+Text+Categorization+Test+collection
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://host.robots.ox.ac.uk/pascal/VOC/
http://press.liacs.nl/mirflickr/
http://mlg.ucd.ie/datasets/3sources.html
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the processing of NUS-WIDE, we select GLMVML [8], 
MVMLP [42], SSDR-MML [48] for experiments.

5.1.3  Parameter setting and results acquisition

How to set the parameters of the compared methods can be 
found in the respective references and in terms of WL-GLM-
VML-ATC, the settings are similar with the ones of GLM-
VML [8] and ATC [28]. In terms of UIG, the nm = 0.3 × nlm , 
K = 0.3 × nlm , p = 0.7 × num where nlm and num represent the 
number of labeled and unlabeled instances in the mth cluster.

In order to get the optimal results and according to the 
compared methods’ demands, for each data set, we randomly 
select {10%, 20%, 30%, 40%, 50%, 60%} for training and the 
rest for test. Then for multi-label data sets and NUS-WIDE, 
in terms of each instance or each view, we randomly remove 
{10%, 15%, 20%, 25%, 30%} labels so as to get the observed 
label matrices. Then we repeat the experiments with each 
parameter combination for ten times and get the average 
results and the corresponding standard deviations. The best 

parameters are the ones whose average precision is the best. 
Then, the other performance indexes including the AUC 
(area under the receiver operating characteristic curve), 
running time, convergence, etc. are given with the optimal 
parameters. Here, we should notice that for each data set, 
different methods should process same data.

5.1.4  Experimental environment

All computations are performed on a node of compute clus-
ter with 32 CPUs (Intel Core Due 3.0GHz) running RedHat 
Linux Enterprise 5 with 48GB main memory. The coding 
environment is python 3.0.

5.2  Experimental results

5.2.1  AUC and precision

We adopt AUC and precision to show the effectiveness of 
WL-GLMVML-ATC for the classification tasks. In general, 

Table 2  Detailed information of 
multi-label data sets

Data set No. instances No. features No. labels label/instance

Arts 5000 462 26 1.64
Business 5000 438 30 1.59
Computers 5000 681 33 1.51
Education 5000 550 33 1.46
Entertainment 5000 640 21 1.42
Health 5000 612 32 1.66
Recreation 5000 606 22 1.42
Reference 5000 793 33 1.17
Science 5000 743 40 1.45
Social 5000 1047 39 1.28
Society 5000 636 27 1.69
Enron 1702 1001 53 3.37
Corel5K 5000 499 374 3.52
Image 2000 294 5 1.24
Medical 978 1449 45 1.25
Language Log 1459 1004 75 1.18
RCV1V2 (subset1) 6000 944 101 2.88
RCV1V2 (subset2) 6000 944 101 2.63
Bibtex 7395 1836 159 2.4
Delicious 16105 500 983 19.02
Eur-Lex (Sm) 19348 5000 201 2.21
Bookmark 87856 2150 208 2.03
Nuswide 269468 500 81 1.87
TMC2007-5000 28596 500 22 2.16
Stackex-chemistry 6961 540 175 2.11
Stackex-chess 1675 585 227 2.41
Stackex-cooking 10491 577 400 2.23
Stackex-Cs 9270 635 274 2.56
Stackex-philosophy 3971 842 233 2.27
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a higher AUC or a higher precision brings a better classifi-
cation performance. Tables 3 and 4 give the average AUC 
and precision respectively for the test sets about each data 
set. In these tables, ∙/◦ indicates that WL-GLMVML-ATC 
is significantly better/worse than the corresponding method 
on a data set (pairwise t-tests at 95% significance level). The 
best average AUC or precision for each data set is shown in 
bold. / represents no result since the related method cannot 
process the corresponding data set. From these tables, it is 
found that in most cases, WL-GLMVML-ATC has a better 
performance and according to the win/tie/loss counts, the 
proposed WL-GLMVML-ATC is clearly superior to other 
compared learning methods, as it wins for most times and 
less loses.

5.2.2  Friedman–Nemenyi test

Besides pairwise t-test, Friedman–Nemenyi statistical test is 
another method to check if the differences between our WL-
GLMVML-ATC and other compared methods are significant 
[49]. Different from pairwise t-test which aims to analyze 
if the differences between two compared methods on a data 
set are significant or not, Friedman test is used to analyze if 
the differences between all compared methods on multiple 
data sets are significant or not while Nemenyi test is used to 
analyze if the differences between two compared methods on 
multiple data sets are significant or not. Thus, we carry out 
Friedman–Nemenyi test as below and details of the principle 
for Friedman–Nemenyi test can be found in [49].

For the convenience of the analysis of Friedman–Neme-
nyi test results, we use Tables 5 and 6 to show the aver-
age ranks of WL-GLMVML-ATC and the compared ones 
on all data sets according to precision and AUC. Due to 
there are three kinds of compared methods, thus ranks in 
Tables 5 and 6 are derived from three cases. Case 1 gives the 
average ranks of WL-GLMVML-ATC, MVMLSS, LMSC, 
MLDL on 6 multi-view data sets. Case 2 shows the results 
of WL-GLMVML-ATC, LF-LPLC, MLCHE, GLOCAL on 
29 multi-label data sets. Case 3 shows the results of WL-
GLMVML-ATC, GLMVML, MVMLP, SSDR-MML on 
all used data sets. For each case, rank differences between 
our method and other compared ones are also given. Then 
according to Tables 5 and 6, we give the related statistical 
values about Friedman–Nemenyi test with Tables 7 and 8.

Then according to the results of Tables 5, 6, 7, 8 and 
refer to [49], we carry out Friedman test firstly. Take case 
1 in Table 6 for example, since we adopt 6 data sets and 4 
methods for experiments in this case, thus N = 6 and 
k = 4  .  T h e n  F r i e d m a n  s t a t i s t i c 
�
2

F
=

12×N

k(k+1)
[1.172 + 3.172 + 3.52 + 2.172 −

k(k+1)2

4
] = 12.16 

a n d  FF =
(N−1)�2

F

N(k−1)−�2

F

= 10.40  ,  f u r t h e r , 

F0.05(k − 1, (k − 1)(N − 1)) = F0.05(3, 15) = 3.29  a n d 
F0.10(k − 1, (k − 1)(N − 1)) = F0.10(3, 15) = 2.49  .  S i n c e 
FF > F0.05(3, 15) and FF > F0.10(3, 15) , so we can reject the 
null-hypothesis and say the differences between all com-
pared methods on multiple data sets are significant in this 
case. For case 2 and case 3 about precision and ones about 
AUC, we draw a same conclusion.

After that, we use Nemenyi test for pairwise compari-
sons. According to the principles of Nemenyi test, if rank 
difference between two compared methods is larger than 
CD

�
 ( � = 0.05 or 0.10 ), then their differences on mul-

tiple data sets are significant. Thus, we still take case 1 in 
Table 6 for example. Since N = 6 and k = 4 , thus critical 
value at q0.05 is 2.57 and corresponding critical difference 
(CD) is CD0.05 = q0.05

√
k⋅(k+1)

6⋅N
= 1.91 while the one at q0.10 

i s  2 . 2 9  a n d  c o r r e s p o n d i n g  C D  i s 
CD0.10 = q0.10

√
k⋅(k+1)

6⋅N
= 1.71 . Since no matter under the 

case of CD0.05 and under the case of CD0.10 , rank difference 
between WL-GLMVML-ATC and MVMLSS (LMSC) is 
larger than CD0.05 and CD0.10 , so we can say on this case, 
the performance of WL-GLMVML-ATC is better than the 
one of MVMLSS (LMSC) and their difference is signifi-
cant. For case 2 and case 3 in Table 6, WL-GLMVML-
ATC is significant better than LF-LPLC, MLCHE, GLO-
CAL, MVMLP, SSDR-MML, GLMVML since rank 
differences between our WL-GLMVML-ATC and the 
compared methods are larger than corresponding CD0.05 
and CD0.10 . In the same way, in terms of the statistical 
values in Table 7, expect for the methods MVMLSS and 
MLDL under the case of CD0.05 , WL-GLMVML-ATC is 
significant better than most compared methods under the 
cases of CD0.05 and CD0.10.

In generally, we can validate the effectiveness of WL-
GLMVML-ATC from an average view. Specially, for 
multi-view case, the significance is not very obvious, 
while for multi-label case and multi-view multi-label case, 
our method performs significant best in statistics.

5.2.3  Running time

The computational complexity of WL-GLMVML-ATC is 
always smaller than O(n3) which is the computational com-
plexity of many traditional methods, it is still larger than 
some linear learning methods. Thus, we show the running 
time of these compared methods and observe the differ-
ence. Table 9 shows the related experimental results and 
Avg. (mv) represents the average running time for multi-
view data sets while Avg. (ml) represents the average run-
ning time for multi-label data sets. From this table, we find 
that our proposed WL-GLMVML-ATC costs a little more 
running time which is also accepted by us.
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5.2.4  Convergence

We empirically study the convergence of WL-GLMVML-
ATC like GLOCAL [5] does so as to measure the perfor-
mance of WL-GLMVML-ATC. Fig. 2 shows the objective 
value with respect to the number of iterations. For conveni-
ence and due to the lack of space, we only show the results 
on multi-view data set Mfeat, multi-label data sets Comput-
ers and Language Log, multi-view multi-label data set NUS-
WIDE. As can be seen, the objective converges quickly in a 

few iterations (less than 25). A similar phenomenon can be 
observed on the other data sets.

What’s more, as we know, WL-GLMVML-ATC is devel-
oped on the base of ATC, UIG, and GLMVML. Thus, we 
give the convergence time cost and corresponding ratios 
to total running time of WL-GLMVML-ATC on all used 
data sets in Table 10. In this table, ‘CT’ represents con-
vergence time and ‘Ra’ indicates the corresponding ratios. 
According to this table, it is found that on all used data 
sets, the ratios of convergence time to total running time of 

Table 5  Average ranks of WL-GLMVML-ATC and other compared methods on different cases in terms of AUC 

Case 1 Ours LMSC MVMLSS MLDL

Average 1 3.33 2.83 2.83
Rank difference / 2.33 1.83 1.83

 Case 2 Ours LF-LPLC MLCHE GLOCAL

Average 1.17 2.97 2.76 3.1
Rank difference / 1.8 1.59 1.93

 Case 3 Ours MVMLP SSDR-MML GLMVML

Average 1.11 2.78 3.11 3
Rank difference / 1.67 2 1.89

Table 6  Average ranks of WL-GLMVML-ATC and other compared methods on different cases in terms of precision

Case 1 Ours LMSC MVMLSS MLDL

Average 1.17 3.17 3.5 2.17
Rank difference / 2 2.33 1

 Case 2 Ours LF-LPLC MLCHE GLOCAL

Average 1.17 2.55 3.21 3
Rank difference / 1.38 2.04 1.83

 Case 3 Ours MVMLP SSDR-MML GLMVML

Average 1.14 2.75 3 3.08
Rank difference / 1.61 1.86 1.94

Table 7  Statistical values on different cases in terms of AUC 

Case 1 Case 2 Case 3

N 6 N 29 N 36
k 4 k 4 k 4
�
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Table 8  Statistical values on different cases in terms of precision

Case 1 Case 2 Case 3
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WL-GLMVML-ATC range from [0.754, 0.982]. Compared 
with the results of Table 9, refer to the processing of com-
pared methods [5, 8, 42–48], and combine the introduction 
of 4.2.4, the convergence time is still be accepted by us and 
their ratios accord to the framework of WL-GLMVML-ATC.

5.2.5  Influence of parameters

According to the experimental setting, there are many adjust-
able parameters in WL-GLMVML-ATC and two important 

ones are the numbers of training instances and the numbers 
of removed labels. Thus we use Fig. 3 to show the influence 
directly. For convenience, only data set NUS-WIDE and 
compared methods MVMLP, SSDR-MML, GLMVML are 
adopted. Indeed, for other data sets and compared methods, 
the results are similar.

According to this figure, we can see that (1) with the 
increasing of the numbers of training instances, the AUC, 
precision, and running time become higher; (2) when more 
labels are removed, the AUC and precision are worse while 

Table 9  Running time (in seconds) of WL-GLMVML-ATC and compared methods

Data sets Ours LMSC MVMLSS MLDL LF-LPLC MLCHE GLOCAL MVMLP SSDR-MML GLMVML

Mfeat 25.11 24.51 25.57 24.76 / / / 25.08 24.77 25.43
Reuters 699.45 683.53 679.05 685.23 / / / 656.89 656.54 643.59
Corel 8.37 8.26 7.88 8.28 / / / 7.87 8.45 7.90
VOC 80.37 73.03 81.61 78.39 / / / 77.72 80.75 80.43
MIR 377.49 376.59 379.69 377.98 / / / 360.02 360.96 368.03
3Source 0.23 0.23 0.21 0.23 / / / 0.22 0.22 0.22
Avg. (mv) 198.51 194.36 195.67 195.81 / / / 187.97 188.62 187.60
Arts 58.31 / / / 53.47 58.13 56.16 54.40 57.75 55.69
Business 52.72 / / / 49.09 49.72 52.49 53.43 53.76 49.30
Computers 45.58 / / / 46.82 45.38 47.05 45.78 45.69 42.43
Education 43.08 / / / 39.95 41.78 42.12 40.61 43.01 42.58
Entertainment 41.86 / / / 42.10 39.41 41.24 38.93 38.56 39.50
Health 45.36 / / / 45.85 41.83 42.34 45.04 43.71 42.75
Recreation 36.56 / / / 36.65 33.48 35.20 37.32 35.27 36.59
Reference 27.29 / / / 27.53 27.14 27.71 28.60 27.90 27.49
Science 31.60 / / / 29.42 31.22 30.67 28.61 32.23 31.67
Social 25.57 / / / 24.38 25.69 24.06 25.72 25.51 24.05
Society 32.33 / / / 31.49 32.10 32.34 30.75 33.40 30.88
Enron 21.49 / / / 22.07 20.24 20.89 21.12 20.73 20.26
Corel5k 64.47 / / / 62.07 60.96 63.64 61.99 64.70 64.41
Image 8.97 / / / 8.76 8.85 8.78 8.53 8.44 8.35
Medical 8.14 / / / 7.85 7.50 7.73 7.85 8.14 8.10
Language Log 10.74 / / / 10.71 10.73 10.38 10.80 10.14 10.39
RCV1V2(subset1) 104.02 / / / 99.96 102.15 100.85 102.20 103.02 101.33
RCV1V2(subset2) 84.06 / / / 79.44 87.21 77.45 82.27 78.89 80.73
Bibtex 99.71 / / / 91.00 95.44 91.05 90.98 91.37 96.12
Delicious 1669.68 / / / 1662.65 1688.81 1527.99 1656.36 1653.43 1744.80
Eur-Lex(Sm) 209.38 / / / 216.85 212.69 209.20 209.40 203.21 198.71
Bookmark 819.19 / / / 766.14 752.69 781.22 764.95 825.74 777.30
Nuswide 2165.44 / / / 2056.62 2092.68 1998.85 2143.32 2236.02 2130.80
TMC2007-5000 226.82 / / / 216.91 219.39 219.10 216.25 210.58 215.68
Stackex-Chemistry 52.49 / / / 52.96 53.47 52.54 48.70 51.07 52.52
Stackex-Chess 14.17 / / / 14.12 14.07 13.09 13.79 13.48 14.08
Stackex-Cooking 79.42 / / / 77.57 73.49 78.75 82.02 75.55 77.58
Stackex-Cs 85.26 / / / 78.47 82.44 81.40 83.93 83.15 83.31
Stackex-Philosophy 57.01 / / / 58.44 53.50 58.32 58.02 54.71 55.09
Avg. (ml) 214.51 / / / 207.22 209.04 201.12 210.06 214.80 212.50
NUS-WIDE 42.09 / / / / / / 35.98 37.12 39.81
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the running time is also decreasing; (3) compared with the 
MVMLP, SSDR-MML, and GLMVML, the AUC and preci-
sion of WL-GLMVML-ATC are less affected by the chang-
ing of these parameters. In other words, the performances 
of our WL-GLMVML-ATC are more stable.

5.2.6  Summary of increase proportion of performance

Table  11 shows the detailed comparison between WL-
GLMVML-ATC and other compared ones in terms of the 
increase proportion. The value in this table means that for an 
index, compared with the other method, how many increase 
proportion does the WL-GLMVML-ATC get. For example, 
for LMSC and AUC, 5.86% indicates that compared with 
LMSC, our WL-GLMVML-ATC brings a better AUC and 
the increase proportion is 5.86% . Now from this summary 
table, we can draw a conclusion that with the consideration 
of ATC, Universum learning, global and local label cor-
relation, WL-GLMVML-ATC can bring a better AUC and 
precision. Although WL-GLMVML-ATC needs a longer 
running time, but in practice experiments, a better AUC 
and precision is always the priority target. What’s more, if 
we improve the experimental environment and adopt GPU 
or some other better equipments, we can imagine that the 
increase proportion of running time will be reduced further.
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Fig. 2  Convergence of WL-GLMVML-ATC on data sets Mfeat, Computers, Language Log, and NUS-WIDE

Table 10  Convergence time (in seconds) and corresponding ratios of 
WL-GLMVML-ATC 

Data sets CT Ra Data sets CT Ra

Mfeat 24.18 0.963 Corel5k 51.32 0.796
Reuters 640.70 0.916 Image 7.42 0.827
Corel 7.55 0.902 Medical 6.75 0.829
VOC 78.92 0.982 Language Log 9.11 0.848
MIR 345.78 0.916 RCV1V2(subset1) 80.20 0.771
3Source 0.22 0.941 RCV1V2(subset2) 66.41 0.790
Arts 46.88 0.804 Bibtex 82.16 0.824
Business 43.86 0.832 Delicious 1258.94 0.754
Computers 34.96 0.767 Eur-Lex(Sm) 161.43 0.771
Education 35.93 0.834 Bookmark 634.87 0.775
Entertainment 31.60 0.755 Nuswide 1699.87 0.785
Health 34.61 0.763 TMC2007-5000 182.14 0.803
Recreation 28.00 0.766 Stackex-Chemistry 42.20 0.804
Reference 21.61 0.792 Stackex-Chess 11.59 0.818
Science 24.65 0.780 Stackex-Cooking 65.84 0.829
Social 19.28 0.754 Stackex-Cs 67.18 0.788
Society 26.48 0.819 Stackex-Philosophy 46.12 0.809
Enron 16.87 0.785 NUS-WIDE 41.25 0.980
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6  Conclusions and future studies

In real-world applications, multi-view multi-label data sets 
are widely used and traditional learning methods always 

produce worse performances when these data sets exhibit 
complicate topologies. The reasons for this include that 
these methods have no ability to exploit global and local 
label correlations simultaneously, and to reveal the uncer-
tain relationship between instances and the corresponding 

Fig. 3  Influence of two kinds of parameters for WL-GLMVML-ATC, 
MVMLP, SSDR-MML, GLMVML on data set NUS-WIDE in terms 
of AUC, precision, and running time. � : ratios of training instances to 

the total numbers of instances; � : ratios of removed labels to the total 
numbers of labels

Table 11  Detailed comparison between WL-GLMVML-ATC and other compared ones in terms of the increase proportion

Multi-view

Index LMSC MVMLSS MLDL

AUC 5.86% 4.88% 3.94%
Precision 5.88% 6.60% 4.44%
Running time 2.13% 1.45% 1.37%

Multi-label

Index LF-LPLC MLCHE GLOCAL

AUC 7.16% 6.52% 7.04%
Precision 3.43% 5.43% 5.13%
Running time 3.52% 2.61% 6.65%

Multi-view multi-label

Index MVMLP SSDR-MML GLMVML

AUC 6.01% 6.91% 5.97%
Precision 4.54% 4.71% 4.07%
Running time 2.73% 0.75% 1.72%
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clusters. In this work, we develop a weak-label-based 
global and local multi-view multi-label learning with 
three-way clustering (WL-GLMVML-ATC) to overcome 
such a problem. In WL-GLMVML-ATC, it makes the 
belonging of instances to a cluster depend on the prob-
ability with active three-way clustering strategy and adopts 
unlabeled instance generated method to overcome the 
weak-label case. Then, it makes a learning method can 
process a complicated data set well with global and local 
label correlations considered. Although WL-GLMVML-
ATC can be treated as the combination of the existing 
work GLMVML, ATC, and Universum, but in the field of 
multi-view multi-label learning, it is the first attempt for 
the combination of global and local label correlations, the 
three-way decisions, and Universum learning. Experimen-
tal results validate that (1) WL-GLMVML-ATC achieves 
a better average AUC and precision in statistical; (2) the 
running time of WL-GLMVML-ATC won’t add too much; 
(3) WL-GLMVML-ATC has a good convergence.

While some issues should be solved in the future studies. 
First, in real-world applications, due to equipment failure, 
some instances maybe lose partial views. But WL-GLM-
VML-ATC cannot deal with this. Second, in multi-label 
learning, there are multiple class labels associated with a 
single instance simultaneously, and each class label might 
be determined by some specific features of its own. But WL-
GLMVML-ATC does not consider this point. In the future 
studies, we will pay more attention to these.
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