
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12559-021-09902-0

Isomorphic Relationship Between �‑three‑way Concept Lattices

Xuerong Zhao1,2  · Duoqian Miao1,2

Received: 19 November 2020 / Accepted: 23 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The three-way decision (3WD) creates a new perspective for decision-making by adding a third option in addition to accept-
ance and rejection. The decision cost, caused by the yes-or-no decision pattern, is avoided. The 3WD is a human-cognition-
inspired problem-solving pattern which offers new theories, models, and tools for cognitive analytics. Formal concept
analysis, as a method proposed to mine hidden patterns in data, can only deal with binary-valued data when it appeared. To
process more types of data, �-concept analysis, where � represents a truth-value structure, is presented with the generation
of various �-two-way ( �2W) and �-three-way ( �3W) concept lattices. The aim in this study is to explore the relationship
between various � 3W concept lattices that have not been represented by any existing theorems. To fulfill this goal, first, the
relationship between � 2W concept lattices is examined, and then, the relationship between � 3W concept lattices is analysed.
Finally, the relationship between the � 2W and � 3W concepts is revealed. The results show that the eight types of � 2W con-
cept lattices form two isomorphic groups. The four types of �-object-induced three-way concept lattices, as well as the four
types of �-attribute-induced three-way concept lattices, are isomorphic respectively. In addition, the equivalent relationship
between � 3W concepts and � 2W concepts provides a way to construct � 3W concept lattices based on � 2W concept lattices.

Keywords  �-two-way concept · �-two-way concept lattice · �-three-way concept · �-three-way concept lattice

Introduction

In human cognition, concepts are the fundamental units that
humans utilise to understand the world and solve problems.
Obtaining concepts has always been a fundamental prob-
lem in artificial intelligence. A concept is a granule in the
view of granular computing. Commonly used granular com-
puting models are rough sets [1, 2], fuzzy sets [3], formal
concept analysis (FCA) [4, 5], cloud model [6], etc. The
three-way decision (3WD), which is another granular com-
puting model, was first proposed by Yao [7] to overcome
the shortcomings of binary decision-making patterns. 3WD
explores thinking, problem-solving, and information pro-
cessing in threes (namely, three parts or items); it offers new

theories, models, and tools for cognitive analytics. Rapid
growth of 3WD has been observed both in its theory and
application [8–15].

Proposed by Wille [5], FCA provides a way to gener-
ate concepts from formal contexts by introducing a pair
of concept-forming operators that form a Galois connec-
tion between the power set of the object universe and the
power set of the attribute universe. The formal context is
the basic notion of FCA, and it is a triple constituted by a
set of objects, a set of attributes, and a binary relation char-
acterising whether an object has an attribute. Imitating the
dynamic process of human cognition, Mi et al. [16] proposed
the semi-supervised concept learning method for dynamic
semi-supervised learning by employing concept spaces. Li
et al. [17] introduced a cognitive mechanism of forming con-
cepts based on the principles from philosophy and cogni-
tive psychology. Other applications of FCA can be found in
knowledge reduction [18–21], decision-making [22], online
social networks [23], medical diagnosis [24, 25], image pro-
cessing [26], etc.

FCA can only handle binary-valued data [27–33].
To improve data processing, Burusco and Fuentes-
González [34] generalised the concept-forming operators

 *	 Duoqian Miao
	 dqmiao@tongji.edu.cn

	 Xuerong Zhao
	 xrzhao@tongji.edu.cn

1	 Department of Computer Science and Technology, Tongji
University, Shanghai 201804, China

2	 Key Laboratory of Embedded System and Service
Computing, Ministry of Education, Shanghai 201804, China

/ Published online: 18 February 2022

Cognitive Computation (2022) 14:1997–2019

http://orcid.org/0000-0002-2324-955X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09902-0&domain=pdf

1 3

to fuzzy cases to obtain fuzzy concepts or �-concepts. They
adopted a complete lattice as a truth-value set and defined
the concept-forming operators based on the t-conorm.
Subsequently, Belohlavek [35] used a residuated lattice as
a truth-value set and defined the concept-forming opera-
tors based on residual implications. Such generalisations
are called fuzzy concept analysis or �-concept analysis ( �
CA), where � represents the truth-value structure, similar
to a residuated lattice. Fan, Zhang, and Xu [36] summarised
three types of fuzzy concepts (namely, fuzzy formal con-
cept [35], fuzzy object-oriented formal concept [37], and
fuzzy property-oriented formal concept [37]) and examined
a new form of fuzzy concept (namely, dual fuzzy formal
concept). Other methods have been proposed to study �
CA, such as the variable threshold concept [38], L-fuzzy
W-concept [39], L-fuzzy biconcept [40], one-sided formal
concept [41], and three-way fuzzy concept [24, 42].

Three-way concept analysis (3WCA) [43–45] is another
generalisation of FCA, and it combines FCA with 3WD.
A three-way concept considers both attributes shared by
objects and attributes not shared by objects. Various three-
way concepts have been developed by considering different
semantic meanings, such as OE-concept, AE-concept, OEO-
concept, AEP-concept, OEP-concept, and OED-concept
[43, 46, 47]. Li et al. [48] explored axiomatic approaches to
characterise three-way concepts using multi-granularity. The
aforementioned studies are for complete formal contexts,
namely, symbolic data without missing values. There has
been some excellent work on 3WCA with incomplete con-
texts (i.e. some information between objects and attributes
is unknown) [18, 49–53]. However, those studies are not
considered here as this study is only focused on complete
contexts.

As the method of generalising classical operations to
fuzzy cases is not unique, different methods have been
proposed to investigate �-concepts. This study is focused
only on the one introduced by Bězlohlávek [35]. Based on
his idea, one can form eight types of �-two-way ( �2W)
concepts. Moreover, different �-three-way ( �3W) con-
cepts have been developed by applying the idea of 3WD.
Although each type of �-concept has its semantic meaning

and application, it is unnecessary to construct �-concept
lattices separately (particularly considering that forming
a concept lattice is an NP-hard problem). In addition, it is
not necessary to respectively investigate the properties of
different concept lattices. However, for the relationship
between �-concept lattices, no universal representation
theorems exist to date; this is the primary goal of this
study. First, the isomorphic relationship between � 2W
concept lattices is explored by defining various � 2W con-
cepts. Then, the isomorphic relationship between � 3W
concept lattices is examined in the same manner. Finally,
the relationship between the � 2W concepts and � 3W con-
cepts is revealed. The results provide a way to construct
� 3W concept lattices based on � 2W concept lattices.

The remainder of this paper is organised as follows. Sec-
tion 2 presents a brief review of related notions, including
residuated lattice, �-sets, and concept-forming operators in
FCA. Sections 3 and 4 detail the main work in this study:
investigating the relationships between � 2W concept lat-
tices and between � 3W concept lattices. Section 5 reveals
the relationship between � 2W concepts and � 3W concepts.
Section 6 concludes this paper. For convenience of reading,
Table 1 lists the abbreviations of the symbols.

Preliminaries

This section presents the notions and properties related to
the residuated lattice, �-set, and formal context.

A complete residuated lattice, � , is an algebra
(L,∨,∧,⊗,→, 0, 1) , where (L,∨,∧, 0, 1) is a complete lat-
tice with the greatest element, 1, and the least element, 0,
(L,⊗, 1) is a commutative monoid, and (⊗,→) is an adjoint
pair, satisfying a⊗ b ⩽ c ⇔ a ⩽ b → c for all a, b, c ∈ L ( ≤
is the order of L). For a complete residuated lattice, the fol-
lowing properties are valid.

Lemma 1  [54] Let � = (L,∨,∧,⊗,→, 0, 1) be a complete
residuated lattice. Then, for a, b, b1, b2, ai ∈ L ( i ∈ Λ , where
Λ is an index set), the following hold:

Table 1   Brief introduction to
symbol abbreviations

Here, ‘?’ represents a type of concept-forming operator or a combination of concept-forming operators,
such as ∗ , ∗̄ , □ , ◊ , and □◊

Abbreviation Original meaning Abbreviation Original meaning

�2W �-two-way �
?-2W �

?-two-way
�O2W �-object-induced two-way �

?-O2W �
?-object-induced two-way

�A2W �-attribute-induced two-way �
?-A2W �

?-attribute-induced two-way
�3W �-three-way �

?-3W �
?-three-way

�O3W �-object-induced three-way �
?-O3W �

?-object-induced three-way
�A3W �-attribute-induced three-way �

?-A3W �
?-attribute-induced three-way

1998 Cognitive Computation (2022) 14:1997–2019

1 3

1.	 a ⩽ b ⇔ a → b = 1;
2.	 b1 ⩽ b2 ⇒ a⊗ b1 ⩽ a⊗ b2;
3.	 b1 ⩽ b2 ⇒ a → b1 ⩽ a → b2 , b2 → a ⩽ b1 → a;
4.	 ∨i∈Λai → b = ∧i∈Λ(ai → b) , ∧i∈Λai → b ⩾ ∨i∈Λ(ai → b)

;
5.	 a ≤ (a → b) → b.

For a ∈ L , a unary operator, referred to as the pre-com-
plement operator, is defined as ¬a = a → 0 . If, for any
a ∈ L , ¬¬a = a , then � is a complete regular residuated
lattice.

Lemma 2  [54, 55] Let � = (L,∨,∧,⊗,→, 0, 1) be a complete
regular residuated lattice. Then, for a, b, ai ∈ L ( i ∈ Λ ), the
following hold:

1.	 a → ¬b = b → ¬a , ¬a → b = ¬b → a , ¬a → ¬b = b → a;
2.	 a⊗ b = ¬(a → ¬b) , a → b = ¬(a⊗ ¬b);
3.	 ¬(∧i∈Λai) = ∨i∈Λ(¬ai).

Let U be a finite universe. A mapping, Ã ∶ U ⟶ L , is an
�-set on U. The family of all �-sets on U is denoted by LU .
For two �-sets, Ã, B̃ ∈ LU , the order is as follows:

The basic operations are defined pointwise as follows: for
x ∈ U,

Given two pairs of �-sets, (Ã1, Ã2) and (B̃1, B̃2) , we define

The pairs of �-sets are ordered in the following way:

Let OB and AT be two finite universes of objects and attrib-
utes, respectively, and R be a binary relation from OB to
AT. For o ∈ OB and a ∈ AT  , oRa represents object o with
attribute a, and oRca represents object o without attribute
a. The triple, (OB, AT, R), is called a formal context [5].
Based on the connections between objects and attributes,
one can define eight types of concept-forming operators [12,
56]: for O ⊆ OB,

(1)Ã ⊆ B̃ ⇔ Ã(x) ≤ B̃(x),∀x ∈ U.

(2)
(Ã ∩ B̃)(x) = Ã(x) ∧ B̃(x),

(Ã ∪ B̃)(x) = Ã(x) ∨ B̃(x),

Ãc(x) = ¬Ã(x) = Ã(x) → 0.

(3)

(Ã1, Ã2) ∩ (B̃1, B̃2) = (Ã1 ∩ B̃1, Ã2 ∩ B̃2),

(Ã1, Ã2) ∪ (B̃1, B̃2) = (Ã1 ∪ B̃1, Ã2 ∪ B̃2),

(Ã1, Ã2)
c = (Ãc

1
, Ãc

2
).

(4)(Ã1, Ã2) ⊆ (B̃1, B̃2) ⇔ Ã1 ⊆ B̃1, Ã2 ⊆ B̃2.

where [a]R is a set of objects with attribute a, and [a]Rc is a
set of objects without attribute a. In a similar way, one can
define the eight types of operators for attribute set A ⊆ AT  .
Using these concept-forming operators, one can formulate
different formal concepts or two-way concepts (see [12, 56]).

Relationship Between � 2W Concept Lattices

In this section, first, the crisp-set-based concept-forming
operators are generalised to fuzzy cases, and then, various
� 2W concepts are introduced based on different fuzzy-set-
based concept-forming operators. Finally, the isomorphic
relationship between � 2W concept lattices is revealed.

� 2W Operators

Let R̃ be an �-relation from OB to AT, i.e. R̃ ∶ OB × AT ⟶ L ,
then � = (OB,AT , R̃, L) is an �-(formal) context, and
�

c = (OB,AT , R̃c,L) is a dual �-context of � , where R̃c is the
complement of R̃ . Generalising Eqs. (5)–(12) from a fuzzy set

(5)
O∗ = {a ∈ AT ∣ ∀o ∈ O (oRa)}

= {a ∈ AT ∣ O ⊆ [a]R},

(6)
O∗̄ = {a ∈ AT ∣ ∀o ∈ O (¬(oRa))}

= {a ∈ AT ∣ O ⊆ [a]Rc},

(7)
O□ = {a ∈ AT ∣ ∀o ∈ Oc (oRa)}

= {a ∈ AT ∣ Oc ⊆ [a]R},

(8)
O□ = {a ∈ AT ∣ ∀o ∈ Oc (¬(oRa))}

= {a ∈ AT ∣ Oc ⊆ [a]Rc},

(9)
O◊ = {a ∈ AT ∣ ∃o ∈ O (oRa)}

= {a ∈ AT ∣ O ∩ [a]R ≠ �},

(10)
O◊ = {a ∈ AT ∣ ∃o ∈ O (¬(oRa))}

= {a ∈ AT ∣ O ∩ [a]Rc ≠ �},

(11)
O# = {a ∈ AT ∣ ∃o ∈ Oc (oRa)}

= {a ∈ AT ∣ Oc ∩ [a]R ≠ �},

(12)
O# = {a ∈ AT ∣ ∃o ∈ Oc (¬(oRa))}

= {a ∈ AT ∣ Oc ∩ [a]Rc ≠ �},

1999Cognitive Computation (2022) 14:1997–2019

1 3

setting can yield eight types of fuzzy-set-based concept-form-
ing operators: for Õ ∈ LOB , Ã ∈ LAT , o ∈ OB , and a ∈ AT,

(13)Õ∗(a) =
⋀
o∈OB

(Õ(o) → R̃(o, a)),

(14)Ã∗(o) =
⋀
a∈AT

(Ã(a) → R̃(o, a)),

(15)Õ∗̄(a) =
⋀
o∈OB

(Õ(o) → R̃c(o, a)),

(16)Ã∗̄(o) =
⋀
a∈AT

(Ã(a) → R̃c(o, a)),

(17)Õ□(a) =
⋀
o∈OB

(Õc(o) → R̃(o, a)),

(18)Ã□(o) =
⋀
a∈AT

(Ãc(a) → R̃(o, a)),

(19)Õ□(a) =
⋀
o∈OB

(Õc(o) → R̃c(o, a)),

(20)Ã□(o) =
⋀
a∈AT

(Ãc(a) → R̃c(o, a)),

(21)Õ◊(a) =
⋁
o∈OB

(Õ(o)⊗ R̃(o, a)),

(22)Ã◊(o) =
⋁
a∈AT

(Ã(a)⊗ R̃(o, a)),

(23)Õ◊(a) =
⋁
o∈OB

(Õ(o)⊗ R̃c(o, a)),

(24)Ã◊(o) =
⋁
a∈AT

(Ã(a)⊗ R̃c(o, a)),

(25)Õ#(a) =
⋁
o∈OB

(Õc(o)⊗ R̃(o, a)),

(26)Ã#(o) =
⋁
a∈AT

(Ãc(a)⊗ R̃(o, a)),

(27)Õ#(a) =
⋁
o∈OB

(Õc(o)⊗ R̃c(o, a)),

For Õ ∈ LOB and a ∈ AT  , Õ∗(a) and Õ□(a) characterise the
subsethood degree of Õ to [a]R̃ and Õc to [a]R̃ , respectively,
where [a]R̃(o) = R̃(o, a) for o ∈ OB . Õ∗̄(a) and Õ□(a) char-
acterise the subsethood degree of Õ to [a]R̃c and Õc to [a]R̃c ,
respectively, where [a]R̃c(o) = R̃c(o, a) for o ∈ OB . Õ◊(a)
and Õ#(a) characterise the degree to which the intersections
of Õ with [a]R̃ and Õc with [a]R̃ are not empty. Õ◊(a) and
Õ#(a) characterise the degree to which the intersections of
Õ with [a]R̃c and Õc with [a]R̃c are not empty. There are simi-
lar interpretations for Ã?(o) , where Ã ∈ LAT , o ∈ OB , and
? =∗, ∗̄,□,□,◊,◊, # , and # . If � is a complete regular lat-
tice, then Eqs. (17)–(20) are equivalently reformulated as
follows (by using Lemma 2(1)):

Note that the operators in Eqs. (13)–(16), (21), (22), (27),
(28), (31), and (32) have already appeared in [35–37].
However, this does not affect our study because we mainly
explore the relationship between different �-concept lattices.
To distinguish between the operators defined on fuzzy object
sets and fuzzy attribute sets, we call Õ∗ , Õ∗̄ , Õ□ , Õ□ , Õ◊ ,
Õ◊ , Õ# , Õ# as �-object-induced two-way ( �O2W) operators
and Ã∗ , Ã∗̄ , Ã□ , Ã□ , Ã◊ , Ã◊ , Ã# , Ã# as �-attribute-induced
two-way ( �A2W) operators for Õ ∈ LOB and Ã ∈ LAT . The
�O2W and �A2W operators are both called � 2W operators.
In the following, the �?-two-way ( �?-2W) operator indicates
a particular operator where ? =∗, ∗̄,□,□,◊,◊, # , and # .
For example, the �∗-2W operator is �∗-object-induced two-
way ( �∗-O2W) operator Õ∗ or �∗-attribute-induced two-way
( �∗-A2W) operator Ã∗ , or both.

Example 1  Suppose OB = {o1, o2,⋯ , o5} , and each oi repre-
sents a real estate. An agent scores each estate based on
the following four factors: a1—the location is good, a2—
the price is reasonable, a3—the room layout is comfort-
able, and a4—the residential environment is pleasant; thus,
AT = {a1, a2, a3, a4} . Let L = {0, 0.2, 0.4, 0.6, 0.8, 1} be
the score set. Relation R̃ ∶ OB × AT ⟶ L represents the
scores of each estate with

(28)Ã#(o) =
⋁
a∈AT

(Ãc(a)⊗ R̃c(o, a)).

(29)Õ□(a) =
⋀
o∈OB

(R̃c(o, a) → Õ(o)),

(30)Ã□(o) =
⋀
a∈AT

(R̃c(o, a) → Ã(a)),

(31)Õ□(a) =
⋀
o∈OB

(R̃(o, a) → Õ(o)),

(32)Ã□(o) =
⋀
a∈AT

(R̃(o, a) → Ã(a)).

2000 Cognitive Computation (2022) 14:1997–2019

1 3

We define 𝜆 ⊗ 𝜇 = max{𝜆 + 𝜇 − 1, 0} and � → � = min{1

−� + �, 1} for �,� ∈ L . Then, � = (L,∨,∧,⊗,→, 0, 1) is a
complete regular residuated lattice, and � = (OB,AT , R̃,L)
is an �-context.

Now, suppose there is an intentional buyer, and he rates
each factor as 0.4, 1, 0.6, and 0.8. Based on this informa-
tion, we must determine which estate the agent should
recommend.

To solve this problem, first, let Ã =
0.4

a1
+

1

a2
+

0.6

a3
+

0.8

a4
 ;

then, we compute according to Eq. (13). The result is an �
-set:

R̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4

o1 0.20 1 0.20 0.80

o2 0.80 0.60 1 0.40

o3 0.20 0.80 0.40 1

o4 0.40 0.40 1 0

o5 1 0.80 0.60 0.20

⎞⎟⎟⎟⎟⎟⎟⎠

.

which means that the agent should recommend estate o3 to
this buyer.

To establish the relationship between � 2W operators, we
assume that � is a complete regular residuated lattice. Thus,
for an �-set Õ , (Õc)c = Õ always holds. Moreover, �∗̄ -, �□ -,
�
◊ -, and �#-2W operators defined in � are �∗ -, �□ -, �◊ -,

and �#-2W operators defined in the dual �-context, �c . Fig-
ure 1 shows the fundamental relationship between the eight
types of fuzzy concept-forming operators. (Figure 1a and
1b is the same, except that the former is for �O2W opera-
tors and the latter for �A2W operators.) The operators, con-
nected by a double-arrowed line, are converted into each
other by taking the operation attached to the line. For exam-
ple, replacing Õ with Õc in Õ∗ gives Õ□ ; thus, Õ□ = (Õc)∗ .
In the following, the parentheses are omitted for simplicity.
For a better understanding, Table 2 presents the equivalences

Ã∗ =
0.6

o1
+

0.6

o2
+

0.8

o3
+

0.2

o4
+

0.4

o5
,

Fig. 1   Relationship between
� 2W operators Õ Õ

Õ¯ Õ

Õ♦♦ Õ#

Õ Õ#

Õc

Õc

Õc

Õc

R̃ c

R̃ c

R̃ c

R̃ c

c cc c

(a) Relationship between LO2W operators.

Ã Ã

Ã Ã

Ã Ã #

Ã Ã #

Ã c

Ã c

Ã c

Ã c

R̃ c

R̃ c

R̃ c

R̃ c

c cc c

(b) Relationship between LA2W operators.

*

*

♦♦

��

��

♦♦

*

♦♦

*

��

��

Table 2   Equivalences of �O2W
operators

∗ □ ◊ # ∗̄ □ ◊ #

∗ − Õ
∗ = Õ

c□
Õ

∗ = Õ
◊c Õ

∗ = Õ
c#c

Õ
∗ = Õ

∗̄

R̃c
Õ

∗ = Õ
c□
R̃c Õ

∗ = Õ
◊c

R̃c
Õ

∗ = Õ
c#c

R̃c

□ Õ
□ = Õ

c∗ − Õ
□ = Õ

c◊c Õ
□ = Õ

#c
Õ

□ = Õ
c∗̄

R̃c
Õ

□ = Õ
□
R̃c

Õ
□ = Õ

c◊c

R̃c
Õ

□ = Õ
#c

R̃c

◊ Õ
◊ = Õ

∗c
Õ

◊ = Õ
c□c − Õ

◊ = Õ
c#

Õ
◊ = Õ

∗̄c

R̃c
Õ

◊ = Õ
c□c

R̃c
Õ

◊ = Õ
◊

R̃c
Õ

◊ = Õ
c#

R̃c

Õ
= Õ

c∗c
Õ

= Õ
□c

Õ
= Õ

c◊ − Õ
= Õ

c∗̄c

R̃c
Õ

= Õ
□c

R̃c Õ
= Õ

c◊

R̃c
Õ

= Õ
#

R̃c

∗̄ Õ
∗̄ = Õ

∗

R̃c Õ
∗̄ = Õ

c□
R̃c Õ

∗̄ = Õ
◊c

R̃c

Õ
∗̄ = Õ

c#c

R̃c
− Õ

∗̄ = Õ
c□

Õ
∗̄ = Õ

◊c
Õ

∗̄ = Õ
c#c

□ Õ
□ = Õ

c∗

R̃c Õ
□ = Õ

□
R̃c Õ

□ = Õ
c◊c

R̃c

Õ
□ = Õ

#c

R̃c
Õ

□ = Õ
c∗̄ − Õ

□ = Õ
c◊c

Õ
□ = Õ

#c

◊ Õ
◊ = Õ

∗c

R̃c Õ
◊ = Õ

c□c

R̃c Õ
◊ = Õ

◊

R̃c

Õ
◊ = Õ

c#

R̃c
Õ

◊ = Õ
∗̄c

Õ
◊ = Õ

c□c − Õ
◊ = Õ

c#

Õ
= Õ

c∗c

R̃c
Õ

= Õ
□c

R̃c Õ
= Õ

c◊

R̃c

Õ
= Õ

#

R̃c
Õ

= Õ
c∗̄c

Õ
= Õ

□c
Õ

= Õ
c◊ −

2001Cognitive Computation (2022) 14:1997–2019

1 3

illustrated in Fig. 1a as equations. (Figure 1b is similarly
translated.) One can refer to Appendix I for the verification
of these equations. Õ?

R̃c
 means that operator ? is defined based

on R̃c for Õ , where ? =∗, ∗̄,□,□,◊,◊, # , and #.
Table 3 shows the connections between the double com-

pound operations of � 2W operators. It lists all the possible
combinations. Thus, there is some overlap. For example,
Õ∗∗ = Õ◊□ and Õ◊□ = Õ∗∗ are the same. However, for
convenience of reference, the same equations have not been
deleted. The following equations present the equivalent rela-
tionship between the triple compound operations, namely,
applying three � 2W operators successively. For Õ ∈ LOB,

Using the order and basic operations of the fuzzy sets (see
Eqs. (1) and (2)), we can prove the following properties of
�
∗-2W operators.

Proposition 1  For Õ, Õi, Õj ∈ LOB and Ã, Ãi, Ãj ∈ LAT ( i ∈ Λ
and j = 1, 2 ), and A ∈ LAT , the following properties hold:

1.	 If Õ1 ⊆ Õ2 , then Õ∗
2
⊆ Õ∗

1
 , if Ã1 ⊆ Ã2 , then Ã∗

2
⊆ Ã∗

1
;

2.	 Õ ⊆ Õ∗∗ , Ã ⊆ Ã∗∗;
3.	 Õ∗ = Õ∗∗∗ , Ã∗ = Ã∗∗∗;
4.	

�⋃
i∈Λ Õi

�∗
=
⋂

i∈Λ Õ
∗
i
 ,
�⋃

i∈Λ Ãi

�∗
=
⋂

i∈Λ Ã
∗
i
;

(33)

Õ∗∗∗ = Õ◊□◊c, Õ◊◊◊ = Õ∗̄#∗̄c,

Õ□□□ = Õ#∗̄#c, Õ### = Õ□◊□c,

Õ∗̄∗̄∗̄ = Õ◊□◊c, Õ◊◊◊ = Õ∗#∗c,

Õ□□□ = Õ#∗#c, Õ### = Õ□◊□c,

Õ∗∗∗ = Õc□◊□, Õ◊◊◊ = Õc#∗̄#,

Õ□□□ = Õc∗̄#∗̄, Õ### = Õc◊□◊,

Õ∗̄∗̄∗̄ = Õc□◊□, Õ◊◊◊ = Õc#∗#,

Õ□□□ = Õc∗#∗, Õ### = Õc◊□◊.

5.	
�⋂

i∈Λ Õi

�∗
⊇
⋃

i∈Λ Õ
∗
i
 ,
�⋂

i∈Λ Ãi

�∗
⊇
⋃

i∈Λ Ã
∗
i
;

6.	 Õ ⊆ Ã∗
⇔ Ã ⊆ Õ∗.

Proof  Given are the proof of the properties of fuzzy object sets;
we can similarly prove the properties of fuzzy attribute sets.

1.	 To prove the monotonicity, we assume Õ1 ⊆ Õ2 , which
means that Õ1(o) ≤ Õ2(o) for each o ∈ OB . Then,
from Lemma 1(3), it follows that Õ∗

2
(a) =

⋀
o∈OB

�
Õ2

(o) → R̃(o, a)
)
 ≤

⋀
o∈OB

�
Õ1(o) → R̃(o, a)

�
= Õ∗

1
(a)  ,

∀a ∈ AT  , which means Õ∗
2
⊆ Õ∗

1
.

2.	 For Õ ∈ LOB and a ∈ AT  , according to Lemma 1(5),
i t ho lds t ha t Õ∗∗(o) =

⋀
a∈AT

�
Õ∗(a) → R̃(o, a)

�

=
⋀

a∈AT

�⋀
o�∈OB

�
Õ(o�) → R̃(o�, a)

�
→ R̃(o, a)

�

≥
⋀

a∈AT

��
Õ(o) → R̃(o, a)

�
→ R̃(o, a)

�

≥
⋀

a∈AT Õ(o) = Õ(o) , which means Õ ⊆ Õ∗∗.
3.	 From Items (1) and (2), we obtain Õ∗∗∗ ⊆ Õ∗ . Substitut-

ing Ã = Õ∗ follows Ã ⊆ Ã∗∗ ; thus, Õ∗ ⊆ Õ∗∗∗.
4.	 For Õi ∈ LOB ( i ∈ Λ ) and a ∈ AT , Lemma 1(4) supports

that
�⋃

i∈Λ Õi

�∗
(a) =

⋀
o∈OB

��⋃
i∈Λ Õi

�
(o) → R̃(o, a)

�

=
⋀

o∈OB

�⋁
i∈Λ Õi(o) → R̃(o, a)

�

=
⋀

o∈OB

⋀
i∈Λ

�
Õi(o) → R̃(o, a)

�

=
⋀

i∈Λ

⋀
o∈OB

�
Õi(o) → R̃(o, a)

�

=
⋀

i∈Λ Õ
∗
i
(a) =

�⋂
i∈Λ Õ

∗
i

�
(a).

5.	 For Õi ∈ LOB ( i ∈ Λ ) and a ∈ AT , Lemma 1(4) indicates
that

�⋂
i∈Λ Õi

�∗
(a) =

⋀
o∈OB

��⋂
i∈Λ Õi

�
(o) → R̃(o, a)

�

=
⋀

o∈OB

�⋀
i∈Λ Õi(o) → R̃(o, a)

�

≥
⋀

o∈OB

⋁
i∈Λ

�
Õi(o) → R̃(o, a)

�

≥
⋁

i∈Λ

⋀
o∈OB

�
Õi(o) → R̃(o, a)

�

=
⋁

i∈Λ Õ
∗
i
(a) =

�⋃
i∈Λ Õ

∗
i

�
(a).

6.	 For Õ ∈ LOB and Ã ∈ LAT  , we assume that Õ ⊆ Ã∗ .
Based on Lemma 1(5), we verify that Õ∗(a) =⋀

o∈OB

�
Õ(o) → R̃(o, a)

�
 ≥

⋀
o∈OB

�
Ã
∗(o) → R̃(o, a)

�
= ⋀

o∈OB

�⋀
a�∈AT

�
Ã(a�) → R̃(o, a�)

�
→ R̃(o, a)

�
≥
⋀

o∈OB ((
Ã(a) → R̃(o, a)

)
→ R̃(o, a)

)
 ≥ Ã(a) , which indicates

Ã ⊆ Õ∗ by the arbitrariness of a. The converse is simi-
larly proved.

Table 3   Equivalences of double compound operations of � 2W operators

∗ □ ◊ # ∗̄ □ ◊ #

∗ Õ
∗∗ = Õ

◊□
Õ

∗□ = Õ
◊∗

Õ
∗◊ = Õ

◊#
Õ

∗# = Õ
◊◊

Õ
∗∗̄ = Õ

◊□
Õ

∗□ = Õ
◊∗̄

Õ
∗◊ = Õ

◊#
Õ

∗# = Õ
◊◊

□ Õ
□∗ = Õ

#□
Õ

□□ = Õ
#∗

Õ
□◊ = Õ

##
Õ

□# = Õ
#◊ Õ

□∗̄ = Õ
#□

Õ
□□ = Õ

#∗̄
Õ

□◊ = Õ
##

Õ
□# = Õ

#◊

◊ Õ
◊∗ = Õ

∗□
Õ

◊□ = Õ
∗∗

Õ
◊◊ = Õ

∗#
Õ

◊# = Õ
∗◊

Õ
◊∗̄ = Õ

∗□
Õ

◊□ = Õ
∗∗̄

Õ
◊◊ = Õ

∗#
Õ

◊# = Õ
∗◊

Õ
#∗ = Õ

□□
Õ

#□ = Õ
□∗

Õ
#◊ = Õ

□#
Õ

= Õ
□◊ Õ

#∗̄ = Õ
□□

Õ
#□ = Õ

□∗̄
Õ

#◊ = Õ
□#

Õ
= Õ

□◊

∗̄ Õ
∗̄∗ = Õ

◊□
Õ

∗̄□ = Õ
◊∗

Õ
∗̄◊ = Õ

◊#
Õ

∗̄# = Õ
◊◊ Õ

∗̄∗̄ = Õ
◊□

Õ
∗̄□ = Õ

◊∗̄
Õ

∗̄◊ = Õ
◊#

Õ
∗̄# = Õ

◊◊

□ Õ
□∗ = Õ

#□
Õ

□□ = Õ
#∗

Õ
□◊ = Õ

##
Õ

□# = Õ
#◊ Õ

□∗̄ = Õ
#□

Õ
□□ = Õ

#∗̄
Õ

□◊ = Õ
##

Õ
□# = Õ

#◊

◊ Õ
◊∗ = Õ

∗̄□
Õ

◊□ = Õ
∗̄∗

Õ
◊◊ = Õ

∗̄#
Õ

◊# = Õ
∗̄◊ Õ

◊∗̄ = Õ
∗̄□

Õ
◊□ = Õ

∗̄∗̄
Õ

◊◊ = Õ
∗̄#

Õ
◊# = Õ

∗̄◊

Õ
#∗ = Õ

□□
Õ

#□ = Õ
□∗

Õ
#◊ = Õ

□#
Õ

= Õ
□◊ Õ

#∗̄ = Õ
□□

Õ
#□ = Õ

□∗̄
Õ

#◊ = Õ
□#

Õ
= Õ

□◊

2002 Cognitive Computation (2022) 14:1997–2019

1 3

The properties in Item (1) show the monotonicity of the
�
∗-2W operator. The properties in Items (2) and (3) show

that two �∗-2W operator applications will enlarge an �-set,
and three applications of the �∗-2W operator result in the
same outcome as one application. The properties in Items
(4) and (5) show the distributivity of the �∗-2W operator
over union and intersection. Items (1) and (6) of Proposi-
tion 1 show that (∗, ∗) forms an antitone Galois connection12
between (LOB,⊆) and (LAT ,⊆) . The properties of other � 2W
operators are easily obtained based on the properties of �∗

-2W operators and the relationship between � 2W operators.

Proposition 2  For Õ, Õi, Õj ∈ LOB ( i ∈ Λ and j = 1, 2 ), and
Ã ∈ LAT , the following properties hold:

1.	 If Õ1 ⊆ Õ2 , then Õ∗̄
2
⊆ Õ∗̄

1
 , Õ□

1
⊆ Õ

□
2

 , Õ□
1
⊆ Õ

□
2

 ,
Õ

◊
1
⊆ Õ

◊
2

 , Õ◊
1
⊆ Õ

◊
2

 , Õ#

2
⊆ Õ#

1
 , Õ#

2
⊆ Õ#

1
;

2.	 Õ ⊆ Õ∗̄∗̄ , Õ□◊ ⊆ Õ ⊆ Õ◊□ , Õ□◊ ⊆ Õ ⊆ Õ◊□ , Õ ⊇ Õ## ,
Õ ⊇ Õ##;

3.	 Õ∗̄ = Õ∗̄∗̄∗̄ , Õ◊ = Õ◊□◊ , Õ◊ = Õ◊□◊ , Õ□ = Õ□◊□ ,
Õ□ = Õ□◊□ , Õ# = Õ### , Õ# = Õ###;

4.	
�⋃

i∈Λ Õi

�∗̄
=
⋂

i∈Λ Õ
∗̄
i

  ,
�⋂

i∈Λ Õi

�□
=
⋂

i∈Λ   ,
Õ

i

�□
=
⋂

i∈Λ Õ
□
i

  ,
�⋃

i∈Λ Õi

�◊
=
⋃

i∈Λ Õ
◊
i

  , �⋃
i∈Λ Õi

�◊
=
⋃

i∈Λ Õ
◊
i

 ,
�⋂

i∈Λ Õi

�#
=
⋃

i∈Λ Õ
#

i
 , �⋂

i∈Λ Õi

�#
=
⋃

i∈Λ Õ
#

i
;

5.	
�⋂

i∈Λ Õi

�∗̄
⊇
⋃

i∈Λ Õ
∗̄
i

 ,
�⋃

i∈Λ Õi

�□
⊇
⋃

i∈Λ Õ
□
i

 , �⋃
i∈Λ Õi

�□
⊇
⋃

i∈Λ Õ
□
i

 ,
�⋂

i∈Λ Õi

�◊
⊆
⋂

i∈Λ Õ
◊
i

 , �⋂
i∈Λ Õi

�◊
⊆
⋂

i∈Λ Õ
◊
i

 ,
�⋃

i∈Λ Õi

�#
⊆
⋂

i∈Λ Õ
#

i
 , �⋃

i∈Λ Õi

�#
⊆
⋂

i∈Λ Õ
#

i
;

6.	 Õ ⊆ Ã∗̄
⇔ Ã ⊆ Õ∗̄   , Õ ⊆ Ã□

⇔ Ã ⊇ Õ◊   ,
Õ ⊆ Ã□

⇔ Ã ⊇ Õ◊   , Õ ⊇ Ã◊
⇔ Ã ⊆ Õ□   ,

Õ ⊇ Ã◊
⇔ Ã ⊆ Õ□ , Ã ⊇ Õ

# , Õ ⊇ Ã#
⇔ Ã ⊇ Õ#.

Note that the properties in Propositions 2(1)–(5) also
hold for fuzzy attribute sets. From Proposition 2(1) and (5),
one can see that (∗̄, ∗̄) forms an antitone Galois connection
between (LOB,⊆) and (LAT ,⊆) , (◊,□) and (◊,□) are two
isotone Galois connections3 between (LOB,⊆) and (LAT ,⊆) ,
and (□,◊) and (□,◊) are two isotone Galois connections
between (LAT ,⊆) and (LOB,⊆).

� 2W Concepts

Different � 2W operators determine various � 2W concepts.

Definition 1  Let � = (OB,AT , R̃,L) be an �-context. A pair
of �-sets, ⟨Õ, Ã⟩ with Õ ∈ LOB and Ã ∈ LAT , is an

1.	 �
∗-2W concept if Õ∗ = Ã and Ã∗ = Õ;

2.	 �
∗̄-2W concept if Õ∗̄ = Ã and Ã∗̄ = Õ;

3.	 �
◊□-2W concept if Õ◊ = Ã and Ã□ = Õ;

4.	 �
◊□-2W concept if Õ◊ = Ã and Ã□ = Õ;

5.	 �
□◊-2W concept if Õ□ = Ã and Ã◊ = Õ;

6.	 �
□◊-2W concept if Õ□ = Ã and Ã◊ = Õ;

7.	 �
#-2W concept if Õ# = Ã and Ã# = Õ;

8.	 �
#-2W concept if Õ# = Ã and Ã# = Õ.

Definition 1 shows that the � 2W concept is a pair of �-
sets that mutually determine each other. Note that �∗ -, �◊□ -,
�
□◊ -, and �#-2W concepts have been proposed [35–37].

We define another four types of � 2W concepts, namely, �∗̄ -,
�
◊□ -, �□◊ -, and �#-2W concepts.

Example 2  (Cont inued f rom Example 1) Let
Õ1 =

0.8

o1
+

0.8

o2
+

1

o3
+

0.6

o4
+

0.8

o5
 , Ã1 =

0.2

a1
+

0.8

a2
+

0.4

a3
+

0.4

a4
 and

Õ2 =
0.2

o1
+

0.6

o2
+

0.2

o3
+

0.6

o4
+

0.4

o5
 , Ã2 =

0.6

a1
+

0.8

a2
+

0.4

a3
+

0.8

a4
 . It

can be easily verified that ⟨Õ1, Ã1⟩ is an �∗-2W concept and
⟨Õ2, Ã2⟩ is an �∗̄-2W concept.

From a fuzzy object set or a fuzzy attribute set, we obtain
various � 2W concepts.

Proposition 3  For Õ ⊆ LOB and Ã ⊆ LAT , the following are
valid:

1.	 ⟨Õ∗∗, Õ∗⟩ and ⟨Ã∗, Ã∗∗⟩ are �∗-2W concepts;
2.	 ⟨Õ∗̄∗̄, Õ∗̄⟩ and ⟨Ã∗̄, Ã∗̄∗̄⟩ are �∗-2W concepts;
3.	 ⟨Õ◊□, Õ◊⟩ and ⟨Ã□, Ã□◊⟩ are �◊□-2W concepts;
4.	 ⟨Õ◊□, Õ◊⟩ and ⟨Ã□, Ã□◊⟩ are �◊□-2W concepts;
5.	 ⟨Õ□◊, Õ□⟩ and ⟨Ã◊, Ã◊□⟩ are �□◊-2W concepts;
6.	 ⟨Õ□◊, Õ□⟩ and ⟨Ã◊, Ã◊□⟩ are �□◊-2W concepts;
7.	 ⟨Õ##, Õ#⟩ and ⟨Ã#, Ã##⟩ are �#-2W concepts;
8.	 ⟨Õ##, Õ#⟩ and ⟨Ã#, Ã##⟩ are �#-2W concepts.

Proof  These assertions are obvious according to Proposi-
tions 2(3) and 1(3).

For an �-context, � = (OB,AT , R̃, L) , we denote

1  Given two ordered sets, (P,≤P) and (Q,≤Q) , an (antitone) Galois
connection between (P,≤P) and (Q,≤Q) consists of two antitone map-
pings, f ∶ P ⟶ Q and g ∶ Q ⟶ P , such that x ≤P g(y) ⇔ y ≤Q f (x)
for all (x, y) ∈ P × Q.
2  It is noteworthy that in [35], an �-Galois connection is defined
based on the subsethood degree. Here, we refer to the fuzzy set order
defined in Eq. (1).
3  Given two ordered sets, (P,≤P) and (Q,≤Q) , an isotone Galois con-
nection between (P,≤P) and (Q,≤Q) consists of two isotone map- pings, f ∶ P ⟶ Q and g ∶ Q ⟶ P , such that x ≤P g(y) ⇔ f (x) ≤Q y

for all (x, y) ∈ P × Q.

Footnote 3 (continued)

2003Cognitive Computation (2022) 14:1997–2019

1 3

as the sets of �∗ -, �∗̄ -, �◊□ -, �◊□ -, �□◊ -, �□◊ -, �# -, and
�
#-2W concepts, respectively.
According to Definition 1 and the regularity of � , the fol-

lowing statements hold: an �∗̄-2W concept in � is equivalent
to an �∗-2W concept in �c ; an �◊□-2W concept in � is equiv-
alent to an �◊□-2W concept in �c ; an �□◊-2W concept in �
is equivalent to an �□◊-2W concept in �c ; an �#-2W concept
in � is equivalent to an �#-2W concept in �c . The converse
is also valid. In summation, the following equations hold:

The equivalence between � 2W operators naturally yields the
following correspondence of the � 2W concepts.

Theorem 1  For Õ ∈ LOB and Ã ∈ LAT , the following state-
ments are equivalent:

1.	 ⟨Õ, Ã⟩ ∈ �
∗
�
(�);

2.	 ⟨Õ, Ãc⟩ ∈ �
◊□
�

(�);
3.	 ⟨Õc, Ã⟩ ∈ �

□◊
�

(�);
4.	 ⟨Õc, Ãc⟩ ∈ �

#

�
(�).

Proof  For Õ ⊆ LOB and Ã ⊆ LAT , the following holds:

Similarly, one can prove the other equivalences.

�
∗
�
(�) = {⟨Õ, Ã⟩ ∣ Õ∗ = Ã, Ã∗ = Õ},

�
∗̄
�
(�) = {⟨Õ, Ã⟩ ∣ Õ∗̄ = Ã, Ã∗̄ = Õ},

�
◊□
�

(�) = {⟨Õ, Ã⟩ ∣ Õ◊ = Ã, Ã□ = Õ},

�
◊□
�

(�) = {⟨Õ, Ã⟩ ∣ Õ◊ = Ã, Ã□ = Õ},

�
□◊
�

(�) = {⟨Õ, Ã⟩ ∣ Õ□ = Ã, Ã◊ = Õ},

�
□◊
�

(�) = {⟨Õ, Ã⟩ ∣ Õ□ = Ã, Ã◊ = Õ},

�
#

�
(�) = {⟨Õ, Ã⟩ ∣ Õ# = Ã, Ã# = Õ},

�
#

�
(�) = {⟨Õ, Ã⟩ ∣ Õ# = Ã, Ã# = Õ}

�
∗̄
�
(�) = �

∗
�
(�c), �

◊□
�

(�) = �
◊□
�

(�c),

�
□◊
�

(�) = �
□◊
�

(�c), �#

�
(�) = �

#

�
(�c),

�
∗
�
(�) = �

∗̄
�
(�c), �

◊□
�

(�) = �
◊□
�

(�c),

�
□◊
�

(�) = �
□◊
�

(�c), �#

�
(�) = �

#

�
(�c).

⟨Õc, Ã⟩ ∈ �
□◊
�

(�) ⇔ (Õc)□ = Ã, Ã◊ = Õc

⇔ (Õc)#c = Ã, (Ãc)# = Õc

⇔ (Õc)# = Ãc, (Ãc)# = Õc

⇔ ⟨Õc, Ãc⟩ ∈ �
#

�
(�).

As a direct consequence of Theorem 1, we obtain the
equivalent relationship between the other four types of � 2W
concepts.

Corollary 1  For Õ ⊆ LOB and Ã ⊆ LAT , the following state-
ments are equivalent:

1.	 ⟨Õ, Ã⟩ ∈ �
∗̄
�
(�);

2.	 ⟨Õ, Ãc⟩ ∈ �
◊□
�

(�);
3.	 ⟨Õc, Ã⟩ ∈ �

□◊
�

(�);
4.	 ⟨Õc, Ãc⟩ ∈ �

#

�
(�).

Theorem 1 and Corollary 1 show the equivalent relation-
ship between the � 2W concepts. These can be divided into
two groups. From each type of � 2W concept, one can obtain
the other three types, within the same group, by comput-
ing only the complements of the extent and (or) the intent.
Referring to Example 2, we can observe that ⟨Õ1, Ã

c
1
⟩ is an

�
◊□-2W concept and ⟨Õ2, Ã

c
2
⟩ is an �◊□-2W concept.

� 2W Concept Lattices

This section proves that each type of concept forms a com-
plete lattice, and these complete lattices form two isomor-
phism groups. The following are the definitions of order,
infimum, and supremum of each type of � 2W concept.

Definition 2  Let � = (OB,AT , R̃,L) be an �-context,
Õ1, Õ2 ∈ LOB , and Ã1, Ã2 ∈ LAT .

1.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
∗
�
(�) , ⟨Õ1, Ã1⟩ ≤∗ ⟨Õ2, Ã2⟩ iff

Õ1 ⊆ Õ2 (or Ã2 ⊆ Ã1 ), and

2.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
∗̄
�
(�) , ⟨Õ1, Ã1⟩ ≤∗̄ ⟨Õ2, Ã2⟩ iff

Õ1 ⊆ Õ2 (or Ã2 ⊆ Ã1 ), and

3.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
◊□
�

(�) , ⟨Õ1, Ã1⟩ ≤◊□
⟨Õ2, Ã2⟩

iff Õ1 ⊆ Õ2 (or Ã1 ⊆ Ã2 ), and

4.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
◊□
�

(�) , ⟨Õ1, Ã1⟩ ≤◊□ ⟨Õ2, Ã2⟩
iff Õ1 ⊆ Õ2 (or Ã1 ⊆ Ã2 ), and

⟨Õ1, Ã1⟩ ∧∗ ⟨Õ2, Ã2⟩ = ⟨Õ1 ∩ Õ2, (Ã1 ∪ Ã2)
∗∗⟩,

⟨Õ1, Ã1⟩ ∨∗ ⟨Õ2, Ã2⟩ = ⟨(Õ1 ∪ Õ2)
∗∗, Ã1 ∩ Ã2⟩.

⟨Õ1, Ã1⟩ ∧∗̄ ⟨Õ2, Ã2⟩ = ⟨Õ1 ∩ Õ2, (Ã1 ∪ Ã2)
∗∗⟩,

⟨Õ1, Ã1⟩ ∨∗̄ ⟨Õ2, Ã2⟩ = ⟨(Õ1 ∪ Õ2)
∗∗, Ã1 ∩ Ã2⟩.

⟨Õ1, Ã1⟩ ∧◊□
⟨Õ2, Ã2⟩ = ⟨Õ1 ∩ Õ2, (Ã1 ∩ Ã2)

□◊⟩,
⟨Õ1, Ã1⟩ ∨◊□

⟨Õ2, Ã2⟩ = ⟨(Õ1 ∪ Õ2)
◊□, Ã1 ∪ Ã2⟩.

2004 Cognitive Computation (2022) 14:1997–2019

1 3

5.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
□◊
�

(�) , ⟨Õ1, Ã1⟩ ≤□◊
⟨Õ2, Ã2⟩

iff Õ2 ⊆ Õ1 (or Ã2 ⊆ Ã1 ), and

6.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
□◊
�

(�) , ⟨Õ1, Ã1⟩ ≤□◊ ⟨Õ2, Ã2⟩
iff Õ2 ⊆ Õ1 (or Ã2 ⊆ Ã1 ), and

7.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
#

�
(�) , ⟨Õ1, Ã1⟩ ≤# ⟨Õ2, Ã2⟩ iff

Õ2 ⊆ Õ1 (or Ã1 ⊆ Ã2 ), and

8.	 For ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
#

�
(�) , ⟨Õ1, Ã1⟩ ≤#

⟨Õ2, Ã2⟩ iff
Õ2 ⊆ Õ1 (or Ã1 ⊆ Ã2 ), and

According to Propositions 1(4) and 2(4), it is clear that
(�?

�
(�),∧?,∨?) is a lattice, where ? =∗ , ∗̄ , □◊ , □◊ , ◊□ ,

◊□ , # , and # . We present the main theorem of the � 2W
concepts.
Theorem 2  Given an �-context, � = (OB,AT , R̃, L) ,
(�?

�
(�),∧?,∨?) is a complete lattice, where ? =∗ , ∗̄ , □◊ ,

□◊ , ◊□ , ◊□ , # , and #.

Proof  To prove that �∗
�
(�) is a complete lattice, we

assume ⟨Õi, Ãi⟩ ∈ �
∗
�
(�) , i ∈ Λ . Items (3) and (4) of

Proposition 1 show that ⟨⋂i∈Λ Õi, (
⋃

i∈Λ Ãi)
∗∗⟩ ∈ �

∗
�
(�)

and ⟨⋂i∈Λ Õi, (
⋃

Ãi)
∗∗⟩ ≤∗ ⟨Õi, Ãi⟩ for each i ∈ Λ  .

Next, we prove that ⟨⋂i∈Λ Õi, (
⋃

Ãi)
∗∗⟩ is the infi-

mum. If not, suppose that ⟨Õ, Ã⟩ ≤∗ ⟨Õi, Ãi⟩ for each
i ∈ Λ and ⟨⋂i∈Λ Õi, (

⋃
Ãi)

∗∗⟩ ≤∗ ⟨Õ, Ã⟩ . Then, it fol-
lows that Õ ⊆ Õi for each i ∈ Λ and

⋂
i∈Λ Õi ⊆ Õ ; con-

sequently,
⋂

i∈Λ Õi = Õ . Proposition 1(4) reveals that
Ã = Õ∗ = (

⋂
i∈Λ Õi)

∗ = (
⋂

i∈Λ Ã
∗
i
)∗ = (

⋃
i∈Λ Ãi)

∗∗ . That is,
⟨⋂i∈Λ Õi, (

⋃
i∈Λ Ãi)

∗∗⟩ is the infimum of ⟨Õi, Ãi⟩ ∈ �
∗
�
(�) ,

i ∈ Λ . Similarly, we prove that ⟨(⋃i∈Λ Õi)
∗∗,

⋂
i∈Λ Ãi⟩

is the supremum of ⟨Õi, Ãi⟩ ∈ �
∗
�
(�) , i ∈ Λ . Therefore,

(�∗
�
(�),∧∗,∨∗) is a complete lattice.

The others can be similarly proved.

⟨Õ1, Ã1⟩ ∧◊□ ⟨Õ2, Ã2⟩ = ⟨Õ1 ∩ Õ2, (Ã1 ∩ Ã2)
□◊⟩,

⟨Õ1, Ã1⟩ ∨◊□ ⟨Õ2, Ã2⟩ = ⟨(Õ1 ∪ Õ2)
◊□, Ã1 ∪ Ã2⟩.

⟨Õ1, Ã1⟩ ∧□◊
⟨Õ2, Ã2⟩ = ⟨Õ1 ∪ Õ2, (Ã1 ∪ Ã2)

◊□⟩,
⟨Õ1, Ã1⟩ ∨□◊

⟨Õ2, Ã2⟩ = ⟨(Õ1 ∩ Õ2)
□◊, Ã1 ∩ Ã2⟩.

⟨Õ1, Ã1⟩ ∧□◊ ⟨Õ2, Ã2⟩ = ⟨Õ1 ∪ Õ2, (Ã1 ∪ Ã2)
◊□⟩,

⟨Õ1, Ã1⟩ ∨□◊ ⟨Õ2, Ã2⟩ = ⟨(Õ1 ∩ Õ2)
□◊, Ã1 ∩ Ã2⟩.

⟨Õ1, Ã1⟩ ∧# ⟨Õ2, Ã2⟩ = ⟨Õ1 ∪ Õ2, (Ã1 ∩ Ã2)
##⟩,

⟨Õ1, Ã1⟩ ∨# ⟨Õ2, Ã2⟩ = ⟨(Õ1 ∩ Õ2)
##, Ã1 ∪ Ã2⟩.

⟨Õ1, Ã1⟩ ∧#
⟨Õ2, Ã2⟩ = ⟨Õ1 ∪ Õ2, (Ã1 ∩ Ã2)

##⟩,
⟨Õ1, Ã1⟩ ∨#

⟨Õ2, Ã2⟩ = ⟨(Õ1 ∩ Õ2)
##, Ã1 ∪ Ã2⟩.

Theorem 2 demonstrates that each � 2W concept lattice
is a complete lattice. Based on the results of Theorem 1 and
Corollary 1, the eight types of � 2W concept lattices can be
divided into two groups.

Theorem 3  Let � = (OB,AT , R̃, L) be an �-context. Then,
the following hold:

1.	 �
∗
�
(�) ≅ �

◊□
�

(�) ≅ �
□◊
�

(�) ≅ �
#

�
(�);

2.	 �
∗̄
�
(�) ≅ �

◊□
�

(�) ≅ �
□◊
�

(�) ≅ �
#

�
(�).

The notation ≅ represents isomorphic relation.4

Proof  (1) We assume that f ∶ �
□◊
�

(�) ⟶ �
#

�
(�) such

that f (⟨Õ, Ã⟩) = ⟨Õ, Ãc⟩ for ⟨Õ, Ã⟩ ∈ �
□◊
�

(�) . Theorem 1
indicates that f is a bijection between �□◊

�
(�) and �#

�
(�) .

Next, we suppose that ⟨Õ1, Ã1⟩, ⟨Õ2, Ã2⟩ ∈ �
□◊
�

(�) . Table 2
provides the following assertions:

f (⟨Õ1, Ã1⟩ ∧□◊
⟨Õ2, Ã2⟩)

= f (⟨Õ1 ∪ Õ2, (Ã1 ∪ Ã2)
◊□⟩)

= ⟨Õ1 ∪ Õ2, (Ã1 ∪ Ã2)
◊□c⟩

= ⟨Õ1 ∪ Õ2, (Ã1 ∪ Ã2)
◊#⟩,

f (⟨Õ1, Ã1⟩ ∨□◊
⟨Õ2, Ã2⟩)

= f (⟨(Õ1 ∩ Õ2)
□◊, Ã1 ∩ Ã2⟩)

= ⟨(Õ1 ∩ Õ2)
□◊, (Ã1 ∩ Ã2)

c⟩.

4  For two lattices �1 = (L1,∧1,∨1) and �2 = (L2,∧2,∨2) , we say
�1 is isomorphic with �2 (denoted as �1 ≅ �2 ) if and only if there
exists a bijection f ∶ L1 ⟶ L2 such that f (a ∧1 b) = f (a) ∧2 f (b) and
f (a ∨1 b) = f (a) ∨2 f (b) , and f is called an isomorphism between �1
and �2 . In the view of graphs, we say two graphs G1 and G2 are iso-
morphic if there exists a matching between their vertices so that two
vertices are connected by an edge in G1 if and only if corresponding
vertices are connected by an edge in G2 . For example, the following
two graphs are isomorphic.

2005Cognitive Computation (2022) 14:1997–2019

1 3

 Table 2 still supports that

 Table 3 suggests that (Õ1 ∩ Õ2)
= (Õ1 ∪ Õ2)

□◊  ,
which means f is ∧-preserving and ∨-preserving. By let-
ting f (⟨Õ, Ã⟩) = ⟨Õ, Ãc⟩ and f (⟨Õ, Ã⟩) = ⟨Õc, Ãc⟩ , one
proves the isomorphism between �∗

�
(�) and �◊□

�
(�)

and between �◊□
�

(�) and �□◊
�

(�) , respectively.

(2)	 The proof is similar to that of Item (1).

Theorem 3 reveals the isomorphic relationship between the
� 2W concept lattices. The eight types of � 2W concept lat-
tices constitute two groups; each concept lattice is isomorphic
with the other three in the same group. Using the results in
Theorems 1 and 3 and Corollary 1, we only need to construct
a type of concept lattice in each group. The following is a brief
example of the construction of � 2W concept lattices.

Example 3  Given an �-context, � = (OB,AT , R̃,L) , with four
objects and three attributes, the �-relation is represented as

Let L = {0, 0.5, 1} be the truth-value set, and define
𝜆 ⊗ 𝜇 = max{𝜆 + 𝜇 − 1, 0} and � → � = min{1 − � + �, 1}
for �,� ∈ L . The method proposed by Bězlohlávek [57] is
adopted to construct the �∗-2W concept lattice. The extent
and intent of the �∗-2W concepts are listed in Table 4. Fig-
ure 2 shows the Hasse diagram of the �∗-2W concept lattice.
The number of nodes corresponds to the number of each �∗

-2W concept in Table 4. A line connects two concepts, in
which the lower concept is a sub-concept of the upper one.

Based on the results of Theorems 1 and 3, �◊□ -, �□◊ -,
and �#-2W concept lattices can be easily obtained. For
example, by computing the complement of �∗-2W concept
intent, we can obtain all �◊□-2W concepts (see Table 5).

f (⟨Õ1, Ã1⟩) ∧# f (⟨Õ2, Ã2⟩)
= ⟨Õ1, Ã

c
1
⟩ ∧# ⟨Õ2, Ã

c
2
⟩

= ⟨Õ1 ∪ Õ2, (Ã
c
1
∩ Ãc

2
)##⟩

= ⟨Õ1 ∪ Õ2, (Ã1 ∪ Ã2)
c##⟩

= ⟨Õ1 ∪ Õ2, (Ã1 ∪ Ã2)
◊#⟩,

f (⟨Õ1, Ã1⟩) ∨# f (⟨Õ2, Ã2⟩)
= ⟨Õ1, Ã

c
1
⟩ ∨# ⟨Õ2, Ã

c
2
⟩

= ⟨(Õ1 ∩ Õ2)
##, Ãc

1
∪ Ãc

2
⟩.

R̃ =

⎛⎜⎜⎜⎜⎜⎝

a1 a2 a3

o1 0 1 0.5

o2 1 0.5 0.5

o3 0.5 1 0

o4 0.5 0.5 1

⎞⎟⎟⎟⎟⎟⎠

.

According to Theorem 3, the �◊□-2W concept lattice struc-
ture is the same as that of the �∗-2W concept lattice.

Relationship Between � 3W Concept Lattices

Early traces of � 3W concept analysis can be found in [58],
where Bartl and Konecny studied the �-concept with posi-
tive and negative attributes and used a pair of antitone and
isotone concept-forming operators to define an � 3W con-
cept. Subsequently, He, Wei, and She [59] used a pair of
antitone concept-forming operators to represent a type of
�O3W concept and a type of �A3W concept. Singh [42]
proposed a three-way fuzzy concept within the neutrosophic
context, which consists of a pair of neutrosophic sets. A
neutrosophic set, N, consists of three functions, TN , IN , and
FN , namely, the truth-membership function, indeterminacy-
membership function, and falsity-membership function,
respectively. The number ‘three’ of ‘three-way fuzzy con-
cept’ means that three membership functions represent both
the extent and intent of a three-way fuzzy concept. However,
the � 3W concepts in this study have a different meaning,
which is the main focus of this section.

� 3W Operators

Considering three-way operators in a fuzzy set view, we
can have four types of �O3W operators and four types
of �A3W operators and their inverses (see Table 6). The
relationships between �O3W operators and between
�O3W inverse operators are illustrated in Fig. 3a and
b, respectively. One can convert the operators, connected
by a double-arrowed line, by taking the operation with

Table 4   �∗-2W concepts

No. Õ Ã

1 (1.0, 1.0, 1.0, 1.0) (0.0, 0.5, 0.0)
2 (1.0, 1.0, 0.5, 1.0) (0.0, 0.5, 0.5)
3 (1.0, 0.5, 1.0, 0.5) (0.0, 1.0, 0.0)
4 (1.0, 0.5, 0.5, 0.5) (0.0, 1.0, 0.5)
5 (0.5, 1.0, 1.0, 1.0) (0.5, 0.5, 0.0)
6 (0.5, 1.0, 0.5, 1.0) (0.5, 0.5, 0.5)
7 (0.5, 0.5, 0.0, 1.0) (0.5, 0.5, 1.0)
8 (0.5, 0.5, 1.0, 0.5) (0.5, 1.0, 0.0)
9 (0.5, 0.5, 0.5, 0.5) (0.5, 1.0, 0.5)
10 (0.5, 0.5, 0.0, 0.5) (0.5, 1.0, 1.0)
11 (0.0, 1.0, 0.5, 0.5) (1.0, 0.5, 0.5)
12 (0.0, 0.5, 0.5, 0.5) (1.0, 1.0, 0.5)
13 (0.0, 0.5, 0.0, 0.5) (1.0, 1.0, 1.0)

2006 Cognitive Computation (2022) 14:1997–2019

1 3

the line. For example, Õ⋖ can be obtained by substituting
Õc for Õ in Õ▽ , namely, Õ⋖ = (Õc)▽ = Õc▽ ; (Õ1, Õ2)

⋗
can be obtained by replacing (Õ1, Õ2) with (Õ1, Õ2)

c in
(Õ1, Õ2)

▴ , i.e. (Õ1, Õ2)
⋗ = ((Õ1, Õ2)

c)▴ = (Õ1, Õ2)
c▴ . For a

better understanding, Table 7 lists the equivalences of �
O3W operators and �O3W inverse operators. Appendix II
provides proof of these equations. We omit the results for
�A3W operators and their inverses for simplicity. More-
over, Table 8 reveals the connections between the two
applications of � 3W operators. According to the proper-
ties of �∗ - and �∗̄-2W operators, the basic properties of
�
⋖-3W operators and associated inverses are presented

as follows:

Proposition 4  For Õ , Õi , Õj , Õik ∈ LOB , Ã , Ãi , Ãj , Ãik ∈ LAT
( i ∈ Λ , j = 1, 2, 3, 4 , and k = 1, 2 ), the following hold:

	 1.	 If Õ1 ⊆ Õ2 , then Õ⋖
2
⊆ Õ⋖

1
 , if Ã1 ⊆ Ã2 , then Ã⋖

2
⊆ Ã⋖

1

;

	 2.	 Õ ⊆ Õ⋖⋗ , Ã ⊆ Ã⋖⋗;

	 3.	 Õ⋖ = Õ⋖⋗⋖ , Ã⋖ = Ã⋖⋗⋖;

	 4.	 (
⋃

i∈Λ Õi)
⋖ =

⋂
i∈Λ Õ

⋖
i
 , (
⋃

i∈Λ Ãi)
⋖ =

⋂
i∈Λ Ã

⋖
i
;

	 5.	 (
⋂

i∈Λ Õi)
⋖ ⊇

⋃
i∈Λ Õ

⋖
i
 , (
⋂

i∈Λ Ãi)
⋖ ⊇

⋃
i∈Λ Ã

⋖
i
;

	 6.	 If (Õ1, Õ2) ⊆ (Õ3, Õ4) , then (Õ3, Õ4)
⋗ ⊆ (Õ1, Õ2)

⋗ ;
if (Ã1, Ã2) ⊆ (Ã3, Ã4) , then (Ã3, Ã4)

⋗ ⊆ (Ã1, Ã2)
⋗;

	 7.	 (Õ1, Õ2) ⊆ (Õ1, Õ2)
⋗⋖ , (Ã1, Ã2) ⊆ (Ã1, Ã2)

⋗⋖;

	 8.	 (Õ1, Õ2)
⋗ = (Õ1, Õ2)

⋗⋖⋗ , (Ã1, Ã2)
⋗ = (Ã1, Ã2)

⋗⋖⋗;

	 9.	
�⋃

i∈Λ(Õi1, Õi2)
�⋗

=
⋂

i∈Λ(Õi1, Õi2)
⋗   , �⋃

i∈Λ(Ãi1, Ãi2)
�⋗

=
⋂

i∈Λ(Ãi1, Ãi2)
⋗;

	 10.	
�⋂

i∈Λ(Õi1, Õi2)
�⋗

⊇
⋃

i∈Λ(Õi1, Õi2)
⋗   , �⋂

i∈Λ(Ãi1, Ãi2)
�⋗

⊇
⋃

i∈Λ(Ãi1, Ãi2)
⋗.

Proof  (1) Propositions 1(1) and 2(1) support that
Õ⋖

2
= (Õ∗

2
, Õ∗̄

2
) ⊆ (Õ∗

1
, Õ∗̄

1
) = Õ⋖

1
 for Õ∗

1
⊆ Õ∗

2
.

	 (2)	 Given Õ ⊆ LOB , based on Propositions 1(2) and 2(2),
it follows that Õ⋖⋗ = (Õ∗, Õ∗̄)⋗ = Õ

∗∗ ∩ Õ
∗̄∗̄ ⊇ Õ∩

Õ = Õ.
	 (3)	 Items (1) and (2) indicate that Õ⋖⋗⋖ ⊆ Õ⋖ for

Õ ∈ LOB . Moreover, from Propositions 1(5) and
2(5), it holds that Õ⋖⋗⋖ = (Õ∗, Õ∗̄)⋗⋖ = (Õ∗∗ ∩ Õ∗̄∗̄)⋖
= ((Õ∗∗ ∩ Õ∗̄∗̄)∗, (Õ∗∗ ∩ Õ∗̄∗̄)∗̄) ⊇ (Õ∗∗∗ ∪ Õ

∗̄∗̄∗, Õ∗∗∗̄∪
Õ

∗̄∗̄∗̄) ⊇ (Õ∗∗∗, Õ∗̄∗̄∗̄) = (Õ∗, Õ∗̄) = Õ
⋖.

1

2 3 5

4 6 8

7 9 11

10 12

13

Fig. 2   �∗-2W concept lattice

Table 5   �◊□-2W concepts

No. Õ Ã

1 (1.0, 1.0, 1.0, 1.0) (1.0, 0.5, 1.0)
2 (1.0, 1.0, 0.5, 1.0) (1.0, 0.5, 0.5)
3 (1.0, 0.5, 1.0, 0.5) (1.0, 0.0, 1.0)
4 (1.0, 0.5, 0.5, 0.5) (1.0, 0.0, 0.5)
5 (0.5, 1.0, 1.0, 1.0) (0.5, 0.5, 1.0)
6 (0.5, 1.0, 0.5, 1.0) (0.5, 0.5, 0.5)
7 (0.5, 0.5, 0.0, 1.0) (0.5, 0.5, 0.0)
8 (0.5, 0.5, 1.0, 0.5) (0.5, 0.0, 1.0)
9 (0.5, 0.5, 0.5, 0.5) (0.5, 0.0, 0.5)
10 (0.5, 0.5, 0.0, 0.5) (0.5, 0.0, 0.0)
11 (0.0, 1.0, 0.5, 0.5) (0.0, 0.5, 0.5)
12 (0.0, 0.5, 0.5, 0.5) (0.0, 0.0, 0.5)
13 (0.0, 0.5, 0.0, 0.5) (0.0, 0.0, 0.0)

2007Cognitive Computation (2022) 14:1997–2019

1 3

	 (4)	 Propositions 1(4) and 2(4) show that (
⋃

i∈Λ Õi
)⋖ =

�
(
⋃

i∈ΛÕi
)∗, (

⋃
i∈Λ Õi

)∗̄
�
 =

�⋂
i∈Λ Õ

∗
i
,
⋂

i∈Λ Õ
∗̄
i

�
=
⋂

i∈Λ
(Õ∗

i
, Õ∗̄

i
) =

⋂
i∈Λ Õ

⋖
i
.

	 (5)	 It is obvious from Propositions 1(5) and 2(5).
	 (6)	 For (Õ1, Õ2) ⊆ (Õ3, Õ4) which is equivalent to Õ1 ⊆ Õ3

and Õ2 ⊆ Õ4 , it holds that (Õ3, Õ4)
⋖ = Õ

∗
3
∩ Õ

∗̄
4
⊆ Õ

∗
1

∩Õ∗̄
2
= (Õ1, Õ2)

⋖ by Propositions 1(1) and 2(1).
	 (7)	 Proposition 1(2) and (5) and Proposition 2(2)

and (5) suppor t that (Õ1, Õ2)
⋗⋖ = (Õ∗

1
∩ Õ∗̄

2
)⋖

=
(
(Õ∗

1
∩ Õ∗̄

2
)∗, (Õ∗

1
∩ Õ∗̄

2
)∗̄
)
 ⊇ (Õ∗∗

1
∪ Õ∗̄∗̄

2
, Õ∗∗̄

1
∪ Õ∗̄∗̄

2
)

⊇ (Õ∗∗
1
, Õ∗̄∗̄

2
) ⊇ (Õ1, Õ2).

	 (8)	 Items (6) and (7) show that (Õ1, Õ2)
⋗⋖⋗ ⊆ (Õ1, Õ2)

⋗ .
By contrast, letting Ã = (Õ1, Õ2)

⋗ follows that
Ã ⊆ Ã⋖⋗ by Item (2), namely, (Õ1, Õ2)

⋗ ⊆ (Õ1, Õ2)
⋗⋖⋗.

	 (9)	 Proposition 1(4) and Proposition 2(4) verifies
that (

⋃
i∈Λ(Õi1, Õi2))

⋗ = (
⋃

i∈Λ Õi1,
⋃

i∈Λ Õi2)
⋗ = (

⋃

i∈ΛÕi1)
∗ ∩ (

⋃
i∈Λ Õi2)

∗̄ = (
⋂

i∈Λ Õ
∗
i1
) ∩ (

⋂
i∈Λ Õ

∗̄
i2
) = ⋂

i∈Λ(Õ
∗
i1
∩ Õ

∗̄
i2
) =

⋂
i∈Λ(Õi1, Õi2)

⋗.
	(10)	 From Proposition 1(5) and Proposition 2(5), it fol-

lows that (
⋂

i∈Λ(Õi1, Õi2))
⋗ = (

⋂
i∈Λ Õi1,

⋂
i∈Λ Õi2)

⋗
= (

⋂
i∈Λ Õi1)

∗ ∩ (
⋂

i∈Λ Õi2)
∗̄ ⊇ (

⋃
i∈Λ Õ

∗
i1
) ∩ (

⋃
i∈Λ Õ

∗̄
i2
)

⊇
⋃

i∈Λ(Õ
∗
i1
∩ Õ∗̄

i2
) =

⋃
i∈Λ(Õi1, Õi2)

⋗.

Items (1) and (6) show the monotonic property of the �⋖

-O3W operator and its inverse. The properties of Items (2)
and (7) reveal that the application of ⋖ and ⋗ (or ⋗ and
⋖ ) successively will increase the �-set. The properties of
Items (3) and (8) indicate that three applications of the � 3W
operators successively achieves the same result as the first
application. The properties of Items (4), (5), (9), and (10)
show the distributivity of the �⋖-3W operator and its inverse.

The results in Proposition 4 together with the equivalence
between � 3W operators yield the properties of other � 3W
operators.

Proposition 5  For Õ, Õi, Õj, Õik ⊆ LOB ( i ∈ Λ , j = 1, 2, 3, 4 ,
and k = 1, 2 ), the following hold:

	 1.	 If Õ1 ⊆ Õ2 , then Õ▽
1

⊆ Õ
▽
2

 , Õ▾
1
⊆ Õ▾

2
 , Õ⊳

2
⊆ Õ⊳

1
;

	 2.	 Õ ⊇ Õ▽△ , Õ ⊆ Õ▾▴ , Õ ⊇ Õ⊳⊲;

	 3.	 Õ▽ = Õ▽△▽ , Õ▾ = Õ▾▴▾ , Õ⊳ = Õ⊳⊲⊳;

	 4.	
�⋂

i∈Λ Õi

�▽
=
⋂

i∈Λ Õ
▽
i

 ,
�⋃

i∈Λ Õi

�▾
=
⋃

i∈Λ Õ
▾
i
 , �⋂

i∈Λ Õi

�⊳
=
⋃

i∈Λ Õ
⊳
i
;

	 5.	
�⋃

i∈Λ Õi

�▽
⊇
⋃

i∈Λ Õ
▽
i

 ,
�⋂

i∈Λ Õi

�▾
⊆
⋃

i∈Λ Õ
▾
i
 , �⋃

i∈Λ Õi

�⊳
⊆
⋂

i∈Λ Õ
⊳
i
;

	 6.	 If (Õ1, Õ2) ⊆ (Õ3, Õ4) , then (Õ1, Õ2)
△ ⊆ (Õ3, Õ4)

△ ,
(Õ1, Õ2)

▴ ⊆ (Õ3, Õ4)
▴ , (Õ3, Õ4)

⊲ ⊆ (Õ1, Õ2)
⊲;

	 7.	 (Õ1, Õ2) ⊆ (Õ1, Õ2)
△▽  , (Õ1, Õ2) ⊇ (Õ1, Õ2)

▴▾  ,
(Õ1, Õ2) ⊇ (Õ1, Õ2)

⊲⊳;

	 8.	 (Õ1, Õ2)
△

= (Õ1, Õ2)
△▽△ , (Õ1, Õ2)

▴
= (Õ1, Õ2)

▴▾▴ ,
(Õ1, Õ2)

⊲ = (Õ1, Õ2)
⊲⊳⊲;

Table 6   � 3W operators
�O3W operator �O3W inverse operator �A3W operator �A3W inverse operator

Õ
⋖ = (Õ∗, Õ∗̄) (Õ1, Õ2)

⋗ = Õ
∗
1
∩ Õ

∗̄
2

Ã
⋖ = (Ã∗, Ã∗̄) (Ã1, Ã2)

⋗ = Ã
∗
1
∩ Ã

∗̄
2

Õ
▽ = (Õ□, Õ□) (Õ1, Õ2)

△ = Õ
◊
1
∪ Õ

◊
2

Ã
▽ = (Ã□, Ã□) (Ã1, Ã2)

△ = Ã
◊
1
∪ Ã

◊
2

Õ
▾ = (Õ◊, Õ◊) (Õ1, Õ2)

▴ = Õ
□
1
∩ Õ

□
2

Ã
▾ = (Ã◊, Ã◊) (Ã1, Ã2)

▴ = Ã
□
1
∩ Ã

□
2

Õ
⊳ = (Õ#, Õ#) (Õ1, Õ2)

⊲ = Õ
#

1
∪ Õ

#

2
Ã
⊳ = (Ã#, Ã#) (Ã1, Ã2)

⊲ = Ã
#

1
∪ Ã

#

2

Fig. 3   Relationship between
� 3W operators

(a) (b)

2008 Cognitive Computation (2022) 14:1997–2019

1 3

	 9.	
�⋃

i∈Λ(Õi1, Õi2)
�△

=
⋃

i∈Λ(Õi1, Õi2)
△
�⋂

i∈Λ(Õi1 ,
Õ

i2)
�▴

=
⋂

i∈Λ(Õi1, Õi2)
▴
�⋂

i∈Λ(Õi1, Õi2)
�⊲

=
⋃

i∈Λ  ,
(Õ

i1, Õi2)
⊲;

	 10.	
�⋂

i∈Λ(Õi1, Õi2)
�△

⊆
⋂

i∈Λ(Õi1, Õi2)
△
�⋃

i∈Λ(Õi1 ,
Õ

i2)
�▴

⊇
⋃

i∈Λ(Õi1, Õi2)
▴
�⋃

i∈Λ(Õi1, Õi2)
�⊲

⊆
⋂

i∈Λ  ,
(Õ

i1, Õi2)
⊲.

The properties in Proposition 5 also hold for fuzzy attrib-
ute sets.

�O3W Concepts and �O3W Concept Lattices

A type of �O3W operator, together with its inverse, defines
a type of �O3W concept.

Definition 3  Let � = (OB,AT , R̃,L) be an �-context. For
Õ ∈ LOB and Ã1, Ã2 ∈ LAT , ⟨Õ, (Ã1, Ã2)⟩ is called an

1.	 �⋖-O3W concept if Õ⋖ = (Ã1, Ã2) and (Ã1, Ã2)
⋗ = Õ;

2.	 �
▽-O3W concept if Õ▽ = (Ã1, Ã2) and (Ã1, Ã2)

△ = Õ;
3.	 �

▾-O3W concept if Õ▾ = (Ã1, Ã2) and (Ã1, Ã2)
▴ = Õ;

4.	 �
⊳-O3W concept if Õ⊳ = (Ã1, Ã2) and (Ã1, Ã2)

⊲ = Õ.

From Definition 2, two �-sets defined on AT comprise
the intent of the �O3W concept. These two �-sets represent
opposite meanings. For example, given an �⋖-O3W con-
cept ⟨Õ, (Ã1, Ã2)⟩ , Ã1(a) characterises the degree of attribute
a shared by all objects in Õ and Ã2(a) characterises the
degree of attribute a not shared by any objects in Õ . It is
worth noting that the statement ‘objects in Õ ’ is also a fuzzy
statement.

Example 4  (Continued from Example 1) Suppose a couple
intends to buy a house. The agent invites one of them to rate
each factor’s importance, and the other to rate the
non-importance of each aspect. The results are represented by
two fuzzy sets: Ã1 =

0.2

a1
+

0.8

a2
+

0.4

a3
+

0.6

a4
 and Ã2 =

0.4

a1

+
0.2

a2

+
0.2

a3

+
0

a4

 . By computation, we have (Ã1, Ã2)
⋗ = Ã

∗ ∩ Ã
∗̄ =

Õ =
0.8

o1

+
0.8

o2

+
1

o3

+
0.4

o4

+
0.6

o5

 . The result suggests that the
agent can recommend the estate o3 to the couple. Moreover,
because Õ⋖ = (Õ∗, Õ∗̄) = (Ã1, Ã2) , it holds that ⟨Õ, (Ã1, Ã2)⟩
is an �⋖-O3W concept.

For an �-context � = (OB,AT , R̃, L) , we denote

Table 7   Equivalences of �O3W operators and �O3W inverse operators

⋖ ▽ ▾ ⊳ ⋗ △ ▴ ⊲

⋖ − Õ
⋖ = Õ

c▽ Õ
⋖ = Õ

▾c
Õ

⋖ = Õ
c⊳c

▽ Õ
▽ = Õ

c⋖ − Õ
▽ = Õ

c▾c
Õ

▽ = Õ
⊳c

▾ Õ
▾ = Õ

⋖c
Õ

▾ = Õ
c▽c − Õ

▾ = Õ
c⊳

⊳ Õ
⊳ = Õ

c⋖c
Õ

⊳ = Õ
▽c Õ

⊳ = Õ
c▾ −

⋗ − (Õ1, Õ2)
⋗
= (Õ1, Õ2)

△c
(Õ1, Õ2)

⋗
= (Õ1, Õ2)

c▴
(Õ1, Õ2)

⋗
= (Õ1, Õ2)

c⊲c

△ (Õ1, Õ2)
△

= (Õ1, Õ2)
⋗c − (Õ1, Õ2)

△
= (Õ1, Õ2)

c▴c
(Õ1, Õ2)

△
= (Õ1, Õ2)

c⊲

▴ (Õ1, Õ2)
▴
= (Õ1, Õ2)

c⋗
(Õ1, Õ2)

▴
= (Õ1, Õ2)

c△c − (Õ1, Õ2)
▴
= (Õ1, Õ2)

⊲c

⊲ (Õ1, Õ2)
⊲
= (Õ1, Õ2)

c⋗c
(Õ1, Õ2)

⊲
= (Õ1, Õ2)

c△
(Õ1, Õ2)

⊲
= (Õ1, Õ2)

▴c −

Table 8   Equivalences of two applications of � 3W operators

⋗ △ ▴ ⊲ ⋖ ▽ ▾ ⊳

⋖ Õ
⋖⋗ = Õ

▾▴
Õ

⋖△ = Õ
▾⊲ Õ

⋖▴ = Õ
▾⋗

Õ
⋖⊲ = Õ

▾△

▽ Õ
▽⋗ = Õ

⊳▴
Õ

▽△ = Õ
⊳⊲

Õ
▽▴ = Õ

⊳⋗
Õ

▽⊲ = Õ
⊳△

▾ Õ
▾⋗ = Õ

⋖▴
Õ

▾△ = Õ
⋖⊲ Õ

▾▴ = Õ
⋖⋗

Õ
▾⊲ = Õ

⋖△

⊳ Õ
⊳⋗ = Õ

▽▴
Õ

⊳△ = Õ
▽⊲

Õ
⊳▴ = Õ

▽⋗
Õ

⊳⊲ = Õ
▽△

⋗ (Õ1, Õ2)
⋗⋖

= (Õ1, Õ2)
△▽

(Õ1, Õ2)
⋗▽

= (Õ1, Õ2)
△⋖

(Õ1, Õ2)
⋗▾

= (Õ1, Õ2)
△⊳

(Õ1, Õ2)
⋗⊳

= (Õ1, Õ2)
△▾

△ (Õ1, Õ2)
△⋖

= (Õ1, Õ2)
⋗▽

(Õ1, Õ2)
△▽

= (Õ1, Õ2)
⋗⋖

(Õ1, Õ2)
△▾

= (Õ1, Õ2)
⋗⊳

(Õ1, Õ2)
△⊳

= (Õ1, Õ2)
⋗▾

▴ (Õ1, Õ2)
▴⋖

= (Õ1, Õ2)
⊲▽

(Õ1, Õ2)
▴▽

= (Õ1, Õ2)
⊲⋖

(Õ1, Õ2)
▴▾

= (Õ1, Õ2)
⊲⊳

(Õ1, Õ2)
▴⊳

= (Õ1, Õ2)
⊲▾

⊲ (Õ1, Õ2)
⊲⋖

= (Õ1, Õ2)
▴▽

(Õ1, Õ2)
⊲▽

= (Õ1, Õ2)
▴⋖

(Õ1, Õ2)
⊲▾

= (Õ1, Õ2)
▴⊳

(Õ1, Õ2)
⊲⊳

= (Õ1, Õ2)
▴▾

2009Cognitive Computation (2022) 14:1997–2019

1 3

as the sets of �⋖ -, �▽ -, �▾ -, and �⊳-O3W concepts,
respectively.

Theorem 4  For Õ ∈ LOB and Ã1, Ã2 ∈ LAT , the following
statements are equivalent:

1.	 ⟨Õ, (Ã1, Ã2)⟩ ∈ �
⋖
O�

(�);
2.	 ⟨Õc, (Ã1, Ã2)⟩ ∈ �

▽
O�

(�);
3.	 ⟨Õ, (Ã1, Ã2)

c⟩ ∈ �
▾
O�

(�);
4.	 ⟨Õc, (Ã1, Ã2)

c⟩ ∈ �
⊳
O�

(�).

Proof  For Õ ∈ LOB and Ã1, Ã2 ∈ LAT , it follows from Defini-
tion 2 and Table 7 that

The other equivalences are similarly proved.

Theorem 4 establishes the connections between �O3W
concepts. Utlising these results, one starts with any �O3W
concept to obtain the other three types. The following are
the definitions of the order, infimum, and supremum of
each type of �O3W concept.

Definition 4  Let � = (OB,AT , R̃,L) be an �-context,
Õi ∈ LOB , and Ãij ∈ LAT ( i, j = 1, 2 ).

1.	 Suppose ⟨Õ1, (Ã11, Ã12)⟩, ⟨Õ2, (Ã21, Ã22)⟩ ∈ �
⋖
O�

(�) ,
then ⟨Õ1, (Ã11, Ã12)⟩ ≤⋖ ⟨Õ2, (Ã21, Ã22)⟩ iff Õ1 ⊆ Õ2 (or
(Ã21, Ã22) ⊆ (Ã11, Ã12) ), and

�
⋖
O�

(�) = {⟨Õ, (Ã1, Ã2)⟩ ∣ Õ⋖ = (Ã1, Ã2),

(Ã1, Ã2)
⋗ = Õ},

�
▽
O�

(�) = {⟨Õ, (Ã1, Ã2)⟩ ∣ Õ▽ = (Ã1, Ã2),

(Ã1, Ã2)
△ = Õ},

�
▾
O�

(�) = {⟨Õ, (Ã1, Ã2)⟩ ∣ Õ▾ = (Ã1, Ã2),

(Ã1, Ã2)
▴ = Õ},

�
⊳
O�

(�) = {⟨Õ, (Ã1, Ã2)⟩ ∣ Õ⊳ = (Ã1, Ã2),

(Ã1, Ã2)
⊲ = Õ}

⟨Õ, (Ã1, Ã2)
c⟩ ∈ �

▾
O�

(�)

⇔ Õ▾ = (Ã1, Ã2)
c, ((Ã1, Ã2)

c)▴ = Õ

⇔ Õc⊳ = (Ã1, Ã2)
c, ((Ã1, Ã2)

c)⊲c = Õ

⇔ (Õc)⊳ = (Ã1, Ã2)
c, ((Ã1, Ã2)

c)⊲ = Õc

⇔ ⟨Õc, (Ã1, Ã2)
c⟩ ∈ �

⊳
O�

(�).

⟨Õ1, (Ã11, Ã12)⟩ ∧⋖ ⟨Õ2, (Ã21, Ã22)⟩
=
�
Õ1 ∩ Õ2, ((Ã11, Ã12) ∪ (Ã21, Ã22))

⋗⋖
�
,

⟨Õ1, (Ã11, Ã12)⟩ ∨⋖ ⟨Õ2, (Ã21, Ã22)⟩
=
�
(Õ1 ∪ Õ2)

⋖⋗, (Ã11, Ã12) ∩ (Ã21, Ã22)
�
.

2.	 Suppose ⟨Õ1, (Ã11, Ã12)⟩, ⟨Õ2, (Ã21, Ã22)⟩ ∈ �
▽
O�

(�) ,
then ⟨Õ1, (Ã11, Ã12)⟩ ≤▽ ⟨Õ2, (Ã21, Ã22)⟩ iff Õ2 ⊆ Õ1 (or
(Ã21, Ã22) ⊆ (Ã11, Ã12) ), and

3.	 Suppose ⟨Õ1, (Ã11, Ã12)⟩, ⟨Õ2, (Ã21, Ã22)⟩ ∈ �
▾
O�

(�) ,
then ⟨Õ1, (Ã11, Ã12)⟩ ≤▾ ⟨Õ2, (Ã21, Ã22)⟩ iff Õ1 ⊆ Õ2 (or
(Ã11, Ã12) ⊆ (Ã21, Ã22) ), and

4.	 Suppose ⟨Õ1, (Ã11, Ã12)⟩, ⟨Õ2, (Ã21, Ã22)⟩ ∈ �
⊳
O�

(�) ,
then ⟨Õ1, (Ã11, Ã12)⟩ ≤⊳ ⟨Õ2, (Ã21, Ã22)⟩ iff Õ2 ⊆ Õ1 (or
(Ã11, Ã12) ⊆ (Ã21, Ã22) ), and

For two �O3W concepts of the same type, such as
⟨Õ1, (Ã11, Ã12)⟩ and ⟨Õ2, (Ã21, Ã22)⟩ , if Õ1 = Õ2 , then
(Ã11, Ã12) = (Ã21, Ã22) ; the converse also holds. Obviously,
(�?

O�
(�),∧?,∨?) is a lattice by Propositions 4 and 5. The

following is the main theorem of �O3W concepts.

Theorem 5  Given an �-context � = (OB,AT , R̃, L) ,
(�?

O�
(�),∧?,∨?) is a complete lattice, where ? =⋖,▽,▾ ,

and ⊳.

Proof  To prove that (�⋖
O�

(�),∧⋖,∨⋖) is a complete lattice,
we assume that ⟨Õi, (Ãi1, Ãi2)⟩ ∈ �

⋖
O�

(�) , i ∈ Λ . As a con-
sequence of Proposition 4 it holds

⟨⋂i∈Λ Õi, (
⋃

i∈Λ(Ãi1, Ãi2))
⋗⋖⟩

= ⟨⋂i∈Λ Õi, (
⋂

i∈Λ Õi)
⋖⟩ ∈ �

⋖
O�

(�) and
⟨(⋃i∈Λ Õi)

⋖⋗,
⋂

i∈Λ(Ãi1, Ãi2)⟩
= ⟨(⋂i∈Λ(Ãi1, Ãi2))

⋗,
⋂

i∈Λ(Ãi1, Ãi2)⟩ ∈ �
⋖
O�

(�).
Next, we prove that ⟨⋂i∈Λ Õi, (

⋃
i∈Λ(Ãi1, Ãi2))

⋗⋖⟩ is the
infimum of ⟨Õi, (Ãi1, Ãi2)⟩ , i ∈ Λ . If not, assume that there
exists an �⋖-O3W concept ⟨Õ, (Ã1, Ã2)⟩ such that

⟨Õ, (Ã1, Ã2)⟩ ≤⋖ ⟨Õi, (Ãi1, Ãi2)⟩ for i ∈ Λ and
⟨⋂i∈Λ Õi, (

⋃
i∈Λ(Ãi1, Ãi2))

⋗⋖⟩ ≤⋖ ⟨Õ, (Ã1, Ã2)⟩.

⟨Õ1, (Ã11, Ã12)⟩ ∧▽ ⟨Õ2, (Ã21, Ã22)⟩
=
�
Õ1 ∪ Õ2, ((Ã11, Ã12) ∪ (Ã21, Ã22))

△▽
�
,

⟨Õ1, (Ã11, Ã12)⟩ ∨▽ ⟨Õ2, (Ã21, Ã22)⟩
=
�
(Õ1 ∩ Õ2)

▽△, (Ã11, Ã12) ∩ (Ã21, Ã22)
�
.

⟨Õ1, (Ã11, Ã12)⟩ ∧▾ ⟨Õ2, (Ã21, Ã22)⟩
=
�
Õ1 ∩ Õ2, ((Ã11, Ã12) ∩ (Ã21, Ã22))

▴▾
�
,

⟨Õ1, (Ã11, Ã12)⟩ ∨▾ ⟨Õ2, (Ã21, Ã22)⟩
=
�
(Õ1 ∪ Õ2)

▾▴, (Ã11, Ã12) ∪ (Ã21, Ã22)
�
.

⟨Õ1, (Ã11, Ã12)⟩ ∧⊳ ⟨Õ2, (Ã21, Ã22)⟩
=
�
Õ1 ∪ Õ2, ((Ã11, Ã12) ∩ (Ã21, Ã22))

⊲⊳
�
,

⟨Õ1, (Ã11, Ã12)⟩ ∨⊳ ⟨Õ2, (Ã21, Ã22)⟩
=
�
(Õ1 ∩ Õ2)

⊳⊲, (Ã11, Ã12) ∪ (Ã21, Ã22)
�
.

2010 Cognitive Computation (2022) 14:1997–2019

1 3

Then, by Definition 4(1), it follows that Õ ⊆ Õi for
i ∈ Λ and

⋂
i∈Λ Õi ⊆ Õ , thus, Õ =

⋂
i∈Λ Õi or, equivalently,

⟨Õ, (Ã1, Ã2)⟩ = ⟨⋂i∈Λ Õi, (
⋃

i∈Λ(Ãi1, Ãi2))
⋗⋖⟩ . This com-

pletes the proof of the infimum. Similarly, we prove that
⟨(⋃i∈Λ Õi)

⋖⋗,
⋂

i∈Λ(Ãi1, Ãi2)⟩ is the supremum of
 ⟨Õi, (Ãi1, Ãi2)⟩ , i ∈ Λ . That is to say, (�⋖

O�
(�),∧⋖,∨⋖) is a com-

plete lattice.
The others are similarly proved.

Theorem 5 shows that each type of �O3W concept lattice
is a complete lattice. Moreover, these concept lattices are
isomorphic to each other.

Theorem 6  Let � = (OB,AT , R̃, L) be an �-context. Then,
�

⋖
O�

(�) ≅ �
▽
O�

(�) ≅ �
▾
O�

(�) ≅ �
⊳
O�

(�).

Proof  To prove �▽
O�

(�) ≅ �
▾
O�

(�) , let f ∶ �
▽
O�

(�) ⟶ �
▾
O�

(�) such tha t f (⟨Õ, (Ã1, Ã2)⟩) = ⟨Õc, (Ã1, Ã2)
c⟩ fo r

⟨Õ, (Ã1, Ã2)⟩ ∈ �
▽
O�

(�) . Theorem 4 verif ies that f
is a bijection between �▽

O�
(�) and �▾

O�
(�) . Given

⟨Õ1, (Ã11, Ã12)⟩, ⟨Õ2, (Ã21, Ã22)⟩ ∈ �
▽
O�

(�) , Table 7 con-
firms that

Furthermore, it follows from Table 8 that ((Ã11, Ã12) ∪ (Ã21,

Ã22))
△⊳ = ((Ã11, Ã12) ∪ (Ã21, Ã22))

⋗▾ which indicates that f
is ∧-preserving. Table 7 also certifies that

f (⟨Õ1, (Ã11, Ã12)⟩ ∧▽ ⟨Õ2, (Ã21, Ã22)⟩)
= f (⟨Õ1 ∪ Õ2, ((Ã11, Ã12) ∪ (Ã21, Ã22))

△▽⟩)
= ⟨(Õ1 ∪ Õ2)

c, ((Ã11, Ã12) ∪ (Ã21, Ã22))
△▽c⟩

= ⟨(Õ1 ∪ Õ2)
c, ((Ã11, Ã12) ∪ (Ã21, Ã22))

△⊳⟩,
f (⟨Õ1, (Ã11, Ã12)⟩) ∧▾ f (⟨Õ2, (Ã21, Ã22)⟩)
= ⟨Õc

1
, (Ã11, Ã12)

c⟩ ∧▾ ⟨Õc
2
, (Ã21, Ã22)

c⟩
= ⟨Õc

1
∩ Õc

2
, ((Ã11, Ã12)

c ∩ (Ã21, Ã22)
c)▴▾⟩

= ⟨(Õ1 ∪ Õ2)
c, ((Ã11, Ã12) ∪ (Ã21, Ã22))

c▴▾⟩
= ⟨(Õ1 ∪ Õ2)

c, ((Ã11, Ã12) ∪ (Ã21, Ã22))
⋗▾⟩.

f (⟨Õ1, (Ã11, Ã12)⟩ ∨▽ ⟨Õ2, (Ã21, Ã22)⟩)
= f (⟨(Õ1 ∩ Õ2)

▽△, (Ã11, Ã12) ∩ (Ã21, Ã22)⟩)
= ⟨(Õ1 ∩ Õ2)

▽△c, ((Ã11, Ã12) ∩ (Ã21, Ã22))
c⟩

= ⟨(Õ1 ∩ Õ2)
▽⋗, (Ã11, Ã12)

c ∪ (Ã21, Ã22)
c⟩,

f (⟨Õ1, (Ã11, Ã12)⟩) ∨▾ f (⟨Õ2, (Ã21, Ã22)⟩)
= ⟨Õc

1
, (Ã11, Ã12)

c⟩ ∨▾ ⟨Õc
2
, (Ã21, Ã22)

c⟩
= ⟨(Õc

1
∪ Õc

2
)▾▴, (Ã11, Ã12)

c ∪ (Ã21, Ã22)
c⟩

= ⟨(Õ1 ∩ Õ2)
c▾▴, (Ã11, Ã12)

c ∪ (Ã21, Ã22)
c⟩

= ⟨(Õ1 ∩ Õ2)
⊳▴, (Ã11, Ã12)

c ∪ (Ã21, Ã22)
c⟩.

Moreover, Table 8 indicates that (Õ1 ∩ Õ2)
▽⋗ = Õ1 ∩ Õ2)

⊳▴ .
Therefore, f is ∨-preserving. This completes the proof that
�

▽
O�

(�) ≅ �
▾
O�

(�).
By setting f (⟨Õ, (Ã1, Ã2)⟩) = ⟨Õc, (Ã1, Ã2)⟩ , one can prove

that �⋖
O�

(�) ≅ �
▽
O�

(�) and �▾
O�

(�) ≅ �
⊳
O�

(�).

Theorem 6 reveals the isomorphic relationship between
the four types of �O3W concept lattices. Using the results in
Theorems 4 and 6, we can construct different �O3W concept
lattices through existing ones.

�A3W Concepts and �A3W Concept Lattices

Similarly, we adopt a type of �A3W operator and its inverse
to determine the type of �A3W concept.

Definition 5  Let � = (OB,AT , R̃,L) be an �-context. For
Õ1, Õ2 ∈ LOB and Ã ∈ LAT , ⟨(Õ1, Õ2), Ã⟩ is called an

1.	 �
⋖-A3W concept if Ã⋖ = (Õ1, Õ2) and (Õ1, Õ2)

⋗ = Ã;
2.	 �

▽-A3W concept if Ã▽ = (Õ1, Õ2) and (Õ1, Õ2)
△ = Ã

;
3.	 �

▾-A3W concept if Ã▾ = (Õ1, Õ2) and (Õ1, Õ2)
▴ = Ã;

4.	 �
⊳-A3W concept if Ã⊳ = (Õ1, Õ2) and (Õ1, Õ2)

⊲ = Ã.

Definition 4 shows that the extent of the �A3W concept
consists of a pair of �-sets, defined on OB, which repre-
sent the opposite meaning, just as the intent of the �O3W
concept.

Remark 1  Note that the �⋖-O3W concept and �⋖-A3W con-
cept in Definitions 2 and 4 are the same as those proposed
in [59]. The main aim of this paper is to discuss the relation-
ship between various � 3W concept lattices, so we introduce
other �O3W concepts and �A3W concepts.

For an �-context � = (OB,AT , R̃,L) , we denote

as the sets of �⋖ -, �▽ -, �▾ -, and �⊳-A3W concepts,
respectively. Below shows the relationship between �A3W
concepts.

�
⋖
A�
(�) = {⟨(Õ1, Õ2), Ã⟩ ∣ Ã⋖ = (Õ1, Õ2),

(Õ1, Õ2)
⋖ = Ã},

�
▽
A�
(�) = {⟨(Õ1, Õ2), Ã⟩ ∣ Ã▽ = (Õ1, Õ2),

(Õ1, Õ2)
△ = Ã},

�
▾
A�
(�) = {⟨(Õ1, Õ2), Ã⟩ ∣ Ã▾ = (Õ1, Õ2),

(Õ1, Õ2)
▴ = Ã},

�
⊳
A�
(�) = {⟨(Õ1, Õ2), Ã⟩ ∣ Ã⊳ = (Õ1, Õ2),

(Õ1, Õ2)
⊲ = Ã}

2011Cognitive Computation (2022) 14:1997–2019

1 3

Theorem 7  For Õ1, Õ2 ∈ LOB and Ã ∈ LAT , the following
statements are equivalent:

1.	 ⟨(Õ1, Õ2),A⟩ ∈ �
⋖
A�
(�);

2.	 ⟨(Õ1, Õ2),A
c⟩ ∈ �

▽
A�
(�);

3.	 ⟨(Õ1, Õ2)
c,A⟩ ∈ �

▾
A�
(�);

4.	 ⟨(Õ1, Õ2)
c,Ac⟩ ∈ �

⊳
A�
(�).

Proof  The proof is similar to that of Theorem 4.

The results in Theorem 7 provide a convenient way to
construct the �A3W concept from other concepts. For
example, given an �⋖-A3W concept, replacing the intent
of the �⋖-A3W concept with its complement generates an
�
▽-A3W concept.
The order, infimum, and supremum of each type of �

A3W concept are defined as follows:

Definition 6  Let � = (OB,AT , R̃, L) be an �-context,
Õij ∈ LOB , and Ãi ∈ LAT ( i, j = 1, 2 ).

1.	 Suppose ⟨(Õ11, Õ12), Ã1⟩, ⟨(Õ21, Õ22), Ã2⟩ ∈ �
⋖
A�
(�) ,

then ⟨(Õ11, Õ12), Ã1⟩ ≤⋖ ⟨(Õ21, Õ22), Ã2⟩ iff (Õ11, Õ12) ⊆

(Õ21, Õ22) (or Ã2 ⊆ Ã1 ), and

2.	 Suppose ⟨(Õ11, Õ12), Ã1⟩, ⟨(Õ21, Õ22), Ã2⟩ ∈ �
▽
A�
(�) ,

then ⟨(Õ11, Õ12), Ã1⟩ ≤▽ ⟨(Õ21, Õ22), Ã2⟩ iff (Õ11, Õ12) ⊆

(Õ21, Õ22) (or Ã1 ⊆ Ã2 ), and

3.	 Suppose ⟨(Õ11, Õ12), Ã1⟩, ⟨(Õ21, Õ22), Ã2⟩ ∈ �
▾
A�
(�) ,

t h e n ⟨(Õ11, Õ12), Ã1⟩ ≤▾ ⟨(Õ21, Õ22), Ã2⟩ i f f
(Õ21, Õ22) ⊆ (Õ11, Õ12) (or Ã2 ⊆ Ã1 ), and

4.	 Suppose ⟨(Õ11, Õ12), Ã1⟩, ⟨(Õ21, Õ22), Ã2⟩ ∈ �
⊳
A�
(�) ,

t h e n ⟨(Õ11, Õ12), Ã1⟩ ≤⊳ ⟨(Õ21, Õ22), Ã2⟩ i f f
(Õ21, Õ22) ⊆ (Õ11, Õ12) (or Ã1 ⊆ Ã2 ), and

⟨(Õ11, Õ12), Ã1⟩ ∧⋖ ⟨(Õ21, Õ22), Ã2⟩
=
�
(Õ11, Õ12) ∩ (Õ21, Õ22), (Ã1 ∪ Ã2)

⋖⋗
�
,

⟨(Õ11, Õ12), Ã1⟩ ∨⋖ ⟨(Õ21, Õ22), Ã2⟩
=
�
((Õ11, Õ12) ∪ (Õ21, Õ22))

⋗⋖, Ã1 ∩ Ã2

�
.

⟨(Õ11, Õ12), Ã1⟩ ∧▽ ⟨(Õ21, Õ22), Ã2⟩
=
�
(Õ11, Õ12) ∩ (Õ21, Õ22), (Ã1 ∩ Ã2)

▽△
�
,

⟨(Õ11, Õ12), Ã1⟩ ∨▽ ⟨(Õ21, Õ22), Ã2⟩
=
�
((Õ11, Õ12) ∪ (Õ21, Õ22))

△▽, Ã1 ∪ Ã2

�
.

⟨(Õ11, Õ12), Ã1⟩ ∧▾ ⟨(Õ21, Õ22), Ã2⟩
=
�
(Õ11, Õ12) ∪ (Õ21, Õ22), (Ã1 ∪ Ã2)

▾▴
�
,

⟨(Õ11, Õ12), Ã1⟩ ∨▾ ⟨(Õ21, Õ22), Ã2⟩
=
�
((Õ11, Õ12) ∩ (Õ21, Õ22))

▴▾, Ã1 ∩ Ã2

�
.

Each type of �A3W concept forms a complete lat-
tice, based on the infimum and supremum defined in
Definition 5.

Theorem 8  Given an �-context � = (OB,AT , R̃, L) ,
(�?

A�
(�),∧?,∨?) is a complete lattice, where ? =⋖ , ▽ , ▾ ,

and ⊳.

Proof  The proof is similar to that of Theorem 5.

The four types of �A3W concept lattices are isomor-
phic with each other.

Theorem 9  Let � = (OB,AT , R̃,L) be an �-context. Then,
�

⋖
A�
(�) ≅ �

▽
A�
(�) ≅ �

▾
A�
(�) ≅ �

⊳
A�
(�).

Proof  The proof is similar to that of Theorem 6.

The results in Theorems 7 and 8 provide a convenient
way to construct an �A3W concept lattice from other �
A3W concept lattices.

Relationship Between � 2W Concepts
and � 3W Concepts

A pair of � 2W operators determine an � 3W operator,
which suggests that the � 3W concept must connect with
� 2W concepts. The main focus in this section is to address
this problem.

Relationship Between � 2W Concepts and �O3W
Concepts

The following theorem reveals how to obtain �O3W con-
cepts from � 2W concepts.

Theorem 10  Given Õ ∈ LOB and Ã ∈ LAT  , the following
hold:

1.	 If ⟨Õ, Ã⟩ is an �∗-2W concept, then ⟨Õ, (Ã, Õ∗̄)⟩ is an �⋖

-O3W concept;
2.	 If ⟨Õ, Ã⟩ is an �∗̄-2W concept, then ⟨Õ, (Õ∗, Ã)⟩ is an �⋖

-O3W concept;

⟨(Õ11, Õ12), Ã1⟩ ∧⊳ ⟨(Õ21, Õ22), Ã2⟩
=
�
(Õ11, Õ12) ∪ (Õ21, Õ22), (Ã1 ∩ Ã2)

⊳⊲
�
,

⟨(Õ11, Õ12), Ã1⟩ ∨⊳ ⟨(Õ21, Õ22), Ã2⟩
=
�
((Õ11, Õ12) ∩ (Õ21, Õ22))

⊲⊳, Ã1 ∪ Ã2

�
.

2012 Cognitive Computation (2022) 14:1997–2019

1 3

3.	 If ⟨Õ, Ã⟩ is an �□◊-2W concept, then ⟨Õ, (Ã, Õ□)⟩ is an
�
▽-O3W concept;

4.	 If ⟨Õ, Ã⟩ is an �□◊-2W concept, then ⟨Õ, (Õ□, Ã)⟩ is an
�
▽-O3W concept;

5.	 If ⟨Õ, Ã⟩ is an �◊□-2W concept, then ⟨Õ, (Ã, Õ◊)⟩ is an
�
▾-O3W concept;

6.	 If ⟨Õ, Ã⟩ is an �◊□-2W concept, then ⟨Õ, (Õ◊, Ã)⟩ is an
�
▾-O3W concept;

7.	 If ⟨Õ, Ã⟩ is an �#-2W concept, then ⟨Õ, (Ã, Õ#)⟩ is an �⊳

-O3W concept;
8.	 If ⟨Õ, Ã⟩ is an �#-2W concept, then ⟨Õ, (Õ#, Ã)⟩ is an �⊳

-O3W concept.

Proof  Suppose that ⟨Õ, Ã⟩ is an �∗-2W concept. Then,
Õ∗ = Ã and Ã∗ = Õ  , and Õ⋖ = (Õ∗, Õ∗̄) = (Ã, Õ∗̄) .
Meanwhi l e , P ropos i t ion 2 (2) exp la ins t ha t
(Ã, Õ∗̄)⋗ = Ã∗ ∩ Õ∗̄∗̄ = Õ ∩ Õ∗̄∗̄ = Õ , from which we can
conclude that ⟨Õ, (Ã, Õ∗̄)⟩ is an �⋖-O3W concept.

The others are similarly proved.

Thinking contrarily, we obtain � 2W concepts from �
O3W concepts.

Theorem 11  Given Õ ∈ LOB and Ã1, Ã2 ∈ LAT , the follow-
ing hold:

1.	 If ⟨Õ, (Ã1, Ã2)⟩ is an �⋖-O3W concept, then ⟨Ã∗
1
, Ã1⟩ is

an �∗-2W concept and ⟨Ã∗̄
2
, Ã2⟩ is an �∗̄-2W concept;

2.	 If ⟨Õ, (Ã1, Ã2)⟩ is an �▽-O3W concept, then ⟨Ã◊
1
, Ã1⟩ is

an �□◊-2W concept and ⟨Ã◊
2
, Ã2⟩ is an �□◊-2W con-

cept;
3.	 If ⟨Õ, (Ã1, Ã2)⟩ is an �▾-O3W concept, then ⟨Ã□

1
, Ã1⟩ is

an �◊□-2W concept and ⟨Ã□
2
, Ã2⟩ is an �◊□-2W con-

cept;
4.	 If ⟨Õ, (Ã1, Ã2)⟩ is an �⊳-O3W concept, then ⟨Ã#

1
, Ã1⟩ is an

�
#-2W concept, and ⟨Ã#

2
, Ã2⟩ is an �#-2W concept.

Proof  Suppose that ⟨Õ, (Ã1, Ã2)⟩ is an �⋖-O3W concept, then
Õ⋖ = (Õ∗, Õ∗̄) = (Ã1, Ã2) which means that Ã1 = Õ∗ and
Ã2 = Õ∗̄ . Moreover, it follows from Propositions 1(3) and
2(3) that Ã∗∗

1
= Õ∗∗∗ = Õ∗ = Ã1 and Ã∗̄∗̄

2
= Õ∗̄∗̄∗̄ = Õ∗̄ = Ã2

which means that ⟨Ã∗
1
, Ã1⟩ is an �∗-2W concept and ⟨Ã∗̄

2
, Ã2⟩

is an �∗̄-2W concept.
The others are similarly proved.

Combining the results of Theorems 10 and 11, we now
introduce the equivalent relationship between the �O3W
concepts and � 2W concepts.

Theorem 12  Given Õ ∈ LOB and Ã1, Ã2 ∈ LAT , the follow-
ing hold:

1.	 ⟨Õ, (Ã1, Ã2)⟩ is an �⋖-O3W concept iff there exist
an �∗-2W concept ⟨Õ1, Ã

′⟩ and an �∗̄-2W concept
⟨Õ2, Ã

′′⟩ such that Õ = Õ1 ∩ Õ2 , Ã1 = (Õ1 ∩ Õ2)
∗ , and

Ã2 = (Õ1 ∩ Õ2)
∗̄;

2.	 ⟨Õ, (Ã1, Ã2)⟩ is an �▽-O3W concept iff there exist an
�
□◊-2W concept ⟨Õ1, Ã

′⟩ and an �□◊-2W concept
⟨Õ2, Ã

′′⟩ such that Õ = Õ1 ∪ Õ2 , Ã1 = (Õ1 ∪ Õ2)
□ , and

Ã2 = (Õ1 ∪ Õ2)
□;

3.	 ⟨Õ, (Ã1, Ã2)⟩ is an �▾-O3W concept iff there exist an
�
◊□-2W concept ⟨Õ1, Ã

′⟩ and an �◊□-2W concept
⟨Õ2, Ã

′′⟩ such that Õ = Õ1 ∩ Õ2 , Ã1 = (Õ1 ∩ Õ2)
◊ , and

Ã2 = (Õ1 ∩ Õ2)
◊;

4.	 ⟨Õ, (Ã1, Ã2)⟩ is an �⊳-O3W concept iff there exists
an �#-2W concept ⟨Õ1, Ã

′⟩ and an �#-2W concept
⟨Õ2, Ã

′′⟩ such that Õ = Õ1 ∪ Õ2 , Ã1 = (Õ1 ∪ Õ2)
# , and

Ã2 = (Õ1 ∪ Õ2)
#.

Proof  To prove this necessity, we assume that ⟨Õ, (Ã1, Ã2)⟩ is
an �⋖-O3W concept, and let Õ1 = Ã∗

1
 , Ã� = Ã1 and Õ2 = Ã∗̄

2
 ,

Ã�� = Ã2 . Then, according to Theorem 11(1), ⟨Õ1, Ã
′⟩ is an

�
∗-2W concept, and ⟨Õ2, Ã

′′⟩ is an �∗̄-2W concept. It is
clear that Õ1 ∩ Õ2 = Ã∗

1
∩ Ã∗̄

2
= (Ã1, Ã2)

⋗ = Õ . Furthermore,
(Õ1 ∩ Õ2)

∗ = Õ∗ = Ã1 and (Õ1 ∩ Õ2)
∗̄ = Õ∗̄ = Ã2.

To prove the sufficiency, we suppose that ⟨Õ1, Ã
′⟩ is an

�
∗-2W concept and ⟨Õ2, Ã

′′⟩ is an �∗̄-2W concept, and let
Õ = Õ1 ∩ Õ2 , Ã1 = (Õ1 ∩ Õ2)

∗ , and Ã2 = (Õ1 ∩ Õ2)
∗̄ . Clearly,

Õ⋖ = (Õ1 ∩ Õ2)
⋖ = ((Õ1 ∩ Õ2)

∗, (Õ1 ∩ Õ2)
∗̄) = (Ã1, Ã2) and

(Ã1, Ã2)
⋗ = Ã∗

1
∩ Ã∗̄

2
= (Õ1 ∩ Õ2)

∗∗ ∩ (Õ1 ∩ Õ2)
∗̄∗̄ . Propo-

sitions 1(2) and 2(2) confirm that (Ã1, Ã2)
⋗ ⊇ Õ1 ∩ Õ2 .

Moreover, (Õ1 ∩ Õ2)
∗∗ ⊆ Õ1 because of Õ1 ∩ Õ2 ⊆ Õ1

and Õ∗∗
1

= Õ1 . Similarly, (Õ1 ∩ Õ2)
∗̄∗̄ ⊆ Õ2 . Therefore,

(Ã1, Ã2)
⋗ = (Õ1 ∩ Õ2)

∗∗ ∩ (Õ1 ∩ Õ2)
∗̄∗̄ ⊆ Õ1 ∩ Õ2 . Finally,

it is true that Õ1 ∩ Õ2 = (Ã1, Ã2)
⋗ = Õ , which indicates that

⟨Õ, (Ã1, Ã2)⟩ is an �⋖-O3W concept.
The other equivalences are proved in a similar way.

Theorem 12 provides a method for generating �O3W
concept lattices from � 2W concept lattices. For example,
an �⋖-O3W concept lattice is obtained as follows: take an �∗

-2W concept, ⟨O1,A1⟩ , from �∗
�
(�) and an �∗̄-2W concept,

⟨O2,A2⟩ , from �∗̄
�
(�) ; compute O1 ∩ O2 , (O1 ∩ O2)

∗ , and
(O1 ∩ O2)

∗̄ ; then ⟨O1 ∩ O2, ((O1 ∩ O2)
∗, (O1 ∩ O2)

∗̄)⟩ is an
�
⋖-O3W concept. The �⋖-O3W concept lattice is achieved

by determining all non-repeated �⋖-O3W concepts.

2013Cognitive Computation (2022) 14:1997–2019

1 3

Algorithm 1 is applied to generate an �⋖-O3W con-
cept lattice from �∗ - and �∗̄-2W concept lattices. Sup-
pose that the number of �∗-2W concepts is k and the
number of �∗̄-2W concepts is l. Because Oi∗,Oj∗̄ ⊆ OB ,
the complexity of the double for loop (from line 2 to 7)
is O(kl ⋅ |OB|2) , where |OB| is the number of objects. To
delete the same elements in {O1,O2,⋯} , any two elements
must be compared in this set. The complexity of line 8 is
O(

kl(kl+1)

2
⋅ |OB|2) = O(k2l2 ⋅ |OB|2) . The last for loop com-

putes the intent of each Oi (see Eqs. (13) and (15)). The
time complexity of this for loop is O(kl ⋅ |OB| ⋅ |AT|) ,
where |AT| represents the number of attributes. As
k2l2 ⋅ |OB|2 > kl ⋅ |OB| ⋅ |AT| , the time complexity of Algo-
rithm 1 is O(k2l2 ⋅ |OB|2).

To obtain other �O3W concept lattices, we only need
to replace the inputs in Algorithm 1 with the correspond-
ing � 2W concept lattices and change the intersection in
line 5 with union or maintain the same. Lines 10 and 11 are
adjusted to the corresponding intent-computing formulas
shown in Theorem 12.

Example 5  (Continued from Example 3) Using the method
proposed by Bězlohlávek [57], we obtain 13 �∗-2W con-
cepts (see Table 4) and 17 �∗̄-2W concepts (see Table 9).
Algorithm 1 is adopted to find all �⋖-O3W concepts (see
Table 10). For a better understanding, the Hasen diagram
of the �⋖-O3W concept lattice is illustrated in Fig. 4. Each
number in the figure corresponds to the �⋖-O3W concept
in Table 10. A line connects two concepts, and the lower
concept is a sub-concept of the upper one.

Relationship Between � 2W Concepts and �A3W
Concepts

The � 2W concepts also produce �A3W concepts in a man-
ner similar to that of the �O3W concepts. The following is
a detailed presentation.

Theorem 13  Given Õ ∈ LOB and Ã ∈ LAT  , the following
hold:

1.	 If ⟨Õ, Ã⟩ is an �∗-2W concept, then ⟨(Õ, Ã∗̄), Ã⟩ is an �⋖

-A3W concept;
2.	 If ⟨Õ, Ã⟩ is an �∗̄-2W concept, then ⟨(Ã∗, Õ), Ã⟩ is an �⋖

-A3W concept;
3.	 If ⟨Õ, Ã⟩ is an �□◊-2W concept, then ⟨(Õ, Ã□), Ã⟩ is an

�
▽-A3W concept;

4.	 If ⟨Õ, Ã⟩ is an �□◊-2W concept, then ⟨(Ã□, Õ), Ã⟩ is an
�
▽-A3W concept;

5.	 If ⟨Õ, Ã⟩ is an �◊□-2W concept, then ⟨(Õ, Ã◊), Ã⟩ is an
�
▾-A3W concept;

6.	 If ⟨Õ, Ã⟩ is an �◊□-2W concept, then ⟨(Ã◊, Õ), Ã⟩ is an
�
▾-A3W concept;

7.	 If ⟨Õ, Ã⟩ is an �#-2W concept, then ⟨(Õ, Ã#), Ã⟩ is an �⊳

-A3W concept;
8.	 If ⟨Õ, Ã⟩ is an �#-2W concept, then ⟨(Ã#, Õ), Ã⟩ is an �⊳

-A3W concept.

Proof  The proof is similar to that of Theorem 10.

Table 9   �∗̄-2W concepts

No. Õ Ã

1 (1.0, 1.0, 1.0, 1.0) (0.0, 0.0, 0.0)
2 (1.0, 1.0, 1.0, 0.5) (0.0, 0.0, 0.5)
3 (0.5, 1.0, 0.5, 1.0) (0.0, 0.5, 0.0)
4 (0.5, 1.0, 0.5, 0.5) (0.0, 0.5, 0.5)
5 (1.0, 0.5, 1.0, 1.0) (0.5, 0.0, 0.0)
6 (1.0, 0.5, 1.0, 0.5) (0.5, 0.0, 0.5)
7 (0.5, 0.5, 1.0, 0.0) (0.5, 0.0, 1.0)
8 (0.5, 0.5, 0.5, 1.0) (0.5, 0.5, 0.0)
9 (0.5, 0.5, 0.5, 0.5) (0.5, 0.5, 0.5)
10 (0.5, 0.5, 0.5, 0.0) (0.5, 0.5, 1.0)
11 (0.0, 0.5, 0.0, 0.5) (0.5, 1.0, 0.5)
12 (0.0, 0.5, 0.0, 0.0) (0.5, 1.0, 1.0)
13 (1.0, 0.0, 0.5, 0.5) (1.0, 0.0, 0.5)
14 (0.5, 0.0, 0.5, 0.5) (1.0, 0.5, 0.5)
15 (0.5, 0.0, 0.5, 0.0) (1.0, 0.5, 1.0)
16 (0.0, 0.0, 0.0, 0.5) (1.0, 1.0, 0.5)
17 (0.0, 0.0, 0.0, 0.0) (1.0, 1.0, 1.0)

2014 Cognitive Computation (2022) 14:1997–2019

1 3

Theorem 13 explains how to obtain the �A3W con-
cepts from � 2W concepts. For example, the �∗-2W con-
cept, ⟨Õ, Ã⟩ , generates an �⋖-A3W concept by letting the
extent as (Õ, Ã∗̄) and the intent as Ã . The following holds
by investigating conversely.

Theorem 14  Given Õ1, Õ2 ∈ LOB and Ã ∈ LAT , the follow-
ing hold:

1.	 If ⟨(Õ1, Õ2), Ã⟩ is an �⋖-A3W concept, then ⟨Õ1, Õ
∗
1
⟩ is

an �∗-2W concept and ⟨Õ2, Õ
∗̄
2
⟩ is an �∗̄-2W concept;

2.	 If ⟨(Õ1, Õ2), Ã⟩ is an �▽-A3W concept, then ⟨Õ1, Õ
◊
1
⟩ is

an �◊□-2W concept and ⟨Õ2, Õ
◊
2
⟩ is an �◊□-2W con-

cept;
3.	 If ⟨(Õ1, Õ2), Ã⟩ is an �▾-A3W concept, then ⟨Õ1, Õ

□
1
⟩ is

an �□◊-2W concept and ⟨Õ2, Õ
□
2
⟩ is an �□◊-2W con-

cept;
4.	 If ⟨(Õ1, Õ2), Ã⟩ is an �⊳-A3W concept, then ⟨Õ1, Õ

#

1
⟩ is

an �#-2W concept, and ⟨Õ2, Õ
#

2
⟩ is an �#-2W concept.

Proof  The proof is similar to that of Theorem 11.

Theorem 14 shows how to obtain � 2W concepts
through �A3W concepts. The �A3W concept can gener-
ate two related � 2W concepts. For example, the �▽-A3W
concept forms both the �◊□-2W concept and the �◊□-
2W concept. Based on the combination of the results of
Theorems 13 and 14, the following equivalent relationship
between � 2W concepts and �A3W concepts is valid.

Theorem 15  Given Õ1, Õ2 ∈ LOB and Ã ∈ LAT , the follow-
ing hold:

Table 10   �⋖-O3W concepts

No. Õ Ã1 Ã2

1 (1.0, 1.0, 1.0, 1.0) (0.0, 0.5, 0.0) (0.0, 0.0, 0.0)
2 (1.0, 1.0, 1.0, 0.5) (0.0, 0.5, 0.0) (0.0, 0.0, 0.5)
3 (1.0, 1.0, 0.5, 1.0) (0.0, 0.5, 0.5) (0.0, 0.0, 0.0)
4 (1.0, 1.0, 0.5, 0.5) (0.0, 0.5, 0.5) (0.0, 0.0, 0.5)
5 (1.0, 0.5, 1.0, 1.0) (0.0, 0.5, 0.0) (0.5, 0.0, 0.0)
6 (1.0, 0.5, 1.0, 0.5) (0.0, 1.0, 0.0) (0.5, 0.0, 0.5)
7 (1.0, 0.5, 0.5, 1.0) (0.0, 0.5, 0.5) (0.5, 0.0, 0.0)
8 (1.0, 0.5, 0.5, 0.5) (0.0, 1.0, 0.5) (0.5, 0.0, 0.5)
9 (1.0, 0.0, 0.5, 0.5) (0.0, 1.0, 0.5) (1.0, 0.0, 0.5)
10 (0.5, 1.0, 1.0, 1.0) (0.5, 0.5, 0.0) (0.0, 0.0, 0.0)
11 (0.5, 1.0, 1.0, 0.5) (0.5, 0.5, 0.0) (0.0, 0.0, 0.5)
12 (0.5, 1.0, 0.5, 1.0) (0.5, 0.5, 0.5) (0.0, 0.5, 0.0)
13 (0.5, 1.0, 0.5, 0.5) (0.5, 0.5, 0.5) (0.0, 0.5, 0.5)
14 (0.5, 0.5, 1.0, 1.0) (0.5, 0.5, 0.0) (0.5, 0.0, 0.0)
15 (0.5, 0.5, 1.0, 0.5) (0.5, 1.0, 0.0) (0.5, 0.0, 0.5)
16 (0.5, 0.5, 1.0, 0.0) (0.5, 1.0, 0.0) (0.5, 0.0, 1.0)
17 (0.5, 0.5, 0.5, 1.0) (0.5, 0.5, 0.5) (0.5, 0.5, 0.0)
18 (0.5, 0.5, 0.5, 0.5) (0.5, 1.0, 0.5) (0.5, 0.5, 0.5)
19 (0.5, 0.5, 0.5, 0.0) (0.5, 1.0, 0.5) (0.5, 0.5, 1.0)
20 (0.5, 0.5, 0.0, 1.0) (0.5, 0.5, 1.0) (0.5, 0.5, 0.0)
21 (0.5, 0.5, 0.0, 0.5) (0.5, 1.0, 1.0) (0.5, 0.5, 0.5)
22 (0.5, 0.5, 0.0, 0.0) (0.5, 1.0, 1.0) (0.5, 0.5, 1.0)
23 (0.5, 0.0, 0.5, 0.5) (0.5, 1.0, 0.5) (1.0, 0.5, 0.5)
24 (0.5, 0.0, 0.5, 0.0) (0.5, 1.0, 0.5) (1.0, 0.5, 1.0)
25 (0.5, 0.0, 0.0, 0.5) (0.5, 1.0, 1.0) (1.0, 0.5, 0.5)
26 (0.5, 0.0, 0.0, 0.0) (0.5, 1.0, 1.0) (1.0, 0.5, 1.0)
27 (0.0, 1.0, 0.5, 0.5) (1.0, 0.5, 0.5) (0.0, 0.5, 0.5)
28 (0.0, 0.5, 0.5, 0.5) (1.0, 1.0, 0.5) (0.5, 0.5, 0.5)
29 (0.0, 0.5, 0.5, 0.0) (1.0, 1.0, 0.5) (0.5, 0.5, 1.0)
30 (0.0, 0.5, 0.0, 0.5) (1.0, 1.0, 1.0) (0.5, 1.0, 0.5)
31 (0.0, 0.5, 0.0, 0.0) (1.0, 1.0, 1.0) (0.5, 1.0, 1.0)
32 (0.0, 0.0, 0.5, 0.5) (1.0, 1.0, 0.5) (1.0, 0.5, 0.5)
33 (0.0, 0.0, 0.5, 0.0) (1.0, 1.0, 0.5) (1.0, 0.5, 1.0)
34 (0.0, 0.0, 0.0, 0.5) (1.0, 1.0, 1.0) (1.0, 1.0, 0.5)
35 (0.0, 0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)

1

2 3 5 10

4 6 7 11 12 14

8 13 15 17

9 16 18 20 27

19 21 23 28

22 24 25 29 30 32

26 31 33 34

35

Fig. 4   �⋖-O3W concept lattice

2015Cognitive Computation (2022) 14:1997–2019

1 3

1.	 ⟨(Õ1, Õ2), Ã⟩ is an �⋖-A3W concept iff there exist an �∗-
2W concept ⟨Õ′, Ã1⟩ and an �∗̄-2W concept ⟨Õ′′, Ã2⟩ such
that Ã = Ã1 ∩ Ã2 , Õ1 = (Ã1 ∩ Ã2)

∗ , and Õ2 = (Ã1 ∩ Ã2)
∗̄;

2.	 ⟨(Õ1, Õ2), Ã⟩ is an �▽-A3W concept iff there exist an
�
◊□-2W concept ⟨Õ′, Ã1⟩ and an �◊□-2W concept

⟨Õ′′, Ã2⟩ such that Ã = Ã1 ∪ Ã2 , Õ1 = (Ã1 ∪ Ã2)
□ , and

Õ2 = (Ã1 ∪ Ã2)
□;

3.	 ⟨(Õ1, Õ2), Ã⟩ is an �▾-A3W concept iff there exist an
�
□◊-2W concept ⟨Õ′, Ã1⟩ and an �□◊-2W concept

⟨Õ′′, Ã2⟩ such that Ã = Ã1 ∩ Ã2 , Õ1 = (Ã1 ∩ Ã2)
◊ , and

Õ2 = (Ã1 ∩ Ã2)
◊;

4.	 ⟨(Õ1, Õ2), Ã⟩ is an �⊳-A3W concept iff there exist an �#-
2W concept ⟨Õ′, Ã1⟩ and an �#-2W concept ⟨Õ′′, Ã2⟩ such
that Ã = Ã1 ∪ Ã2 , Õ1 = (Ã1 ∪ Ã2)

# , and Õ2 = (Ã1 ∪ Ã2)
#.

Proof  The proof is similar to that of Theorem 12.

The results in Theorem 15 provide a way to con-
struct the �A3W concept lattice from � 2W concept lat-
tices. For example, an �⊳-A3W concept lattice can be
obtained as follows: take an �#-2W concept, ⟨O1,A1⟩ ,
from �#

�
(�) and an �# -2W concept, ⟨O2,A2⟩ , from

�
#

�
(�) ; compute A1 ∪ A2 , (A1 ∪ A2)

# , and (A1 ∪ A2)
# ; then,

⟨((A1 ∪ A2)
#, (A1 ∪ A2)

#),A1 ∪ A2⟩ is an �⊳-A3W concept.
The �⊳-A3W concept lattice is created by determining
all non-repeated �⊳-A3W concepts. Algorithm 2 is used
to compute the �⋖-A3W concept lattice from the �∗-2W
concept lattice and �∗̄-2W concept lattice. Similar to Algo-
rithm 1, we prove that the time complexity of Algorithm 2
is O(k2l2 ⋅ |AT|2).

Example 6  (Continued from Example 5) Using �∗-2W con-
cepts and �∗̄-2W concepts as inputs, we obtain 20 �⋖-A3W

concepts (see Table 11) based on Algorithm 2. The Hasse
diagram of the �⋖-A3W concept lattice is shown in Fig. 5.
Each number in the figure corresponds to the �⋖-A3W con-
cept in Table 11, and a line connects two concepts in which
the lower concept is a sub-concept of the upper one.

Conclusion

Concept learning plays a key role in human cognition. It
may be easy for humans to distinguish among a set of actual
objects. However, it will be a little complex for humans to
figure out different concepts just from a batch of data. With
the help of FCA, we can easily mine hidden patterns from
the data.

In this study, several new types of � 2W concept and
� 3W concept are proposed, and the isomorphic relationship
between �-concept lattices is discussed. The results demon-
strate that the eight types of � 2W concept lattices, as well as
the eight types of � 3W concept lattices, can be divided into
two isomorphic groups respectively. The isomorphic rela-
tionships help us to investigate and construct new concept
lattices through existing ones. The equivalent relationship
between � 2W concepts and � 3W concepts helps to generate
� 3W concept lattices through � 2W concept lattices.

Table 11   �⋖-A3W concepts

No. Õ1 Õ2 Ã

1 (1.0, 1.0, 1.0, 1.0) (1.0, 1.0, 1.0, 1.0) (0.0, 0.0, 0.0)
2 (1.0, 1.0, 0.5, 1.0) (1.0, 1.0, 1.0, 0.5) (0.0, 0.0, 0.5)
3 (1.0, 1.0, 1.0, 1.0) (0.5, 1.0, 0.5, 1.0) (0.0, 0.5, 0.0)
4 (1.0, 1.0, 0.5, 1.0) (0.5, 1.0, 0.5, 0.5) (0.0, 0.5, 0.5)
5 (1.0, 0.5, 1.0, 0.5) (0.0, 0.5, 0.0, 0.5) (0.0, 1.0, 0.0)
6 (1.0, 0.5, 0.5, 0.5) (0.0, 0.5, 0.0, 0.5) (0.0, 1.0, 0.5)
7 (0.5, 1.0, 1.0, 1.0) (1.0, 0.5, 1.0, 1.0) (0.5, 0.0, 0.0)
8 (0.5, 1.0, 0.5, 1.0) (1.0, 0.5, 1.0, 0.5) (0.5, 0.0, 0.5)
9 (0.5, 0.5, 0.0, 1.0) (0.5, 0.5, 1.0, 0.0) (0.5, 0.0, 1.0)
10 (0.5, 1.0, 1.0, 1.0) (0.5, 0.5, 0.5, 1.0) (0.5, 0.5, 0.0)
11 (0.5, 1.0, 0.5, 1.0) (0.5, 0.5, 0.5, 0.5) (0.5, 0.5, 0.5)
12 (0.5, 0.5, 0.0, 1.0) (0.5, 0.5, 0.5, 0.0) (0.5, 0.5, 1.0)
13 (0.5, 0.5, 1.0, 0.5) (0.0, 0.5, 0.0, 0.5) (0.5, 1.0, 0.0)
14 (0.5, 0.5, 0.5, 0.5) (0.0, 0.5, 0.0, 0.5) (0.5, 1.0, 0.5)
15 (0.5, 0.5, 0.0, 0.5) (0.0, 0.5, 0.0, 0.0) (0.5, 1.0, 1.0)
16 (0.0, 1.0, 0.5, 0.5) (1.0, 0.0, 0.5, 0.5) (1.0, 0.0, 0.5)
17 (0.0, 1.0, 0.5, 0.5) (0.5, 0.0, 0.5, 0.5) (1.0, 0.5, 0.5)
18 (0.0, 0.5, 0.0, 0.5) (0.5, 0.0, 0.5, 0.0) (1.0, 0.5, 1.0)
19 (0.0, 0.5, 0.5, 0.5) (0.0, 0.0, 0.0, 0.5) (1.0, 1.0, 0.5)
20 (0.0, 0.5, 0.0, 0.5) (0.0, 0.0, 0.0, 0.0) (1.0, 1.0, 1.0)

2016 Cognitive Computation (2022) 14:1997–2019

1 3

In future work, we will focus on two areas. First, as there
are different ways to extend classical operations to fuzzy
cases, there are various ways to investigate �-concept
analysis. Thus, we will explore the isomorphic relationship
between �-concept lattices obtained through other methods.
Second, we will apply this work to multi-attribute decision-
making and classification problems.

Appendix I

The following are the verification of the equations in
Table 2:

Clearly, for Õ ∈ LOB , it holds that Õ∗̄ = Õ∗

R̃c
 , Õ□ = Õ

□
R̃c

 ,
Õ◊ = Õ

◊

R̃c
 , Õ# = Õ#

R̃c
 , Õ□ = Õc∗ , Õ□ = Õc∗̄ , Õ# = Õc◊ , and

Õ# = Õc◊.
Moreover, the regularity of � ensures that Õ∗ = Õ∗̄

R̃c
 ,

Õ□ = Õ
□
R̃c

 , Õ◊ = Õ
◊

R̃c
 , Õ# = Õ#

R̃c
 , Õ∗ = Õc□ , Õ∗̄ = Õc□ ,

Õ◊ = Õc# , and Õ◊ = Õc#.
For Õ ∈ LOB and a ∈ AT  , items (2) and (3) of Lemma 1

verify that
Õ◊c(a) = ¬

(
Õ◊(a)

)

= ¬
�⋁

o∈OB

�
Õ(o)⊗ R̃c(o, a)

��
= ¬

�⋁
o∈OB

�
Õ(o)⊗ ¬R̃(o, a)

��
= ¬

�⋁
o∈OB ¬

�
Õ(o) → R̃(o, a)

��
= ¬¬

�⋀
o∈OB

�
Õ(o) → R̃(o, a)

��

=
⋀

o∈OB

�
Õ(o) → R̃(o, a)

�
= Õ∗(a),

Õ∗c(a) = ¬
(
Õ∗(a)

)
= ¬

�⋀
o∈OB

�
Õ(o) → R̃(o, a)

��
= ¬

�⋀
o∈OB

�
Õ(o) → ¬¬R̃(o, a)

��
= ¬

�⋀
o∈OB ¬

�
Õ(o)⊗ ¬R̃(o, a)

��
=
⋁

o∈OB ¬¬
�
Õ(o)⊗ ¬R̃(o, a)

�
=
⋁

o∈OB

�
Õ(o)⊗ R̃c(o, a)

�
= Õ◊(a),

Õ◊c(a) = ¬
(
Õ◊(a)

)
= ¬

�⋁
o∈OB

�
Õ(o)⊗ R̃(o, a)

��
= ¬

�⋁
o∈OB

�
Õ(o)⊗ ¬¬R̃(o, a)

��
= ¬

�⋁
o∈OB ¬

�
Õ(o) → ¬R̃(o, a)

��
= ¬¬

�⋀
o∈OB

�
Õ(o) → ¬R̃(o, a)

��
=
⋀

o∈OB

�
Õ(o) → R̃c(o, a)

�
= Õ∗̄(a),

Õ∗̄c(a) = ¬
(
Õ∗̄(a)

)
= ¬

�⋀
o∈OB

�
Õ(o) → R̃c(o, a)

��
= ¬

�⋀
o∈OB

�
Õ(o) → ¬R̃(o, a)

��
= ¬

�⋀
o∈OB ¬

�
Õ(o)⊗ R̃(o, a)

��
=
⋁

o∈OB ¬¬
�
Õ(o)⊗ R̃(o, a)

�
=
⋁

o∈OB

�
Õ(o)⊗ R̃(o, a)

�
= Õ◊(a),

Õ□c(a) = ¬
(
Õ□(a)

)

= ¬
�⋀

o∈OB

�
Õc(o) → R̃(o, a)

��
= ¬

�⋀
o∈OB

�
¬Õ(o) → R̃(o, a)

��
= ¬

�⋀
o∈OB ¬

�
¬Õ(o)⊗ ¬R̃(o, a)

��
=
⋁

o∈OB ¬¬
�
¬Õ(o)⊗ ¬R̃(o, a)

�
=
⋁

o∈OB

�
Õc(o)⊗ R̃c(o, a)

�
= Õ#(a),

Õ#c(a) = ¬
(
Õ#(a)

)
= ¬

�⋁
o∈OB

�
Õc(o)⊗ R̃c(o, a)

��
= ¬

�⋁
o∈OB

�
¬Õ(o)⊗ ¬R̃(o, a)

��
= ¬

�⋁
o∈OB ¬

�
¬Õ(o) → R̃(o, a)

��
= ¬¬

�⋀
o∈OB

�
¬Õ(o) → R̃(o, a)

��
=
⋀

o∈OB

�
Õc(o) → R̃(o, a)

�
= Õ□(a),

Õ□c(a) = ¬
(
Õ□(a)

)
= ¬

�⋀
o∈OB

�
Õc(o) → R̃c(o, a)

��
= ¬

�⋀
o∈OB

�
¬Õ(o) → ¬R̃(o, a)

��
= ¬

�⋀
o∈OB ¬

�
¬Õ(o)⊗ R̃(o, a)

��
=
⋁

o∈OB ¬¬
�
¬Õ(o)⊗ R̃(o, a)

�
=
⋁

o∈OB

�
Õc(o)⊗ R̃(o, a)

�
= Õ#(a),

Õ#c(a) = ¬
(
Õ#(a)

)

= ¬
�⋁

o∈OB

�
Õc(o)⊗ R̃(o, a)

��
= ¬

�⋁
o∈OB

�
¬Õ(o)⊗ R̃(o, a)

��
= ¬

�⋁
o∈OB ¬

�
¬Õ(o) → ¬R̃(o, a)

��
= ¬¬

�⋀
o∈OB

�
¬Õ(o) → ¬R̃(o, a)

��
=
⋀

o∈OB

�
Õc(o) → R̃c(o, a)

�
= Õ□(a).

Appendix II

Briefly, we provide the proof of the equivalence of � 3W
operators and � 3W inverse operators, as shown in Table 7.

1

2 3 7

4 5 8 10

6 9 11 13 16

12 14 17

15 18 19

20

Fig. 5   �⋖-A3W concept lattice

2017Cognitive Computation (2022) 14:1997–2019

1 3

Based on the relationship between � 2W operators (see
Fig. 1) and by the definition of � 3W operators, the follow-
ing assertions hold. For Õ, Õ1, Õ2 ∈ LOB,

and

Acknowledgements  The authors thank the editor and reviewers for
their constructive comments and valuable suggestions. This research
was supported in part by the National Natural Science Foundation of
China (Grant Nos. 62006172 and 61976158) and the China Postdoc-
toral Science Foundation (Grant No. 2021M692425).

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Ethical Approval  This article does not contain any studies with human
participants or animals performed by any of the authors

Informed Consent  Informed consent was obtained from all individual
participants included in the study.

References

	 1.	 Pawlak Z. Rough sets. Int J Comp Info Sci. 1982;11(5):341–56.
	 2.	 Pawlak Z. Rough set theory and its applications to data analysis.

Cybernet Syst. 1998;29(7):661–88.
	 3.	 Zadeh LA. Fuzzy sets. Information and Control, 8:338–353, 1965.
	 4.	 Ganter B, Wille R. Formal concept analysis: mathematical founda-

tions. German, Heidelberg: Springer Science & Business Media;
1999.

	 5.	 Wille R. Restructuring lattice theory: an approach based on hierar-
chies of concepts. In I Rival, editor, Ordered Sets, pages 445–470,
Dordrecht, 1982. Springer.

	 6.	 Li D, Meng H, Shi X. Affiliated cloud and affiliated cloud genera-
tor. J Comp Res Dev. 1995;32:15–20.

(Õc)⋖ = (Õc∗, Õc∗̄) = (Õ□, Õ□) = Õ▽,

(Õ▽)c = (Õ□, Õ□)c = (Õ□c, Õ□c) = (Õ#, Õ#) = Õ⊳,

(Õc)⊳ = (Õc#, Õc#) = (Õ◊, Õ◊) = Õ▾,

(Õ▾)c = (Õ◊, Õ◊)c = (Õ◊c, Õ◊c) = (Õ∗, Õ∗̄) = Õ⋖,

((Õ1, Õ2)
c)⋗ = (Õc

1
, Õc

2
)⋗ = Õc∗

1
∩ Õc∗̄

2

= Õ
□
1
∩ Õ

□
2
= (Õ1, Õ2)

▴,

((Õ1, Õ2)
▴)c = (Õ

□
1
∩ Õ

□
2
)c = Õ

□c

1
∪ Õ

□c

2

= Õ#

1
∪ Õ#

2
= (Õ1, Õ2)

⊲,

((Õ1, Õ2)
c)⊲ = (Õc

1
, Õc

2
)⊲ = Õc#

1
∪ Õc#

2

= Õ
◊
1
∪ Õ

◊
2
= (Õ1, Õ2)

△,

((Õ1, Õ2)
△)c = (Õ

◊
1
∪ Õ

◊
2
)c = Õ

◊c

1
∩ Õ

◊c

2

= Õ∗
1
∩ Õ∗̄

2
= (Õ1, Õ2)

⋗.

	 7.	 Yao Y. An outline of a theory of three-way decisions. In The 8th
International Conference on Rough Sets and Current Trends in
Computing, pages 1–17, Chengdu, 2012.

	 8.	 Hu BQ. Three-way decisions space and three-way decisions. Inf
Sci. 2014;281:21–52.

	 9.	 Hu BQ. Three-way decision spaces based on partially ordered
sets and three-way decisions based on hesitant fuzzy sets. Knowl-
Based Syst. 2016;91:16–31.

	10.	 Yao Y. Three-way decisions and cognitive computing. Cogn Com-
put. 2016;8(4):543–54.

	11.	 Yao Y. Three-way decision and granular computing. Int J Approxi-
mate Reasoning. 2018;103:107–23.

	12.	 Yao Y. Three-way granular computing, rough sets, and formal
concept analysis. Int J Approximate Reasoning. 2020;116:106–25.

	13.	 Yao Y. The geometry of three-way decision. Appl Intell. 2021.
https://​doi.​org/​10.​1007/​s10489-​020-​02142-z.

	14.	 Zhang Q, Cheng Y, Zhao F, Wang G, Xia S. Optimal scale com-
bination selection integrating three-way decision with Hasse
diagram. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–15, 2021.

	15.	 Zhang Q, Huang Z, Wang G. A novel sequential three-way deci-
sion model with autonomous error correction. Knowl-Based Syst.
2021;212.

	16.	 Mi Y, Liu W, Shi Y, Li J. Semi-supervised concept learning by
concept-cognitive learning and concept space. IEEE Trans Knowl
Data Eng. 2021. https://​doi.​org/​10.​1109/​TKDE.​2020.​30109​18.

	17.	 Li J, Mei C, Weihua Xu, Qian Y. Concept learning via granular
computing: A cognitive viewpoint. Inf Sci. 2015;298:447–67.

	18.	 Li M, Wang G. Approximate concept construction with three-way
decisions and attribute reduction in incomplete contexts. Knowl-
Based Syst. 2016;91:165–78.

	19.	 Li L. Multi-level interval-valued fuzzy concept lattices and their
attribute reduction. Int J Mach Learn Cybern. 2017;8(1):45–56.

	20.	 Shao M-W, Li Ke-W. Attribute reduction in generalized one-sided
formal contexts. Inf Sci. 2017;378:317–27.

	21.	 Shao MW, Wei-Zhi Wu, Wang XZ, Wang CZ. Knowledge reduc-
tion methods of covering approximate spaces based on concept
lattice. Knowl-Based Syst. 2020;191:105269.

	22.	 Yang YP, Shieh HM, Tzeng GH, Yen L, Chan CC. Combined
rough sets with flow graph and formal concept analysis for busi-
ness aviation decision-making. J Intell Inf Syst. 2011;36(3):
347–366.

	23.	 Yang Y, Hao F, Pang B, Min G, Yulei Wu. Dynamic maximal
cliques detection and evolution management in social internet of
things: a formal concept analysis approach. IEEE Transactions on
Network Science and Engineering. 2021. https://​doi.​org/​10.​1109/​
TNSE.​2021.​30679​39.

	24.	 Singh PK. Medical diagnoses using three-way fuzzy con-
cept lattice and their euclidean distance. Comput Appl Math.
2018;37(3):3283–306.

	25.	 Amin II, Kassim SK, Hassanien AE, Hefny HA. Formal con-
cept analysis for mining hypermethylated genes in breast cancer
tumor subtypes. In 2012 12th international conference on Intel-
ligent Systems Design and Applications (ISDA), pages 764–769.
IEEE, 2012.

	26.	 Atif J, Hudelot C, Bloch I. Explanatory reasoning for image under-
standing using formal concept analysis and description logics.
IEEE Trans Syst, Man, Cybernet: Syst. 2013;44(5):552–70.

	27.	 Duntsch I, Gediga G. Modal-style operators in qualitative data
analysis. In 2002 IEEE International Conference on Data Mining,
2002. Proceedings, pages 155–162. IEEE, 2002.

	28.	 Liu Y, Kang X, Miao D, Li D. A knowledge acquisition method
based on concept lattice and inclusion degree for ordered informa-
tion systems. Int J Mach Learn Cybern. 2019;10(11):3245–61.

2018 Cognitive Computation (2022) 14:1997–2019

https://doi.org/10.1007/s10489-020-02142-z
https://doi.org/10.1109/TKDE.2020.3010918
https://doi.org/10.1109/TNSE.2021.3067939
https://doi.org/10.1109/TNSE.2021.3067939

1 3

	29.	 Ma JM, Leung Y, Zhang WX. Attribute reductions in
object-oriented concept lattices. Int J Mach Learn Cybern.
2014;5(5):789–813.

	30.	 Kang X, Miao D, Lin G, Liu Y. Relation granulation and algebraic
structure based on concept lattice in complex information systems.
Int J Mach Learn Cybern. 2018;9(11):1895–907.

	31.	 Shao MW, Lv MM, Li KW, Wang CZ. The construction of attrib-
ute (object)-oriented multi-granularity concept lattices. Int J Mach
Learn Cybern. 2020;11:1017–32.

	32.	 Yao Y. Concept lattices in rough set theory. In IEEE Annual Meet-
ing of the Fuzzy Information, 2004. Processing NAFIPS’04., vol-
ume2, pages 796–801. IEEE, 2004.

	33.	 Yao Y. A comparative study of formal concept analysis and rough
set theory in data analysis. In International conference on rough
sets and current trends in computing, pages 59–68. Springer,
2004.

	34.	 Burusco A, Fuentes-González Rón. The study of the L-fuzzy con-
cept lattice. Mathware & Soft Computing. 1994;3:209–18.

	35.	 Bězlohlávek R. Fuzzy Galois connections. Math Log Q.
1999;45(4):497–504.

	36.	 Fan SQ, Zhang WX, Wei Xu. Fuzzy inference based on fuzzy
concept lattice. Fuzzy Sets Syst. 2006;157(24):3177–87.

	37.	 Georgescu G, Popescu A. Non-dual fuzzy connections. Arch Math
Logic. 2004;43(8):1009–39.

	38.	 Zhang WX, Ma JM, Fan SQ. Variable threshold concept lattices.
Inf Sci. 2007;177(22):4883–92.

	39.	 Burusco A, Fuentes-González Rón. Concept lattices associ-
ated with l-fuzzy w-contexts. Mathware & Soft Computing.
1996;3:321–7.

	40.	 Alcalde C, Burusco A, Fuentes-González Rón. The use of two
relations in L-fuzzy contexts. Inf Sci. 2015;301:1–12.

	41.	 Antoni L, Krajči S, Krídlo O. On stability of fuzzy formal con-
cepts over randomized one-sided formal context. Fuzzy Sets Syst.
2018;333:36–53.

	42.	 Singh PK. Three-way fuzzy concept lattice representation using
neutrosophic set. Int J Mach Learn Cybern. 2017;8(1):69–79.

	43.	 Qi J, Wei L, Yao Y. Three-way formal concept analysis. In Inter-
national Conference on Rough Sets and Knowledge Technology,
pages 732–741. Springer, 2014.

	44.	 Qi J, Qian T, Wei L. The connections between three-way and
classical concept lattices. Knowl-Based Syst. 2016;91:143–51.

	45.	 Zhi H, Qi J, Qian T, Ren R. Conflict analysis under one-vote
veto based on approximate three-way concept lattice. Inf Sci.
2020;516:316–30.

	46.	 Wei L, Qian T. The three-way object oriented concept lattice
and the three-way property oriented concept lattice. In 2015
International Conference on Machine Learning and Cybernetics
(ICMLC), volume2, pages 854–859. IEEE, 2015.

	47.	 Zhi H, Qi J, Qian T, Wei L. Three-way dual concept analysis. Int
J Approximate Reasoning. 2019;114:151–65.

	48.	 Li J, Huang C, Qi J, Qian Y, Liu W. Three-way cognitive concept
learning via multi-granularity. Inf Sci. 2017;378:244–63.

	49.	 Burmeister P, Holzer R. On the treatment of incomplete knowl-
edge in formal concept analysis. In International Conference on
Conceptual Structures, pages 385–398. Springer, 2000.

	50.	 Djouadi Y, Dubois D, Prade H. Différentes extensions floues de
lanalyse formelle de concepts. Actes Rencontres Francophones sur
la Logique Floue et ses Applications (LFA 2009), Annecy, pages
5–6, 2009.

	51.	 Li J, Mei C, Lv Y. Incomplete decision contexts: approximate
concept construction, rule acquisition and knowledge reduction.
Int J Approximate Reasoning. 2013;54(1):149–65.

	52.	 Yao Y. Interval sets and three-way concept analysis in incomplete
contexts. Int J Mach Learn Cybern. 2017;8(1):3–20.

	53.	 Wang Z, Wei L, Qi J, Qian T. Attribute reduction of SE-
ISI concept lattices for incomplete contexts. Soft Comput.
2020;24(20):15143–58.

	54.	 Bězlohlávek R. Fuzzy relational systems: foundations and princi-
ples, volume20. Springer Science & Business Media, 2012.

	55.	 Zhen Ming Ma and Bao Qing Hu. Topological and lattice struc-
tures of L-fuzzy rough sets determined by lower and upper sets.
Inf Sci. 2013;218:194–204.

	56.	 Zhao X, Miao D, Hu BQ. On relationship between three-way con-
cept lattices. Inf Sci. 2020;538:396–414.

	57.	 Bězlohlávek R. Algorithms for fuzzy concept lattices. In Proc.
Fourth Int. Conf. on Recent Advances in Soft Computing, pages
200–205, 2002.

	58.	 Bartl E, Konecny J. L-concept analysis with positive and negative
attributes. Inf Sci. 2016;360:96–111.

	59.	 He X, Wei L, She Y. L-fuzzy concept analysis for three-way deci-
sions: basic definitions and fuzzy inference mechanisms. Int J
Mach Learn Cybern. 2018;9(11):1857–67.

2019Cognitive Computation (2022) 14:1997–2019

	Isomorphic Relationship Between -three-way Concept Lattices
	Abstract
	Introduction
	Preliminaries
	Relationship Between  2W Concept Lattices
	 2W Operators
	 2W Concepts
	 2W Concept Lattices

	Relationship Between  3W Concept Lattices
	 3W Operators
	O3W Concepts and O3W Concept Lattices
	A3W Concepts and A3W Concept Lattices

	Relationship Between  2W Concepts and  3W Concepts
	Relationship Between  2W Concepts and O3W Concepts
	Relationship Between  2W Concepts and A3W Concepts

	Conclusion
	Acknowledgements
	References

