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a b s t r a c t

Low-light image enhancement is challenging due to intractable problems such as color distortion and
noise, which hide in the dark. Simply enhancing the brightness of dark areas will inevitably amplify
hidden artifacts. We have observed more noise in the underexposed areas of images than in the
normally exposed areas. Attention mechanism can be used to emphasize the vital information of the
processed object and suppress some irrelevant information. Inspired by these observations, we propose
a deep network that Combines Attention mechanism and Retinex (CA&R Net) model to enhance low-
light images. Firstly, we develop an attention map to evaluate the degree of image underexposure
and guide enhancement in a region-adaptive manner. This way, it can enhance underexposed areas
and avoid over-enhancing normally exposed areas. Secondly, we use the reconstructed reflectance and
low illumination to predict the illumination layers of the image jointly. This joint prediction utilizes
the attention mechanism, making illumination adjustment achieve better results. The quantitative
experimental results show that the CA&R Net can successfully handle noise, color distortion, and
multiple types of degradation with the power of attention information. Moreover, both SSIM and PSNR
are better than other advanced methods.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

As digital imaging devices are increasingly widely deployed,
eople can take photos anytime and anywhere. However, the
hooting scenes of many photos are underexposed. Photos taken
nder underexposure conditions are challenging to show the de-
ails of the scenery and people, which cannot meet people’s ideal
isual effects and needs. At the same time, these low-visibility
hotos also bring significant challenges to traditional computer
ision tasks such as image segmentation, target detection [1], and
racking [2]. Therefore, designing a practical algorithm to enhance
ow-light images is necessary.

Although some existing technologies can enhance low-light
mages, such as setting long exposure, high ISO, and flash, there
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are some deficiencies with these methods. For example, long
exposure has limitations when shooting static scenes, high sensi-
tivity will increase noise and blur the images. High ISO increases
the sensitivity of the image sensor to light while also amplifying
noise. The utilization of flash can illuminate the environment
to a certain extent. Still, it will introduce unexpected highlights
and unbalanced light in the photo, making the photo visually
unpleasant (see Fig. 1). .

Many researchers have conducted massive research and pro-
posed many solutions to these problems. Early research [3–6]
mainly focused on contrast enhancement. These methods have
specific deficiencies in restoring image details and colors. Re-
search in recent years [7–10] takes deep learning methods to
adjust images. These methods simultaneously learn and adjust
color, brightness, contrast, and saturation to achieve better re-
sults. However, these existing methods still have limitations for
enhancing low-light images that are seriously underexposed.

In this paper, we propose the CA&R Net that combines atten-
tion mechanism and Retinex model to solve the above mentioned
problems. Specifically, we suggest a novel information extraction
network that learns to acquire the reflectance (R), illumination
(I), and attention map (Amap) of the image. Then, Amap is used as
a guide for the Restore-Net stage to restore the reflection com-
ponent. Finally, the recovered reflectivity and low illumination
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Fig. 1. Our low-light enhancement method can reconstruct the visual quality
f underexposure images. Our result is a more natural color and lighting
istribution guided by attentional information. Where (b) is the attention map
f the image, which is used to evaluate the degree of image underexposure. For
he source low-light image, the higher the illumination, the lower the attention
ap value, and its value range is [0, 1]. By inputting the attention map into

he Attention Residual in Residual (ARIR) module, the network can determine
hich areas are underexposed and which sites are exposed according to their
alue and process them respectively to achieve a better enhancement effect.

re used to adjust the illumination component. The motivation of
ur design is that the noise in the underexposed areas of images
s more severe than that in the normally exposed areas. Simple
nhancement of underexposed areas will amplify the noise hid-
en in the dark. Therefore, we introduce an attention mechanism
o emphasize the vital information of the processed object and
uppress some irrelevant details. We extract the attention map
o evaluate the degree of underexposure and guide the enhance-
ent in a region-adaptive manner. By doing this, more attention
ill be paid to the underexposed areas during the enhancement
rocess, which can enhance the underexposed areas and avoid
ver-enhancing the normal exposure areas. Besides, instead of
ust using the estimated low illumination for prediction, we use
he reconstructed reflectance and low illumination for jointly
redicting to illumination layer of the image. This joint prediction
tilizes an attention mechanism to make illumination adjustment
chieve better results. We conduct extensive experiments on
he LOL dataset. Experimental results show that CA&R Net can
uccessfully handle noise, color distortion, and multiple types of
egradation with the power of attention information. Further-
ore, both SSIM and PSNR outperform Retinex-Net and KinD.
ompared with Retinex-Net, CA&R Net dramatically improves the
verall performance, with PSNR by 5.38 and SSIM by 26.86%.
ompared to KinD, CA&R Net improves PSNR by 1.95 and SSIM
y 5.25%.
The main contributions of this paper are summarized as fol-

ows:

• We propose the CA&R Net that combines attention mecha-
nism and Retinex model to enhance low-light images. With
the power of attention information, the CA&R Net can suc-
cessfully handle noise, color distortion, and multiple types
of degradations.

• We develop an attention map to guide the reflectance
restoration in a region-adaptive manner so that it can pay
more attention to underexposed areas during the enhance-
ment process and avoid over-enhancing the normal expo-
sure areas.

• Instead of just using the estimated low illumination for
prediction, we use the reconstructed reflectance and low
96
illumination to jointly predict the image’s illumination layer.
This joint prediction utilizes an attention mechanism to
make illumination adjustment achieve better results.

• Extensive experiments have been conducted to evaluate
our method, and the superiority of our approach has been
proved qualitatively and quantitatively.

2. Related work

Traditional Methods. The earliest low-light image enhance-
ent algorithm is to adjust the light distribution of low-light

mages uniformly. Histogram equalization (HE) achieves illumi-
ation enhancement by expanding the dynamic range of im-
ges [11] so that the details hidden in the dark area are re-
isplayed. Later, some other optimization algorithms were pro-
osed, such as adaptive HE algorithm [12], average intensity
etention [13], black and white stretching [14], and a novel LHE
lgorithm [15]. These methods can improve the visibility of im-
ges. Still, they mainly improve the contrast of images without
onsidering the effect of illumination, which leads to the over and
nder illumination in enhancement results. Some scholars also
se frequency-domain methods to enhance images, such as the
omomorphic filtering algorithm based on spatial filters [16], the
wo-channel high-frequency color image enhancement method
ased on HSV color space [17]. These methods can effectively
ighlight the details of the image by enhancing the transforma-
ion parameters. The disadvantage is that these methods amplify
he noise hidden in images and require a lot of calculations. The
election of transformation parameters usually requires manual
ntervention and cannot be automatically selected. Li et al. pro-
osed a method based on the degradation model to enhance
ow-light images [18]. Li et al. used image fusion methods to
ynthesize high-quality images [19,20]. The enhancement effects
f these fusion methods are relatively sound. However, they rely
n multiple different images in the same scene. When faced with
cenes that require real-time monitoring, it is not easy to achieve
nhancement through image fusion in a short time. There are
lso some researchers keen on defogging models. Dong et al.
roposed a defogging model to enhance low-light images [21].
he defogging algorithm is applied to the inverted low-light
ision to enhance the visibility of images. This type of algorithm
equires low computational complexity and can achieve good
erformance. However, the defogging algorithm lacks a physical
xplanation of the basic model and requires some additional
oise reduction processing to eliminate noise. Therefore, the di-
ect application of defogging algorithms to enhance low-light
mages still has its shortcomings.

Retinex-Based Methods. Another method for low-light image
nhancement is based on the Retinex theory [22]. This theory first
ecomposes the observed image into illumination and reflectance
nd then enhances these two components separately. In order
o suppress the noise in the reflectance and make the enhanced
llumination more natural, it is necessary to introduce various
rior conditions into the model to guide the enhancement of
hese two components, such as weighted variation [4], structure
erception prior [23]. At the same time, in order to achieve better
ow light enhancement results, a variety of Retinex variants are
roposed to balance the layer separation and manipulation, such
s single-scale Retinex (SSR) [24], multi-scale Retinex (MSR) [25],
nd multi-scale Retinex with color restoration (MSRCR) [26]. Elad
t al. proposed a non-iterative Retinex algorithm that can sup-
ress dark area noise and process image edge parts [27]. Fu et al.
roposed a weighted variational model to estimate the illumina-
ion and reflectance of the image [4]. This model can accurately
stimate reflectivity while suppressing noise. Wang et al. used
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ocal nonlinear transformation to enhance the separated illumina-
ion, making the image brighter and more natural [28]. Xiao et al.
ntroduced the enhancement adjustment factor to adjust the en-
ancement degree of different exposure areas to avoid problems
uch as color distortion and amplified noise [29]. In order to solve
he problems of the halo effect, loss of detail, and color distortion
ncountered by MSRCR when enhancing color, Zhao et al. pro-
osed a Markov random field model [30]. These methods achieve
ot only good results in enhancing the brightness and contrast of
he image but also have obvious advantages in processing color
mages. However, Retinex-based algorithms are built under hand-
rafted filters. Therefore, they are insufficient in processing the
omplex signal characteristics of various images.
Learning-Based Methods. In recent years, deep learning has

een widely used in underlying image processing and has achieved
reat success. While bringing significant changes to the under-
ying image processing tasks, it has also brought significant im-
rovements in the performance of low-light image enhancement.
ai et al. proposed a novel enhancer for low light image en-
ancement, which can flexibly adjust the brightness [31]. Zhang
t al. proposed a learning-based decomposition-enhancement
ethod to restore low-light images. [32]. Lore et al. created
deep autoencoder to enhance low-light images to achieve

daptive denoising and brightness adjustment [33]. Ren et al.
ntroduced joint denoising and low-light enhancement strategy
o eliminate inherent noise in the process of enhancing low-light
mages [34]. Lv et al. proposed a novel network consisting of a
eature extraction module, an enhancement module, and a fusion
odule [35]. Cai et al. used CNN to achieve single image contrast
nhancement [36]. Wang et al. proposed a GLobal illumination-
ware and Detail-preserving Network(GLAD) [37]. Chen et al.
ntroduced the short-exposure low-light image dataset SID in
aw format and proposed a method based on FCN to process
hese images [38]. This method improves the traditional process
f processing low-light images and can successfully suppress
oise and correctly implement the color conversion, but there are
ertain limitations. For example, HDR tone mapping cannot be
esolved, and magnification cannot be learned in the input. Wei
t al. constructed a paired dataset containing low/normal light
mages and proposed a deep network called Retinex-Net [39].
he network combines the Retinex model with deep learning
or the first time, breaking the limitation that the traditional
etinex model requires manual constraints. However, the sub-
equent enhancement network only designs a Relight-Net to
e-estimate the illumination. It does not consider the influence of
he reflectance component and illumination components on the
mage, respectively. Therefore, the desired enhancement cannot
e achieved. Zhang et al. built a simple yet effective network
or Kindling the Darkness(KinD) [40]. They designed an excellent
mage decomposition network and created a superb loss func-
ion that achieves desired results. However, in the subsequent
nhancement network, the reflectivity recovery network only
ses the U-Net structure, and the design of the illumination
djustment network is also straightforward. No more information
s introduced to recover these two components, resulting in the
nhanced image still existing the problem of low brightness. A
ulti-branch convolutional neural network based on two atten-

ion maps is proposed. The two attention maps extracted by
his method are used to guide image denoising and enhance-
ent tasks, respectively [41]. Wang et al. proposed a network

hat estimates the image-to-illumination mapping to enhance
ow-light images, which breaks the traditional image-to-image
apping methods [42]. But this method cannot handle texture
etails and clean noise well. Xu et al. proposed a frequency-
ased decomposition and enhancement model. This model first
ses the attention context coding module to restore the low-
requency layer image content and denoise and then uses the
97
converted image to enhance high-frequency details [43]. Fan et al.
introduced semantic information into low-light image enhance-
ment and used it to guide subsequent enhancement [44]. The
introduction of semantic information can provide more details
for enhancement, leading to better image restoration. However,
in this method, the semantics of the images are divided into
three parts: sky, ground, and background, limiting the dataset’s
structure. In addition, datasets with semantic information in the
low-light image domain are difficult to obtain, so this method
can only be applied to specific datasets. Yang et al. designed an
end-to-end signal prior-guided decomposition and data-driven
mapping network, which utilizes the constraints of decomposi-
tion to enhance a single low-light image [45]. Jiang et al. applied
Generative Adversarial Networks to enhance low-light images.
This model adopts unpaired data to train the network, which
solves the problem of difficulty in obtaining paired datasets [46].

3. Methodology

3.1. Retinex model for low-light image enhancement

The classic Retinex theory models human color perception. It
assumes that the observed image can be decomposed into two
components, reflectance and illumination:

S = I ◦ R, (1)

where S denotes the input image, R denotes reflectance, I de-
otes illumination and ◦ denotes element-wise multiplication.
eflectance describes the inherent property of the captured ob-
ect, which is consistent under any brightness conditions. Illumi-
ation means various brightness on the object.
For the low-light image enhancement based on the Retinex

odel, the low-light image Slow is first decomposed into illumi-
ation Ilow and reflection Rlow:

[Ilow, Rlow] = fdecom (Slow) , (2)[
Ihigh, Rhigh

]
= fdecom

(
Shigh

)
, (3)

where fdecom(·) represents the learning process of decomposing
the input image into reflectance and illumination. Then, according
to the decomposed reflectance Rlow and illumination Ilow , the
enhanced reflectance R̂high and illumination Îhigh are inferred:

R̂high = frestore (Rlow) , (4)

Îhigh = fadjust (Ilow) , (5)

The final enhancement result is reconstructed by the following
formula:

Ŝhigh = R̂high ◦ Îhigh. (6)

where ˆ represents the predicted result. In our method, fdecom(·)
is not a manual constraint but a learnable process, which is
jointly modeled with frestore(·) and fadjust (·) to achieve enhance-
ment in a data-driven manner. In addition, to allow frestore(·) to
pay more attention to the underexposed areas, we extract Amap
to evaluate the degree of underexposure. Then, Amap together
with Rlow is input to the Restore-Net to guide the enhancement
in a region-adaptive manner. Making it pay more attention to
the underexposed areas during the enhancement process can
enhance the underexposed areas and avoid over-enhancing the
normally exposed areas. Therefore, in our scheme, we modify the
formula (4) as:

R̂ = f
(
R , A

)
, (7)
high restore low map



Y. Wang, J. Chen, Y. Han et al. Computers & Graphics 104 (2022) 95–105

r

m

I

f
i
i
t
s
l
a

3

m
w
s
i
m
a

t
r
(
a
a
t
a
i

Fig. 2. The architecture of our CA&R Net consists of three components: information extraction (including attention network and image decomposition network),
reflectance restoration, and illumination adjustment. Firstly, we use the information extraction network to acquire the reflectance (R), illumination (I), and attention
map (Amap) from the input image (S). Secondly, use Restore-Net to restore the reflectance component under the guidance of Amap . Finally, use the reconstructed
eflectance and low illumination for jointly predicting to illumination layer of the image. The final enhancement result is reconstructed by Ŝhigh = R̂high ◦ Îhigh .
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Fig. 3. The description of network architecture.

odify the formula (5) as:

ˆhigh = fadjust
(
Ilow, R̂high

)
. (8)

ormula (5) utilizes the reconstructed reflectance R̂high and low
llumination Ilow for jointly predicting to illumination layer of the
mage, instead of just utilizing the estimated low illumination
o predict. This joint prediction adopts an attention mechanism
o that more attention can be paid to underexpose areas and
earn the details of the image better. And thus, the illumination
djustment can achieve better results.

.2. Overall network architecture

In this paper, we design the CA&R Net that combines attention
echanism and Retinex model to enhance low-light images. The
hole network architecture is shown in Fig. 2. It consists of three
tages: information extraction (including attention network and
mage decomposition network), reflectance restoration, and illu-
ination adjustment. For these three stages, three sub-networks
re built to model fdecom(·), frestore(·), fadjust (·), respectively.
At the decomposition stage, the network utilizes Decomposi-

ion-Net to decompose the paired low/normal light images into
eflectance Rlow/Rhigh and illumination Ilow/Ihigh (denoted as fdecom
·)). In this stage, under the constraints of low/normal light im-
ges sharing the same reflectance and illumination smoothness,
utonomous learning is carried out in a data-driven manner. At
he restoration stage, the noise in the reflectance is suppressed by
Restore-Net. Under the guidance of Amap, the reflectance restore
s realized in a regional adaptive manner (denoted as f (·)).
restore

98
t the adjustment stage, we use the reconstructed reflectance
nd low illumination for jointly predicting to illumination layer of
he image. This joint prediction utilizes an attention mechanism,
hich can make illumination adjustment achieve better results
denoted as fadjust (·)). Finally, we use the reconstructed reflectance
nd adjusted illumination to reconstruct the image according
o element-wise multiplication to obtain the final enhancement
esults. Table 1 summarizes the functions of each sub-networks
n the network.

Next, we will introduce in detail the three sub-networks of
nformation extraction (Section 3.3), reflectivity restoration (Sec-
ion 3.4), and illumination adjustment (Section 3.5).

.3. Information extraction net

Image decomposition network. Recovering two components
rom images is a challenging task. The ground-truth images re-
uire professionals with excellent photography skills and massive
rocessing. Normally, such image data is difficult to obtain, so
t is crucial to design a proper loss function to constrain net-
ork training without ground-truth guidance. In our network, we
se low/normal light images [Slow , Shigh] with different exposure
evels for training. According to the constraint that low/normal
ight images share the same reflectance and the smooth and
onsistent nature of the illumination map, a loss function for
he constraint is designed. Specifically, it includes four parts:
eflectance similarity loss, illumination smoothness loss, mutual
onsistency loss, and reconstruction loss. Zhang et al. created an
xcellent loss function for image decomposition that can achieve
n ideal result [40]. We here use this loss to constrain the training
f the decomposition network.
Loss of reflectance similarity:

rs =
Rlow − Rhigh


2 , (9)

e simply utilize Lrs to regularize the reflectance similarity,
here ∥·∥2 denotes the ℓ2 norm (MSE).
Loss of illumination smoothness:

is =

 ∇Ilow
max (|∇S | , ε)

 +

 ∇Ihigh
max

(⏐⏐∇S
⏐⏐ , ε)

 , (10)

low 1 high 1
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Table 1
The functionality of each sub-network in our network architecture.
Sub-network Decom-net Restore-net Adjust-net

Input Shigh (Slow) Rlow, Amap Ilow, R̂high

Output Rhigh, Ihigh (Rlow, Ilow) R̂high Îhigh
Process fdecom(·) frestore(·) fadjust (·)
Functionality Decomposition Reflectance restoration Illumination adjustment
w
m
a
w
t
t
t
A

w

The illumination smoothness is constrained by Lis, where ∇ stands
or the first-order derivative operator, ∥·∥1 denotes the ℓ1 norm,
nd | · | denotes the absolute value operator. In addition, we
dded a small positive constant ε for avoiding zero denominators
0.01 in this work) (see Fig. 3).

Loss of mutual consistency:

mc = ∥X ◦ exp(−c · X)∥1, (11)

= |∇Ilow| +
⏐⏐∇Ihigh

⏐⏐ , (12)

utual consistency is represented by Lmc , where c is the param-
ter (set to 10 in this paper).
Loss of reconstruction:

rec = ∥Slow − Rlow ◦ Ilow∥1 +
Shigh − Rhigh ◦ Ihigh


1 , (13)

ecomposition-Net decomposes the input image into illumina-
ion and reflectance. When reconstructing these two components,
he input image should also be obtained. We use Lrec to constrain
t.

Therefore, the total loss function of this stage is expressed as:

decom = Lrec + λrsLrs + λisLis + λmcLmc . (14)

here λrs, λis, and λmc are the weight coefficients of reflectance
imilarity loss, illumination smoothness loss and mutual consis-
ency loss.

Attention-Net. We use the Attention-Net to extract atten-
ion map Amap of images and guide the reflectance recovery in
estore-Net. We have observed that there is more noise in the
nderexposed areas of images than that in the normally exposed
reas. To effectively enhance the contrast of the image and sup-
ress noise, the key is to solve the problem in an adaptive way of
rea perception. Therefore, we designed an Amap to evaluate the
egree of underexposure and guide the enhancement in a region-
daptive manner, to enhance the underexposed areas and avoid
ver-enhancing the normally exposed areas. In our method, we
irectly use U-Net to achieve this goal. The purpose is to provide
uidance for the subsequent enhancement of underexposed areas
nd avoid over-enhancing normally exposed areas. The output is
n Amap, which is used to indicate the degree of underexposed
reas. It can be expressed by the following formula:

=

⏐⏐maxc
(
Shigh

)
− maxc (Slow)

⏐⏐
maxc

(
Shigh

) , (15)

here maxc(·) denotes returning the maximum value of the three
olor channels, Shigh denotes high-light image, Slow denotes low-
ight images. In order to obtain Amap, we use this formula to
onstrain it:

attention = ∥fa(S) − A∥2 . (16)

here S denotes low-light images, fa(·) and A denote predicted
nd expected results, respectively.

.4. Reflectance restoration net

As the solid noise and color deviation in the reflectance Rlow
rom Decomposition-Net, we use the Restore-Net to restore Rlow
nder the guidance of attention information.
99
In the reflectance recovery phase, inspired by Fan et al. [44],
e introduced the Residual in Residual (RIR) module. The RIR
odule utilizes deep residual learning to provide powerful pixel
djustment capabilities for the reflectance recovery network,
hich can effectively suppress noise and perform color correc-
ion. To introduce attention information, we designed an Atten-
ion Residual in Residual (ARIR) module. This module first adopts
wo two-layer convolutions to extract features F1 and F2 from
map. Then, several convolution layers are used to extract the fea-

ture F3 from the reflectance Rlow through the RIR module. Finally,
the three features of F1, F2, and F3 are merged by multiplying F3
by F2 and then adding F1. After the fusion, the output of the ARIR
module is obtained through convolution operation. At this stage,
we first use the convolution operation to extract features. Then
the features are fused through a series of RIR and ARIR modules.
Finally, the output result R̂high is obtained through convolution
and the Sigmoid layer.

Restore-Net utilizes the reflectance of normal-light images as
a constraint for training. Specifically, the final loss at this stage
includes three parts: Mean Squared Error (MSE), Structure SIMi-
larity index (SSIM), and Gradient loss (Grad). The loss function of
the reflectance recovery stage can be expressed as:

Lrestore = MSE
(
R̂high, Rhigh

)
+ λ1SSIM

(
R̂high, Rhigh

)
+λ2Grad

(
R̂high, Rhigh

)
. (17)

where λi is the weight coefficient, R̂high is denoted as the recon-
struction result by Restore-Net.

Grad
(
R̂high, Rhigh

)
=

√⏐⏐⏐∇R̂high − ∇Rhigh

⏐⏐⏐. (18)

here ∇ stands for the first-order derivative operator,
√

· means
arithmetic square root, and | · | means the absolute value opera-
tor, which ensures that arithmetic square root operations can be
performed normally.

3.5. Illumination adjustment net

The illumination Ilow directly decomposed by Decomposition-
Net is usually in a low-visibility. In order to adjust Ilow , we de-
signed an Adjust-Net and used the reconstructed reflectance R̂high
and low illumination Ilow for jointly predicting to illumination
layer of the image.

Firstly, we utilize U-Net to extract features from R̂high. In this
way, the information of Amap will be introduced into the Adjust-
Net. Secondly, a two-layer convolution network is adopted to
extract features from enhancement ratio α and Ilow . This feature
is fused with the features extracted by U-Net and then obtained
the adjusted illumination through a convolutional operation. The
result Îhigh of the illumination adjustment network is limited
to [0,1] through the Sigmoid layer. Finally, R̂high and Îhigh are
rebuilt according to the element-wise multiplication. The CA&R
Net obtains the final prediction Ŝhigh = R̂high ◦ Îhigh.

Since there is no actual light level of the image, we need to
design a light condition conversion mechanism to meet the needs
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Table 2
Quantitative measurement results on LOL dataset.
Metrics BIMEF [47] CRM [48] Dong [21] LIME [23] MF [49] RRM [50]

PSNR 13.86 17.20 16.72 16.76 18.79 13.88
SSIM 0.58 0.64 0.58 0.56 0.64 0.66

Metrics MSR [26] CLAHE [51] DHECI [52] AGLLIE [41] DeepUPE [42] EFF [53]

PSNR 13.17 13.13 14.64 19.48 13.27 17.85
SSIM 0.48 0.37 0.45 0.81 0.45 0.65

Metrics SICE [36] GLAD [37] JED [34] LLNet [33] Retinex-Net-TIP [45] KinD [40]

PSNR 19.40 19.72 17.33 17.56 20.06 20.87
SSIM 0.69 0.70 0.67 0.55 0.82 0.80

Metrics NPE [54] Retinex-Net [39] BPDHE [13] MBLLEN [35] SRIE [4] ours
PSNR 16.97 16.77 13.84 18.56 17.34 22.15
SSIM 0.59 0.56 0.43 0.75 0.69 0.83
,

of different scenes. In our dataset, we adopt paired low/normal
light images. That is, we have paired illumination images. Even
if we do not know the exact relationship between Ilow and Ihigh,
e can use α = Ihigh/Ilow to calculate their intensity ratio. This
atio parameter can be used to guide the illumination adjustment
rocess. In the testing phase, α can be given by users. We utilize
he illumination Ihigh of the normal-light image to guide the
djustment network, introducing more context information for
odel training. The loss functions at this stage can be expressed
s:

adjust = MSE
(
Îhigh, Ihigh

)
+ λ1SSIM

(
Îhigh, Ihigh

)
λ2Grad

(
Îhigh, Ihigh

)
. (19)

here λi is the weight coefficient.

. Experimental validation

.1. Implementation details

In this paper, our network is trained using the public dataset
OL, which includes 500 low/normal light image pairs. Among
hem, 485 image pairs were used for training, 15 image pairs
ere used for testing, and the synthetic dataset proposed by Fan
t al. [44] includes 2458 low/normal light image pairs, of which
118 pairs are used for training the other 340 pairs for evaluation.
ur network consists of three parts: information extraction (in-
luding attention and decomposition network), reflectance recov-
ry, and illumination adjustment. The training process is also split
nto four stages, corresponding to Attention-Net, Decomposition-
et, Restore-Net, and Adjust-Net. During the training process,
he batch size is set to be 10 and the patch size to be 48. The
nitial learning rate is set to 0.0001. In the Restore-Net, when the
poch reaches 300, 500, 1500, the learning rate is updated to 1/2,
/4, 1/8 of the initial values. We use stochastic gradient descent
SGD) technology to optimize our network. The entire network is
rained on Tesla V100 GPU using the TensorFlow framework.

.2. Quantitative comparisons

In this section, we evaluate the performance of our method
hrough quantitative experiments. Since assessing the quality of
nhanced images is not a simple task, in this paper, we adopt
oth Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
SSIM) that are commonly used in the field of image enhancement
o evaluate the results. PSNR is the ratio between the maximum
ossible power of the normal-light image and the power of the
nhanced image. This indicator can be used to measure the fi-
elity between the normal-light image and the enhanced image.
100
SSIM judges the similarity of two images from three aspects:
structure, brightness, and contrast. The higher the values of these
two indicators are, the better the image quality is.

In order to evaluate the superiority of the network from a
quantitative perspective, we conducted massive experiments on
the public dataset LOL. The state-of-the-art methods of BIMEF [47]
CRM [48], Dong [21], LIME [23], MF [49], RRM [50], NPE [54],
Retinex-Net [39], MSR [26], CLAHE [51], DHECI [52], AGLLIE [41],
DeepUPE [42], EFF [53], BPDHE [13], MBLLEN [35], SICE [36],
GLAD [37], JED [34], LLNet [33], Retinex-Net-TIP [45], KinD [40],
SRIE [4] are involved as the competitors. It can be seen from
Table 2 that our method is superior to all the most advanced
methods in these two indicators.

Among them, Retinex-Net [39], Retinex-Net-TIP [45], and KinD
[40] participating in the comparison are all based on the Retinex
model. Without considering the effects of the two components on
the image, Retinex-Net [39] only designed an enhancement net-
work to re-estimate the image’s brightness in the subsequent en-
hancement network and thus cannot achieve ideal enhancement.
The image decomposition-net of KinD [40] is well-designed, but
in the subsequent enhancement network, the reflectance recov-
ery network only uses the U-Net structure. The design of the
illumination adjustment network is also relatively simple. Our
CA&R Net extracts the attention map as a guide for the reflex
recovery stage. The attention map can evaluate the degree of
underexposure, and more attention can be paid to the under-
exposed area in the reflection recovery stage to enhance this
component well. In addition, since the noise in the dark area of
a low-light image is more serious than the normal bright area, if
the entire part is directly enhanced, the noise hidden in the dark
area will be amplified. Therefore, using the attention map as a
guide can effectively suppress the noise during the enhancement
process. In the illumination adjustment stage, in addition to the
enhancement rate, the restored reflectance is also used as input
to introduce attention information so that the illumination ad-
justment can focus on more context information, so as achieving
better results. The quantitative results of the experiment also
proved the effectiveness and superiority of CA&R Net.

4.3. Qualitative evaluation

Figs. 4–6 show the visual comparison between our method
and other methods on the LOL dataset. Experiment results show
that the four ways of BIMEF [47], SRIE [4], CRM [48], and Dong [21]
are insufficient in enhancing image brightness. Even after improv-
ing the image, the problem of dark light still exists. Although the
four methods GLAD [37], LIME [23], MF [49], and NPE [54] have
improved the brightness of the image to a certain extent, the en-
hanced image has apparent noise and severe color distortion. The
improved image of Retinex-Net [39] is blurry. The enhancement
effect of KinD [40] is relatively good. The brightness of images



Y. Wang, J. Chen, Y. Han et al. Computers & Graphics 104 (2022) 95–105

R

Fig. 4. Visual comparison with other low-light image enhancement methods.
Fig. 5. Visual comparison with other low-light image enhancement methods.
Table 3
Quantitative measurement results on synthetic datasets.
Metrics BIMEF [47] LIME [23] EnlightenGAN [46] MF [49] JED [34] DeepUPE [42]

PSNR 22.642 12.304 16.953 20.115 21.604 22.503
SSIM 0.762 0.508 0.731 0.651 0.798 0.710

Metrics SICE [36] MBLLEN [35] Retinex-Net [39] KinD [40] ours
PSNR 16.227 17.228 23.166 21.630 23.806
SSIM 0.783 0.744 0.676 0.903 0.923
is improved, and the noise is also handled well. Moreover, it
can enhance images with considerable fidelity, but the improved
image still has low brightness (see Table 3).

Figs. 7 and 8 show the visual comparison of our method with
etinex-Net and KinD on synthetic datasets. The experimental
101
results show that the enhanced images of Retinex-Net have in-
tense noise and color distortion. Compared with Retinex-Net,
KinD has significantly less overall noise and distortion, but the
above problems still exist in some areas. For example, (c1), (c2),
(c3), the recovery of some areas is poor. The noise and distortion
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Fig. 6. Visual comparison with other low-light image enhancement methods.
Fig. 7. Visual comparison with other low-light image enhancement methods.
of (g1) and (g2) are more negligible, but the enhancement result
still has the problem of low brightness. The color distortion of
the (g3) red area is severe, and the white site is over-enhanced.
Overall, although Retinex-Net improves the image’s brightness,
the restoration result is poor. This is because it only designs a
Relight-Net to re-estimate the illumination of the image and does
not separately consider the effects of the reflection component
and the illumination component on the image. Reflectance is an
inherent property of an object, including features such as the
color of an image. The reflectivity obtained by the decomposition
of low-light images is very rough. If it is not processed, the en-
hancement results will inevitably have noise and color distortion
102
problems. KinD’s reflectivity recovery net is only implemented
with U-Net, and no more information is provided for it as a guide.
This simple uniform enhancement can lead to over-enhancement
and noise in some areas. Because for low-light images, the noise
in dark places is more severe than in normally exposed areas,
enhancements that do not distinguish the entire region are bound
to amplify the noise hidden in dark areas. KinD’s light adjustment
network also only uses a few simple convolutions without provid-
ing it with more contextual information. Therefore, when KinD
processes the overall dark image, there will be a problem that
the illumination of the enhanced result is still insufficient. The
restoration result of our network is more natural, which solves
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Fig. 8. Visual comparison with other low-light image enhancement methods.
Fig. 9. Ablation studies of the proposed method.
Table 4
The setting of our ablation study.
Methods Attention guide Joint prediction

w/o AG, w/o JP × ×

w/o AG, with JP × ✓
with AG, w/o JP ✓ ×

ours ✓ ✓

the problem of harsh noise and color distortion in Retinex-Net

and the problem of poor restoration of some regions of KinD. We

design the attention map to evaluate the degree of underexposure

and use it as a guide for subsequent enhancements to enhance

the underexposed areas better and avoid over-enhancement of

the customarily exposed areas, such as (h3). In addition, the

joint prediction can provide more information for the lighting

adjustment so that the lighting adjustment can achieve better

results, such as (h1) and (h2).
103
Table 5
Ablation study of our proposed network.
Methods PSNR SSIM

Retinex-Net 16.7740 0.5594
w/o AG, w/o JP 20.2009 0.7755
w/o AG, with JP 21.0028 0.7917
with AG, w/o JP 21.1708 0.8170

ours 22.1506 0.8280

4.4. Ablation study

In this section, we conduct ablation studies to evaluate the
effectiveness of each component in CA&R Net. The setting can be
found in Table 4. Quantitative ablation study results of PSNR and
SSIM can be found in Table 5. The CA&R Net is based on Retinex-
Net [39], and KinD [40] is the baseline, w/o AG and w/o JP is
the result of retraining KinD under our conditions. Quantitative
results show that compared with the Retinex-Net, CA&R Net
largely improves the overall performance, with PSNR improving
5.38 and SSIM improving 26.86%. Based on the baseline, the
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njection of joint prediction (w/o AG, with JP) improves the PSNR
y 0.80 and SSIM by 1.62%. The injection of attention information
with AG, w/o JP) improves the PSNR by 0.97 and SSIM by 4.15%.
he injection of attention information and joint prediction (ours)
mproves the PSNR by 1.95 and SSIM by 5.25%.

Qualitative results are shown in Fig. 9. For (a2), there is obvi-
us noise in the shadow area of the enhanced photo (b2). The
njection of joint prediction (w/o AG, with JP) eliminates the
oise in the shadow area, but the background has visible color
istortion (c2). This is because joint prediction can provide more
ontextual information for Adjust-Net. The injection of attention
nformation (with AG, w/o JP) solves the problem of background
olor distortion, but the noise in the shadow part still exists
d2). This is because attention information can distinguish areas
ith different exposures and successfully handle these areas.
he enhancement results of CA&R Net (ours) are considerable,
hich successfully solves the existing noise and color distortion
roblems (e2). For (a3), the enhanced result suffers from severe
rtifacts and degradation (b3). Even the injection of joint predic-
ion cannot deal with the problems of artifacts and degradation in
everely underexposed areas (c3). However, after the injection of
ttention information, these defects are eliminated (d3). It proves
nce again that the attention information can distinguish the
reas of different exposures, and pay more attention to these
reas during the enhancement process, to enhance results better.

. Conclusion

In this paper, we designed a CA&R Net to solve the problem of
ow-light image enhancement. We have observed more noise in
he underexposed areas of images than in the normally exposed
reas. Attention mechanism can be used to emphasize the vital
nformation of the processed object and suppress some irrelevant
nformation. Based on these observations, we propose the CA&R
et that combines attention mechanism and Retinex model to
nhance low-light images. The CA&R Net includes three stages of
nformation extraction (including attention network and image
ecomposition network), reflectance recovery, and illumination
djustment. Firstly, we use Attention-Net to obtain the attention
ap of the image and then decouple the original space into two
maller subspaces through the Decomposition-Net. Secondly, the
ttention map is adopted to guide the reflectance recovery in a
egion-adaptive manner. Finally, the recovered reflectance and
ow illumination are used to predict the illumination layer of
he image jointly. Extensive experiments show that our CA&R
et is superior to other advanced methods in low-light image
nhancement. It can successfully handle noise, color distortion,
nd multiple types of degradations.
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