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The decision tree algorithm has been widely used in data mining and machine learning due
to its high accuracy, low computational cost and high interpretability. However, when
dealing with the continuous data, the classical decision tree algorithm needs to replace
continuous attributes with discretized attributes by the strategy of discretization.
Discretization may cause a loss of information structure, which will affect the performance
of classification. To tackle this problem, many researchers have proposed different decision
tree methods based on variable precision neighborhood rough sets. However, these meth-
ods do not consider the geometric structure of neighborhood systems, which may lead to a
contradiction in the transitivity of the equivalence relation. In this paper, we first define a
novel neighborhood geometric similarity in a neighborhood system from the perspective of
geometry. Second, by combining the neighborhood geometric similarity and the neighbor-
hood algebraic similarity, we propose four new kinds of neighborhood similarities, which
can solve the contradictory transitivity of the equivalence relation. Third, a variable preci-
sion neighborhood rough set model is constructed using the new similarities, and a novel
decision tree algorithm is proposed based on this model, where the degree of attribute
dependence is used as the partition measure. Experimental results on 14 selected datasets
from the UCI Machine Learning Repository show that our algorithm is effective. The aver-
age accuracy of our algorithm is over 90%, which is 10% higher than the classical decision
tree algorithms, and the number of leaf nodes increases slightly.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Classification has always been a popular field of study in data mining and machine learning. In classification algorithms,
the decision tree algorithm is extensively applied to many areas for its high accuracy, low computational cost and high inter-
pretability. The process of building a decision tree can be summarised as the following three steps: (1) select the best attri-
bute (called ‘splitting attribute’) according to a certain partition measure; (2) divide the training set with the selected
splitting attribute; (3) produce a branch corresponding to each classification of the splitting attribute. The algorithm is recur-
sively applied to each classification derived from the splitting attribute. If all samples in a certain classification come from
the same category, then a leaf node with the name of the category is generated [1]. From the construction of the decision tree
algorithm, it is clearly that each step of the decision tree algorithm depends on the partition measure. Therefore, for the deci-
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sion tree algorithm, the choose of the partition measure directly determines its the effect. The representative decision tree
algorithms include: the CART algorithm [2] on the basis of the Gini index, the ID3 algorithm [3] on the basis of information
gain, and the C4.5 algorithm [4] on the basis of information gain ratio, where C4.5 is an improvement of ID3. Although the
decision tree algorithms have achieved great success, they are unable to handle the continuous data directly, which dramat-
ically limits the field of practical applications. When regarding the continuous data, these algorithms usually use the strategy
of discretization [5]. However, discretization may result in a loss of information structure. Since the discretization of contin-
uous attribute does not consider the membership degree between continuous values and discrete values, the discretization
results may lose at least two types of structures: structure of neighborhood and ordered structure in reality space [6]. For
instance, if we are aware of the distance among two samples, then we can obtain the degree of closeness of samples in real
space. However, this type of information will disappear after the discretization. Hence, the data discretization may affect the
performance of a decision tree algorithm.

Rough set theory introduced by Pawlak [7] is a method extensively used in attribute reduction [8–11] and classification
[12,13]. In rough set theory, the set of research targets is denoted as an universe. An universe is divided into several exclusive
equivalent classes through an equivalence relation [5]. These equivalent classes can be used to describe any concept in the
universe. But the standard definition of the set inclusion relation in Pawlak rough set model is too rigorous to contain some
degree of error classification. The Pawlak rough set model is an excellent model for dealing with the discrete data, but when
it deals with the continuous data, a discretization process should be employed. In [14,15], Hu et al. proposed neighbourhood
rough sets by the introduction of neighbourhood system. This model can directly deal with the continuous data without the
process of discretization, which can effectively solve the problem of Pawlak rough set model for dealing with the continuous
data.

With the deepening of the progress of research on the rough sets [16–18], there is a growing body of experts and scholars
that recognises the consistence of the rough set theory and the decision tree model. They combined rough set theory with
decision tree algorithms and obtained good results for different application problems. For instance, Jiang et al. [19] presented
an incremental decision tree algorithm on the basis of rough set theory. Moshkov [20] investigated decision trees on the
basis of the results of test theory and rough set theory.

The degree of attribute dependency in rough set theory is a description of the dependency of one attribute on another
attribute, which is the same idea as the classical decision tree algorithm for selecting the splitting attributes. Therefore, many
scholars have applied the degree of attribute dependency and various improved measures of it as the partition measures in
decision tree algorithms and obtained good results. For example, Wang et al. [21] proposed a decision tree algorithm on the
basis of attribute importance and variable precision rough sets [22]. Ye [23] proposed a new knowledge-dependent decision
tree algorithm by improving attribute dependency. However, all of the above improvements on the basis of the Pawlak rough
set model can only handle the discrete data. An efficient approach to handle continuous data with the Pawlak rough set
model is to discretize the data, but this approach may result in a loss of information structure. To avoid the loss of informa-
tion structure, many researchers have used the neighborhood rough set model, which can directly handle continuous data
without discretization. Once the Pawlak rough set model is replaced by the neighbourhood rough set model that can directly
handle continuous data, the definition of equivalence relation is a hurdle that cannot be bypassed if we use the attribute
dependence as the partition measure. Although the definitions of neighborhood rough set were proposed for more than a
decade, the definitions of equivalence relations for neighborhood rough set model have not received much attention [15].
Xie and Zhang [24] pointed out that the neighborhood similarity between two neighborhood granules can be defined by
introducing the Jaccard similarity into the neighborhood system. Based on this observation, they defined the variable preci-
sion neighborhood equivalence classes by the neighborhood similarity and the variable precision threshold b. Furthermore,
they replaced the attribute classes in the CART algorithm by the variable precision neighborhood equivalence classes of each
attribute to calculate the gini index, which can improve the accuracy of the algorithm greatly. However, the neighborhood
similarity proposed in [24] only focuses on the algebraic structure of the neighborhood system, that is, the magnitude rela-
tionship of the similarity values between two neighborhood granules. In fact, in a neighborhood system the neighborhood
granules not only have algebraic structure but also geometric structure. We found that if the definition of the neighborhood
similarity between two neighborhood granules does not take account into the geometric structure, the transitivity of the
variable precision equivalence relation would be contradictory.

In order to solve the problems above, we firstly define a neighborhood geometric similarity among two neighborhood
granules and use the neighborhood geometric similarity to constrain the neighborhood algebraic similarity [25], then
proposing a new neighborhood similarity and extending three new similarity measures by introducing the pessimistic, opti-
mistic and average ideas [26–28] in the Jaccard similarity. Second, the variable precision neighborhood equivalence relations
are defined based on the neighborhood similarity by introducing variable precision thresholds [5,29–31]. According to the
above work, the contradictory transitivity of the equivalence relation can be solved. Third, the variable precision neighbor-
hood rough set model is constructed and a novel decision tree algorithm is proposed based on this model, where the attri-
bute dependency is used as the partition measure. The experimental performance show that the average improvement of the
accuracy of the algorithm in this paper is greater than 10% and the number of leaf nodes increases slightly.

The main contributions of this paper are given as follows. (1) We define the neighborhood geometric similarity by con-
sidering the geometric structure relationship between two neighborhood granules and combine it with the other four neigh-
borhood algebraic similarities to construct the neighborhood similarity. (2) We define a new variable precision
neighborhood rough set model by means of the new neighborhood similarity and variable precision threshold. (3) By using
153



C. Liu, B. Lin, J. Lai et al. Information Sciences 615 (2022) 152–166
the attribute dependence in the variable precision rough set model as the partition measure, we construct a decision tree
algorithm, which provides an effective strategy to handle continuous data.

The organization of the remaining part of this paper is as follows. Section 2 mainly reviews the basic knowledge of vari-
able precision rough set model, neighborhood rough sets model, similarity measure and decision tree algorithm. Section 3
introduces how to combine similarity measure with neighborhood rough sets, and the philosophy of variable precision is
introduced to improve the decision tree algorithm. Section 4 proves the feasibility of the proposed algorithm by simulation
analysis. Finally, we conclude our work.

2. Preliminaries

2.1. Neighborhood rough set model

Neighborhood rough set model is introduced by Hu et al. [15], which is dedicated to tackle the problem of data loss
caused by data discretization when processing continuous data using Pawlak rough set model.

For any two samples xi ¼ xi1; x
i
2; . . . ; x

i
H

� � 2 U; xj ¼ xj1; x
j
2; . . . ; x

j
H

� �
2 U;Bis a feature space and B#C, the Minkowsky dis-

tance between xi and xj under B is defined as follows.
DFB xi; xj
� � ¼ XH

h¼1

xih � xjh
��� ���p

 !1
p

ð1Þ
where DF is a distance measure. For 8x; y; z 2 U;DF usually satisfies the following conditions [15]:

(1) DF x; yð Þ ¼ 0 iff x ¼ y;
(2) DF x; yð Þ ¼ DF y; xð Þ;
(3) DF x; zð Þ 6 DF x; yð Þ þ DF y; zð Þ. Convenient for calculation, in this paper we keep p ¼ 1 (also called the Manhattan
distance).

Let 8 xi 2 U;B#C, thus the neighborhood of xi in the attribute set B can be defined as follows [15].
dB xi
� � ¼ xjjDFB xi; xj

� �
6 d;

n o
: ð2Þ
Let U;N be a neighborhood approximation space, where U is the universe and N is the neighborhood relation.

1. For X#U, the lower approximation and the upper approximation of the set X can be defined as follows [15].
NX ¼ xi 2 Ujd xi
� �

#X
� �

: ð3Þ

NX ¼ xi 2 Ujd xi
� � \ X – ø

� �
: ð4Þ

2. For X#U, the boundary region of the set X is given as follows [15].
BNR Xð Þ ¼ NX � NX: ð5Þ

2.2. Similarity

The similarity measure is considered as one of the popular tools to describe the degree of similarity among two objects. By
comparing the similarity among objects, we can get the classification results of objects or reveal the hidden information of
objects [26]. Among the various similarity measures, Jaccard similarity is extensively used to assess the similarity between
two given sets [27]. In this paper, we concentrate on Jaccard similarity and its variants.

1. The Jaccard similarity between set X1 and set X2 is defined as follows [26].
J X1 ;X2ð Þ ¼
card X1 \ X2ð Þ
card X1 [ X2ð Þ : ð6Þ

2. When we bring the optimistic influence into the Jaccard similarity, the Optimistic similarity between set X1 and set X2 can
be defined as follows [25].
O X1 ;X2ð Þ ¼ card X1 \ X2ð Þ
min card X1ð Þ; card X2ð Þð Þ : ð7Þ
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3. When we bring the pessimistic influence into the Jaccard similarity, the Pessimistic similarity between set X1 and set X2

can be defined as follows [25].
P X1 ;X2ð Þ ¼ card X1 \ X2ð Þ
max card X1ð Þ; card X2ð Þð Þ : ð8Þ

4. When we bring the average thought into the Jaccard similarity, the Average similarity between set X1 and set X2 can be
defined as follows.
A X1 ;X2ð Þ ¼ card X1 \ X2ð Þ
average card X1ð Þ; card X2ð Þð Þ : ð9Þ

3. An improved decision tree algorithm based on variable precision neighborhood similarity

In order to solve the problem that the decision tree algorithm needs to discretize data when dealing with continuous data,
we use the variable precision neighborhood rough set model to construct a decision tree algorithm, which can deal with con-
tinuous data without discretization. In this section, we define the neighborhood geometric similarity and four kinds of neigh-
borhood algebraic similarities, and combine them to form four new kinds of neighborhood similarities. The new
neighborhood similarities can not only measure the similarity between two neighborhood granulations, but also avoid
the transitivity contradiction of the equivalence relation defined later. The variable precision neighborhood equivalence rela-
tion is jointly defined by neighborhood similarity and variable-precision threshold. From this, a variable precision neighbor-
hood rough set model is constructed. Finally, the decision tree algorithm is constructed by using the degree of attribute
dependency in the variable precision neighborhood rough set model as the partition measure.

3.1. Neighborhood similarity

The partition of continuous attributes by using rigorous equivalence relation would lead to problems such as too many
equivalence classes and poor partition effect. In this subsection we first introduce four similarity measures into the neigh-
borhood rough set model to define neighborhood algebraic similarities. Then we use neighborhood algebraic similarity and
neighborhood geometric similarity to define new neighborhood similarities.

Definition 1. Let NDS ¼ U;C [ Dh i be a neighborhood decision system, B is a attribute set, B#C and x1; x2 2 U. Four
neighborhood algebraic similarities between neighborhood granule dB xð Þ and neighborhood granule dB yð Þ can be defined as
follows.

1. The neighborhood Jaccard similarity is defined as follows [24].
J dB x1ð Þ;dB x2ð Þð Þ ¼
dB x1
� � \ dB x2

� ��� ��
dB x1ð Þ [ dB x2ð Þ�� �� : ð10Þ
2. The neighborhood Optimistic similarity is defined as follows.
O dB x1ð Þ;dB x2ð Þð Þ ¼
dB x1
� � \ dB x2

� ��� ��
min dB x1ð Þ�� ��; dB x2ð Þ�� ��� � : ð11Þ
3. The neighborhood Pessimistic similarity is defined as follows.
P dB x1ð Þ;dB x2ð Þð Þ ¼
dB x1
� � \ dB x2

� ��� ��
max dB x1ð Þ�� ��; dB x2ð Þ�� ��� � : ð12Þ
4. The neighborhood Average similarity is defined as follows.
A dB x1ð Þ;dB x2ð Þð Þ ¼
dB x1
� � \ dB x2

� ��� ��
average dB x1ð Þ�� ��; dB x2ð Þ�� ��� � : ð13Þ
Property 1. Let NDS ¼ U;C [ Dh i be a neighborhood decision system, Bis an attribute set, B#Cand x1; x2 2 U, we have

(1) J dB x1ð Þ;dB x2ð Þð Þ 2 0;1½ �;O dB x1ð Þ;dB x2ð Þð Þ 2 0;1½ �; P dB x1ð Þ;dB x2ð Þð Þ 2 0;1½ �;A dB x1ð Þ;dB x2ð Þð Þ 2 0;1½ �;
(2) J dB x1ð Þ;dB x2ð Þð Þ 6 P dB x1ð Þ;dB x2ð Þð Þ 6 A dB x1ð Þ;dB x2ð Þð Þ 6 O dB x1ð Þ;dB x2ð Þð Þ;
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(3) dB x1
� � ¼ dB x2

� �() J dB x1ð Þ;dB x2ð Þð Þ ¼ P dB x1ð Þ;dB x2ð Þð Þ ¼ A dB x1ð Þ;dB x2ð Þð Þ ¼ O dB x1ð Þ;dB x2ð Þð Þ ¼ 1.
Proof.

(1) Obviously, for these four formulas, when two neighboring particles do not intersect, the similarity value is 0; when
two neighboring particles intersect, the similarity value is greater than 0. At this time, the numerator takes the number
of elements of the small neighboring particles as the maximum value, and the denominator takes the number of elements
of the small neighboring particles as the minimum value, at this time, the numerator and denominator are equal, so the
maximum value of similarity is 1.
(2) For these four formulas, the numerators are the same and the denominators are arranged in size as
min dB x1

� �
; dB x2
� �� �

< average dB x1
� �

; dB x2
� �� �

< max dB x1
� �

; dB x2
� �� �

< dB x1
� � [ dB x2

� �
.

(3) When dB x1
� � ¼ dB x2

� �
, obviously, for all four formulas, the numerator and denominator are the same, so the four for-

mulas take equal values.

Property 1 mainly reflects whether the four similarity measures conform to the basic properties of similarity measures
and the relationship between them. From Property 1, we can know that the four similarity measures take values in the range
of [0,1], and their similarity is 1 when the two neighborhood granules are equal, so they meet the definition of similarity. And
these four similarity measures have a size relationship, so that it is also convenient to observe the impact of different sizes of
similarity measures on the accuracy rate when comparing the accuracy rate. h
Example 1. A dataset is given as Table 1, where U is the sample set, and c1 is a continuous attribute. Suppose that d ¼ 0:5 and
b ¼ 0:8, then the neighborhood granules induced by c1 are shown as Table 2. According to the neighborhood Jaccard simi-
larity, the similarities between different neighborhood granules are shown as Table 3.

In order to relax the rigorous equivalence relation, if the neighborhood Jaccard similarity between two neighborhood
granules is greater than the given precision threshold b ¼ 0:8, then we think they are equivalent. From Table 3, we can

see that the neighborhood Jaccard similarity between dc
1
ax1
� �

and dc
1
ax4
� �

is 0.8571, which is greater than 0.8, hence they

are equivalent. Similarly, dc
1
ax1
� �

and dc
1
ax6
� �Þ are equivalent. According to the transitivity of equivalence relations, we

know that dc
1
ax4
� �

and dc
1
ax6
� �

should also be equivalent. However, the neighborhood Jaccard similarity between dc
1
ax4
� �

and dc
1
ax6
� �

is only 0.7142, which is lower than 0.8. This is contradictory. From Table 4, we know that sample ax5 is equiv-
alent to sample ax6 and sample ax4 is equivalent to sample ax7. The two classes of equivalence are not equivalent. But in the
classes of equivalence of sample ax1, they are equivalent. Hence the definition of the variable precision neighborhood equiv-
alence by the neighborhood algebraic similarity is problematic.

Example 1 shows that if we only introduce the neighborhood algebraic similarity into the definition of neighborhood
equivalence, sometimes this introduction has problems. Specifically, the definition does not take into account the geometric
structure, that is, the distance between two samples.

Let us use four figures in Example 2 to illustrate this problem specifically.

Example 2. Suppose that d ¼ 5:5 and the variable precision threshold b ¼ 0:8. The 11 samples A;B;C;D; E; F;G;H; I; J;K are
evenly distributed on the line LM as shown in Figure a. The neighborhood granulation results of samples F;G and H are
shown in Figure b. In this case, d Fð Þ ¼ A;B;C;D; E; F;G;H; I; J;Kf g; d Gð Þ ¼ B;C;D; E; F;G;H; I; J;Kf g; d Hð Þ ¼ C;D; E; F;G;H; I; J;Kf g.
Then let us compute the neighborhood Jaccard similarity between them. J d Fð Þ;d Gð Þð Þ ¼ 0:9090; J d Gð Þ;d Hð Þð Þ ¼ 0:9. According to the
transitivity of the equivalence relation, d Fð Þ and d Hð Þ should be equivalent, too. In fact, they are equivalent since
J d Fð Þ;d Hð Þð Þ ¼ 0:8181. In this case, there is no problem in the transitivity of the equivalence relation. Because the distance
between samples F and H is not large enough to cause influence.
Table 1
A given dataset.

U c1

ax1 0.4

ax2 0.9

ax3 1

ax4 0.5

ax5 0.4

ax6 0.3

ax7 0.6
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Table 2
The results of neighborhood granulation.

U dc
1
xð Þ

ax1 ax1; ax2; ax4; ax5; ax6; ax7
� �

ax2 ax1; ax2; ax3; ax4; ax5; ax7
� �

ax3 ax2; ax3; ax4; ax7
� �

ax4 ax1; ax2; ax3; ax4; ax5; ax6; ax7
� �

ax5 ax1; ax2; ax4; ax5; ax6; ax7
� �

ax6 ax1; ax4; ax5; ax6; ax7
� �

ax7 ax1; ax2; ax3; ax4; ax5; ax6; ax7
� �

Table 3
The calculation results of neighborhood Jaccard similarities.

Element Neighborhood Jaccard similarity Element Neighborhood Jaccard similarity

1;1ð Þ 1 2;7ð Þ 0:8571
1;2ð Þ 0:7142 3;4ð Þ 0:5714
1;3ð Þ 0:4285 3;5ð Þ 0:4285
1;4ð Þ 0:8571 3;6ð Þ 0:2857
1;5ð Þ 1 3;7ð Þ 0:5714
1;6ð Þ 0:8333 4;5ð Þ 0:8571
1;7ð Þ 0:8571 4;6ð Þ 0:7142
2;3ð Þ 0:6666 4;7ð Þ 1
2;4ð Þ 0:8571 5;6ð Þ 0:8333
2;5ð Þ 0:7142 5;7ð Þ 0:8571
2;6ð Þ 0:5714 6;7ð Þ 0:7142

Table 4
The calculation results of equivalence classes.

Samples Equivalence classes

ax1 ax4; ax5; ax6; ax7

ax2 ax4; ax7

ax3 £

ax4 ax1; ax2; ax5; ax7

ax5 ax1; ax4; ax6; ax7

ax6 ax1; ax4; ax5; ax7

ax7 ax1; ax2; ax4; ax5
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Let us turn to Figure c. Similarly, we can get that J d Fð Þ;d Gð Þð Þ ¼ 0:9090; J d Gð Þ;d Ið Þð Þ ¼ 0:8. According to the transitivity of the
equivalence relation, d Fð Þand d Ið Þshould be equivalent, too. However, J d Fð Þ;d Ið Þð Þ ¼ 0:7272. Hence, this is contradictory. By con-
trasting Figure b and Figure c, we can clearly notice that the distance between sample F and sample I is larger than the dis-
tance between sample F and sample H. The distance beyond caused that d Fð Þand d Ið Þare not equivalent. But the equivalence
between d Gð Þand d Ið Þis not been influent. Hence there is a contradiction in the transitivity of the equivalence relation. If this
situation is shown in a concrete form, as shown in Figure d. From Figure d, all the samples in the interval D; E½ Þ and interval
H; Ið � would have problems in transitivity of equivalence relations.

On the one hand, the above problems can be attributed to the fact that the neighborhood similarity defined by the neigh-
borhood algebraic similarity does not take into account the change of distance between samples, that is, the change of geo-
metric structure. On the other hand, the variable precision neighborhood equivalence relation defined above puts the
equivalence relation too relaxed and requires to be constrained.

Definition 2. For any x1; x2 2 U; B#C, let DFB x1; x2
� �

be the Minkowsky distance of sample x1 and sample x2 in feature space
B and dbe the neighborhood radius. The neighborhood geometric similarity between sample x1 and sample x2 can be defined
as follows.
NGS x1; x2
� � ¼ 1� DFB x1; x2

� �
2d

: ð14Þ
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Property 2. For any x1; x2 2 U;B#C, let DFB x1; x2
� �

be the Minkowsky distance of sample x1 and sample x2 in feature space B and
dbe the neighborhood radius.

(1) If dB x1
� � \ dB x2

� � ¼ ø, namely DFB x1; x2
� �

P 2d;NGS x1; x2
� � ¼ 0;

(2) If dB x1
� � \ dB x2

� �
– ø, namely DFB x1; x2

� �
< 2d;NGS x1; x2

� �
> 0, and the larger DFB x1; x2

� �
is, the fewer NGS x1; x2

� �
is;

(3) If x1 ¼ x2, namely DFB x1; x2
� � ¼ 0;NGS x1; x2

� � ¼ 1;
Proof.

(1) While dB x1
� � \ dB x2

� � ¼ ømeans that the two neighboring granules have no intersection and the distance between the
two elements is larger than 2d, at which point the geometric similarity is 0.
(2) While dB x1

� � \ dB x2
� �

– ømeans that the two neighboring granules have intersection and the distance between the

two elements is fewer than 2d, at which point the geometric similarity is larger than 0.The larger DFB x1; x2
� �

is, the fewer
NGS x1; x2

� �
is.

(3) While x1 ¼ x2 , according to the formula (1), we have DFB x1; x2
� � ¼ 0, so NGS x1; x2

� � ¼ 1

h

Property 2 represents the relationship between the values of the geometric similarity of the neighborhood we defined in
three different cases. (1) When there is no intersection of two neighboring grains, the geometric similarity of the neighbor-
hood is 0 at this time. (2) When two neighboring granules have intersection, the geometric similarity of these two neighbor-
ing granules is inversely proportional to the distance between them, the closer the distance the greater the similarity. (3)
When the two neighbourhood granules are equal is also the time when the similarity is maximum, then the similarity is 1.

Property 2 mainly reflects the values of the neighborhood geometric similarity we defined in three different cases, which
is helpful for us to judge whether the geometric similarity meets the definition of similarity. According to Property 2, we can
know that the geometric similarity of the neighborhood has a value range of [0,1], and the maximum value is 1 in the case of
overlapping two neighborhood granules. The magnitude of the geometric similarity of the neighborhood decreases as the
distance between the two neighborhood granules increases, which is in line with our design expectation.

Neighborhood geometric similarity is mainly calculated by the distance between two samples, and the distance is then
normalized by using 2d. Because if two neighborhoods in geometric space have an intersecting area, the distance between
their neighborhood centers must be fewer than 2d. When there is no intersecting area, the distance between their neighbor-
hood centers must be larger than 2d. So 2d is a good measure of whether two neighborhoods have an area of intersection.
Therefore, we use 2d to normalize the distance between two neighborhoods. Since the intersecting area of two neighbor-
hoods is inversely proportional to the sample distance, we use 1 minus the normalized sample distance to represent the
neighborhood geometric similarity of two samples.

As mentioned before, the neighborhood similarity defined by the neighborhood algebraic similarity does not take into
account the change of geometric structure. To tackle this problem, we combine the neighborhood geometric similarity
and the neighborhood algebraic similarity, the two similarities are multiplied and the result is considered as the new neigh-
borhood similarity.

Definition 3. For any x1; x2 2 U; B#C, let DFB x1; x2
� �

be the Minkowsky distance of sample x1 and sample x2 in feature space
B and dbe the neighborhood radius. Four new neighborhood similarities can be defined as follows.

1. By multiplying the Jaccard similarity and NGS(NGS*Jaccard), a new neighborhood similarity can be defined as follows.
NGJSB x1; x2
� � ¼ 1� DFB x1; x2

� �
2d

 !
� dB x1

� � \ dB x2
� ��� ��

dB x1ð Þ [ dB x2ð Þ�� �� : ð15Þ
2. By multiplying the Optimistic similarity and NGS(NGS*Optimistic), a new neighborhood similarity can be defined as
follows.
NGOSB x1; x2
� � ¼ 1� DFB x1; x2

� �
2d

 !
� dB x1

� � \ dB x2
� ��� ��

min dB x1ð Þ�� ��; dB x2ð Þ�� ��� � : ð16Þ
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3. By multiplying the Pessimistic similarity and NGS(NGS*Pessimistic), a new neighborhood similarity can be defined as
follows.
NGPSB x1; x2
� � ¼ 1� DFB x1; x2

� �
2d

 !
� dB x1

� � \ dB x2
� ��� ��

max dB x1ð Þ�� ��; dB x2ð Þ�� ��� � : ð17Þ
4. By multiplying the Average similarity and NGS(NGS*Average), a new neighborhood similarity can be defined as follows.
NGASB x1; x2
� � ¼ 1� DFB x1; x2

� �
2d

 !
� dB x1

� � \ dB x2
� ��� ��

average dB x1ð Þ�� ��; dB x2ð Þ�� ��� � : ð18Þ
In this paper, we use NSB x1; x2
� �

to on behalf of the four neighborhood similarities.

Property 3. For any x1; x2 2 U;B#C, let DFB x1; x2
� �

be the Minkowsky distance of sample x1 and sample x2 in feature space B and
dbe the neighborhood radius.

(1) NGJSB x1; x2
� � 2 0;1½ �;NGOSB x1; x2

� � 2 0;1½ �;NGPSB x1; x2
� � 2 0;1½ �;NGASB x1; x2

� � 2 0;1½ �;
(2) NGJSB x1; x2

� �
6 NGPSB x1; x2

� �
6 NGASB x1; x2

� �
6 NGOSB x1; x2

� �
;

(3) x1 ¼ x2 () DFB x1; x2
� � ¼ 0 () NGJSB x1; x2

� � ¼ NGOSB x1; x2
� � ¼ NGPSB x1; x2

� � ¼ NGASB x1; x2
� � ¼ 1.
Proof. It can be proved in a similar way as Property 1.
Property 3 mainly reflects whether the four novel neighborhood similarity measures conform to the basic properties of

similarity measures and the relationship between them. From Property 3, we can know that the four novel similarity
measures take values in the range of [0,1], and their similarity is 1 when the two samples are equal, so they meet the
definition of similarity. And these four similarity measures have a size relationship, so that it is also convenient to observe
the impact of different sizes of similarity measures on the accuracy rate when comparing the accuracy rate. h

3.2. Variable precision neighborhood rough set model induced by neighborhood similarity

In this subsection, we propose a novel variable precision neighborhood rough set model induced by neighborhood sim-
ilarity and construct the decision tree algorithm by the degree of attribute dependence.

Definition 4. Let NDS ¼ U;C [ D; dh i be a neighborhood decision system, where d represents the neighborhood radius and b

represents the variable precision threshold. For any B#C and any tuple x1; x2
� � 2 U � U, if the following equation is satisfied
VNERB
d;bð Þ ¼ x1; x2

� � 2 U � U NSB x1; x2
� �

P b
���n o

; ð19Þ
we say the tuple x; yð Þ satisfies the variable precision neighborhood equivalence relationVNERB
d;bð Þ.

Specially, when d ¼ 0, the neighborhood granule degenerate into the classical granule, and when b ¼ 0, the neighborhood
equivalence relation degenerates into the classical equivalence relation.

Definition 5. Let d be the neighborhood radius, b be the precision threshold, for any B#C, the variable precision
neighborhood equivalence class derived from variable precision neighborhood equivalence relation can be defined as
follows.
U=VNERB
d;bð Þ ¼ x½ �VNERBd;bð Þ

x 2 Uj
n o

¼ X1
d;bð Þ; . . . ;X

i
d;bð Þ

n o
; ð20Þ
where X1
d;bð Þ; . . . ;X

i
d;bð Þ #U.

Theorem 1. Given a decision table U;Ah i, where d is the neighborhood radius, and b is the variable precision threshold,

(1) For any xi 2 U, if d1 6 d2, then we have d1 x1
� �

6 d2 x1
� �

;

(2) If b1 6 b2, then we have U=VNERB
d;b2ð Þ#U=VNERB

d;b1ð Þ;
(3) If B1 #B2 #C, then we have x½ �

VNERB
1
d;bð Þ

# x½ �
VNERB

2
d;bð Þ
.
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Proof. (1) and (2) are obviously according to Definition. (3) Since B1 #B2, it means that B2is rougher classified than B1. Hence
x½ �

VNERB
1
d;bð Þ

# x½ �
VNERB

2
d;bð Þ
. h

Theorem 1 focuses on some basic theories of equivalence granule structure. According to Theorem 1 we can know that the
same sample may also contain more elements in the case of larger neighborhood radius. In the situation where the threshold
of variable precision is larger, the equivalence relation becomes more relaxed, which leads to the equivalence granule con-
taining more elements. In the case of rougher division, the equivalence granules will also be rougher, resulting in the equiv-
alence granules containing more elements.

Definition 6. Let d be the neighborhood radius, and b be the variable precision threshold. Let Y1;Y2; . . . ;YN
n o

be the

Equivalent division induced by U=D, for any B#C, the lower approximation of D can be defined as follows.
VNERB
d;bð ÞD ¼

[N
j¼1

VNERB
d;bð ÞY

j; ð21Þ
where
VNERB
d;bð ÞY

j ¼
[

Xi
d;bð Þ X

i
d;bð Þ #Yj;

��� Xi
d;bð Þ 2 U=VNERB

d;bð Þ
n o

; i ¼ 1;2; . . . ;M; j ¼ 1;2; . . . ;N
In the formula, VNERB
d;bð ÞD is called the positive region of decision D, denoted as POSBd;bð ÞD.

Theorem 2. Let NDS ¼ U;C [ D; dh i be a neighborhood decision system, if B1 #B2 #C, then we have POSB
1

d;bð ÞX# POSB
2

d;bð ÞX.
Proof. Since B1 #B2, it means that x½ �
VNERB

1
d;bð Þ

# x½ �
VNERB

2
d;bð Þ
. Hence we have POSB

1

d;bð ÞX# POSB
2

d;bð ÞX. h
Definition 7. Let d be the neighborhood radius, and b be the variable precision threshold. Let Y1;Y2; . . . ;YN
n o

be the Equiv-

alent division induced by U=D, for any B#C, the upper approximation of D can be defined as follows.
VNERB
d;bð ÞD ¼

[N
j¼1

VNERB
d;bð ÞY

j; ð22Þ
where
VNERB
d;bð ÞY

j ¼
[

Xi
d;bð Þ X

i
d;bð Þ 2 U=VNERB

d;bð Þ : X
i
d;bð Þ \ Yj – ø

���n o
; i ¼ 1;2; . . . ;M; j ¼ 1;2; . . . ;N
Definition 8. Let d be the neighborhood radius, and b be the variable precision threshold. For any B#C, the degree of
attribute dependence of decision attribute set D upon B can be defined as follows.
r d;bð Þ D;Bð Þ ¼
VNERB

d;bð ÞD
��� ���

Uj j : ð23Þ
Proposition 1. Let d be the neighborhood radius, and b be the variable precision threshold. For any B#C, let U=VNERB
d;bð Þ be the

variable precision neighborhood granule, we have
(1) When b ¼ 1; r d;bð Þ D;U=VNERB
d;bð Þ

� �
¼ r d;bð Þ D;U=NERB

dð Þ
� �

;

(2) When d ¼ 0 and b ¼ 1, we have r d;bð Þ D;U=VNERB
d;bð Þ

� �
¼ r D;U=RB
� �

.

Proof. When b ¼ 1, the variable precision neighborhood granule degenerates into the rigorous equivalent neighborhood
granule. So the variable precision neighborhood attribute dependence degenerates into the neighborhood attribute depen-
dence. When d ¼ 0 and b ¼ 1, the variable precision neighborhood granule degenerates into the Pawlak equivalent granule.
So the variable precision neighborhood attribute dependence degenerates into the Pawlak attribute dependence. h
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Table 5
The details of datasets.

Dataset Sample Condition attribute Decision attribute

1 Crayo 90 6 2
2 Iris 150 4 3
3 wine 178 13 3
4 plrx 182 18 2
5 wpbc 194 33 2
6 Sheesegmentation 210 19 7
7 seeds 210 7 3
8 glass 214 10 6
9 heart 270 13 2
10 ecoli 336 7 7
11 ILPD 583 10 2
12 ENB2012 768 9 6
13 magic 2501 10 2
14 winequality 4899 11 7

Table 6
The accuracy(%).

Dataset ID3 CART C4.5 NGS�Jaccard NGS�Aver NGS�Opti NGS�Pessi
1 Crayo 0:8556 0:8445 0:8 1 1 1 0:9778
2 Iris 0:95 0:9333 0:9833 0:9533 0:9567 0:9833 0:97
3 wine 0:9889 0:9556 0:9667 0:9222 0:9306 0:9444 0:9615
4 plrx 0:879 0:9 0:9 0:9221 0:9342 0:9342 0:9474
5 wpbc 0:9 0:925 0:935 0:9125 0:9 0:925 0:9
6 Sheesegmentation 0:8 0:8476 0:8333 0:881 0:9286 0:9524 0:9524
7 seeds 0:881 0:8571 0:881 0:9048 0:9167 0:9048 0:9405
8 glass 0:7159 0:6931 0:7841 0:9205 0:9205 0:9205 0:9318
9 heart 0:9148 0:9222 0:9407 0:9537 0:9537 0:9167 0:9537
10 ecoli 0:9191 0:9117 0:8897 0:9485 0:9485 0:9118 0:9412
11 ILPD 0:8093 0:7754 0:8305 0:9322 0:9322 0:911 0:9237
12 ENB2012 0:2039 0:2143 0:213 0:9188 0:9188 0:899 0:9058
13 magic 0:8801 0:873 0:8608 0:911 0:926 0:908 0:917
14 winequality 0:6638 0:6699 0:6699 0:9311 0:9484 0:9217 0:9355
15 Average 0:8115 0:8086 0:8206 0:9344 0:9357 0:9396 0:9421
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Theorem 3. Let d be the neighborhood radius, and b be the variable precision threshold, if B1 #B2 #C, then we have

r d;bð Þ D;U=VNERB1

d;bð Þ
� �

# r d;bð Þ D;U=VNERB2

d;bð Þ
� �

.

Proof. According to Theorem 2, we can obtain that POSB
1

d;bð ÞX# POSB
2

d;bð ÞX. Hence,

r d;bð Þ D;U=VNERB1

d;bð Þ
� �

6 r d;bð Þ D;U=VNERB2

d;bð Þ
� �

. h

3.3. Algorithm design

As mentioned before, many classical decision tree algorithms can only deal with the discrete data. The continuous data
should be preprocessed by data discretization. In order to avoid the loss of information structure due to data discretization,
we have to find new measure. The algorithm constructed in this paper uses the degree of attribute dependency from the
variable precision neighbourhood rough set model as a new measure and adaptively generates neighbourhood radius based
on the data itself, making the algorithm itself more robust.

When we do neighborhood granulation on the decision table, since different samples have different values under differ-
ent condition attributes. When the differences of values are very large, it is easy to lead to unreasonable neighborhood gran-
ulation if we use the same neighborhood radius to all condition attributes. Under such conditions, we need a neighborhood
radius that adaptively generates as the samples change in the range of values in the condition attributes. Because the stan-
dard deviation is one of the most frequently adopted quantitative forms to reflect the degree of the dispersion of a set of data,
it is suitable for the neighborhood radius. Moreover, to reduce the influence of noise, the size of the neighborhood radius can
be adjusted by the classification accuracy coefficient Lambda. The classification accuracy coefficient Lambda is generally set
to 2 to 4, and the neighborhood of the attribute is obtained together.
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dR1 ¼
sta R1
� �

Lambda
; ð24Þ
where sta R1
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
H

PH
i¼1 xi � xð Þ

q
is the standard deviation of the samples in attribute R1.

The time complexity of Algorithm 1 is mainly concentrated in Step 1. Neighborhood granulation requires a granulation

operation for each element to form a neighborhood and the time complexity is O Cj j � Uj j2
� �

. The next equivalent division is

the same as neighborhood granulation, which requires a division operation over all elements, and the time complexity is

O Cj j � Uj j2
� �

. Calculating the attribute dependency is simply a computation for each attribute, and the time complexity is

O Cj jð Þ. So the time complexity of Algorithm 1 is O Cj j � Uj j2
� �

.

Algorithm1: Decision Tree Algorithm Based on Variable Precision Neighborhood Similarity

Input: A decision table NDS ¼ U;C [ D; dh i
Output: A variable precision neighborhood decision tree
1. for each B#Cdo

Compute r d;bð Þ D;Bð Þ ¼
VNERB

d;bð ÞD

��� ���
Uj j ;

end for
2. Select the attribute set B0 2 Bwith the max value of attribute dependency B0 ¼ arg8B�C max r d;bð Þ D;Bð Þ, randomly select

an optimal attribute as a split node;

3. Equivalent granules U=VNERB
d;bð Þ ¼ X1

B;X
2
B; . . . ;X

n
B

n o
formed by variable precision neighborhood equivalence relations

divide the selected attributes into n decision subtables, each granule is a subtable and a branch;
For each decision subtable do
4. If the decision label of all samples are the same, use the decision label to create a leaf node;
5. If B0 ¼ ø, use the maximum number of the decision label to create a leaf node in parent node
6. If the value of the samples are different with the same decision label, go to step 1.
End For
7. Output a variable precision neighborhood decision tree.
Fig. 1. Example 1 and 2.
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Fig. 2. The accuracy comparison of three classical algorithms with new algorithms.

Fig. 3. The averagment of the accuracy and the comparison of four algorithm.

C. Liu, B. Lin, J. Lai et al. Information Sciences 615 (2022) 152–166
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Table 7
The number of leaves.

Dataset ID3 CART C45 NGS�Jaccard NGS�Aver NGS�Opti NGS�Pessi
1 Crayo 32 35 27 60 53 75 62
2 Iris 23 40 24 113 106 110 104
3 wine 69 128 59 176 168 171 158
4 plrx 178 216 178 159 159 159 159
5 wpbc 215 372 200 172 173 169 170
6 Sheesegmentation 184 108 169 188 197 190 195
7 seeds 61 89 59 186 179 184 178
8 glass 145 145 124 205 207 204 202
9 heart 178 255 182 247 233 253 251
10 ecoli 169 192 157 344 326 336 326
11 ILPD 405 234 285 519 520 517 537
12 ENB2012 1023 361 986 984 980 961 947
13 magic 963 764 758 2190 2126 2115 2213
14 winequality 3194 1973 2196 4076 4080 4079 4112
15 Average 488 350 385 686 679 679 686

Fig. 4. The number of leaves comparison of three classical algorithms with new algorithms.

C. Liu, B. Lin, J. Lai et al. Information Sciences 615 (2022) 152–166
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Fig. 5. The averagment of number of leaves and the number of leaves of four algorithm.
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4. Experimental analysis

In this section, we experimentally demonstrate the effectiveness of the improved decision tree algorithm. We selected 14
datasets from the UCI Machine Learning Repository, as shown in Table 5. For the comparison with the classical decision tree
algorithms, the dataset is discretized by equal distance partition in advance, and the specific partition interval is 5. To esti-
mate the effectiveness of the decision tree, we use the 10-fold cross-validation method to test and verify the accuracy and
the number of leaves. The classification accuracy coefficient Lambda is 2, and the precision threshold b ¼ 0:8. All of the algo-
rithms are run in MATLAB2021b and the hardware environment with Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz
and 16.0 GB RAM.

From Table 6, in terms of accuracy, the algorithm proposed in this paper increases by an average of more than 10 % com-
pared with the classical algorithms. The most obvious in the 14th dataset, the classical algorithms have only 20 % accuracy,
while the proposed algorithm is basically above 90% (Fig. 1).

Fig. 2 shows the specific comparison of the accuracy among the algorithm introduced in this paper and three classical
algorithms. From the figure, we can see that in most datasets, the algorithm proposed in this paper outperforms the clas-
sical algorithms. Fig. 3 shows the average accuracy of all algorithms and the comparison results of four separate
algorithms.

From Table 7, it is clearly that the number of leaves generated by the algorithm introduced in this paper is more than
that of the classical algorithms, indicating that the degree of fitting of our algorithm is higher than that of the classical
algorithms, but it does not reach the degree of over-fitting, and the number of leaves generated is also within the accept-
able range.

Fig. 4 shows the specific comparison of the number of leaves among the algorithm introduced in this paper and the three
classical algorithms. From the figures, it is clearly that in most datasets, the algorithm proposed in this paper are larger than
the classical algorithms. Fig. 5 shows the average number of the leaves of all algorithms and the comparison results of four
algorithms. The results demonstrate that the algorithm introduced in this paper is highly feasible in general.
5. Conclusion

In this paper, we first define the neighborhood geometric similarity by considering the geometric structure in the neigh-
borhood system and define a new neighborhood similarity by combining it with the neighborhood algebraic similarity. Sec-
ondly, we construct a novel variable precision neighborhood rough set model by using the new neighborhood similarity. The
novel model solves the problem of possible contradiction in the transferability of equivalence relations in the old model that
only considered the neighborhood algebraic similarity. Then, we construct a decision tree algorithm using the attribute
dependency in the new model as the partition measure. Finally, we present experimental comparisons showing the compu-
tational efficiency of the proposed methods and the experimental results show that the proposed methods are effective and
efficient.
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