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Hierarchical classification is an important research hotspot in machine learning due to the
widespread existence of data with hierarchical class structures. The existing sequential
three-way decision models mainly constructed the hierarchical condition information
granules via concept hierarchy tree to discuss the three probabilistic regions for flat clas-
sification. However, in real-world applications, one may face not only the tree-structured
data with hierarchical condition attributes but also more often the multi-level data with
hierarchical decision attribute (hierarchical class labels). How to obtain acceptable deci-
sions under different levels of granularity is the most important issue within the multi-
level and multi-view data. To this end, we construct a generalized hierarchical decision
table and propose a generalized hierarchical multigranulation sequential three-way deci-
sion model by combining multi-granularity and sequential three-way decisions.
Specifically, we first design a generalized hierarchical decision table using concept hierar-
chy trees of all conditional attributes and decision attribute, and explore some basic prop-
erties. Then we decompose and aggregate condition and decision granules under different
levels of granularity, propose the optimistic and pessimistic generalized hierarchical multi-
granulation three-way decision models to update the three probabilistic regions for flat
and hierarchical classification, and discuss the relationships between these two models.
Finally, the experimental results demonstrate that the proposed models are more suitable
for different applications. These models will provide a novel insight and enrich the devel-
opment of multigranulation three-way decisions from the perspective of multi-level and
multi-view.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Three-way decision (3WD) [1–4] is an effective tool in solving complex problem. The basic idea of the model is to divide
the objects of the universe into three pair-wise disjoint parts which are labelled as acceptance, rejection, and uncertainty,
and to act on the three regions of objects with different strategies. For a cost-sensitive decision-making problem under mul-
tiple levels of granularity, sequential three-way decisions (S3WD) [5] mainly transform delayed decisions into definite (ac-
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cept and reject) decisions by adding additional information. Nowadays, three-way decision model has been widely used in
many fields, including attribute reduction [7,8], face recognition [6], project investment [9,10], image processing [11], text
sentiment classification [12], three-way recommendation [13,14] and so on.

Granular computing (GrC) [15–19] is a paradigm of information processing, which simulates human thinking and solve
the granule-oriented complex problem under different levels of granularity [20,21]. It has become a hotspot in the fields of
artificial intelligence and knowledge discovery [22–26]. Many researchers mainly proposed multigranulation rough set
model, hierarchical rough set model and multi-scale rough set model through constructing the granules and granular struc-
tures from multi-view and multi-level [27] for complex problem solving. Qian et al. [28] proposed multigranulation rough
set to extend the classical single-granulation rough set by defining an approximation of the set using multiple equivalence
relations on the universe. Feng and Miao [29] presented a hierarchical rough set model to transform one-dimensional data
into multi-dimensional data by constructing a concept hierarchy tree from the ontology perspective of data. Further, Qian
et al. [30] combined the hierarchical rough set model and MapReduce to propose a hierarchical attribute reduction algo-
rithm. From the perspective of mathematics, Wu and Leung [31,32] proposed the multi-scale information tables using
multi-scale granular labelled partition to describe the information granules of the scale. Huang et al. [33] proposed the gen-
eralized multi-scale decision tables by introducing multi-scale to decision classes and defined the optimal scale in the gen-
eralized multi-scale decision table, but neglected to consider the problem from a multi-granularity perspective. Although
hierarchical rough set model and multi-scale rough set model have different starting points for hierarchical structured data,
they can have the same effect for mining generalized decision rules.

In recent years, a unified model of sequential three-way decision and granular computing [5] is introduced to deal with
the uncertainty and the cost of decision process and decision result. Hao et al. [34] introduced sequential three-way deci-
sions into the multi-scale decision tables to study the optimal scale selection problem of dynamic sequential update infor-
mation. Qian et al. [35] combined multi-granularity and three-way decision to implement five multigranulation sequential
three-way decisions models with typical aggregation strategies. Qian et al. [36] proposed a hierarchical sequential three-way
decision model by selecting sets of attributes with nested relationships and making sequential three-way decisions at mul-
tiple levels of granularity to obtain more refined rules from a single perspective. Up to until now, sequential three-way deci-
sions have usually assume that the class labels are flat. In many practical classification problems such as web categorization,
image recognition and gene classification, there are complex classification structures, where the class labels to be predicted
are hierarchically organized [37–40]. Indeed, the knowledge representation and data analysis methods for flat classification
are far from sufficient to meet the user needs of real-world applications for hierarchical classification. For example, given a
hierarchy containing a path Root ! Sciences ! Biology, an article discussing about Sciences in general should only be cate-
gorized as Root ! Sciences and not Biology. Another example is that in evaluating the appraisals of the company, the board
of directors simply know the overall performance, while the general manager must have deep insights into the detailed ones
of individual items. How to get a certain level of decision-making frommulti-level and multi-view data is an important topic.
It has been reported that hierarchical methods produce better performance than flat classification techniques on tree-
structured hierarchies. Fig. 1 illustrates the advantage of the generalized hierarchical three-way decisions through the con-
cept hierarchy tree for hierarchical structured data. One can generate four decision rules for flat classification in Fig. 1(a), and
Fig. 1. The advantage of the generalized hierarchical three-way decision models.
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more easily acquire two generalized decision rules for hierarchical classification in Fig. 1(b). Unfortunately, the existing
sequential three-way decision models have paid little attentions to the classification of data with hierarchical class labels
from the perspective of multi-level and multi-view. To this end, inspired by the ideas of multi-view, multi-level and sequen-
tial three-way decision, we design a novel generalized hierarchical multi-granulation sequential three-way decision model.
More specifically, we firstly construct information granules under different levels of granularity based on indiscernibility
relations. Secondly, we propose a generalized hierarchical decision tables via the construction of the concept hierarchy trees
for conditional and decision attributes. Finally, we design the optimistic and pessimistic multigranulation sequential three-
way decision models by combining multi-granularity and sequential three-way decisions to discuss the relationships and
properties of the three probabilistic regions.

The rest of the paper is organized as follows. Section 2 briefly reviews the Pawlak rough set model, hierarchical decision
table, multi-granulation rough set and sequential three-way decisions. In Section 3, we construct the generalized hierarchi-
cal decision tables. Sections 4 and 5 propose a generalized hierarchical multi-granulation sequential three-way decision
model by combining multi-granularity and sequential three-way decisions, strategies of condition granule level ascension
and decision granule level descension are designed, then designs the corresponding algorithms and explore some properties
of the proposed model. Section 6 gives the relevant experiments and conclusions. Finally, the paper ends with conclusions
and further work in Section 7.

2. Preliminaries

In this section, we will review some basic concepts of Pawlak rough set model, multi-granulation rough set model, hier-
archical decision table and sequential three-way decisions. For a detailed description, please refer to there classical papers
[28,29,41,42,5].

2.1. Pawlak rough set model

In general, we use a four-tuple S ¼ U;AT ¼ C [ D; Vaja 2 ATf g; f aja 2 ATf gð Þ to represent the information system, where
U ¼ x1; x2; � � � ; xnf g denotes a non-empty finite set; C ¼ a1; a2; � � � ; asf gdenotes a non-empty finite attribute set, and
D ¼ df gis a decision attribute; V ¼ [a2AtVa, where Va denotes the value of attribute a; f is an information function that maps
an object x in U to exactly one value V in Va. We focus on knowledge of the partition of the universe, since knowledge and
equivalence relations can be mutually determined. We can define an equivalence relation for A#AT as
IND Að Þ ¼ x; yð Þ 2 U � Uj8a 2 A; f a xð Þ ¼ f a yð Þf g, and the partition generated by IND Að Þ is denoted as U=IND Að Þ, simply as pA.
For simplicity, we generally denote x½ �A instead of x½ �IND Að Þ. Consider a partition pD ¼ D1;D2; . . . ;Dkf gon universe U with

respect to the decision attribute and a partition pA ¼ A1;A2; . . . ;Aq
� �

on universe U with respect to conditional attributes.

Definition 1. For a decision table S, given a concept X and a decision class Dj 2 pD, the upper and lower approximations of Dj

with respect to Ai are defined as follows:
aprAi
Xð Þ ¼ x 2 Uj x½ �Ai

#Dj

n o
;

aprAi
Xð Þ ¼ x 2 Uj x½ �Ai

\ Dj – /
n o

:
ð1Þ
where �j j is the cardinality of the set.
Therefore, the universe is divided into three pair-wise disjoint regions based on the upper and lower approximations,

namely the positive region POSAi
pDð Þ, boundary region BNDAi pDð Þ and negative region NEGAi pDð Þ:
POSAi
pDð Þ ¼ [

16j6k
aprAi

Dj
� �

;

BNDAi pDð Þ ¼ [
16j6k

BNDAi
Dj
� �

¼ [
16j6k

aprAi
Dj
� �� aprAi Dj

� �� �
;

NEGAi
pDð Þ ¼ U � POSAi

pDð Þ [ BNDAi pDð Þ:

ð2Þ
2.2. Hierarchical decision table

Feng and Miao [29] proposed a hierarchical rough set model by combining concept hierarchy tree and rough set to
describe multi-dimensional data. In what follows, we briefly review the hierarchical decision table.

Definition 2. Let HT ¼ U; aliji ¼ 1;2; . . . ; s; l ¼ 1;2; . . . ;m
� �

;V ; f
� �

be a hierarchical table, aiji ¼ 1;2; . . . ; sf gdenotes a non-

empty finite attribute set, and the conditional attribute ai has m levels C ¼ aliji ¼ 1;2; . . . ; s; l ¼ 1;2; . . . ;m
� �

.
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Definition 3. Let HT ¼ U;AT ¼ al
iji ¼ 1;2; . . . ; s; l ¼ 1;2; . . . ;m

� � [ df g;V ; f� �
be a hierarchical decision table. The index set

L ¼ l1; l2; . . . ; lsð Þ is called a level combination of conditional attributes, which denotes the combination of the conditional
attribute ai at the li-th level (i ¼ 1;2; . . . ; s). Each level combination L ¼ l1; l2; . . . ; lsð Þ can form a single-level information table

CL ¼ al11 ; a
l2
2 ; . . . ; a

ls
s

n o
.

Definition 4. Given the L1 ¼ l11; l
1
2; . . . ; l

1
s

� �
-th decision table and L2 ¼ l21; l

2
2; . . . ; l

2
s

� �
-th decision table, if l1i 6 l2i (i ¼ 1;2; . . . ; s),

then L1 is said to be coarser than L2 or L2 is the finer than L1, which can be denoted as L1<L2. Furthermore, if there exists

i 2 1;2; . . . ; sf g such that l1i < l2i , then L1 is said to be strictly coarser than L2 or L2 is the strictly finer than L1, namely L1 � L2.
2.3. QIAN’s MGRS

In the Pawlak rough set model, the concepts are often expressed in terms of a single equivalence relation, but in some
situations, we describe a relatively complex target concept in terms of multiple equivalence relations depending on the user
demand and the choice of goals to solve problems [43–45]. Qian et al. [28] proposed a multi-granulation rough set model. In
what follows, the optimistic and pessimistic multi-granulation rough set models are briefly reviewed below.

Definition 5. Given a granular structure GS ¼ A1;A2; � � � ;Aq
� �

and 8X#U, the optimistic multigranulation lower and upper

approximations
Pq

i¼1A
O
i Xð Þ and Pq

i¼1A
O
i Xð Þ are defined as follows:
Xq
i¼1

AO
i Xð Þ ¼ x 2 Uj x½ �A1 #X _ x½ �A2

#X _ � � � _ x½ �Aq
#X

n o
;

Xq
i¼1

AO
i Xð Þ ¼�

Xq
i¼1

AO
i � Xð Þ:

ð3Þ
where� X is the complement of set X.

The pair <
Pq

i¼1A
O
i Xð Þ;Pq

i¼1A
O
i Xð Þ >is called the optimistic multigranulation rough sets of X.

Definition 6. Given a granular structure GS ¼ A1;A2; � � � ;Aq
� �

and 8X#U, the pessimistic multi-granulation lower and upper

approximations
Pq

i¼1A
P
i Xð Þ and Pq

i¼1A
P
i Xð Þ are defined as follows:
Xq
i¼1

AP
i Xð Þ ¼ x 2 Uj x½ �A1 #X ^ x½ �A2

#X ^ � � � ^ x½ �Aq
#X

n o
;

Xq
i¼1

AP
i Xð Þ ¼�

Xq
i¼1

AP
i � Xð Þ:

ð4Þ
where� X is the complement of set X.

The pair <
Pq

i¼1A
P
i Xð Þ;Pq

i¼1A
P
i Xð Þ >is called the pessimistic multi-granulation rough sets of X.

2.4. Sequential three-way decisions

As we all know, the sequential three-way decision model is the evolution of the sequential multi-step classical three-way
decision [5,46]. In what follows, we briefly review the sequential three-way decisions.

Definition 7. Given a l-th level of the granular structure GSl ¼ Al
1;A

l
2; � � � ;Al

q

n o
and a decision class Dj, the lower

approximation aprAl
i
Dj
� �

and the upper approximation aprAl
i
Dj
� �

are defined by
aprAl
i
Dj
� � ¼ x 2 Ulj x½ �Al

i
#Dj

n o
;

aprAl
i
Dj
� � ¼ x 2 Ulj x½ �Al

i
\ Dj –£

n o
:

ð5Þ
where U1 ¼ U;Ulþ1 ¼ BNDAl
i
Dj
� � ¼ aprAli Dj

� �� aprAli Dj
� �

; x½ �Al
i
denotes the equivalence class containing x in the partition Ul=Al

i.

This pair < aprAl
i
Dj
� �

; aprAli Dj
� �

>is called the lower and upper approximations induced by Al
i with respect to Dj. We can

obtain the following three disjoint regions.
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POSAl
i
Dj
� � ¼ aprAl

i
Dj
� �

; ð6Þ

BNDAli
Dj
� � ¼ aprAl

i
Dj
� �� aprAl

i
Dj
� �

; ð7Þ

NEGAl
i
Dj
� � ¼ Ul � POSAl

i
Dj
� �� NEGAl

i
Dj
� �

: ð8Þ
3. Construction of the generalized hierarchical decision tables

In this section, we first briefly illustrate the construction of information granules and concept hierarchy tree, then define
the generalized hierarchical decision tables, and finally explore some related properties.

3.1. Construction of concept hierarchy and information granules

The conditional attribute ai is formed along the l aið Þ þ 1 hierarchy level: 0;1; � � � ; l aið Þ. Level 0 is the special value of Any
(*). Similarly, the depth of the concept hierarchy tree of the decision attribute is l dð Þ þ 1. Fig. 2 shows the concept hierarchy
tree constructed by each attribute, raw data is represented as a lattice. In order to simplify this study, we extend the attri-
butes of the insufficient hierarchy. If the highest level l of attribute ai satisfies 0 < l < m, extend it to

a1i ; a
2
i ; . . . ; a

l
i; a

lþ1ð Þ�
i ; . . . ; a mð Þ�

i , fill all attributes of levels lþ 1 to m with al
i. The method of decision attributes extension is sim-

ilar to that of the conditional attributes extension. For readability, the description of the symbols throughout our paper are
shown in Table 1.

As we all know, information granules are constructed by the objects based on indiscernibility. However, constructing an
ideal information granule is a complex and interesting issue. In Fig. 3, we use aggregation and decomposition operations to
construct information granules based on an indistinguishable relation. Red arrows and blue arrows indicate refinement

paths and coarsened paths, respectively. For convenience, cgl;t
i denotes a condition granule, where l represents the level

and t denotes the number of the ascension attributes in a condition granule, respectively. In other words, a multi-level gran-

ular structure GSl;t is a parallel set of condition granules cgl;t
1 ; cg

l;t
2 ; . . . ; cg

l;t
q

n o
.

In Fig. 3, the top node cg1;0
1 represents the most generalized condition granule, while the bottom node cg2;3

1 denotes the

detailed condition granule. Note that the node cg1;3
1 is the largest granule at the first level, and node cg2;0

1 is the smallest gran-
ule at the second level, but these two granules are the same granule under different levels of granularity.

Then the positive region and the classification accuracy of Dh
j with respect to cgl;t

i are defined as
Poscgl;t
i
ph

D

� � ¼ [Dh
j 2U=Edgh

Ecgl;t
i

Dh
j

� �
; ð9Þ
Fig. 2. Concept hierarchy tree for each attribute.
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Table 1
Description of the symbols.

Symbol Meaning

l Condition granule (conditional attribute) level
t Number of attributes ascending in a condition granule
m Maximal level of the condition granule
q Maximal serial number of the condition granule
n Maximal level of the decision granule
h Decision granule (decision attribute) level
j Serial number of decision class
k Maximal serial number of decision class
cgi i-th condition granule with serial number i where i 2 1;2; . . . qf g
cgl;ti i-th condition granule with the number of ascending attribute number t at level l

GS Granular structure GS ¼ cg1; cg2; . . . ; cgq
n o

GSl;t Granular structure with the number of ascending attributes t at level l

dh Decision granule (decision attribute) at level h

Dj j-th decision class where j 2 1;2; . . . kf g
Dh
j

j-th decision class at level h

Fig. 3. Condition granules under different levels of granularity.
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Acc cgl;t
i ;p

h
D

� �
¼

jPoscgl;t
i
ph

D

� �j
jUj : ð10Þ
3.2. Generalized hierarchical decision table

In this section, we define the generalized hierarchical decision table and explore the related properties.

Definition 8. Let GH ¼ U; aliji ¼ 1;2; . . . ; q; l ¼ 1;2; . . . ;m
� � [ dhjh ¼ 1;2; . . . ;n

n o
;V ; f

� �
be a generalized hierarchical deci-

sion table, where q denotes the maximal number of conditional attributes, m denotes the maximal level of conditional
attributes, and n denotes the maximal level of decision attributes, D ¼ df g is a non-empty finite set of decision attribute, and

d has n levels D ¼ dhjh ¼ 1;2; . . . ;n
n o

.
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Through Definition 8, we know that the generalized hierarchical decision tables are composed of
Qm
j¼1

Ij

 !
� n single deci-

sion table, where Ij denotes the level of conditional attribute aj.
If d is strictly confined to the h-th level, the generalized hierarchical decision table

GH ¼ U; aliji ¼ 1;2; . . . ; q; l ¼ 1;2; . . . ;m
� � [ dhjh ¼ 1;2; . . . ;n

n o
;V ; f

� �
can be denoted as

GHh ¼ U; al
iji ¼ 1;2; . . . ; q; l ¼ 1;2; . . . ;n

� � [ dh
n o

;V ; f
� �

.

Definition 9. Let GH ¼ U; aliji ¼ 1;2; . . . ; q; l ¼ 1;2; . . . ;m
� � [ dhjh ¼ 1;2; . . . ;n

n o
;V ; f

� �
be a generalized hierarchical deci-

sion table, the indiscernible relationship on cgl;ti is defined as
IND cgl;t
i

� �
¼ x; yð Þ 2 U � Uj8al 2 cgl;t

i ; f x; al
� � ¼ f y; al

� �n o
: ð11Þ
For an arbitrary x 2 U, the equivalence relation Ecgl;t
i
is derived from the indiscernible relation IND cgl;t

i

� �
. Thus, the equiv-

alence class of x according to the indiscernible relation IND cgl;t
i

� �
can be notated as x½ �cgl;t

i
as follows:
x½ �cgl;t
i
¼ y 2 Uj x; yð Þ 2 Ecgl;t

i

n o
: ð12Þ
Then, we can obtain a family of the equivalence classes U=IND cgl;t
i

� �
as
U=IND cgl;t
i

� �
¼ x½ �cgl;t

i
jx 2 U

n o
: ð13Þ
The lower approximation of X with respect to cgl;t
i are defined as
Ecgl;t
i

Xð Þ ¼ [ xj x½ �cgl;t
i
#X

n o
: ð14Þ
Proposition 1. Let GH ¼ U; aliji ¼ 1;2; . . . ; s; l ¼ 1;2; . . . ;m
� � [ dtjt ¼ 1;2; . . . ;n

n o
;V ; f

� �
be a generalized hierarchical deci-

sion table, l and l0 represent the level of condition granules, h and h0 denote the level of decision granules, the following
properties hold true:

(1) l < l0 ! Ecgl;t
i
<E

cgl
0 ;t
i
;

(2) l < l0 ! U=Ecgl;t
i
<U=E

cgl
0 ;t
i
;

(3) l < l0 ! Ecgl;t
i

Xð Þ# E
cgl

0 ;t
i

Xð Þ;
(4) h < h0 ! Edgh<Edgh

0 ;

(5) h < h0 ! U=Edgh<U=Edgh
0 ;

(6) h < h0 ! x½ �dgh 	 x½ �
dgh

0 .

In Proposition 1, the properties (1) - (3) show that the equivalence relation, the partition and the lower approximation of
X induced by the corresponding attributes become coarser with the level ascension of condition granules while the proper-
ties (4)-(6) illustrate that the equivalence relation, the partition induced and the equivalence classes of x decrease when the
level of decision granules increases.

It should be noted that this paper mainly discusses the changes of condition granules at the l-th level and decision gran-
ules at the h-th level. The changes of the number of attributes ascending t is similar to those of condition granules at the l-th
level, which will not be repeatedly listed here.

Proposition 2. Let GH ¼ U; aliji ¼ 1;2; . . . ; s; l ¼ 1;2; . . . ;m
� � [ dhjh ¼ 1;2; . . . ;n

n o
;V ; f

� �
be a generalized hierarchical

decision table, l and l0 represent the level of condition granules, and h and h0 denote the level of decision granules, then

(1) l < l0 ! Poscgl;t
i
ph

D

� �
# Pos

cgl
0 ;t
i
ph

D

� �
;

(2) l < l0 ! Acc cgl;t
i ;ph

D

� �
6 Acc cgl0 ;t

i ;ph
D

� �
;

(3) h < h0 ! Poscgl;t
i
ph

D

� � 	 Poscgl;t
i
ph0

D

� �
;

(4) h < h0 ! Acc cgl;t
i ;ph

D

� �
P Acc cgl;t

i ;ph0
D

� �
.
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In Proposition 2, the properties (1) and (2) show that the size of positive region and the classification accuracy increase as
the condition granules become finer while (3) and (4) illustrate that the size of positive region and the classification accuracy
decrease with the increasing level of decision granules.

4. Multigranulation sequential three-way decision model under condition granule level ascension for hierarchical
classification

In what follows, we first combine sequential three-way decisions and multi-granularity to design a generalized hierarchi-
cal multigranulation sequential three-way decision model (GHMS3WD) at the fixed decision granule level, then propose a
corresponding algorithm for computing the three probabilistic regions, and finally discuss the relationships and some prop-
erties. In GHMS3WD, we refer to the decision attribute as decision granule. Fig. 4 illustrates the sequential three-way deci-
sions at different levels of condition granules and decision granules. The sequential three-way decision process for condition
granules from level 1 to level m is shown in Fig. 4(a).

Definition 10. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure

GSl;t ¼ cgl;t1 ; cg
l;t
2 ; . . . ; cg

l;t
q

n o
, the lower and upper approximations aprcgl;t

i
Dh
j

� �
and aprcgl;t

i
Dh
j

� �
are defined by
aprcgl;t
i

Dh
j

� �
¼ x 2 Ul;t j x½ �cgl;t

i
#Dh

j

n o
;

aprcgl;t
i

Dh
j

� �
¼ x 2 Ul;t j x½ �cgl;t

i
\ Dh

j –£
n o

:
ð15Þ
where U1;t ¼ U;Ulþ1;t ¼ aprcgl;t
i

Dh
j

� �
� aprcgl;t

i
Dh

j

� �
is the gradually reduced universe.
Proposition 3. Given a generalized hierarchical decision table GH, the following updated three probabilistic regions of the

condition granule cgl;t
i with respect to Dh

j hold true:
(1)
POScgl;t
i

Dh
j

� �
¼ aprcgl;t

i
Dh

j

� �
¼ POScgl�1;t

i
Dh

j

� �
[ xj x½ �cgl;t

i
#Dh

j ; x 2 BNDcgl�1;t
i

Dh
j

� �n o
;

ð16Þ
(2)
BNDcgl;t
i

Dh
j

� �
¼ aprcgl;t

i
Dh

j

� �
� aprcgl;t

i
Dh

j

� �
¼ Ul;t � POScgl;t

i
Dh

j

� �
� NEGcgl;t

i
Dh

j

� �
;

ð17Þ
(3)
NEGcgl;t
i

Dh
j

� �
¼ Ul;t � aprcgl;t

i
Dh

j

� �
¼ NEGcgl�1;t

i
Dh

j

� �
[ xj x½ �cgl;t

i
\ Dh

j –£; x 2 BNDcgl�1;t
i

Dh
j

� �n o
:

ð18Þ
Proof. The equivalence class x½ �cgl;t
i
of the l-th level will be further divided into the equivalence class x½ �cglþ1;t

i
of the (l + 1)-th

level. We easily get x½ �cgl;t
i
# x½ �cgl�1;t

i
.

Fig. 4. The sequential process between different condition granules and decision granules.
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(1) For any x 2 POScgl�1;t
i

Dh
j

� �
, we get x½ �cgl�1;t

i
#Dh

j . Then, x½ �cgl;t
i
#Dh

j holds when x½ �cgl;t
i
# x½ �cgl�1;t

i
. So, we obtain the result that

x 2 POScgl;t
i

Dh
j

� �
.

(2) For any x 2 BNDcgl;t
i

Dh
j

� �
, it is easy to obtain x½ �cgl;t

i
\ Dh

j –£and x½ �cgl;t
i
:#Dh

j , which implies x R NEGcgl;t
i

Dh
j

� �
and

x R POScgl;t
i

Dh
j

� �
because of x½ �cgl;t

i
# x½ �cgl�1;t

i
. As a result, x 2 BNDcgl�1;t

i
Dh

j

� �
holds.

(3) For any x 2 NEGcgl�1;t
i

Dh
j

� �
, we have x½ �cgl�1;t

i
#Dh

j . It is easy to know that x½ �cgl;t
i
#Dh

j is true when x½ �cgl;t
i
# x½ �cgl�1;t

i
. So,

x 2 NEGcgl;t
i

Dh
j

� �
. �
Proposition 4. Given a generalized hierarchical decision table GH; POScgl;t
i

Dh
j

� �
and NEGcgl;t

i
Dh

j

� �
monotonically become big-

ger while BNDcgl;t
i

Dh
j

� �
turns monotonically smaller when the level of condition granule increases.

Proof. From Proposition 3, we know that POScgl;t
i

Dh
j

� �
and NEGcgl;t

i
Dh

j

� �
are parts of the POScglþ1;t

i
Dh

j

� �
and NEGcglþ1;t

i
Dh

j

� �
, and

the added ones are selected from BNDcgl;t
i

Dh
j

� �
. Thus, POScgl;t

i
Dh

j

� �
# POScglþ1;t

i
Dh

j

� �
and NEGcgl;t

i
Dh

j

� �
# NEGcglþ1;t

i
Dh

j

� �
. Since

BNDcgl;t
i

Dh
j

� �
= Ul;t - POScgl;t

i
Dh

j

� �
- NEGcgl;t

i
Dh

j

� �
and BNDcglþ1;t

i
Dh

j

� �
= BNDcgl;t

i
Dh

j

� �
- POScglþ1;t

i
Dh

j

� �
- NEGcglþ1;t

i
Dh

j

� �
, then

BNDcgl;t
i

Dh
j

� �
	 BNDcglþ1;t

i
Dh

j

� �
.

In what follows, we construct an algorithm to compute the regions of sequential three-way decisions under a condition
granule as shown in Algorithm1. The main idea of Algorithm1 is to first deletes the objects belonging to the probabilistic
positive region or negative region under the first level of granularity, and then obtain the updated region

U2;t ¼ BNDcgl;t
i

Dh
j

� �
. For the updated region U2;t , delete the objects belonging to the positive region and negative region at

the next level of granularity, and repeat these steps until the updated universe becomes an empty set or no level of granu-

larity can be computed. It is easy to observe that the time complexity of Algorithm1 is O mjDh
j jjUj2

� �
.

Algorithm1: Computing the regions of sequential three-way decisions under a granular structure.
To understand this algorithm, we illustrate the idea through Example 1. Table 2 is a generalized hierarchical decision
table that describes the income of the Developers, U ¼ x1; x2; . . . ; x12f g is composed of Developers, {Age,Degree,Occupation}
are conditional attributes and Salary is a decision attribute.


;For the conditional attribute a1, the first values of the concept hierarchy are Y ;M;Of g which represent ‘Youth’, ‘Middle-
ager’ and ‘Old’. The second values of the concept hierarchy are A1;A2;A3;A4;A5f gwhich represent ‘Below 30’, ‘31–40’, ‘41–50’,
‘51–60’ and ‘Above 60’.


;For the conditional attribute a2, the first values of the concept hierarchy are H; Lf gwhich represent ‘High’ and ‘Low’. The
second values of concept hierarchy are D;M;B;Of g which represent ‘Doctor’, ‘Master’, ‘Bachelor’ and ‘Others’.


;For the conditional attribute a3, the first values of the concept hierarchy are H;M; Lf g which represent ‘High’, and ‘Low’.
The second values of concept hierarchy are P4; P3; P2; P1f g which represent ‘Researcher’, ‘Expert’, ‘Engineer’ and ‘Assistant’.


;For the decision attribute d, the first values of the concept hierarchy are H;M; Lf g which represent ‘High’, ‘Middle’ and
‘Low’. The second values of the concept hierarchy are S6; S5; S4; S3; S2; S1f g which represent ‘Above 80000’, ‘20001–80000’,
‘7001–20000’, ‘3001–7000’, ‘2001–3000’ and ‘Below 2000’.
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Table 2
Generalized hierarchical decision tables.

U Age Degree Occupation Salary

a11 a21 a12 a22 a13 a23 d1 d2

x1 Y A1 H M H P3 M S3
x2 O A4 L B H P3 M S4
x3 O A4 H M H P4 M S4
x4 M A2 L B L P2 M S3
x5 O A5 L B H P4 H S6
x6 Y A1 H M H P4 M S4
x7 M A3 H M H P4 M S4
x8 Y A1 L O L P2 M S3
x9 Y A1 L B L P1 L S2
x10 O A4 L B H P4 H S5
x11 M A3 L O H P3 M S4
x12 M A3 H D H P4 H S5
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Example 1. As shown in Table 2, consider U1;t = x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12f g; t ¼ 2, a decision class

D1
1 ¼ x1; x2; x3; x4; x6; x7; x8; x11f g, the condition granules cg1;21 ¼ a11; a

1
2; a

0
3

� �
and cg2;21 ¼ a21; a

2
2; a

1
3

� �
.

(1) U1;1 ¼ U. For the first level of granularity, we can compute
U1;2=cg1;2

1 ¼ x1; x6f g; x8; x9f g; x2; x5; x10f g; x3f g; x4; x11f g; x7; x12f gf g;
POScg1;21

D1
1

� �
¼ x1; x3; x4; x6; x11f g;

BNDcg1;21
D1

1

� �
= x2; x5; x7; x8; x9; x10; x12f g;

NEGcg1;21
D1

1

� �
¼ £.

Thus, we can have POScg1 D1
1

� �
= x1; x3; x4; x6; x11f g, BNDcg1 D1

1

� �
¼ x2; x5; x7; x8; x9; x10; x12f g, NEGcg1 D1

1

� �
= £, and U2;1 =

BNDcg1 D1
1

� �
= {x2; x5; x7; x8; x9; x10; x12}.

(2) Updating the reduced universe U2;1 ¼ x2; x5; x7; x8; x9; x10; x12f g. For the second level of granularity, we can compute
U2;1=cg2;2

1 ¼ x2; x10f g; x5f g; x7f g; x8f g; x9f g; x12f gf g;
POScg2;21

D1
1

� �
¼ x7; x8f g;

BNDcg2;21
D1

1

� �
¼ x2; x10f g;

NEGcg2;21
D1

1

� �
¼ x5; x9; x12f g.

Therefore, we can obtain POScg1 D1
1

� �
¼ POScg1 D1

1

� �
[ POScg2;21

D1
1

� �
¼ x1; x3; x4; x6; x7; x8; x11f g, BNDcg1 D1

1

� �
¼ U2;1

�POScg2;21
D1

1

� �
� NEGcg2;21

D1
1

� �
¼ x2; x10f g, and NEGcg1 D1

1

� �
¼ NEGcg1 D1

1

� �
[ NEGcg2;21

D1
1

� �
¼ x5; x9; x12f g.

In what follows, we design the optimistic and pessimistic generalized hierarchical multigranulation sequential three-way
decision models, and discuss the corresponding properties.

Definition 11. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure GSl;t

= {cgl;t1 ; cg
l;t
2 ; . . . ; cg

l;t
q }, then the lower and upper approximations of the optimistic generalized hierarchical multigranulation

sequential three-way decision with respect to Dh
j are defined as
Xq
i¼1

cgl;t
i

O Dh
j

� �
¼ x 2 Ul;tj x½ �cgl;t1 #Dh

j _ x½ �cgl;t2 #Dh
j _ . . . _ x½ �cgl;tq #Dh

j

n o
;

Xq
i¼1

cgl;t
i

O Dh
j

� �
¼�

Xq
i¼1

cgl;t
i

O � Dh
j

� �
:

ð19Þ
where U1;t ¼ U;Ulþ1;t ¼Pm
i¼1cg

l;t
i

O Dh
j

� �
�Pm

i¼1cg
l;t
i

O Dh
j

� �
is the gradually reduced universe, q represents the maximum num-

ber of parallel condition granule sets, and x½ �cgl;t
i
1 6 i 6 qð Þ denotes the equivalence class containing x in the partition Ul=cgl;t

i .
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The pair <
Pq

i¼1cg
l;t
i

O Dh
j

� �
;
Pq

i¼1cg
l;t
i

O Dh
j

� �
>is called the optimistic generalized hierarchical rough set of Dh

j with respect to

the set of condition granule cg in Ul;t .

Definition 12. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure GSl;t

= {cgl;t1 ; cg
l;t
2 ; . . . ; cg

l;t
q }, then the lower and upper approximations of pessimistic generalized hierarchical multigranulation

sequential three-way decision with respect to Dh
j are defined as
Xq
i¼1

cgl;t
i

P Dh
j

� �
¼ x 2 Ul;tj x½ �cgl;t1 #Dh

j ^ x½ �cgl;t2 #Dh
j ^ . . . ^ x½ �cgl;tq #Dh

j

n o
;

Xq
i¼1

cgl;t
i

P Dh
j

� �
¼�

Xq
i¼1

cgl;t
i

P � Dh
j

� �
:

ð20Þ
where U1 ¼ U;Ulþ1 ¼Pq
i¼1cg

l;t
i

P Dh
j

� �
�Pq

i¼1cg
l;t
i

P Dh
j

� �
is the gradually reduced universe, q represents the maximal number of

parallel condition granule sets, and x½ �cgl;t
i
1 6 i 6 qð Þ denotes the equivalence class containing x in the partition Ul=cgl;t

i .

The pair <
Pq

i¼1cg
l;t
i

P Dh
j

� �
;
Pq

i¼1cg
l;t
i

P Dh
j

� �
>is called the pessimistic generalized hierarchical rough set of Dh

j with respect

to the condition granules cg in Ul;t .

Definition 13. Given a multilevel granular structure GSl;t = {cgl;t1 ; cg
l;t
2 ; . . . ; cg

l;t
q }, a parallel set of condition granules cgl;ti 2 GSl;t ,

and a decision partition ph
D ¼ Dh

1;D
h
2; . . . ;D

h
k

n o
, then the lower and upper approximations with respect to a partition ph

D are

defined as
Xq
i¼1

cgl;t
i
D ph

D

� � ¼ Xq
i¼1

cgl;t
i
D Dh

1

� �
;
Xq
i¼1

cgl;t
i
D Dh

2

� �
; . . . ;

Xq
i¼1

cgl;t
i
D Dh

k

� �0
@

1
A;

Xq
i¼1

cgl;t
i
D ph

D

� � ¼ Xq
i¼1

cgl;t
i
D Dh

1

� �
;
Xq
i¼1

cgl;t
i
D Dh

2

� �
; . . . ;

Xq
i¼1

cgl;t
i
D Dh

k

� � !
:

ð21Þ
where Ddenotes a generalized aggregation strategy.
Based on the above definition, the positive, boundary and negative regions of ph

D are defined as follows:
POSDGSl;t p
h
D

� � ¼ [
16j6k

Xq
i¼1

cgl;t
i
D Dh

j

� �
;

BNDD
GSl;t p

h
D

� � ¼ [
16j6k

Xq
i¼1

cgl;t
i
D Dh

j

� �
�
Xq
i¼1

cgl;t
i
D Dh

j

� �0
@

1
A;

NEGD
GSl;t p

h
D

� � ¼ Ul;t � POSDGSl;t p
h
D

� � [ BNDD
GSl;t p

h
D

� �
:

ð22Þ
It should be pointed out that NEG4
GS pDð Þ is empty set. Thus, the negative regions of pD are not considered. By observing

these definitions, we can easily derive the relationships between the optimistic and pessimistic sequential three-way deci-
sion models as follows.

Proposition 5. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure

GSl;t = {cgl;t1 ; cg
l;t
2 ; . . . ; cg

l;t
q }, if 0 < l < l0, then the following properties hold.

(1)
Pq

i¼1cg
l;t
i
D Dh

j

� �
#
Pq

i¼1cg
l0 ;t
i

D Dh
j

� �
;

(2)
Pq

i¼1cg
l;t
i
D Dh

j

� �
	Pq

i¼1cg
l0 ;t
i

D Dh
j

� �
.

Proof. According to Proposition 3, it is clear that Proposition 5 holds true. �.

Proposition 6. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure

GSl;t = {cgl;t1 ; cg
l;t
2 ; . . . ; cg

l;t
q }, we have the following properties.
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(1) POSDGS1;t Dh
j

� �
# POSDGS2;t Dh

j

� �
# . . . # POSDGSm;t Dh

j

� �
;

(2) BNDD
GS1;t Dh

j

� �
	 BNDD

GS2;t Dh
j

� �
	 . . . 	 BNDD

GSm;t Dh
j

� �
;

(3) NEGD
GS1;t Dh

j

� �
# POSDGS2;t Dh

j

� �
# . . . # POSDGSm;t Dh

j

� �
;

(4) POSDGS1;t p
h
D

� �
# POSDGS2;t p

h
D

� �
# . . . # POSDGSm;t ph

D

� �
;

(5) BNDD
GS1;t p

h
D

� � 	 BNDD
GS2;t p

h
D

� � 	 . . . 	 BNDD
GSm;t ph

D

� �
.

Proof. According to Proposition 5, it is clear that Proposition 6 holds. �.
Proposition 5 shows that the higher the level of condition granules, the bigger the lower approximation and the smaller

the upper approximation.
In what follows, we construct an algorithm to compute the three probabilistic regions of multigranulation sequential

three-way decisions under different levels of multi-granularity as shown in Algorithm2. The main idea of Algorithm2 is
to first delete the objects belonging to the positive region under the first level of granularity and then obtain the updated
region U2;t = BND4

GS1;t p
h
D

� �
. For the updated region U2;t , delete the objects belonging to the positive region at the next level

of granularity, and repeat these steps until the updated universe becomes an empty set or no level of granularity can be com-

puted. It is easy to observe that the time complexity of Algorithm2 is O m
Pq

i¼1cgijUj2
� �

.

Algorithm2: Computing the regions under different multi-granulation sequential three-way decisions.

In particular, the generalized hierarchical multigranulation model degenerates to the traditional multigranulation model
when t ¼ 1, and the generalized hierarchical multigranulation model has only one condition granule per level when t takes
the maximum number of attributes.

Example 2. Consider the universe set of objects U1;t = {x1; x2, x3; x4; x5; x6; x7; x8; x9; x10; x11; x12}, t ¼ 2, the decision partition

U=D1 = p1
D = {{x1; x2; x3; x4; x6; x7; x8; x11}, {x5; x10; x12}, {x9}}, and two granular structures GS1;2 = {cg1;21 ; cg1;22 ; cg1;23 } and GS2;2 =

{cg2;21 ; cg2;22 ; cg2;23 }.

(1) For the granular structure GS1;2, the positive and boundary regions with respect to p1
D are computed as

POSOGS1;2 p1
D

� �
= {x1; x3; x4; x6; x11};

BNDO
GS1;2 p1

D

� �
= {x2; x5; x7; x8; x9; x10; x12};

POSPGS1;2 p1
D

� �
= £;

BNDP
GS1;2 p1

D

� �
= {x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12}..

(2) For the granular structure GS2;2, the positive and boundary regions with respect to p1
D are computed as

POSOGS2;2 p1
D

� �
= {x2; x5; x7; x8; x9; x10; x12};

BNDO
GSl;2 p1

D

� �
= £;

POSPGS2;2 p1
D

� �
= {x1; x3; x4; x5; x6; x8; x9; x11};

BNDP
GSl;2 p1

D

� �
= {x2; x7; x10; x12}.
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Therefore, we can have.
POSOGS p1

D

� �
= POSOGS1;2 p1

D

� � [ POSOGS2;2 p1
D

� �
= {x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12};

BNDO
GS p1

D

� �
= BNDO

GS1;2 p1
D

� �
- POSOGS2;2 p1

D

� �
= £;

POSPGS p1
D

� �
= POSPGSl;2 p1

D

� � [ POSPGS2;2 p1
D

� �
= {x1; x3; x4; x5; x6; x8; x9; x11};

BNDP
GS p1

D

� �
= BNDP

GS1;2 p1
D

� �
- POSPGS2;2 p1

D

� �
= {x2; x7; x10; x12}.

5. Multigranulation sequential three-way decision model under decision granule level descension for hierarchical
classification

In this section, we consider the fixed levels of condition granules and dynamically change the levels of decision granules,
and update the three probabilistic regions at different levels. The sequential decision-making process for hierarchical clas-
sification is shown in Fig. 4 (b) from level n to level 1. It is worth that the sequential process of decision granules is the
reverse one of condition granules.

Definition 14. For a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure GSl;t =

{cgl;t1 ; cg
l;t
2 ; . . . ; cgl;tq }, then the lower and upper approximations aprcgl;t

i
Dh
j

� �
and aprcgl;t

i
Dh
j

� �
are defined by
aprcgl;t
i

Dh
j

� �
¼ x 2 Uh;tj x½ �cgl;t

i
#Dh

j

n o
;

aprcgl;t
i

Dh
j

� �
¼ x 2 Uh;tj x½ �cgl;t

i
\ Dh

j –£
n o

:
ð23Þ
where Un;t ¼ U;Uh;t ¼ aprcgl;t
i

Dhþ1
j

� �
� aprcgl;t

i
Dhþ1

j

� �
is the gradually reduced universe, and n denotes the maximum level of

Dj.
Proposition 7. Given a generalized hierarchical decision table GH, the updated three probabilistic regions for the condition
granule cg with respect to D hold true:

(1)
POScgl;t
i

Dh
j

� �
¼ aprcgl;t

i
Dh

j

� �
¼ POScgl;t

i
Dhþ1

j

� �
[ xj x½ �cgl;t

i
#Dh

j ; x 2 BNDcgl;t
i

Dhþ1
j

� �n o
;

ð24Þ

(2)

BNDcgl;t
i

Dh
j

� �
¼ aprcgl;t

i
Dh

j

� �
� aprcgl;t

i
Dh

j

� �
¼ Uh;t � POScgl;t

i
Dh

j

� �
� NEGcgl;t

i
Dh

j

� �
;

ð25Þ

(3)

NEGcgl;t
i

Dh
j

� �
¼ Uh;t � aprcglþ1;t

i
Dh

j

� �
¼ NEGcgl;t

i
Dhþ1

j

� �
[ xj x½ �cglþ1;t

i
\ Dh

j ¼ £; x 2 BNDcgl;t
i

Dhþ1
j

� �n o
:

ð26Þ

Proof. The equivalence class Dh
j of the h-th level will be further divided into the equivalence class Dhþ1

j of the hþ 1ð Þ-th
level. We easily get Dhþ1

j #Dh
j .

(1) For any x 2 POScgl;t
i

Dhþ1
j

� �
, we have x½ �cgl;t

i
#Dhþ1

j , then x½ �cgl;t
i
#Dh

j since Dhþ1
j #Dh

j . Thus, x 2 POScglþ1;t
i

Dh
j

� �
.

(2) For any x 2 BNDcgl;t
i

Dh
j

� �
, it is easy to obtain x½ �cgl;t

i
\ Dh

j –£ and x½ �cgl;t
i
:#Dh

j , so, x R NEGcgl;t
i

Dh
j

� �
and x R POScgl;t

i
Dh

j

� �
,

because of Dhþ1
j #Dh

j . Therefore, x 2 BNDcgl;t
i

Dhþ1
j

� �
.

(3) For any x 2 NEGcgl;t
i

Dhþ1
j

� �
, we have x½ �cgl;t

i
#Dhþ1

j , then x½ �cglþ1;t
i

#Dh
j because of Dhþ1

j #Dh
j . Thus, x 2 NEGcgl;t

i
Dh

j

� �
. �
Proposition 8. Given a generalized hierarchical decision table GH; POScgl;t
i

Dh
j

� �
and NEGcgl;t

i
Dh

j

� �
monotonically become larger

and BNDcgl;t
i

Dh
j

� �
monotonically turns smaller with the decreasing of the level of decision granule.
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Proof. From Proposition 7, we obtain the POScgl;t
i

Dhþ1
j

� �
and NEGcgl;t

i
Dhþ1

j

� �
are parts of the POScgl;t

i
Dh

j

� �
and NEGcgl;t

i
Dh

j

� �
,

and the added ones are selected from BNDcgl;t
i

Dhþ1
j

� �
. Thus, POScgl;t

i
Dh

j

� �
	 POScgl;t

i
Dhþ1

j

� �
and NEGcgl;t

i
Dh

j

� �
	 NEGcgl;t

i
Dhþ1

j

� �
.

Since BNDcgl;t
i

Dh
j

� �
= Dj - POScgl;t

i
Dh

j

� �
- NEGcgl;t

i
Dh

j

� �
and BNDcgl;t

i
Dhþ1

j

� �
= Dj - POScgl;t

i
Dhþ1

j

� �
- NEGcgl;t

i
Dhþ1

j

� �
, then

BNDcgl;t
i

Dh
j

� �
# BNDcgl;t

i
Dhþ1

j

� �
. �.

Definition 15. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure GSl;t

= {cgl;t1 ; cgl;t2 ; . . . ; cg
l;t
q }, then the lower and upper approximations of the optimistic generalized hierarchical multi-granulation

sequential three-way decision with respect to Dh
j are defined as
Xq
i¼1

cgl;t
i

O Dh
j

� �
¼ x 2 Uh;tj x½ �cgl;t1 #Dh

j _ x½ �cgl;t2 #Dh
j _ . . . _ x½ �cgl;tq #Dh

j

n o
;

Xq
i¼1

cgl;t
i

O Dh
j

� �
¼�

Xq
i¼1

cgl;t
i

O � Dh
j

� �
:

ð27Þ
where Un;t ¼ U;Uh�1;t ¼Pm
i¼1cg

l;t
i

O Dh
j

� �
�Pm

i¼1cg
l;t
i

O Dh
j

� �
is the gradually reduced universe, q represents the maximum num-

ber of parallel condition granule sets, and x½ �cgl;t
i
1 6 i 6 qð Þ represents the equivalence class containing x in the partition

Uh;t=cgl;t
i .

The pair <
Pq

i¼1cg
l;t
i

O Dh
j

� �
;
Pq

i¼1cg
l;t
i

O Dh
j

� �
>is called the optimistic generalized hierarchical rough set of Dh

j with respect to

the set of condition granules cg in Uh;t .

Definition 16. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure GSl;t

= {cgl;t1 ; cg
l;t
2 ; . . . ; cgl;tq }, then the lower and upper approximations of the pessimistic multi-granulation generalized hierarchical

decision with respect to Dh
j are defined as
Xq
i¼1

cgl;t
i

P Dh
j

� �
¼ x 2 Uh;tj x½ �cgl;t

1
#Dh

j ^ x½ �cgl;t
2
#Dh

j ^ . . . ^ x½ �cgl;tq #Dh
j

n o
;

Xq
i¼1

cgl;t
i

P Dh
j

� �
¼�

Xq
i¼1

cgl;t
i

P � Dh
j

� �
:

ð28Þ
where Un;t ¼ U;Uh�1 ¼Pq
i¼1cg

l;t
i

P Dh
j

� �
�Pq

i¼1cg
l;t
i

P Dh
j

� �
is the gradually reduced universe, q represents the maximal number

of parallel condition granule sets, and x½ �cgl;t
i
1 6 i 6 qð Þ denotes the equivalence class containing x in the partition Uh;t=cgl;t

i .
Proposition 9. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure

GSl;t = {cgl;t
1 ; cg

l;t
2 ; . . . ; cg

l;t
q }, if 8Dh0

j #Dh
j #U, then
Xq
i¼1

cgl;t
i
D Dh

j

� �
	
Xq
i¼1

cgl;t
i
D Dh0

j

� �
;
Xq
i¼1

cgl;t
i
D Dh

j

� �
#
Xq
i¼1

cgl;t
i
D Dh0

j

� �
; ð29Þ

Xq
i¼1

cgl;t
i
D ph

D

� � 	Xq
i¼1

cgl;t
i
D ph0

D

� �
;
Xq
i¼1

cgl;t
i
D ph

D

� �
#
Xq
i¼1

cgl;t
i
D ph0

D

� �
: ð30Þ
Proof. According to Proposition 7, it obviously holds true. �.

Proposition 9 shows that the higher the levels of decision granules, the smaller the lower approximation while the bigger
the upper approximation.

Proposition 10. Given a generalized hierarchical decision table GH, a decision class Dh
j and a multilevel granular structure

GSl;t = {cgl;t1 ; cg
l;t
2 ; . . . ; cg

l;t
q }, then the following properties hold:

(1) POSDGSl;t Dn
j

� �
# POSDGSl;t Dn�1

j

� �
# . . . # POSDGSl;t D1

j

� �
;
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(2) BNDD
GSl;t Dn

j

� �
	 BNDD

GSl;t Dn�1
j

� �
	 . . . 	 BNDD

GSl;t D1
j

� �
;

(3) NEGD
GSl;t Dn

j

� �
#NEGD

GSl;t Dn�1
j

� �
# . . . #NEGD

GSl;t D1
j

� �
;

(4) POSDGSl;t p
n
D

� �
# POSDGSl;t p

n�1
D

� �
# . . . # POSDGSl;t p

1
D

� �
;

(5) BNDD
GSl;t p

n
D

� � 	 BNDD
GSl;t p

n�1
D

� � 	 . . . 	 BNDD
GSl;t p

1
D

� �
.

Proof. According to Proposition 9, it is clear that Proposition 10 holds true. �.
In what follows, we construct an algorithm to compute the three probabilistic regions of multigranulation sequential

three-way decisions under different levels of multi-granularity as shown in Algorithm3. The main idea of Algorithm3 is
to first delete the objects belonging to the positive region under the maximum level of granularity and then obtain the
updated region Un�1;t = BND4

GSl;t p
n
D

� �
. For the updated region Un�1;t , delete the objects belonging to the positive region at

the next level of granularity, and repeat these steps until the updated universe becomes an empty set or no level of granu-

larity can be computed. It is easy to observe that the time complexity of Algorithm3 is O n
Pq

i¼1cgijUj2
� �

.

Algorithm3: Computing the regions of decision granule level descension under different multi-granulation sequential
three-way decisions.

Example 3. Consider a universe set of objects U2;t = {x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12}, t = 2, U=D1 = p1
D =

{{x1; x2; x3; x4; x6; x7; x8; x11},{x5; x10; x12}, {x9}}, U=D
2 = p2

D = {{x1; x4; x8}, {x2; x3; x6; x7; x11}, {x10; x12g; x5f g; x9f }}, and a granular

structure GS2;2 = {cg2;21 ; cg2;22 ; cg2;23 }.

(1) For the granular structure GS2;2, the positive and boundary regions with respect to p2
D are computed as

POSOGS2;2 p2
D

� �
= {x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12}, BND

O
GS2;2 p2

D

� �
= £;

POSPGS2;2 p2
D

� �
= {x3; x4; x8; x9; x11}; BND

P
GS2;2 p2

D

� �
= {x1; x2; x5; x6; x7; x10; x12}.

(2) For the granular structure GS2;2, the positive and boundary regions with respect to p1
D are computed as.

POSOGS2;2 p1
D

� �
= £;

BNDO
GS2;2 p1

D

� �
= £;

POSPGS2;2 p1
D

� �
= {x1; x5; x6};

BNDP
GS2;2 p1

D

� �
= {x2; x7; x10; x12}.

Therefore, we can have POSOGS2;2 ph
D

� �
= POSOGS2;2 p2

D

� � [ POSOGS2;2 p1
D

� �
= {x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12}, BND

O
GS2;2 ph

D

� �
=

BNDO
GS2;2 p2

D

� �� POSOGS2;2 p1
D

� �
= £; POSPGS2;2 ph

D

� �
= POSPGS2;2 p2

D

� � [ POSPGS2;2 p1
D

� �
= {x1; x3; x4; x5; x6; x8; x9; x11}, BNDP

GS2;2 ph
D

� �
=

BNDP
GS2;2 p2

D

� �� POSPGS2;2 p1
D

� �
= {x2; x7; x10; x12}.
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6. Experiments and analysis

6.1. Data sets

In order to evaluate our models, we perform some experiments on a personal computer with windows 10, 1.8 GHz CPU
and 8 GB memory. The software is IntelliJ idea 2017.3. The following experiments mainly compare the size of regions under
different levels of granularity. For convenience, we abbreviate the optimistic and pessimistic generalized hierarchical multi-
granulation sequential three-way decisions as OGHMS3WD and PGHMS3WD, respectively. The characteristics of the six
datasets are described in Table 3. The numbers of decision granules in the dataset are shown in Table 4.

It is worth mentioning that we need to preprocess the dataset. We delete the 1st, 18th to 24th and 26th to 28th attributes
in Fars because these are also not relevant to the fatal accident results. Then, we use Rosetta software (http://www.lcb.uu.
se/tools/rosetta/) to convert the continuous data to discrete values. Finally, we construct the concept hierarchy tree and
stratify the experimental data by general social cognition (some information from Baidu Encyclopedia).

6.2. Comparison of the positive regions under different levels of granularity

In what follows, we compute the number of the positive regions and analyze the uncertainty of the boundary regions of
the generalized hierarchical sequential three-way decisions. For convenience, we use OClDh and PClDh l ¼ 1;2;3;h ¼ 1;2;3ð Þ
to denote the optimistic and pessimistic strategies to select the condition granules at the l-th level and the decision granules
at the h-th level, respectively. Due to space limitations, we only show the change of the number of the positive regions at the
second level of condition granules and decision granules. Figs. 5 and 6 illustrate the changes of the numbers of the positive
regions. By observing the numbers of the positive regions from different hierarchical sequential three-way decision models,
we can conclude as follows:


; The positive regions will become enlarge as the levels of condition granules increase, indicating that the probabilistic
positive region is monotonic.


; The positive regions grow with the decreasing level of decision granules, indicating that the generalization of decision
granules are conducive to the division of positive regions.


; The positive regions increase monotonically with the ascending number of attributes.

6.3. Comparison of uncertainty of the boundary regions under different levels of granularity

We employ the deferment rate to evaluate the quality of the probabilistic boundary regions under different sequential
three-way decisions as follows:
Table 3
Descrip

No.

1
2
3
4
5
6

Table 4
Descrip

No.

1
2
3
4
5
6

DRl;h;t ¼ jBNDD
GSl;t p

h
D

� �j
jUj : ð31Þ
tion of the datasets.

Dataset jUj jCj jVdj
Abalone 4177 8 28

Deal winequality red 1599 11 6
Fars 100968 14 8
Glass 214 9 6

Marketing 6876 6 9
Obesity 2111 16 7

tion of the decision granules.

Datasets Attributes Decision attributes under different levels
Level-1 Level-2 Level-3

Abalone 28 5 9 28
Deal winequality red 6 2 4 6
Fars 8 5 6 8
Glass 6 2 3 6
Marketing 9 2 3 9
Obesity 7 3 4 7
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Fig. 5. Positive regions under different levels of condition granules and the second level of decision granules.

Fig. 6. Positive regions under different levels of decision granules and the second level of condition granules.
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The experiment results of variation of deferment rate on six data sets under different levels of condition granules and
decision granules are shown in Figs. 7 and 8. From the two figures, we can observe the changes of deferment rates as follows.


; The boundary region reduces monotonically with the increasing levels of condition granules or decreasing levels of
decision granules.


; The boundary region reduces monotonically with the ascending number of attributes.
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Fig. 7. Uncertainty of the boundary regions under different levels of condition granules and the second level of decision granules.

Fig. 8. Uncertainty of the boundary regions under different levels of decision granules and the second level of condition granules.

J. Qian, C. Hong, Y. Yu et al. Information Sciences 616 (2022) 66–87
6.4. Comparison of the positive and boundary regions under different levels of granularity

In this subsection, we mainly compare the number of positive regions under different strategies and levels of granularity.
For convenience, ODGl and PDGl denote the decision granules at level l under the optimistic strategy and the pessimistic

strategy, respectively. Figs. 9 and 10 illustrate the changes of the positive and boundary regions under different levels of con-
dition granules and decision granules using optimistic and pessimistic strategies, where the subgraphs (I) ! (II) ! (III)
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Fig. 9. OGHMS3WD under different levels of condition granules on Marketing.

Fig. 10. PGHMS3WD under different levels of condition granules on Marketing.
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denote the cases of the first, second and third levels of condition granules under the same level of decision granules, respec-
tively. One can observe that the higher the condition granule levels the larger the size of the positive regions. Figs. 11 and 12
illustrate the changes of the positive and boundary regions under different levels of decision granules using different strate-
gies as well, where the subgraphs (I)! (II)! (III) represent the cases of the third, second and first levels of decision granules
under the same level of condition granules, respectively. Further, one can find that the positive regions increase as the levels
84



Fig. 11. OGHMS3WD under different levels of decision granules on Marketing.

Fig. 12. PGHMS3WD under different levels of decision granules on Marketing.
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of decision granules decreases. For Marketing, we construct six condition granules based on the number of conditional attri-
butes and find that the positive region increases with the ascending number of attributes, which is because the more the
number of attributes, and the more the number of objects induced by the positive regions.
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7. Conclusions

In this paper, we propose a generalized hierarchical multi-granulation sequential three-way decision model for hierarchi-
cal classification. With this framework, we design the condition (attribute) granules and decision granules at different levels
of granularity, integrate the generalized hierarchical decision tables and multigranulation rough set into sequential three-
way decisions, and further analyze the properties and relationships of the three probabilistic regions under different multi-
granulation sequential three-way decisions. It provides a novel insight from the perspective of multi-level and multi-view
for the existing models.

In the future work, we will focus on the uncertainty and attribute reduction of this generalized hierarchical multigran-
ulation sequential three-way decision model.
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