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shadowed sets are utilized to implement the machine learning methods for uncertain data
analysis. The extant uncertain machine learning methods with shadowed sets include the
unsupervised clustering on only unlabeled data and the supervised classification on only
labeled data. However, for the partial labeled data containing both labeled and unlabeled

. . data instances, the studies of uncertain learning methods with shadowed sets are very lim-
Semi-supervised shadowed sets . .. . . . . .
Three-way classification ited. Aiming at the .requlrement, in this paper, we propose a nove! seml-st_lpeersed shad-
Partial labeled data owed set on partial labeled data and thereby construct semi-supervised shadowed
neighborhoods to implement the three-way classification of uncertain data. To construct
the semi-supervised shadowed set, we reformulate the objective function of shadowed
sets, in which the membership loss in fuzzy-rough transformation is weighted by labeled
and unlabeled data. We also analyze the influence of labeled data to the shadowed set con-
struction. Experiments validate that the proposed three-way classification method with
semi-supervised shadowed sets is effective to utilize partial labeled data to achieve low-
risk uncertain data classification.
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1. Introduction

As an important paradigm of granular computing [1,2], Shadowed Sets provide an effective tool to model and process the
data with uncertainty [3]. Based on the fuzzy-rough transformation, shadowed sets are constructed through mapping fuzzy
memberships into a triplet set {0, [0, 1], 1}. With the triple elements of shadowed sets, a fuzzy concept is tri-partitioned to
form a rough representation which consists of certain positive region (denoted by 1), certain negative region (denoted by 0),
and uncertain shadow region (denoted by [0, 1]) [4,5]. As to the superiority of uncertain data analysis, shadowed sets have
been widely applied in data mining [6,7], decision support systems [8,9] and image analysis [10,11].

By exploring a common tri-partitioning methodology of various kinds of soft computing models including fuzzy sets,
rough sets, interval sets, many-valued logic, etc., Yao proposed Three-Way Decision (3WD) theory to construct a common
framework of uncertain decision making [12]. According to the 3WD theory, the decision domain will be divided into pos-
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itive, negative and boundary regions, which denote the ternary options of acceptance, rejection, and uncertain case respec-
tively [13]. In general, shadowed sets can be considered as a three-way approximation of fuzzy sets through the fuzzy-rough
transformation [14]. Therefore, it is natural to utilize shadowed sets to implement three-way decision models. Based on the
principles of minimum distance and least decision cost, Yao proposed an optimization-based framework to construct three-
way approximations of fuzzy sets to implement the shadowed sets for uncertain decision making [5]. Zhou further investi-
gated the mathematical properties of Yao’s optimization objective function and thereby proposed the constraints for three-
way approximation of fuzzy sets and implemented a constructive algorithm to generate the optimal membership threshold
of shadowed sets [15]. Yao and Zhang proposed a game-theoretic approach to form shadowed sets from the three-way trade-
off perspective based on game theory [16]. Campagner and Zhang proposed the strategies to compute the optimal threshold
for tri-partitioning fuzzy memberships to form shadowed sets based on information entropies [17,18].

Through combining with machine learning methods, shadowed sets have been used to implement three-way clustering
and classification methods for uncertain data analysis. Based on the fuzzy-rough transformation of fuzzy memberships of
clusters, shadowed clustering was proposed as a uniform framework to bridge between fuzzy clustering [19,20] and rough
clustering [21]. Mitra proposed a shadowed C-means algorithm that integrates fuzzy and rough clustering [22]. Zhou pro-
posed a rough-fuzzy clustering method based on shadowed sets, in which the certain and uncertain regions of clusters
are determined through optimizing the shadow thresholds [23]. For the uncertain data classification, Yue extended the
neighborhoods with shadowed sets to model uncertain data and thereby designed a three-way classification method based
on the shadowed neighborhoods [24]. Moreover, a strategy for accelerating shadowed set construction was proposed to
improve the efficiency of the classification methods based on shadowed sets [25].

Although shadowed sets have been widely used in machine learning for uncertain data analysis, the existing studies focus
on either unsupervised shadowed clustering of unlabeled data or supervised uncertain classification of labeled data. For par-
ticular classification tasks, e.g. medical image classifications, it is difficult to obtain sufficient labeled data for training clas-
sifiers [26,27]. The strategy of semi-supervised learning is required to combine limited labeled data with a large amount of
unlabeled data to build up the classifiers [28,29]. The semi-supervised classification methods can utilize both labeled and
unlabeled data to improve the classification performances and in the meantime reduce the dependence of data labeling
[30]. However, for the partial labeled data, the semi-supervised uncertain classification method based on shadowed sets
is still lacked. Aiming to overcome the shortage, in this paper, we propose a novel semi-supervised shadowed set on partial
labeled data and construct semi-supervised shadowed neighborhoods to implement three-way classification of uncertain
data. The contributions of this article are summarized as follows.

1. Propose semi-supervised shadowed sets on partial labeled data. We construct the objective function of semi-supervised
shadowed sets, in which the membership loss of fuzzy-rough transformation is weighted by labeled and unlabeled data.
Through minimizing the objective function of membership loss involving partial class label information, we obtain the
optimal membership threshold to keep the shadowed set formulation consistent with the labeled data.

2. Utilize semi-supervised shadowed sets to construct semi-supervised shadowed neighborhoods. We initially build up semi-
supervised fuzzy neighborhoods with semi-supervised fuzzy clustering. Based on this, we transform the fuzzy neighbor-
hoods to semi-supervised shadowed neighborhoods through constructing the semi-supervised shadowed sets on fuzzy
neighborhood memberships. The partition of certain and uncertain regions in the semi-supervised shadowed neighbor-
hoods will be influenced by partial labeled data.

3. Implement a three-way classification method for partial labeled data based on semi-supervised shadowed neighborhoods. For
an unknown data instance, according to its memberships to neighborhoods, we can determine the region location of the
data instance respect to all shadowed neighborhoods. Considering different situations of instance locations, we design the
groups of three-way classification rules within and beyond neighborhoods respectively to classify the data instance into a
certain class or uncertain case.

The remainder of this paper is organized as follows. Section 2 introduces the related works of shadowed sets and three-way
decisions. In Section 3, we propose a novel semi-supervised shadowed set and also analyze the influence caused by partial
labeled data to the construction of shadowed sets. Section 4 introduces the method of constructing the semi-supervised
shadowed neighborhoods and the corresponding three-way classification algorithm. In Section 5, experimental results val-
idate that the proposed three-way classification method with semi-supervised shadowed neighborhoods is effective to han-
dle partial labeled data. The work conclusion is given in Section 6.

2. Related work
2.1. Foundation of shadowed sets

Shadowed sets are constructed based on fuzzy sets through the fuzzy-rough transformation [31,32]. Suppose a discrete
fuzzy set for a concept F = {(x;, it;) }(i=1,2,...,N), i; is the fuzzy membership value of the data instance x; . Transforming
the fuzzy set into a shadowed set, the fuzzy membership values of data instances are mapping into a triplet set {0, [0,1],1}
based on uncertainty variation. In the tripartition of fuzzy memberships, the low fuzzy memberships no more than the
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threshold « will be reduced to the certain negative membership 0, the high memberships no less than (1 — o) will be ele-
vated to the certain positive membership 1, and the uncertain instances whose fuzzy memberships locating in the interval
(o, 1 — o) constitute the shadow region. The uncertainty of a shadowed set is represented by the number of the uncertain
instances in the shadow region and the variation of uncertainty in constructing a shadowed set is illustrated in Fig. 1. Given
a fuzzy set, the shadow threshold « determines the shadowed set construction and is computed through optimizing the fol-
lowing objective of uncertainty variation [3], (See Fig. 2)

Vi) =S+ S (1 —p)— card (). (1)

I w0 o< py<1-o

The uncertainty variation V() consists of the uncertainty decrement in the certain regions and the uncertainty increment in
the uncertain shadow region. With the tradeoff between the uncertainty decrement and increment, V(o) can be also consid-
ered as the measure of fuzzy membership loss in shadowed set construction. The optimal threshold parameter o* should
achieve the balance between the uncertain shadow region and certain regions through minimizing the membership loss
V().

For different data analysis tasks, the traditional shadowed set model has been widely extended. Yao summarized the prin-
ciples to construct shadowed sets including the strategies of minimizing distance and cost [5]. Tahayori et al. represented the
fuzziness of a fuzzy set as a gradual number and determined the shadow threshold in shadowed set construction through
defuzzification of the gradual number [14]. Zhang and Yao applied a principle of tradeoff with games in order to determine
the thresholds of three-way approximations in the shadowed set context [16]. Zhou proposed a constrained shadowed sets
to implement a fast optimization algorithm to compute the thresholds for constructing shadowed sets [25]. Zhang et al. pro-
posed a interval shadowed set model based on fuzzy entropy [7] and combined the fuzzy entropy with game theory to con-
struct fuzzy-entropy game theoretic shadowed sets from the perspective of fuzzy entropy loss [18]. Gao et al. adopted the
mean entropy as the basis of uncertainty measure to construct shadowed sets [33]. To make shadowed sets suitable for
uncertain data classification, we reformulated the objective function of shadowed set as follows [24].

Ve =z-|d m+ > (1-w)|+ > 10.5-p 2)

Hi<o = (1-o) a<pi<l—o

The first part of the objective function denotes the membership loss in the certain region and the second part denotes the
membership loss in uncertain region. The parameter /. is a balance factor that make a tradeoff between the two parts of
membership loss.

In addition to the extension of shadowed set model, shadowed sets have been used to implement machine learning meth-
ods to handle the uncertainty in data analysis applications. Based on the tripartition structure of shadowed sets, fuzzy clus-
tering and rough clustering were represented in a uniform framework of shadowed clustering and the thresholds for
partitioning the certain and uncertain regions of clusters were determined through optimizing the shadowed sets [22,34].
In [6], four kinds of shadowed sets were constructed for linguistic word modeling based on surveyed interval data. He
et al. proposed an extended TODIM method based on shadowed sets to solve large-scale group decision making problem

Membership p1,(x)

uncertaiyregion

|

X, X, Instances

elimination of uncertainty

X

Fig. 1. Uncertainty variation in constructing a shadowed set based on a fuzzy set.
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Fig. 2. Illustration of Theorem 1, (a) the original partition of shadowed set in which x of the same class as concept locates in the negative region, (b) the
partition of shadowed set is adjusted to transfer x from the negative region to shadow region through minimizing membership loss.

with linguistic information [9]. In [10], a shadowed-set-based image retrieval algorithm was proposed and the shadowed
sets were used to automatically determine the shadowed regions of image content for image retrieval. Moreover, shadowed
sets were also used to construct recommender system for three-way recommendation, which facilitates to reduce the deci-
sion risk in recommendation [8].

In general, extant machine learning methods based on shadowed sets focused on the topics of supervised and unsuper-
vised learning, such as the classification with full labeled data and the clustering without class labels. For partial labeled data,
it is required to extend the shadowed set model to implement the semi-supervised learning method to handle the uncertain
data.

2.2. Methodology of three-way decisions

Three-Way Decision methodology (3WD) is an extension of binary-decision model through adding a third option [12]. A
universal set will be divided into Positive region, Negative region and Boundary region, which denote the regions of accep-
tance, rejection and non-commitment for ternary classification [13]. The three-way decision models are formulated through
thresholding the ordered evaluation of acceptance and are implemented based on the common tri-partitioning property of
many soft computing models, such as Interval Sets, Rough Sets, Fuzzy Sets and Shadowed Sets.

Suppose (L, <) is an ordered set of evaluation values, in which <is a total order. For two thresholds o < 8, suppose the set
of the values for acceptance is given by L™ = {t € L|t=u}and the set for rejection is L~ = {b € L|b=<p}. For an evaluation func-
tion v : U — L, the Positive, Negative and Boundary regions are defined as

POS,4(v) = {x € Ulv(x)=a},
NEG, 4(v) = {x € Ulv(x)<p}, 3)
BND,, s(v) = {x € Ul < v(X) < B}

By measuring the uncertainty of data in classification and abstain the instances with high uncertainty, three-way decision
methodology has been combined with various kinds of machine learning methods to implement the three-way learning
for uncertain data analysis, such as three-way sequential rule learning [35,36], uncertain clustering [37,38], cost-sensitive
classification [39-41], three-way active learning [42] and etc. Through deferring the decision making of uncertain cases,
the three-way learning methods facilitate to reduce the decision risk in decision support systems, such as the medical diag-
nosis systems [43,44].

Although the methodology of three-way decisions has been investigated in many areas, its applications in the semi-
supervised learning on partial labeled data are still limited. Gao et al. proposed a three-way strategy to partition the unla-
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beled data into useful, useless and uncertain data and transferred the useful unlabeled data to the co-training model for
pseudo labeling to improve the classification on partial labeled data [45]. Aiming at the limitation of three-way decisions
on partial labeled data, in this paper, we directly formulate the semi-supervised shadowed set on partial labeled data and
thereby construct the semi-supervised shadowed neighborhoods to implement the three-way classification method. The
proposed method utilizes both numerous unlabeled data and a limited number of labeled data instances to form the certain
and uncertain decision regions for classification and builds up an effective semi-supervised three-way classifier on partial
labeled data.

3. Semi-supervised shadowed sets
3.1. Constructing semi-supervised shadowed sets with partially labeled data

Considering the partial labeled data in computing fuzzy memberships, we extend the shadowed sets in [24] to semi-
supervised ones. The partial label information will influence the threshold values of shadowed sets and thereby change
the partition of certain and uncertain shadow regions. The objective function of semi-supervised shadowed set is formulated
as

V(o) = Z OX)U(x) + Z oOx)(1 — pu(x))+ (4)
<o LX) > 12

S 0(x)[05 - ux),

o< p(x)<(1-a)

where o(x) is a coefficient function and « € [0,0.5] is the partition threshold parameter of semi-supervised shadowed set.
V(o) indicates the membership loss of constructing shadowed sets and consists of three parts, the first two parts denote
the membership loss of certain regions, and the third part denotes the membership loss of uncertain region. According to
the threshold o, the memberships of data instances belonging to a concept will be partitioned into three regions: the positive
region represented by the enhanced membership grade 1, the negative region represented by the decreased membership
grade 0, and the boundary region represented by the typical membership grade 0.5, which has the greatest uncertainty.

Different from the traditional shadowed sets constructed based on only fuzzy memberships, the semi-supervised shad-
owed sets are constructed based on both fuzzy memberships and class labels of data. Comparing with the objective functions
of the traditional shadowed sets, see Egs. (1) and (2), the objective function of Eq. (4) is formulated with the fuzzy member-
ship p(x) and the coefficient function w(x) that contains the class label information. The coefficient function w(x) is defined
as

o) =1+I(x) « ¥Y(x), (5)
where I(x) is an indicator function to indicate whether the data instance x is labeled or not and whether the class label of the
instance is consistent with the class of concept,

0, if xis unlabeled,
I(x) =4 1, label(x) = label(concept), (6)
—1, label(x) # label(concept).

W (x) is the penalty function to denote the degree of the influence caused by the labeled data in different regions of shadowed
sets,

—l,ﬂ(x) = 1- o,
Yx) =< o< pux) <1-a, (7)
A M(X) < 0.

The penalty factor 4 is a positive constant. Without considering the class label of data, Vx, I(x) = 0, w(x) = 1, and the objective
function of the semi-supervised shadowed sets returns to

Vi)=Y p@+ > I-px)+ D [05-uX), 8)
ux)<o

Hx)=1-o o< p(x)<(1—0t)

which is same as the objective function of the traditional shadowed set presented by Eq. (2).

With the objective function containing fuzzy memberships and class labels, the construction of semi-supervised shad-
owed sets utilizes both the unlabeled data and labeled data. Next we provide an example to further interpret the differences
between the objective functions of the traditional shadowed sets and the proposed semi-supervised one.

Case study. Given a fuzzy set F = {M 03 05 07 @} of a concept C and setting the threshold « = 0.2, we can partition the

X] ' Xy ' X3 ) Xq4 ) Xs
fuzzy set into three subsets Fy = {%} Fs = % , %‘ , %},Fp = {%} to denote the negative region, shadow region and positive

region respectively. Suppose the data instances {X1,X>,X3,X4,Xs} are partial labeled, we only know the class label of xs and

1376



X.D. Yue, S.W. Liu, Q. Qian et al. Information Sciences 607 (2022) 1372-1390

class(xs) # class(C). Setting /. = 1, according to the objective functions of different shadowed sets, we can compute the mem-
bership losses as follows.

e Eq. (1) of the shadowed set in [3]:

(Vi =101+ (1-0.9) — card{Fs}| =10.1+0.1 — 3| =2.8.
e Eq. (2) of the shadowed set in [24]:

Vo =01+ (1-09)+[05-03|+[05—0.5|+[05—0.7| = 0.6.

e Eq. (4) of the semi-supervised shadowed set:

I(x1) =1(x2) =1(x3) =1(x4) =0, I(X5) = —-1,¥(x2) =¥(x3) =¥(x4) =0.5, ¥Y(x1)=1, Y(x5)=-1,0(x1)
=0x)=0k)=0X) =1, okx)=1+(-1)x(-1)=2,V;
—1x01+2x(1-09)+1x(|0.5-0.3]+0.5—0.5] + 05— 0.7]) = 0.7.

We can find that the measure of fuzzy membership loss induced by V; is much coarser than V;, V3. Moreover, V; and V,
of the traditional shadowed sets depend on only fuzzy memberships without considering class labels, which make the
shadowed set construction independent to the labeled data. In contrast, the objective function V5 of semi-supervised
shadowed set is computed based on both memberships and coefficient function of class label and thereby involves the
class information of partial labeled data into the shadowed set construction. As shown in the example, if a labeled data
instance having different class with the concept but is partitioned into the positive region by the threshold, comparing
with V5, the function V3 of semi-supervised shadowed set will generate higher loss to indicate the improper region
partition.

Through minimizing the Eq. 4 of fuzzy membership loss with class label information, we can obtain the optimal threshold
%ope to construct the semi-supervised shadowed set.

tlope = argMin(V («)). 9)

To solve the objective function, we update the threshold « to «’ and adopt the updated membership loss V(«') — V(a) as the
discrete gradient to search o,y by gradient descent.

Different from the shadowed sets without considering class labels, in the construction of semi-supervised shadowed sets,
the class label information will influence the computation of membership loss. For a data instance x having a class label same
as the concept, I(x) = 1, suppose the membership loss of the single instance is V (o, x), we infer the following three situations.

o If the labeled data x is in the positive region of the concept, this confirms the positive region of concept certainly belong-
ing to the class. We have W(x)=-i,w(x)=1-24, and the membership loss of x will be reduced to
V(o,x) = (1 —2)(1 = u(x)) < (1 — p(x)). The correct class label information reduces the loss of constructing shadowed
sets.

o If the labeled data x is in the boundary region of concept, ¥(x) = —1 4, the labeled data is considered as an uncertain case
by the shadowed set induced by threshold «. The membership loss of data x induced by shadowed set is denoted as
(1-17)]0.5— u(x)| < 10.5 — u(x)|, which means the labeled data in uncertain region reduces the membership loss in con-
structing shadowed sets.

o If the labeled data x is in the negative region of concept, x is considered certainly not belonging to the concept, which
contradicts the consistency between the class label of x and the concept class. The penalty function ¥(x) = 4 and
o(x) =1+ 1 lead to the membership loss (1 + 2)u(x) > p(x). This means the data in concept negative region but having
same class with the concept will increase the membership loss in constructing shadowed sets.

For a data instance x having a class label different from the concept, I(x) = —1, we can also analyze the membership loss of
instance V(«,x) in the following three situations.

e When the labeled data x locates in the positive region of a concept with different class, this means the shadowed set par-
titions a wrong data instance into the certain positive region. In this case, the membership loss of x is
(1+24)(1 — u(x)) > 1 — u(x) and the incorrect class label increases the loss of constructing shadowed sets.

e When the labeled data x is in the boundary region of a concept with different class, the membership loss of x is
(1+124)[0.5— u(x)| > 10.5 — u(x)|. The inconsistent class label increases the membership loss of uncertain shadow region.

e When the labeled data x is in the negative region of a concept with different class. The different class label confirms that x
does not belong to the concept and reduces the membership loss of negative region (1 — 2)u(x) < u(x).
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Comparing with the traditional shadowed sets without considering the class label of data, in the semi-supervised shadowed
sets, the partial labeled data will influence the calculation of weights w(x) and thereby adjust the membership loss of pos-
itive, negative and boundary region in shadowed set construction. According to this, we can optimize the threshold « of
shadowed sets based on the class label information of data instances.

3.2. Theoretical analysis of semi-supervised shadowed sets

Different from the traditional shadowed sets that are constructed based on the data without class labels, in the semi-
supervised shadowed sets, the partial data instances with class labels will influence the construction of shadowed sets.
For example, when a data instance whose class label is same as the concept but locates in the negative region of the shad-
owed set, this indicates that the partition of the shadowed set is improper and the threshold parameter should be adjusted.
Constructing a shadowed set on unlabeled data, we obtain the initial shadow threshold o through minimizing Eq. (8). Setting
an data instance x as a labeled one in the shadowed set, x will adjust the initial shadow threshold and influence the construc-
tion of semi-supervised shadowed set.

The following theorems demonstrate the influences caused by a labeled data instance to the region partition of shadowed
sets. Assume the labeled data instance will update the shadow threshold « to o/, we will infer that changing the threshold in
a range will reduce the loss of shadowed set construction, i.e. V(&) > V(o) to prove the influence. According to the class label
and the region location of the labeled data instance, we analyze the influences in four scenarios.

Theorem 1. For a labeled data instance x having the same class label as the concept, when x locates in the negative region
H(X) € [ — Au, o), Au is a small positive number, if the initial shadow threshold o > £+, the threshold will be reduced to enlarge
the shadow region and include x into uncertain shadow region to minimize the membership loss V(o).

Proof. Suppose the initial threshold of shadowed set is «, the updated threshold to transfer x from negative region into sha-
dow region is o and o < u(x) < o, according to (4), we have

V(@) = ViEr) = (14 Do) - (143) 05 - o) (10
- 2+ Pt -2
=2+¥)(0—Lu) -2
~(2+%)a -2

If o > 2%, we infer that

, 30\(2+42) 242 N(244\ 244 (8+6\[2+.\ 2+
V(a)_v(a)><2+7)<8+62>_T’<2+7><8+6},>_ 1 *< g ><8+62>_ gz 0 (I

Thus we obtain V(a) — V(a) > 0 and prove that « will be reduced to o’ to minimize the membership loss V().

Theorem 2. For a labeled data instance x having the same class label as the concept, when x locates in the shadow region
u(x) € [1 —a—Au,1—a], Au is a small positive number, if the initial shadow threshold o < 2, the threshold will increase to
shrink the shadow region and transfer x into certain positive region to minimize the membership loss V().

Proof. Suppose the threshold of shadowed set is o, the increased threshold to transfer x from shadow region into positive
region is o/, > o and 1 — o < pu(x) < 1 — a, according to (4), we have

V() Vi) = (1) (160 - 05) = (1= 2)(1 - i) (12)

— @t + -3
~(@-9(-a-su+ (G-
~@-9a-0+E-):

22 we infer that
— L/

v (- (1-858) (59 (- -55) (-3
_ <8 :12).) <g:;j> n (3/1; 6) —0 (13)

Thus we have V(a) — V(o) > 0 and prove that « will increase to o’ to minimize the membership loss V(«).

If <
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Theorem 3. For a labeled data instance x having the class label different from the concept, when x is in the shadow region

WU(X) € [0, o0 + Aul, Au is a small positive number, if the initial shadow threshold o > 2%, the threshold o will increase to shrink

the shadow region and transfer x into negative region to minimize the membership loss V(o).

Proof. Suppose the threshold of shadowed set is «, the increased threshold to transfer x from shadow region into negative
region is o, o > o and o < p(x) < o/, according to (4), we have

V() = V(o) = <1 - %) (0.5 — u(x) = (1 = u(x) (14)
- (-2 +
=& -2)(a+Au) + 3
~ -2+
If o > 24, we infer that
v —ven > (3-2) (5=, 157 (7 -2) (=) o - O () v 570 o)

Thus V(a) — V(o) > 0 and we prove that o will increase to o’ to minimize the membership loss V(«).

Theorem 4. For a labeled data instance x having the class label different from the concept, when x is in the positive region
u(x) € [1—o,1— o+ Auj, Au is a small positive number, if the initial shadow threshold o > 25, the threshold will decrease to
enlarge the shadow region and include x into shadow region to minimize the membership loss V(o).

Proof. Suppose the threshold of shadowed set is «, the reduced threshold to transfer x from the positive region into shadow
isa/,of <o—Auand of < p(x) < 1—o+ Au < 1— o, according to (4), we have

V() V) = (14 (1 - () - (1-5) ) - 05) (16)
=(F+3) - (2+5)ux)
=+ -2+ -o+Au)
~ (43 - (2+5H1 - ).

If oo > 25, we infer that

, 32 3 ) 2—-2\/32 3 2 2-7
v v > (F3) - (2+3) (g53) (G +2) - (2+2) (1 -572)
31+6 8422\ (6+34

‘( 4 )_( 4 ><8+2z>‘0' (a7

We obtain that V(o) — V(o) > 0 and o will decrease to minimize V(o).
From the theorems above, we know that comparing with the traditional shadowed set without class label information, in
the semi-supervised shadowed set, the partial labeled data instances will help to further optimize the threshold parameter o
and thereby adjust the partition of shadowed set to minimize the membership loss. The influence caused by the labeled data

to the shadowed set construction is illustrated in Fig. 3. Referring to the theorems, under specific conditions, adding a labeled
data instance will update the region partition of the shadowed set constructed on unlabeled data.

4. Semi-supervised shadowed neighborhoods for three-way classification

Based on the semi-supervised shadowed sets, we can construct semi-supervised shadowed neighborhoods to implement
the three-way classification on partial labeled data. The workflow is similar to the uncertain classification with shadowed
neighborhoods [24]. First, we build up semi-supervised fuzzy neighborhoods by semi-supervised fuzzy clustering. Second,
we extend the fuzzy neighborhoods to semi-supervised shadowed neighborhoods through constructing semi-supervised
shadowed sets on the fuzzy memberships of neighborhoods. Finally, we design the three-way classification method with
semi-supervised shadowed neighborhoods.

4.1. Semi-supervised fuzzy neighborhoods

For the partial labeled data, referring to [46], we utilize a semi-supervised fuzzy clustering method to build up semi-
supervised fuzzy neighborhoods. Assuming the number of data instance is N and the data set can be partitioned into K clus-
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Fig. 3. The influence caused by the labeled instances to shadowed set construction. (a) Positive region, negative region and shadow region of a shadowed
set, (b) updated region partition of the shadowed set caused by labeled data.

ters, u, (x;) indicates the membership grade of a data instance x; belonging to cluster k, v, represents the prototype associated
with cluster k. The objective function of semi-supervised fuzzy clustering is defined as

K N

K N
JWUV) =373 (0™ 1% = vl + p > (i) — fuex:)) " [1x — el (18)
k=1 i=1

k=1 i=1

In the function, the first term is the objective of fuzzy C-means, the second one denotes the fuzzy cluster membership loss
with respect to the class labels of partial data, p is the factor to control the influence of labeled data. fi,(x;) in the second term

is the element of the matrix U and are iteratively computed as follows.

Q(F.U)

) (19)

Pue(xi) Y = fue(xi) Y — B

where t is the iteration counter, 8 is the learning rate and

2

~ H N
Q(F.U) =230 ( fu— D dulx) | - (20)
h=1 i=1

kemy,

1, x; islabeled,
Si=14 21
! { 0, otherwise, @n
denotes the data instance x; is labeled or not,
1, x; belongs to class h,
= 22
T { 0, otherwise, (22)

indicates that x; belongs to class h or not. For a cluster containing both labeled and unlabeled data, the class of the cluster is
determined depending on the majority class of the labeled data in it. 7, denotes the set of clusters belonging to class h. It is
natural to assume that a class can be partitioned into several clusters. Given H classes, for each class h, there are K, clusters in
it, we have

H
> Kn=K. (23)
h=1

Utilizing the above semi-supervised fuzzy clustering method, we can generate K clusters with partial class labels. Consider-
ing the fuzzy clusters as fuzzy neighborhoods, we can obtain K semi-supervised fuzzy neighborhoods in which each neigh-
borhood has a fuzzy membership distribution of labeled and unlabeled data instances.
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4.2. Semi-supervised shadowed neighborhoods

Based on the semi-supervised fuzzy neighborhoods, we can construct semi-supervised shadowed neighborhoods through
formulating the shadowed sets on the fuzzy memberships of neighborhoods, and the threshold parameter « for constructing
shadowed sets is computed according to (4), (9). Referring to the shadowed neighborhoods proposed in [24], for a data
instance x, its fuzzy membership belonging to the kth neighborhood p,(x) is thresholded and the neighborhood is partitioned
into three regions to form the shadowed neighborhood as

Me(x) < o0 = X € NEG,
o < W(X) <1—0 = xeBNDy, (24)
We(x) = 1 —a = x e POSy,

in which POS,, NEG, and BND, denote the certain positive region, certain negative region, and the uncertain boundary (sha-
dow region) of the shadowed neighborhood k respectively.

In Section 3, we analyze the influence of the labeled data to the construction of shadowed set, we can also obtain the sim-
ilar analysis results in constructing shadowed neighborhoods. When the partial labeled data have the same class as the
neighborhood, Fig. 4 shows the influences of the homogeneous labeled data (class label same as the neighborhood class)
to the construction of shadowed neighborhood. Fig. 4a shows a shadowed neighborhood constructed based on the data with-
out class labels. If the homogeneous labeled data locate in the negative region of shadowed neighborhood, the threshold o
will be reduced to enlarge the uncertain boundary to include the homogeneous data to minimize the membership loss,
which is consistent with Theorem 1. As to Theorem 2, if the homogeneous labeled data are in the boundary region of shad-
owed neighborhood, the threshold o will increase to reduce the uncertain boundary to transfer the labeled homogeneous
data from boundary to positive region.

Similarly, Fig. 5 illustrates the influences of the heterogeneous partial labeled data (class label different from the neigh-
borhood class) to the construction of shadowed neighborhood. As introduced in Theorem 3, if the heterogeneous labeled data
locate in the boundary region of shadowed neighborhood, the threshold o will increase to reduce the uncertain boundary to
exclude the heterogeneous data from the neighborhood. As to Theorem 4, if the heterogeneous labeled data are in the pos-
itive region of shadowed neighborhood, the threshold o will be reduced to enlarge the uncertain boundary to transfer the
heterogeneous data from positive region to boundary to minimize the membership loss.

We summarize the workflow of constructing semi-supervised shadowed neighborhoods on partial labeled data in the fol-
lowing algorithm.

Algorithm 1: Constructing semi-supervised shadowed neighborhoods on partial labeled data

Input: Data set X = {X,, X;} of n data instances, in which X, denotes unlabeled data and X; is the labeled data set;

Output: Semi-supervised shadowed neighborhoods on X,0 = {0y, ...,0,...,0k};

1: Utilize semi-supervised fuzzy clustering on X to construct K semi-supervised fuzzy neighborhoods according to (18)-
(22);

2: Determine the class of each neighborhood depending on the majority class of partial labeled data in the
neighborhood;

3: Compute the threshold parameter « of each fuzzy neighborhood according to (4), (9) and thereby tri-partition each
fuzzy neighborhood to form K shadowed neighborhoods {0,k =1, ... ,K};

4: Return the generated semi-supervised shadowed neighborhoods Oy, k =1,... K.

As presented in Algorithm 1, constructing shadowed neighborhoods mainly suffers the computational complexity caused
by semi-supervised fuzzy clustering and shadow threshold optimization. Given a partial labeled data set X and |X| = n, the
complexity of constructing K fuzzy neighborhoods based on semi-supervised clustering is O(I4, x K x n), I, is the iteration
times of clustering. For extending fuzzy neighborhoods to shadowed ones, we optimize the shadow threshold « for each
shadowed neighborhood, which needs O(Io,,t x K ) calculations, I is the iteration times of threshold parameter search. Thus
the computational complexity for constructing K semi-supervised shadowed neighborhoods is summarized as
O((Iqu x N+ Iop) x K).

4.3. Three-way classification with semi-supervised shadowed neighborhoods
Utilizing the semi-supervised shadowed neighborhoods, we can implement the three-way classification on partial labeled

data. Given K semi-supervised shadowed neighborhoods, for an unknown data instance x, according to (24), we can obtain
the following sets to describe the region location of x in the shadowed neighborhoods.
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Fig. 4. (a) Shadowed neighborhood constructed on unlabeled data, (b) the homogeneous instances in negative region reduce the threshold « to enlarge
uncertain boundary, (c) the homogeneous instances in boundary region increase the threshold o to shrink uncertain boundary.

SNN(x) = {k|x € NEGy},
SNU(x) = {k|x € BND,}, (25)
SNP(x) = {k|x € POS;}.
Obviously, SNP(x) is the set of the indexes of the shadowed neighborhoods whose positive regions containing the instance
x,SNU(x) is the set of the indexes of the neighborhoods in which x locates in the uncertain boundary region, and SNN(x)

denotes the set of the shadowed neighborhoods excluding x. Based on the locations of x in K shadowed neighborhoods
0= {04,---,0,--- O}, we design following three-way classification rules to classify x into certain class and uncertain class.

4.3.1. Classification rules for x within shadowed neighborhoods
Given a data instance x, if x locates within the neighborhoods of 0,30, € O, u(x) > o, |[SNP(x)| = 1 or |[SNU(x)| = 1.

1. If |SNP(x)| = 1, x certainly belongs to the class of the unique neighborhood in SNP(x).

2. If |SNP(x)| > 1 and Vky,k, € SNP(x), class (O, ) = class(Oy, ), x certainly belongs to the class of the neighborhoods in SNP(x).
Otherwise if 3k;,k; € SNP(x) and class(Oy, ) # class(O, ), x belongs to multiple neighborhoods of different classes with
conflict and should be classified as uncertain.
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Fig. 5. (a) Shadowed neighborhood constructed on unlabeled data, (b) the heterogeneous instances in negative region increase the threshold o to reduce
uncertain boundary, (c) the heterogeneous instances in boundary region reduce the threshold « to enlarge uncertain boundary.

3. If |SNP(x)]=0 and |SNU(x)| >0, suppose the major class of the neighborhoods in SNU(x) is C and
|{k|k € SNU(x) A class(Oy) = C}|/|SNU(x)| = 60%, x is recognized as the class C. Otherwise, x is judged as an uncertain case.

The classification rules within shadowed neighborhoods indicate when x belongs to the positive regions of homogeneous
shadowed neighborhoods, we can certainly classify x into the same class as the neighborhoods. Otherwise if x certainly
belongs to multiple heterogenous neighborhoods, which leads to classification conflicts, x should be considered as an uncer-
tain case. If x locates in the boundary regions of multiple neighborhoods, we determine whether x belongs to a certain class
or an uncertain case depending on the majority class of neighborhoods.

4.3.2. Classification rules for x beyond shadowed neighborhoods

If a data instance x is beyond the neighborhood set 0, VO, € O, i, (x) < o, [SNP(x)| = 0,|SNU(x)| = 0. We adopt two thresh-
olds Ty, T, of neighborhood membership to classify the uncertain data. Ty defines the minimum neighborhood membership
to determine whether a data instance is far from the shadowed neighborhoods to be recognized as an uncertain (unknown)
case. T, is the threshold of neighborhood membership ratio to check whether a data instance belongs to the multiple neigh-
borhoods of different classes, which is recognized as an uncertain case caused by conflict.
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1. py(x) = maxo,co{ 4 (X)}, Oy is the nearest neighborhood of x, if 1(x) < Ty, x is judged as an uncertain data instance.

2. (%) = maxo,co { (%) }, ps(X) :maxokeof{of}{,u,((x)},Of7OS are the first and second nearest neighborhoods of x, if
U;(x) = Ty and class(Oy) = class(0s), x belongs to the class of Oy and O;.

3. Suppose Oy,0; are the first and second nearest neighborhoods of x, if w:(x) > Tr,class(Oy) # class(Os) and
1 — ug(x)/ps(x) = Ty, x belongs to the class of Of, otherwise if 1 — u (x)/u(x) < Tr,x is judged as an uncertain data
instance.

The classification rules beyond shadowed neighborhoods depend on the distances between instances and neighborhoods. If
the instance x is too far from neighborhoods and the membership of x belonging to its nearest neighborhood is less than the
threshold Ty, x is considered as an uncertain case. For the instances nearby neighborhoods, we determine the class of x
according to its nearest two neighborhoods. If the two neighborhoods belong to the same class, we classify x to a certain
class. Otherwise we further check the difference between the memberships of x to its first and second nearest neighborhoods
of different classes. If the membership difference is less than the threshold T,, which means the distances from x to the ref-
erenced heterogeneous neighborhoods are similar, x is considered as an uncertain case. If the membership difference exceeds
T, we can certainly determine the class of x referring to only the nearest neighborhood. In the experiments, we set Ty = 0.05
and T, = 0.1 as default.

The process of the three-way classification with semi-supervised shadowed neighborhoods is listed in the following
algorithm.

Algorithm 2: Three-way classification with semi-supervised shadowed neighborhoods (3WC-SSN)

Input: Semi-supervised shadowed neighborhoods O = {04,0;, ..., Ok} constructed on the partial labeled data X, an
unknown data instance x;

Output: Three-way classification result of x based on O;

1: Compute the fuzzy memberships of x belonging to K shadowed neighborhoods and determine the region of x in each
shadowed neighborhood according to (24);

2: Generate the sets SNP(x), SNU(x) and SNN(x) to indicate the location of x in the shadowed neighborhoods O according
to (25);

3:if30, € O, u(x) > o, |SNP(x)| = 1 or |[SNU(x)| > 1then

4: Judge x within the neighborhoods O and adopt the classification rules within shadowed neighborhoods to classify x
into a certain class or uncertain case;

5: else

6: if VO, € O, i, (x) < «, |SNP(x)| = 0 and |SNU(x)| = Othen

7: Judge x beyond the neighborhoods O and adopt the classification rules beyond shadowed neighborhoods to
classify x into a certain class or uncertain case;

8: end if

9: end if

10: Return the classification result of x.

As shown in Algorithm 2, performing three-way classification for a single instance x requires O(K) calculations to compute
the fuzzy memberships of x belonging to K neighborhoods and obtain the region locations of x in all shadowed neighbor-
hoods. Moreover, determining first and second nearest neighborhoods of the instance needs sorting the neighborhoods
memberships and the computational complexity is O(K x log K). Thus the total computational complexity of three-way clas-
sification of a single instance with K shadowed neighborhoods is O(K x (logK + 1)).

5. Experimental results

Different from the traditional classification methods, the three-way classifier with semi-supervised shadowed neighbor-
hoods is built up based on partial labeled data and classifies data instances into certain classes and uncertain cases, which
facilitates to reduce the classification risk. We abbreviate the proposed three-way classification method with semi-
supervised shadowed neighborhoods to SSN-3WC. In order to verify the proposed three-way classification method, we
implement three tests in the experiment. In the first test, we validate that the threshold optimization in constructing
semi-supervised shadowed set is effective. Second, we analyze the influence of partial labeled data to the proposed semi-
supervised three-way classification method. In the final test, we compare SSN-3WC with other typical semi-supervised clas-
sification methods to validates the superiority of the proposed method.

In order to overall evaluate the three-way classification methods, we adopt the measures of accuracy, precision, recall rate,
F1 score, ratio of uncertain data (UR) and classification cost as the evaluation criteria. Given a data set X = X, UX, and a clas-
sifier, X, denotes the set of data instances that are assigned by certain class labels and X, is the set of data instances that are
classified as uncertain cases. Suppose P is the number of the positive-class instances and N is the number of negative-class
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Fig. 6. Membership loss variation for constructing shadowed set on (a) discrete fuzzy set in which the labeled data have the same class as the concept, (b)
discrete fuzzy set with the labeled data having different class from the concept, (c) continuous fuzzy set in which the labeled data have the same class as the
concept, (d) continuous fuzzy set with the labeled data having different class from the concept.

instances in X,. In the certain classification results, TP and FP denote the numbers of true positive data instances and false
positive instances, TN and FN denote the numbers of true negative instances and false negative instances respectively. The
calculations of the classification measures are listed as follows.

Accuracy(%) = (TP+TN)/(P+N),

Precision(%) = TP/(TP + FP),

Recallrate(%) = TP/P,

Flscore(%) = (2 - Precision - Recall rate) /(Precision + Recall rate),

UR(%) = [Xul/IX],

Cost = CNP'%+CPN'£7NN+ Cy - UR.
In the cost measure, we assume the correct classification suffers no cost. Cyp, Cpy, Cy denote the costs of false-positive mis-
classification, false-negative misclassification, and the classification of uncertain instances respectively. Suppose the positive

class is minor class (risky class), the false-negative misclassification will cause more costs than the false-positive misclassi-
fication. For example, in medical image analysis, misclassifying malignant tumors as benign will lead to more risk than judg-
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8

(a) (b)

g. 7. Two synthetic data sets for the test of partial labeled data influence, (a) data set 1: cross-bar data, (b) data set 2: ring-shaped data.

F

ing benign tumor as malignant. The classification of uncertain instances will delay the decision making and lead to less cost
than misclassifications. We set Cpy/Cnp/Cy = 5/1/0.5 in the following tests.

5.1. Test of semi-supervised shadowed set construction

In order to validate the construction of the proposed semi-supervised shadowed sets, we test the optimization of thresh-
old parameter o in constructing the shadowed sets on partial labeled data. We generate both discrete and continuous fuzzy
memberships to validate the threshold parameter optimization of shadowed sets. We randomly generate 30 fuzzy member-
ships to construct a discrete fuzzy set as follows.

F:{u} ={0.03;0.05;0.07;0.10;0.11;0.14;0.17;0.23;0.28;0.31;0.33; 0.34; 0.38; 0.44; 0.45; 0.48; 0.51;
0.54;0.60;0.64;0.68;0.71;0.75;0.78;0.79;0.81;0.85;0.93;0.94; 0.95}

Besides discrete fuzzy sets, we also adopt the following exponential function to formulate a continuous fuzzy membership
function to test the threshold computation of semi-supervised shadowed sets.

F:ux) = e’(%)z, (26)
in which x is valued from 0 to 100 by step 0.1.

Without considering class labels, we first initialize the shadowed set on the fuzzy set F and obtain the threshold param-
eter o through minimizing the objective function of (8). Second, we assign class labels to the data instances whose fuzzy
memberships lie in the positive region (¢ > 1 — o), negative region (¢ < o) and uncertain region (nearby left margin
1> aand right margin p <1 — «) of the shadowed set respectively. Through minimizing the objective function V(a) of
(4) with discrete gradient descent, we can obtain the optimal threshold parameters of the semi-supervised shadowed sets
constructed on the partial labeled data.

Assigning class labels to a part of data instances and constructing semi-supervised shadowed sets on the discrete and con-
tinuous fuzzy sets, we illustrate the variation of membership loss V(o) as the threshold parameter o changing in the interval
[0,0.5] in Fig. 6, in which the membership loss variations corresponding to the labeled data in different regions of shadowed
sets are marked by different colors and the computed optimal thresholds are marked by red vertical lines.

When the class we assigned to the labeled data is consistent with the concept represented by the fuzzy set, Fig. 6a and 6¢
show the variation of membership loss V(x) against the threshold «. We mark the polygonal line with different colors to
denote the variations of V(«) when labeled data instances are located in the different regions of the shadowed sets. The opti-
mal thresholds computed via discrete gradient descent are also marked by red vertical lines. We can find that the computed
thresholds generate the minimum membership loss when the labeled data instances occur in different regions of shadowed
sets. Moreover, we can find that the labeled data in positive region further reduces the minimum membership loss than that
without considering class labels, and the labeled data in negative region generates more membership loss than the no label
case. This indicates the correct data labeling which are consistent with the concept facilitate to improve the region partition
of the shadowed set and the incorrect labeling will bring about conflict and increase the costs of shadowed set construction.
When the class of the labeled data is different from the concept, Fig. 6b and 6d show the variations of V(&) when labeled data
instances are located in the different regions of the shadowed sets. In contrast to the consistent class labels, we can find that
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Experimental data sets for semi-supervised classification.
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Fig. 8. Classification results of 3WC-SSN method on two synthetic data sets with varying ratio of labeled training data, (a) accuracy variation as labeled data
increasing, (b) variation of classification cost, (c¢) variation of uncertain instance ratio.

Data sets Features Instances Class ratio Attribute type
Australian Credit 14 690 44%vs.56% Mixed
Appendicitis 7 106 20%vs.80% Numerical
Banknote Authentication 4 1372 44%vs.56% Numerical
Breast Cancer Wisconsin (Original) 9 699 34%vs.66% Numerical
Vertebral Column 7 310 32%vs.68% Numerical
diabetes 8 768 35%vs.65% Mixed
Ionosphere 34 351 36%vs.64% Mixed
phoneme 6 5404 29%vs.71% Mixed
Diabetic Retinopathy Debrecen 20 1151 47%vs.53% Mixed
Mammographic Mass 5 961 46%vs.54% Numerical
Wisconsin Diagnostic Breast Cancer (WDBC) 30 569 37%vs.63% Numerical
Wisconsin Prognostic Breast Cancer (WPBC) 33 198 24%vs.76% Numerical
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Fig. 9. Comparison of classification results generated by different semi-supervised classification methods.

Table 2

Average classification results of semi-supervised classification methods on all data sets.
Methods Cost (107%) Acc (%) Prec (%) Recall (%) F1 (%)
S3VM 66.56 69.08 69.99 83.15 72.14
LabelPropagation 68.03 70.24 54.83 64.32 56.98
RESSEL-GBN 65.32 77.88 79.18 73.92 75.00
RESSEL-DT 47.11 81.40 83.74 77.25 79.32
SSC 40.73 83.08 85.21 89.02 86.69
3WC-SSN 20.83 92.38 94.19 90.54 92.07

the incorrect labeled data in negative region will reduces the membership loss and incorrect labels in positive region will
increase the membership loss in constructing shadowed sets.

5.2. Test of influence of partial labeled data

In the second test, we analyze the influence of partial labeled data to the proposed semi-supervised three-way classifi-
cation method 3WC-SSN. We generate two synthetic data sets of two classes to perform the test, in which the data distri-
butions of two classes are overlapped and some instances are easily to be confused. Fig. 7 illustrates the synthetic data sets.

Ignoring the class labels of synthetic data and assign class labels to different ratios of training data from 10% to 90%, we
construct the partial labeled data sets and perform the proposed 3WC-SSN method. Fig. 8 shows the classification accuracy,
costs and the ratio of uncertain instances generated by 3WC-SSN method. We can find that as the number of labeled data
instances increasing, the accuracy index rises and the cost is reduced, which indicates that 3WC-SSN method can make good
use of the label information to improve the classification precision. Moreover, we observe that as the number of labeled data
instances increasing, the ratio of uncertain instances recognized by the 3WC-SSN method is reduced, this means increasing
labeled data will be helpful to confirm the classification of uncertain cases and thereby reduce the uncertainty in
classification.

5.3. Comparison with other semi-supervised classification methods

In the final test, we compare the proposed 3WC-SSN method with various types of semi-supervised learning methods to
validate its superiority. The comparative methods include semi-supervised support vector machine (S3VM) [29], class label
propagation (LabelPropagation) [47], semi-supervised clustering for classification (SSC) [46], reliable ensemble of semi-
supervised classification based on Gaussian naive Bayesian classifiers (RESSEL-GBN) and decision trees (RESSEL-DT) [48].
We perform all the semi-supervised classification methods on 12 data sets from UCI and KEEL databases. The data sets
are collected from medical and economic areas and have imbalanced class distributions. We consider the minor class as
the positive class (risky class) and set more costs for the false-negative misclassification. The descriptions of data sets are
listed in Table 1.
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Using 10-fold cross validation and employing 10% labeled data in each training data set, we obtain the average classifi-
cation results on all the test data sets for each semi-supervised classification method. Fig. 9 and Table 2 present the detailed
classification results. From the experimental results, we can find that comparing with the certain semi-supervised classifi-
cation methods, the proposed three-way classification method based on semi-supervised shadowed sets is effective to han-
dle uncertain data and generally achieves more precise classifications, and in the meantime produces lower classification
costs. Utilizing the class information of partial labeled data, our method is able to recognize a limited number of uncertain
data instances and thereby improves the classification precision and recall rate of the risky class to achieve good classifica-
tion performances.

6. Conclusion

In this paper, we propose a novel semi-supervised shadowed set to construct shadowed neighborhood for three-way clas-
sification on partial labeled data. The partial labeled data will adjust the optimization of the shadow thresholds and thereby
influence the construction of the shadowed sets. Constructing semi-supervised shadowed sets on fuzzy neighborhood mem-
berships, we can formulate semi-supervised shadowed neighborhoods of the certain positive region and uncertain boundary
region to involve both labeled and unlabeled data. Based on the semi-supervised shadowed neighborhoods, we design three-
way classification rules to implement a three-way classification algorithm to distinguish data instances into certain classes
and uncertain cases. In the experiments, through comparing with other types of semi-supervised classification methods, the
proposed three-way classification method based on semi-supervised shadowed sets is validated to be superior to produce
low-risk classification results on partial labeled data.

Our future works include the following issues. First, the semi-supervised neighborhoods are initialized based on the semi-
supervised clustering methods, which require to predefine the number of clusters. We should consider more flexible meth-
ods to initialize the neighborhoods based on data distributions. Second, we will design a fast optimization algorithm to speed
up solving the objective function of semi-supervised shadowed sets. Finally, the Euclidean distance we adopt for construct-
ing shadowed neighborhoods and classifying uncertain data may be not effective for high-dimensional data. We expect to
explore distance metrics to implement a semi-supervised three-way classification method for high-dimensional partial
labeled data.
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