
Citation: Zhao, T.; Zhang, Y.; Miao, D.

Intuitionistic Fuzzy-Based Three-Way

Label Enhancement for Multi-Label

Classification. Mathematics 2022, 10,

1847. https://doi.org/10.3390/

math10111847

Academic Editors: Shu Zhao and

Catalin Stoean

Received: 11 April 2022

Accepted: 24 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Intuitionistic Fuzzy-Based Three-Way Label Enhancement for
Multi-Label Classification
Tianna Zhao 1,† , Yuanjian Zhang 2,3,*,† and Duoqian Miao 1,*

1 Department of Computer Science and Technology, Tongji University, Shanghai 201804, China;
1810375@tongji.edu.cn

2 China UnionPay Co., Ltd., Shanghai 201201, China
3 Postdoctoral Research Station of Computer Science and Technology, Fudan University,

Shanghai 200433, China
* Correspondence: zhangyuanjian@unionpay.com (Y.Z.); dqmiao@tongji.edu.cn (D.M.)
† These authors contributed equally to this work.

Abstract: Multi-label classification deals with the determination of instance-label associations for
unseen instances. Although many margin-based approaches are delicately developed, the uncertainty
classifications for those with smaller separation margins remain unsolved. The intuitionistic fuzzy
set is an effective tool to characterize the concept of uncertainty, yet it has not been examined for
multi-label cases. This paper proposed a novel model called intuitionistic fuzzy three-way label
enhancement (IFTWLE) for multi-label classification. The IFTWLE combines label enhancement with
an intuitionistic fuzzy set under the framework of three-way decisions. For unseen instances, we
generated the pseudo-label for label uncertainty evaluation from a logical label-based model. An
intuitionistic fuzzy set-based instance selection principle seamlessly bridges logical label learning and
numerical label learning. The principle is hierarchically developed. At the label level, membership
and non-membership functions are pair-wisely defined to measure the local uncertainty and generate
candidate uncertain instances. After upgrading to the instance level, we select instances from the
candidates for label enhancement, whereas they remained unchanged for the remaining. To the best
of our knowledge, this is the first attempt to combine logical label learning with numerical label
learning into a unified framework for minimizing classification uncertainty. Extensive experiments
demonstrate that, with the selectively reconstructed label importance, IFTWLE achieves statistically
superior over the state-of-the-art multi-label classification algorithms in terms of classification ac-
curacy. The computational complexity of this algorithm is O

(
n2mk

)
, where n, m, and k denote the

unseen instances count, label count, and average label-specific feature size, respectively.

Keywords: multi-label classification; uncertainty; three-way decisions; intuitionistic fuzzy number;
instance selection principle; label enhancement

MSC: 03B52; 68T30; 68T37

1. Introduction

In multi-label settings [1–3], an instance is associated with multiple labels simulta-
neously. For example, a picture may be relevant to tags, such as sky, ocean, and seagull; a
book may cover topics, such as sports and art. The goal of multi-label classification is to
learn mapping from a feature space to a label space, such that the label associations of
unseen instances can be determined. It widely applies in domains involving smart grid
management [4], disease diagnosis [5], and image classification [6].

Traditionally, multi-label classification schema builds upon logical labels and provides
qualitative associations between instances and labels. For robustness, many researchers fo-
cus on the extensions of linear or hyperplane-based models, and their work can be roughly

Mathematics 2022, 10, 1847. https://doi.org/10.3390/math10111847 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111847
https://doi.org/10.3390/math10111847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0462-334X
https://orcid.org/0000-0002-5059-9854
https://orcid.org/0000-0001-6588-1468
https://doi.org/10.3390/math10111847
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111847?type=check_update&version=1


Mathematics 2022, 10, 1847 2 of 21

categorized as problem transformation and algorithm adaptation, respectively. The previ-
ous transforms multi-label classification into a collection of simplified learning scenarios,
such as single-label classification. Representative work involves binary relevance [7], ran-
dom k-labelsets [8], and learning label-specific feature (LLSF) [9]. Comparatively, the latter
extends the existing algorithms to simultaneously generate multi-outputs. Representative
work includes multi-label forest (ML-Forest) [10] and multi-label twin support vector ma-
chine (MLTSVM) [11]. However, both strategies suffered from the calibrated threshold
problem. Intuitively, the uncertainty of the label association is larger if the output is close to
the threshold, and is smaller otherwise. Hence, we need labels with stronger supervision
to boost the model performance.

Regarding a numerical label–this quantifies how much information a label has in de-
scribing an instance. For example, a facial expression can be interpreted as the combination
of slight sadness, some anger, and a bit of disgust. The fitting of the numerical label is defined
as label distribution learning [12]. Although numerical labels offer more discriminative
information than logical labels, it is expensive to annotate all numerical labels manually.
One feasible solution is to learn numerical labels from logical labels, also known as label
enhancement [13–16]. However, the research studies have indistinguishably employed label
enhancements for all instances, regardless of the uncertainty differences.

Three-way decisions [17], also known as trisecting–acting–outcome (TAO) model [18–20],
is an emerging decision theory for problem solving with uncertainty [21–23]. It originates
from the semantic explanations for three regions induced by rough sets and has become
an emerging theory in the soft computing community [24–27]. The sequential three steps
are trisecting, acting and outcome characterizing the routines on uncertainty. Typically,
the trisecting step divides the information into three non-overlapping regions, with two
regions as certain and the others as uncertain; the acting step takes the positive/negative
strategy w.r.t. of certain objects whereas takes the deferment strategy w.r.t. of uncertain
objects; the outcome step evaluates the performance induced by trisecting and acting. Such
routines may continue until the uncertainty is negligible and the classification performance
is improved. Existing three-way-based multi-label classifications [28–32] deal with label
uncertainty either from ensemble features or ensemble algorithms, whereas the ensemble
on logical and numerical labels remains untouched.

1.1. Motivation

The semantic uncertainty analysis on multi-label classification has limitations. The fuzzy
set shows the effectiveness in measuring the membership degree towards multi-label [33–35],
but it fails to consider the non-membership degree. As a generalization of the fuzzy set, an
intuitionistic fuzzy number (IFN) is effective at quantifying the vagueness of a qualitative
instance-label assignment [36], which offers heuristic information to select instances for
label enhancement. This paper presents an intuitionistic fuzzy-based three-way label en-
hancement (IFTWLE) model. It implements three-way decisions by ”trisecting” unseen
instances from label-specific learning and by ”acting” label enhancement of uncertain
instances. Inspired by empirical studies on single-label [37–39], we employed an intu-
itionistic fuzzy number to search instances with uncertainty classifications. Concretely
speaking, IFTWLE applies IFN at the label level and defines a pair of membership and
non-membership functions for every unseen instance based on the generated pseudo-
labels. The membership functions evaluate the weighted closeness of instances belonging
to the specified class, whereas the non-membership functions evaluate the possibility of
instances belonging to the complementary class. The ultimate uncertainty instances are
determined via an aggregation function. Consequently, we preserve the predicted labels if
the classifications are plausible and exploit the numerical label otherwise.

1.2. Contribution

Compared with the existing multi-label classifications models, our contributions are
as follows:
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(1) For the first time, cascade learning of logical labels and numerical labels of multi-
labels are presented and unified under the semantics of classification uncertainty.
Determination of the label association for unseen instances broadens the application
of the three-way decisions theory.

(2) A novel instance selection principle in two stages is presented to integrate logical label
learning with numerical label learning. In this way, instances that exhibit significant
uncertainty across most labels are enhanced with better discrimination (regarding
label importance).

(3) This is the first attempt to employ an intuitionistic fuzzy set on multi-label classifica-
tion. It addresses the issue of identifying potentially uncertain instances on each label
without stipulating many hyperparameters.

(4) The proposed IFTWLE has demonstrated effectiveness across many domains. The com-
putational complexity is proportional to the quadratic instances count and linear to
the label scale and label-specific features count.

The remainder of the paper is organized as follows. Section 2 reviews some pre-
liminaries on label-specific learning, label enhancement, and the intuitionistic fuzzy set,
Section 3 presents our proposed model for multi-label classification; experimental results
are reported in Section 4. Section 5 concludes this work and identifies our future directions.

2. Preliminaries

In this section, we briefly review some preliminaries regarding label-specific feature
learning and label enhancement.

2.1. Label-Specific Feature Learning

Label-specific feature [9,40–42] assumes that each label has unique characteristics and
can be described by different feature subsets. For the simplicity of computation, the learning
label-specific feature (LLSF) [9] considers second-order label correlation (a.k.a. pairwise,
one label is at most dependent on another) and assumes three hypotheses:

(1) Discrimination: the set of i-th label-specific feature should be most pertinent to the
corresponding label (li), and the included components should be different from other
label-specific features.

(2) Sparsity: the label-specific features should be sparse as compared to the feature space.
(3) Shareability: the cardinality of common features of two label-specific features with

strong label correlations should be larger than those with weak label correlations.

Based on the previous hypotheses, the objective function is formulated as:

min
W

1
2
‖XW− Y‖2

F +
δ

2
tr
(

RW>W
)
+ η‖W‖1 (1)

where X and Y represent the features and labels of multi-label, W = [w1, w2, . . . , wi, . . . , wm],
and the basic element wi represents the weight for the label-specific feature of li, which
is composed of the non-zero terms in wi. ‖·‖2

F denotes the Frobenius norm. R =
[
rij
]

represents a matrix composed of the second-order label relevance. rij = 1− cij, where cij
measures the correlation between label li and label lj. The label correlation is computed
with cosine similarity. tr(·) denotes the matrix trace. Symbols δ and η are the balance
factors. The inner product of wi and wj describes the correlation between label li and
label lj from the feature view. The stronger the correlation is, the larger the inner product
becomes, and vice versa.

For the prediction of unseen instances, LLSF employs logistic regression and can be
denoted as:

Ŷ = sgn(XW− τ) (2)

where sgn(·) returns 1 if the condition holds, and returns 0 otherwise.
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2.2. Label Enhancement

Label enhancement assumes that each instance is intrinsically represented by real-
valued labels and, thus, can be recovered from qualitative logical label (Y) to quantitative
numerical label (U) via the instance-level or label-level smoothness [15,16,43,44]. The distri-
bution of numerical labels describes the relative importance of different labels in describing
a given instance.

To guarantee the effectiveness, three hypotheses are presented in label enhancement
multi-label learning (LEMLL) [16].

(1) Linear relevance: the mapping from feature space to numerical label g : X → U
follows a linear model.

(2) Label similarity: the values of learnt numerical labels should be approximated to the
original logical labels.

(3) Topology consistency: the instances with similar features share similar numerical
label values.

Based on the previous assumptions, the objective function is given as:

min
Θ,b,U

n
∑

i=1
LR(Ri)+α‖Θ‖2

F+β‖U− Y‖2
F+γtr

(
U>MU

)
s.t. Ri = ‖ξi‖2 =

√
ξ>i ξi

ξi = ui −Θϕ(xi)− b

LR(Ri) =

{
0 Ri < ε

R2
i − 2Riε + ε2 Ri ≥ ε

(3)

where
n
∑

i=1
LR(Ri) is the loss function from the feature space to the numerical labels, with the

regularizer as Ri = ‖ξi‖2 =
√

ξ>i ξi, where ξi = ui − Θϕ(xi) − b, and ϕ(xi) is a map-

ping from instance xi to a high-dimensional space RH; Θ and b are the parameters in
the linear regression model. ‖U− Y‖2

F is the implementation of the label similarity as-
sumption measured by Frobenius norm (abbreviated as F). α, β, γ are all balance factors.
tr
(
U>MU

)
= ‖U−WU‖2

F is the implementation of topology consistency, where tr(·) rep-
resents the matrix trace, and M = (I−W)>(I−W), with I being an identity matrix and
W being the weight matrix constructed by the fully connected graph G = (V, E, W), which
describes the closeness among the arbitrary instances.

For predictions on unseen instances, LEMLL leverages a kernel logistic regression,
which is denoted as:

Ŷ = sgn(Θϕ(X) + b− τ) (4)

2.3. Intuitionistic Fuzzy Set

Suppose an arbitrary instance xi ∈ X has the corresponding label yi , then for a
nonempty set X, the intuitionistic fuzzy set is defined as follows:

Ã = {(xi, µÃ(xi), νÃ(xi))|xi ∈ X} (5)

where µÃ(xi) is the membership of instance xi expressing the chances of instance xi being
a particular class A, νÃ(xi) is the non-membership of instance xi ∈ X representing the
possibility of instance xi not related to class A. µ and ν are functions mapping from X to
[0,1]; the following two conditions are satisfied:

1. µÃ(xi) ∈ [0, 1], νÃ(xi) ∈ [0, 1];

2. 0 ≤ µÃ(xi) + νÃ(xi) ≤ 1.
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The hesitation of instance xi is defined as:

πÃ(xi) = 1− µÃ(xi)− νÃ(xi) (6)

which measures the hesitation of instance xi related to class A. µÃ and νÃ construct the
intuitionistic fuzzy number IFN: α = (µÃ, νÃ), S(α) is used to compare two intuitionistic
fuzzy numbers:

S(α) = µÃ − νÃ (7)

which could compare instances (xi, yi, µÃ(xi), νÃ(xi))with (xj, yj, µÃ(xj), νÃ(xj)), and through
the value of S(αi) and S(αj), we could determine whether xi or xj is more likely to be asso-
ciated with class A.

3. Proposed Model
3.1. Notations

For ease of reference, we present a nomenclature including the major notations and
mathematical meanings in Table 1.

Table 1. Notation of IFTWLE.

Notation Mathematical Meanings

Card(·) set cardinality
X1 multi-label instances set
Y1 logical label set
X2 unseen instances set
xi an instance
yi logical label set of the instance xi
ŷi pseudo-label set of the instance xi learnt by f1
ui numerical label set of the instance xi

µc(xi) membership degree of xi on label lc
νc(xi) non-membership degree of xi on label lc
πc(xi) hesitation degree of xi on label lc
X(µ,ν)

2 uncertain instances set on all labels
¬X(µ,ν)

2 certain instances set on all labels
f1(·) function of logical label-based learning
f2(·) function of numerical label-based learning
Ŷ∗2 final predicted multi-label set of X2
lc label c

Y(µ,ν)
2 the label set of X(µ,ν)

2 learnt by f1

¬Y(µ,ν)
2 the label set of ¬X(µ,ν)

2 learnt by f1

X(µc ,νc)
2 uncertain instance set on label lc
¬X(µc ,νc)

2 certain instance set on label lc
ŷic pseudo-label of instance xi on label lc learnt by f1

φc(xi) high-dimensional representation of instance xi gives a label-specific feature on label lc
Ĉ+

c class center of the pseudo-positive class on label lc
Ĉ−c class center of the pseudo-negative class on label lc

D(·, ·) Euclidean distance
r+c radius of the pseudo-positive class on label lc
r−c radius of the pseudo-negative class on label lc
xc

i label-specific feature of instance xi on label lc
p+c pseudo-positive instance weight on label lc
p−c pseudo-negative instance weight on label lc
ρc weighted neighborhood difference of xi on label lc
r instance neighborhood size measured by Euclidean distance D(·, ·)

Nc(xi)
+ pseudo-positive instance count in the neighborhood of xi on label lc

Nc(xi)
− pseudo-negative instance count in the neighborhood of xi on label lc

UCi the number of times that instance xi is regarded as the uncertain instance on all label sets
UCj mean of times that instance xj is regarded as the uncertain instance on all label sets
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3.2. Problem Formulation

Let X1 = {x1, x2, . . ., xn} denotes a set of multi-label instances with the union of known
logical label information Y1 = {y1, y2, . . . , yn}; X2 denotes the unseen instances. The logical
label of xi to label set {l1, . . ., lc, . . ., lm} is denoted as yi = {yi1, . . . , yic, . . . , yim}where yic = 1
holds (positive class) if xi is associated with label lc, and yic = 0 (negative class) otherwise.
The numerical label of instance xi is denoted by ui = {ui1, . . ., uic, . . ., uim} ∈ [0, 1]m, which
satisfies ∑c uic = 1. For an arbitrary label lc, we denote the degree of the membership func-
tion related to lc and non-membership functions unrelated to lc as IFNc(xi) = (µc(xi), νc(xi)),
respectively, where µc(xi) ∈ [0, 1], νc(xi) ∈ [0, 1], and 0 6 µc(xi) + νc(xi) 6 1. The uncertain
instances set on the c-th label is denoted as X(µc ,νc)

2 . Uncertain instances set on all labels

are denoted as X(µ,ν)
2 , and certain instances set on all labels are complementary of X(µ,ν)

2 ,

denoted as ¬X(µ,ν)
2 (i.e., X2 = X(µ,ν)

2 ∪ ¬X(µ,ν)
2 ). Our goal was to identify uncertain classi-

fications from logical label-based learning and improve the performance with numerical
label-based learning.

3.3. Basic Idea

IFTWLE is an implementation of the TAO model for unseen instances X2 (see Figure 1).
Firstly, the trisecting was realized by a logical label-based model (denoted as f1(·)) with
an intuitionistic fuzzy number (denoted as (µ, ν)). An instance selection principle was
developed to identify the uncertain instances. Secondly, the acting was realized on all
instances with different strategies, with label enhancements on uncertain instances (denoted
as f2(·)), adopting the classifications otherwise. Finally, we conducted outcome evaluations
on the deduced classifications.

Figure 1. Pipeline of IFTWLE. It follows the trisecting–acting–outcome framework.

For a non-trivial solution, the three-way classification result of the predicted multi-
label set (i.e., Ŷ∗2) on X2 is defined as:

Ŷ∗2 =

{
f1(¬X(µ,ν)

2 ), x ∈ ¬X(µ,ν)
2

f2(X
(µ,ν)
2 ), x ∈ X(µ,ν)

2

(8)

where f2(X
(µ,ν)
2 ) refers to the predicted multi-label sets of deferred instances with large

label uncertainty degree and f1(¬X(µ,ν)
2 ) refers to the predicted multi-label sets of certain

instances with little label uncertainty degrees.
Figure 2 describes the pipeline on the instance selection principle. By taking a problem

transformation view, we assigned the membership function (µc(xi)) and non-membership
function (νc(xi)) for all unseen instances on an arbitrary label lc, which was then incorpo-
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rated to search for the candidate uncertain instances denoted as X(µc ,νc)
2 . Final uncertain

instances (X(µ,ν)
2 ) were aggregated by considering the distributions of candidate uncertain

instances across all labels. In what follows, we will elaborate the details from Sections 3.4–3.6.

Figure 2. Illustration for the instance selection principle in IFTWLE: we used six instances to ex-
plain our processing. After employing f1(·) generated by label-specific learning, we employed an
intuitionistic fuzzy number for each label ((µa(xi), νa(xi)) for la for example). The processed red
and black circles refer to the instances that are classified as positive and negative class with limited
uncertainty, and the green triangles are recognized as candidate uncertain instances. The final three

uncertain instances (represented by hollow triangles) are denoted as X(µ,ν)
2 , which conducts label

enhancement afterwards.

3.4. Intuitionistic Fuzzy Membership Assignment

Although fuzzy membership assignment is capable of measuring the concept vague-
ness, it has the following drawbacks for multi-label classification:

• Regardless of the concrete membership function definition, it can only describe the
closeness of an instance belonging to a concept. The distribution of the heterogeneous
class is thus neglected, which is of great importance in finding uncertain instances.

• Multi-label data have some specialized characteristics, such as an imbalanced class.
With the membership function only, the model cannot utilize such information effec-
tively, which leads to the degeneration of model generality.

In [45], the intuitionistic fuzzy set figures out the support vectors from instances and
improves the generalization of the support vector machine. In our case, instances have
obtained the pseudo-label by conducting label-specific learning (i.e., f1(·)). Therefore we
assume a desirable hyperplane is available. This means the possibility of instances with
noisy labels is less likely to occur, and misclassified instances are both far from the class
center and circled by heterogeneous instances. Therefore, from the perspective of labels,
such instances are compatible with the intuitionistic fuzzy set. The degrees of membership
and non-membership functions for each unseen instance take the problem transformation
view and are determined in a label-specific way. Without losing generality, we consider the
construction of µc(xi) and νc(xi) on label lc.

3.4.1. Membership Function µc(xi)

Let Ŷ2 be the pseudo-label set of the unseen instance set X2 learnt from the LLSF
model ( f1); the membership of instances is determined by the relative similarity against the
predicted class and other classes. In other words, the membership function of an instance is
larger if both the relative distance to the predicted class is smaller and the relative distance
to the other classes is larger. Using the class center as a representative, for two instances
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that are both pseudo-positively associated (i.e., ŷic = ŷjc = 1), our goal can be formally
written as:

µc(xi) > µc(xj) i f
D
(
φc(xi), Ĉ+

c

)
r+c + ε

−
D
(
φc(xi), Ĉ−c

)
r−c + ε

<
D
(
φc(xj), Ĉ+

c

)
r+c + ε

−
D
(
φc(xj), Ĉ−c

)
r−c + ε

(9)

where D
(
φc(xi), Ĉ+

c
)

and D
(
φc(xi), Ĉ−c

)
are the distances of instance xi to the pseudo-positive

class and pseudo-negative class, respectively. They are defined as:

D
(
φc(xi), Ĉ+

c
)
=
∥∥φc(xi)− Ĉ+

c
∥∥ (10)

D
(
φc(xi), Ĉ−c

)
=
∥∥φc(xi)− Ĉ−c

∥∥ (11)

where φc(xi) represents the high-dimensional representation of instance xi given the label-
specific feature w.r.t. lc, and ‖·‖ is the distance between the instance and the corresponding
pseudo-class center. Suppose K(xc

i , xc
j ) denotes a kernel function on the label-specific

feature w.r.t. lc, the inner product distance is expanded as:∥∥φc(xi)−φc(xj)
∥∥=√K(xc

i , xc
i )−2K(xc

i , xc
j )+K(xc

j , xc
j ) (12)

Ĉ+
c and Ĉ−c are the class centers of the pseudo-positive and pseudo-negative classes on

label lc. The average value is measured by all the pseudo-positive instances that predicted
the pseudo-label was 1 on label lc, denoted as Ĉ+

c ; the average value is measured by all the
pseudo-negative instances that predicted pseudo-label was 0 on label lc, denoted as Ĉ−c .

Ĉ+
c =

1
l+c

∑
ŷic=1

φc(xi) (13)

Ĉ−c =
1
l−c

∑
ŷic=0

φc(xi) (14)

where l+c = |{xi|ŷic = 1}| and l−c = |{xi|ŷic = 0}| denote the pseudo-positive instance
count and pseudo-negative instance count w.r.t. label lc, respectively.

r+c and r−c are the radii of the pseudo-positive and pseudo-negative class on label lc,
which can be quantified as:

r+c = max
yic=1

∥∥φc(xi)− Ĉ+
c
∥∥ (15)

r−c = max
yic=0

∥∥φc(xi)− Ĉ−c
∥∥ (16)

By substituting Equations (13) and (14) into Equations (15) and (16), based on
Equation (12), we have:

r+c =max
ŷic=1

√√√√K(xc
i,x

c
i )−

2
l+c

∑
ŷjc=1

K(xc
i,x

c
j )+

1

l+c
2 ∑

ŷmc=1
∑

ŷnc=1
K(xc

m,xc
n) (17)

r−c =max
ŷic=0

√√√√K(xc
i,x

c
i )−

2
l−c

∑
ŷjc=0

K(xc
i,x

c
j )+

1

l−c
2 ∑

ŷmc=0
∑

ŷnc=0
K(xc

m,xc
n) (18)

one can infer that calculation of D
(
φc(xi), Ĉ−c

)
is costly if xi is pseudo-positive on lc. For sim-

plicity, we use D
(
φc(xi), Ĉc

)
instead. In other words, we examine the dissimilarity of an

instance to the class center of all instances.
For multi-label cases, the positive class is the minority class, whereas the negative class

is the majority class. The imbalanced class distribution results in the different contributions
to the membership function. The rationality is that the location of the class center of the
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negative class has a much lower empirical risk than the positive class, and the empirical
risk for the center of the positive class becomes higher as the count for instances with the
positive class becomes smaller. Therefore, we introduce symbol p+c and p−c to represent the
pseudo-positive instance weight and pseudo-negative instance weight w.r.t. label lc. Any
lc, is defined as:

p+c =
2× l+c

l+c + Card(X2)
(19)

p−c =
2× l−c

l−c + Card(X2)
(20)

where Card(X2) = |X2| refers to the instance number in the instance set X2. For each unseen
instance xi, the degree of membership µc(xi) is defined as:

µc(xi)=


1−
(

p+c ×
D(φc(xi),Ĉ+

c )
r+c +ε

+(1−p+c )×
D(φc(xi),Ĉc)

rc+ε

)
ŷic =1

1−
(

p−c ×
D(φc(xi),Ĉ−c )

r−c +ε
+(1−p−c )×

D(φc(xi),Ĉc)
rc+ε

)
ŷic =0

(21)

where ε→ 0+ is an adjustable parameter, r+c , r−c , rc and Ĉ+
c , Ĉ−c , Ĉc are the radius and class

centers of the pseudo-positive class, pseudo-negative class, and all unseen instances on label
lc determined by f c

1(·). Figure 3 shows an example describing the effect of Equation (21),
where both µc(xA) > µc(xC) and µc(xD) > µc(xB) hold.

Figure 3. Computing µc(xi): The red blocks and black circles represent the pseudo-positive and
pseudo-negative w.r.t. label lc. The red four-angle star and black diamond represent the class center
of pseudo-positive and pseudo-negative instances on label lc. The blue hexagon represents the center
for all included instances on label lc. Instances xA and xC are two randomly selected instances with
the pseudo-positive label on lc, whereas instances xB and xD are two randomly selected instances
with the pseudo-negative label on lc. The blue, red, and black lines that connect the instances with
the blue hexagon, red four-angle star, and black diamond represent the distances of instances to the
instance center, pseudo-positive class center, and pseudo-negative class center, respectively.

3.4.2. Non-Membership Function νc(xi)

The non-membership of instances is determined by the following two factors. Firstly,
it should be impacted by the dissimilarity and similarity of the instance to the predicted
class and other classes. It means the non-membership is larger if an instance is located
in the region where the probability of being other classes is larger. Secondly, it should be
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impacted by the heterogeneous instance distribution within the neighborhood. One can
infer that the non-membership is larger if an instance is surrounded by instances from other
classes. We assume membership is inversely proportional to non-membership, denoted as:

νc(xi) ∝ 1− µc(xi) (22)

The imbalanced class distribution [46] implies that the contributions of heterogeneous
instances are label-dependent. In other words, for two instances, xi, and xj, with the
same number of heterogeneous instances in their corresponding neighbours, the non-
membership of xi is larger than xj if xi belongs to the pseudo-negative class whereas
xj belongs to the pseudo-positive class. To implement our assumption, we introduced
two symbols, n+

c and n−c , to represent the prior probability of being pseudo-positive and
pseudo-negative, respectively.

n+
c =

l+c
Card(X2)

(23)

n−c =
l−c

Card(X2)
(24)

The two prior probabilities are incorporated to quantify the contribution of the het-
erogeneous instance within the neighborhood. From the perspective of the neighbor-
hood, the non-membership degree is larger if more heterogeneous instances are included,
and smaller if more homogeneous instances are included. Therefore, the weighted neigh-
borhood difference of xi on label lc (i.e., (ρc(xi))) is defined as:

ρc(xi)=


n+

c Nc(xi)
−

n+
c Nc(xi)

−+n−c Nc(xi)
+ ŷic =1

n−c Nc(xi)
+

n+
c Nc(xi)

−+n−c Nc(xi)
+ ŷic =0

(25)

where Nc(xi)
+ =

∣∣{xj
∣∣xj ∈ Nc(xi) ∧ ŷjc = 1

}∣∣ denotes the pseudo-positive instance count
in the r-neighborhood of xi on label lc (r > 0). r > 0 is an adjustable parameter and
Nc(xi)

− =
∣∣{xj

∣∣xj ∈ Nc(xi) ∧ ŷjc = 0
}∣∣ denotes the pseudo-negative instance count in the

γ-neighborhood of xi on label lc. We assume the non-membership degree is proportional to
the weighted neighborhood difference, denoted as:

ν(xi) ∝ ρ(xi) (26)

Based on assumptions (22) and (26), we define the non-membership degree as:

νc(xi) = (1− µc(xi))ρc(xi) (27)

It is easy to validate 0 6 µc(xi) + νc(xi) 6 1 holds. Here, we offer some explanations.
The µc(xi) receives the largest value when it is the center of the plausible pseudo-class, and it
reaches 0 only when it is the farthest instance to the class center of all instances simultaneously.
The νc(xi) itself is smaller than 1, as the two components are all less than 1. As ρc(xi) is smaller
than 1, the νc(xi) is no larger than 1− µc(xi), which means 0 6 µc(xi) + νc(xi) 6 1 holds.

By referring to Equation (6), we define the hesitation degree as:

πc(xi) = 1− µc(xi)− νc(xi) (28)

3.5. Label-Level Instance Selection

Having the membership/non-membership degrees, the unseen instances (X2) with
the intuitionistic fuzzy membership (IFX2) are denoted as:

IFX2 = {(x1, ŷ1, µ1, ν1), (x2, ŷ2, µ2, ν2), . . . , (xk, ŷk, µk, νk)}

where µi = (µ1(xi), µ2(xi), . . . , µm(xi)) and νi = (ν1(xi), ν2(xi), . . . , νm(xi)) denote the de-
grees of membership and non-membership functions w.r.t. xi across all labels, respectively.
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In terms of each label, we can select the instances with uncertain classifications (de-
noted as X(µc ,νc)

2 ) as:

X(µc ,νc)
2 = {xi|µc(xi) > νc(xi) ∧ νc(xi) > 0} (29)

X(µc ,νc)
2 can be interpreted as candidate uncertain instances. For example, assume four

unseen samples with pseudo-labels, i.e., xA, xB, xC and xD in Figure 4. It is more likely
that xB and xC belong to X(µc ,νc)

2 than xA and xD, and they are more close to the hyperplane.
As instances with small separation margins tend to be more uncertain, label enhancement on
xC and xD will be more informative than on xA and xB, given the pseudo-label distribution
on label lc. One should be aware that xC is less likely to be considered if we only apply
the traditional fuzzy set model, as the affiliation degree to the positive class is much larger
than that of the negative class. However, it will be conducive to enhancing generality if xC
is selected, as there are two instances with negative classes in its neighbours. Hence, we
can select instance xC via the intuitionistic fuzzy set.

Figure 4. Selection of uncertain candidates on label lc: The red blocks and black circles represent the
instances with pseudo-positive and pseudo-negative on label lc. The red four-angle star and black
diamond represent the class center of pseudo-positive and pseudo-negative instances on label lc,
respectively. The blue hexagon represents the center for all included instances on label lc. The purple
circle represents the region of the neighborhood. Based on (29), xB and xC will be selected (i.e.,

xB, xC ∈ X(µc ,νc)
2 ).

3.6. Instance-Level Instance Selection

Now we determine which instances should be selected for the label enhancement.
Since label enhancement works at the instance level, a straightforward notion is to select
the instances that are uncertain across most labels. In this paper, we introduce the symbol
UCi to represent the number of accumulated times that satisfy xi ∈ X(µc ,νc)

2 for any lc. It is
defined as:

UCi = ∑
c

[[
xi ∈ X(µc ,νc)

2

]]
(30)
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where the notation [[·]] equals 1 if the condition meets and 0 otherwise. Based on the UC,
the instances to be enhanced (X(µ,ν)

2 ) can be computed as:

X(µ,ν)
2 =

{
xi
∣∣UCi > UCj ∧ xj ∈ X2 ∧UCj > 0

}
(31)

where the notation UCj refers to the average non-zero UCj. This means that an instance
will be enhanced only when it is recognized as uncertain in most labels.

3.7. Complexity Analysis

We summarize the procedures of IFTWLE in Algorithm 1. The most time-consuming
step is the calculation of pair-wise distances within all unseen instances (i.e., rc). Let k be
the average length of label-specific features, n be the unseen instance count, and m be the
label count, then the calculation for rc requires O(n2mk). Therefore, the computational
complexity of IFTWLE is much lower than that of training f1(·) [9] and f2(·) [16]. However,
as the complexity is proportional to the quadratic of the instance count, it is inappropriate
to employ this algorithm for large-scale multi-labels. The local estimation of the inner
product should be considered to accelerate the instance selection.

Algorithm 1: IFTWLE
Input: instances X = X1 ∪ X2, logical labels Y1, parameters α, β, and γ,

neighborhood size r.
Output: unseen labels Ŷ∗2 .

1 Construct f1(·) as described in (1).
2 Generate pseudo-labels Ŷ2 given X2 as described in (2).
3 for c = 1 to m do
4 Compute r+c and r−c as described in (17) and (18).
5 for i = 1 to n do
6 Compute µc(xi) as described in (21).
7 Compute ρc(xi) as described in (25).
8 Compute νc(xi) as described in (27).
9 end

10 Compute X(µc ,νc)
2 as described in (29).

11 end

12 Compute X(µ,ν)
2 as described in (31).

13 ¬X(µ,ν)
2 = X2 − X(µ,ν)

2 .

14 if X(µ,ν)
2 6= ∅ then

15 Construct f2(·) as described in (3).

16 Generate pseudo-labels Ŷ(µ,ν)
2 as described in (4).

17 end
18 Generate Ŷ∗2 as described in (8).

4. Experiments
4.1. Dataset Characteristics

To demonstrate the effectiveness and efficiency of the proposed model, we compared
the classification performances on eight multi-label benchmarks from Mulan (http://mulan.
sourceforge.net/datasets.html) (accessed on 1 March 2022) and Meka (http://waikato.
github.io/meka/datasets/) (accessed on 1 March 2022) on domains including audio, music,
text, biology, and images. The selected benchmarks were either small or moderate and
were intensively referenced due to their limited baseline performances. In Table 2, for each
dataset, “# Instances” means the number of instances, “# Features” means the number of
features, “# Labels” means the total number of class labels, and “# Cardinality” means

http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html
http://waikato.github.io/meka/datasets/
http://waikato.github.io/meka/datasets/


Mathematics 2022, 10, 1847 13 of 21

the average number of labels per instance of a dataset, where notation “#” means the
number of.

Table 2. Characteristics of data sets.

Data Set # Instances # Features # Labels # Cardinality Domain

birds 645 260 19 1.014 audio
emotions 593 72 6 1.869 music

enron 1702 1001 53 3.378 text
genbase 662 1185 27 1.252 biology

languagelog 1460 1004 75 1.18 text
medical 978 1449 45 1.245 text

scene 2407 294 6 1.074 image
yeast 2417 103 14 4.237 biology

4.2. Evaluation Metrics

We adopted six evaluation metrics (Hamming Loss, Ranking Loss, One Error, Coverage,
Average Precision, and Micro F1) [47] to evaluate the classification performance. Except for
the last two, which achieve better performance when the values are larger, the remaining
metrics obtain better performances when values are smaller. Let Yi and ¬Yi denote the
relevant and irrelevant label sets in ground-truth, and n be the unseen instances count, then
the formulas of metrics are enumerated as:

(1) Hamming Loss (abbreviated as Hl) evaluates the average difference between predictions
and ground-truth (see Formula (32)). The smaller the value of the Hamming Loss,
the better the performance of the algorithm.

Hl =
1
n

n

∑
i=1

1
l

Card( f (xi)∆Yi) (32)

where ∆ is the set symmetric difference and Card(·) is the set cardinality.
(2) Ranking Loss (abbreviated as Rkl), evaluates the fraction that the irrelevant label ranks

before the relevant label in the label predictions (see Formula (33)). The smaller the
value of the Ranking Loss, the better the performance of the algorithm.

Rkl =
1
n

n

∑
i=1

1
Card(Yi)Card(¬Yi)

×Card({(la, lb)|ranki(la)> ranki(lb)∧(la, lb) ∈ Yi×¬Yi }) (33)

where ranki
(
lj
)

denotes the ranking position in ascending order for the j-th label on
the i-th instance. Card(·) is the set cardinality.

(3) One Error (abbreviated as Oe) evaluates the average fraction that the label ranking—
first in prediction—is actually the irrelevant label (see Formula (34)). The smaller the
value of One Error, the better the performance of the algorithm.

Oe =
1
n

n

∑
i=1

arg min ranki
(
lj
)

lj

 /∈ Yi

 (34)

where [[·]] equals 1 if the condition holds and equals 0 otherwise. The operator ranki
(
lj
)

denotes the ranking position in ascending order for the j-th label on the i-th instance.
(4) Coverage (abbreviated as Cvg) evaluates the average fraction for inclusion of all ground-

truth labels in the ranking of label predictions (see Formula (35)). The smaller the
value of Coverage, the better the performance of the algorithm.

Cvg =
1
n

n

∑
i=1

max
lj∈Yi

ranki
(
lj
)
− 1 (35)
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where ranki
(
lj
)

denotes the ranking position in ascending order for the j-th label on
the i-th instance.

(5) Average Precision (abbreviated as Ap) evaluates the average precision of the actual
relevant label rankings before relevant labels are examined by the label predictions
(see Formula (36)). The larger the value of Average Precision, the better the performance
of the algorithm.

Ap =
1
n

n

∑
i=1

1
Card(Yi)

∑
lj∈Yi

Card({ls ∈ Yi
∣∣ranki(ls) 6 ranki

(
lj
)
})

ranki
(
lj
) (36)

where Card(·) is the set cardinality.

4.3. Experimental Settings

We examined whether IFTWLE gained superiority over state-of-the-art algorithms
learnt on logical labels only. For this reason, we compared IFTWLE with LLSF, multi-label
k-nearest neighbour (MLkNN), multi-label learning with label-specific features (LIFT),
MLTSVM, multi-label learning with global and local label correlation (Glocal), and active
k-label set ensembles (ACkEL). Detailed settings are as follows.

• LLSF (code available at https://jiunhwang.github.io/ (accessed on 1 March 2022))
[9]: This method learns label-specific feature representations for all labels based on
logical labels. It shares an identical structure with f1(·). Comparing this method, we
could examine the contributions of label enhancement. Parameters δ, η are tuned in
{2−10, 2−9, . . . , 29, 210}. The calibrated threshold τ1 is fixed as 0.5.

• MLkNN (code available at http://www.lamda.nju.edu.cn/code_MLkNN.ashx (ac-
cessed on 1 March 2022)) [48]: It learns a conditional probability distribution on all
features within the adapted k-neighborhood. The introduction of the neighborhood
has some similarities with the components in the non-membership function ν(xi).
However, we took one further step and enhanced the results of the uncertain instances.
The value k took the empirical value 10.

• LIFT (code available at http://cse.seu.edu.cn/PersonalPage/zhangml/index.htm (ac-
cessed on 1 March 2022)) [40]: It learned different feature representations to determine
the label association. It was the first trial of label-specific learning for multi-label classi-
fication. By comparing with this method, we could verify whether label enhancement
improves label-specific learning. The ratio parameter is searched in {0.1, 0.2, . . . , 0.5}.

• MLTSVM (code available at http://www.optimal-group.org/Resource/MLTSVM.
html (accessed on 1 March 2022)) [11]: It learns distance difference based on mul-
tiple nonparallel hyperplanes. The twin support vector machine is a variant of the
support vector machine; we trained the enhanced model by a linear support vector
machine. The penalty and kernel parameter were searched in {2−6, 2−5, . . . , 25, 26}
and {2−4, 2−3, . . . , 23, 24}, respectively.

• Glocal (code available at http://www.lamda.nju.edu.cn/code_Glocal.ashx (accessed
on 1 March 2022)) [49]: It learns a mapping from the feature space to latent labels
via a low-rank decomposition. It is the initial attempt to simultaneously leverage
both global and local label correlations. The similarity is that we also consider global
label correlation in a pairwise fashion. By comparing with this work, we can examine
whether label importance is superior to local label correlation. The penalty λ takes the
empirical value 1.

• ACkEL (code available at https://github.com/xuwangfmc/AkEL (accessed on 1
March 2022)) [50]: It takes an ensemble strategy on the k-label set optimized by class
separability and class uncertainty simultaneously. It is a revised version of the classic
k-label set algorithm, which is assumed to gain a robust performance. By compar-
ing with this work, we can examine whether the strategy, combining the pairwise
label correlation and label importance, could gain superiority over a high-order label
correlation. A one-versus-all multi-class strategy was conducted on each label set;

https://jiunhwang.github.io/
http://www.lamda.nju.edu.cn/code_MLkNN.ashx
http://cse.seu.edu.cn/PersonalPage/zhangml/index.htm
http://www.optimal-group.org/Resource/MLTSVM.html
http://www.optimal-group.org/Resource/MLTSVM.html
http://www.lamda.nju.edu.cn/code_Glocal.ashx
https://github.com/xuwangfmc/AkEL
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parameters σ, β were searched in {2−3, 2−2, . . . , 210, 211} and {0.1, 0.3, 0.5, 0.7, 0.9},
respectively. The size for each label set was fixed as 3.

• Proposed method. There are three groups of parameters. The parameters in construct-
ing f1(·) and f2(·) take the recommended settings, as declared in [9] and [16]. For an
intuitionistic fuzzy membership assignment, all components were automatically de-
termined by data characteristics except for neighborhood radius r. It was searched in
{0.01, 0.1} via five-fold cross-validation.

We considered five evaluations [47] including Hamming Loss, One Error, Coverage,
Ranking Loss, and Average Precision. Except for Average Precision, which obtains better
performance if the metric becomes larger, the others achieve better performances if the
metrics become smaller. The experiments were implemented using Matlab R2017b on a
desktop PC with an Intel(R) Core i7 processor (2.60 GHz) and 8 GB of RAM. All parameters
were selected via five-fold cross-validation.

4.4. Results

We evaluated the classification performances, considering algorithms on five evalu-
ation metrics; we report them in Figures 5–9. The down arrow ↓ means the smaller the
metrics is, the better the algorithm performance becomes. In contrast, the up arrow ↑means
the larger the metrics is, the better the algorithm performance becomes.

From the metric view, IFTWLE ranks in first place in 60% of cases ( 3
5 ) and in second

place in 40% of cases. From the dataset view, IFTWLE ranks in first place in 42.5% of cases
( 17

40 ) and in second place in 17.5% of cases ( 7
40 ). It receives the best performance on the

Coverage metric (with first place in 87.5% cases) and worst on the One Error metric (with
second place in 75% of cases).

The Friedman test [51] was employed to calculate the relative performances among
multiple algorithms over selected datasets. Given k comparing algorithms and N datasets,
let Rank j = (1/N )∑N

i=1 rj
i denote the average rank for the j-th algorithm. With the null

hypothesis (i.e., H0) of all algorithms obtaining identical performance, the Friedman statistic
FF is distributed according to the F-distribution with the k− 1 degree of freedom as the
numerator and (k− 1)(N − 1) degree of freedom as the denominator, denoted as:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
(37)

where

χ2
F =

12N
k(k + 1)

[
∑

j
Rank2

j −
k(k + 1)2

4

]
(38)

Table 3 presents the Friedman statistics FF and the corresponding critical value for all
evaluation metrics in this setting. The results clearly support that, at the significance level,
α = 0.05, the null hypothesis (i.e., H0) of the statistically indistinguishable performance of
all algorithms on the considered metrics is rejected. It implies that it is feasible to examine
if IFTWLE gains statistical superiority over other comparing algorithms by conducting a
post hoc test, such as the Holm [51].

Furthermore, by regarding IFTWLE as the control algorithm, we employed the Holm
procedure [51] to explore whether IFTWLE gains significant a performance difference
against each of the considered algorithms. Without losing generality, we nominate A1
as IFTWLE. For the other k − 1 comparing algorithms (i.e., Aj(2 6 j 6 k)), we stipulate
Aj as the one that has the j− 1-th largest average ranking over all datasets on a specific
evaluation metric. Consequently, we have the test statistic for comparing A1 (i.e., IFTWLE)
with Aj as:

zj =
(

Rank1 − Rank j
)/√

k(k + 1)
6N

(2 ≤ j ≤ k) (39)
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Let pj denote the p-value of zj under a normal distribution. Given the significance
level α = 0.05, the Holm procedure works in a stepwise manner by checking whether the
statistics pj are smaller than α

/
(k− j + 1) in ascending order of j. Specifically, the Holm

procedure continues until there exists a j∗-th step, and j∗ denotes the first j, such that
pj > α

/
(k− j + 1) holds (If pj < α

/
(k− j + 1) holds for all j, j∗ takes the value of k + 1).

Figure 5. Comparison of each algorithm on the Hamming Loss metric. The average rankings of
algorithms on this metric: LIFT (2.625) > IFTWLE (3.4375) > ACkEL (3.6250) > MLTSVM (3.9375) >
MLkNN (3.8125) > LLSF (5.0000) > Glocal (5.5625).

Figure 6. Comparison of each algorithm on the Ranking Loss metric. The average rankings of
algorithms on this metric: IFTWLE (2.0000) > MLkNN (3.1250) = LIFT (3.1250) > Glocal (3.5625) >
LLSF (3.6875) > MLTSVM (5.8750) > ACkEL (6.6250).
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Figure 7. Comparison of each algorithm on the One Error metric. The average rankings of algorithms
on this metric: MLTSVM (1.2500) > LIFT (2.6250) > IFTWLE (3.6250) > Glocal (4.3750)>MLkNN
(4.5000) > LLSF (4.6250) > ACkEL (7.0000).

Figure 8. Comparison of each algorithm on the Coverage metric. The average rankings of algorithms
on this metric: IFTWLE (1.1875) > LLSF (1.8125) > MLkNN (3.0000) > ACkEL (4.7500) > LIFT (5.0000)
> Glocal (5.8750) > MLTSVM (6.3750).

Figure 9. Comparison of each algorithm on the Average Precision metric. The average rank of
algorithms on this metric: IFTWLE (2.4375) > LIFT (3.2500) = Glocal (3.2500) > MLkNN (3.8125) >
LLSF (4.0625) > MLTSVM (4.4375) > ACkEL (6.7500).



Mathematics 2022, 10, 1847 18 of 21

Table 3. Summary of the Friedman statistics FF (k = 7, N = 8) and critical values in terms of each
evaluation measure (k:# comparing algorithms; N:# data sets).

Metric FF Critical Value (α = 0.05)

Hamming Loss 9.991071

2.3239
Ranking Loss 27.816964
One Error 33.214286
Coverage 41.852679
Average Precision 19.473214

It can be seen in Tables 4–8 that IFTWLE statistically outperforms ACkEL on the
Ranking Loss, Coverage, and Average Precision metrics, and statistically outperform MLTSVM
on the Ranking Loss and Coverage metrics. IFTWLE achieves the most dominance on
Coverage, which is statistically superior over all algorithms except MLkNN and LLSF.
By finding instances with the most uncertain labels, it is more likely to revise a large
proportion of misclassified labels, gaining more improvements in the Coverage metric.
However, this strategy does not discriminate concerning the relative importance of labels
in different instances, which lead to limited improvements in the One Error and Average
Precision metrics.

Table 4. Comparison of IFTWLE (control algorithm) against other comparing algorithms (with the
Holm procedure as the post hoc test) at the significant level α = 0.05 on the Hamming Loss metric.

j Algorithm zj p Holm

2 Glocal −1.9674 0.0491 0.008
3 LLSF −1.4466 0.1480 0.010
4 MLTSVM −0.4629 0.6434 0.013
5 MLkNN −0.3472 0.7284 0.017
6 ACkEL −0.1736 0.8622 0.025
7 LIFT 0.7522 1.0000 0.050

Table 5. Comparison of IFTWLE (control algorithm) against other comparing algorithms (with the
Holm procedure as the post hoc test) at the significance level α = 0.05 on the Ranking Loss metric.
Algorithms that are statistically inferior to IFTWLE are in bold.

j Algorithm zj p Holm

2 ACkEL −4.281918 0.000019 0.008
3 MLTSVM −3.587553 0.000334 0.010
4 LLSF −1.562321 0.118212 0.013
5 Glocal −1.446594 0.148011 0.017
6 MLkNN −1.041548 0.297621 0.025
7 LIFT −1.041548 0.297621 0.050

Table 6. Comparison of IFTWLE (control algorithm) against other comparing algorithms (with the
Holm procedure as the post hoc test) at the significance level α = 0.05 on the One Error metric.
Algorithms that are statistically inferior to IFTWLE are in bold.

j Algorithm zj p Holm

2 ACkEL −3.1246 0.0018 0.008
3 LLSF −0.9258 0.3545 0.010
4 MLkNN −0.8101 0.4179 0.013
5 Glocal −0.6944 0.4874 0.017
6 LIFT 0.9258 1.0000 0.025
7 MLTSVM 2.1988 1.0000 0.050
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Table 7. Comparison of IFTWLE (control algorithm) against other comparing algorithms (with
the Holm procedure as the post hoc test) at the significance level α = 0.05 on the Coverage metric.
Algorithms that are statistically inferior to IFTWLE are in bold.

j Algorithm zj p Holm

2 MLTSVM −4.802692 0.000002 0.008
3 Glocal −4.339782 0.000014 0.010
4 LIFT −3.529689 0.000416 0.013
5 ACkEL −3.2982345 0.000973 0.017
6 MLkNN −1.678049 0.093338 0.025
7 LLSF −0.578638 0.562834 0.050

Table 8. Comparison of IFTWLE (control algorithm) against other comparing algorithms (with the
Holm procedure as the post hoc test) at the significance level α = 0.05 on the Average Precision metric.
Algorithms that are statistically inferior to IFTWLE are in bold.

j Algorithm zj p Holm

2 ACkEL −3.992599 0.000134 0.008
3 MLTSVM −1.85164 0.064078 0.010
4 LLSF −1.504458 0.132464 0.013
5 MLkNN −1.273003 0.203017 0.017
6 LIFT −0.752229 0.451913 0.025
7 Glocal −0.752229 0.451913 0.050

5. Conclusions

This paper proposes a novel model called IFTWLE to deal with multi-label classifica-
tion. Unlike conventional multi-label learning algorithms, which learn models on either
logical labels or numerical labels, we integrated the two forms of labels under the three-way
decisions umbrella by exploring classification uncertainty. The intuitionistic fuzzy set
provides an insightful view into quantifying the label level uncertainty and it determines
the uncertain instances in a group decision-making fashion. Comparisons on benchmarks
demonstrate that IFTWLE significantly improves classification performance.

In the future, we will examine more combinations of label-specific algorithms and
label enhancement algorithms to see whether some guidelines exist. Meanwhile, we will
develop advanced instance selection principles by resorting to the optimization theory.
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