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Abstract
Semi-supervised real-time generation multi-view multi-label data sets are widely encountered in practical applications. A

key issue is how to process the data whose information including labels or features may be lost due to some unfore-

knowable factors. In our work, we develop a multi-view multi-label-based online method with threefold correlations and

dynamic updating multi-region (M2CR) to solve this issue. First, we adopt three kinds of correlations between features and

labels to recover the missing information. Second, we process new arriving instances with dynamic updating multi-region.

Experiments on classical multi-view multi-label data sets validate the effectiveness of M2CR in terms of classification,

time performance, convergence, etc.

Keywords Multi-view and multi-label � Feature and label correlation � Dynamic updating multi-region

1 Introduction

1.1 Background

Four kinds of data exist in real-world applications, namely,

single-view single-label data, multi-view single-label data,

single-view multi-label data, and multi-view multi-label

data. Among them, the multi-view multi-label data [1] are

ubiquitous and have more application scenarios. For a

multi-view multi-label data set, each instance exhibits

multiple views and in each view, an instance can be

labelled by multiple classes. Suppose in Fig. 1, there is a

publicity website about the Imperial Palace and people can

appreciate it through multiple ways (views) including text

introduction, image introduction, and video introduction. In

different views, the content of the website can be labelled

differently. With textual information, this publicity website

can be treated as an introduction to history. With image

introduction, the website can be treated as an oil painting

which describes landscape and history, while with video

introduction, we can treat the website as a stereoscopic

introduction about landscape and history rather than an oil

painting. Obviously, in different views, this publicity

website is labelled with different classes (history, land-

scape, oil painting, etc.) and this website is treated as a

multi-view multi-label instance. Indeed, single-view sin-

gle-label data, multi-view single-label data, single-view

multi-label data can be treated as the special cases of multi-

view multi-label data.

What’s more, in practical applications, forms of the

above-mentioned data sets are more complicated and three

forms are general.

One is incomplete form. With the electromagnetic

interference to sample equipments, obsolescence of storage

devices, some label or feature information about the col-

lected data may be lost. This makes the collected data be

incomplete. Some classical solutions are developed to

handle this case, including matrix completion, graph-reg-

ularized matrix factorization, visual assessment, imputation

schemes [2–6], etc.

Another is real-time generation form. With the advent of

big data, the collected data in practical applications exhibit

real-time attribute. For example, when we collect data in
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YouTube, the data stored are constantly changing since

people upload videos whenever and wherever possible.

Feasible solutions to process this form are online methods

[7–9].

The third is semi-supervised form. With the lack of

manpower, only a small amount of the collected data can

be labelled and provide useful prior knowledge. Such a

data set is semi-supervised. In order to cope with those data

sets, scholars develop some semi-supervised-related

methods [10–14].

1.2 Motivation and proposal

Motivation: Although those above-related solutions are

feasible for corresponding cases, some of them still have

several shortcomings (details can be found in Sect. 2). For

example, solutions for incomplete data have complicated

frameworks and their computational complexities are high,

especially in case of matrix factorization and matrix

completion-related solutions. Even though Nystr€om tech-

nology [15–17] can reduce the computational complexity

at some extends, we still have some room to reduce the

level of complexity further. Then, solutions for real-time

generation data and semi-supervised data have no ability to

process incomplete data. Moreover, some solutions maybe

pay more attention to data statistics and model mecha-

nisms; then, they omit the valuable correlations between

information or seldom use multiple kinds of correlations

among information simultaneously. Here, these correla-

tions reflect the relationship between information and

maybe bring better performances for methods (definitions

of correlations can be found in Sect. 3.1). Furthermore,

among those solutions, only a few ones are developed for

multi-view multi-label data sets and if a multi-view multi-

label data set exhibits these forms simultaneously, how to

solve it is an open problem. Thus we expect to come up

with a method which can process a semi-supervised real-

time generation multi-view multi-label data set with

incomplete information and overcome the above-men-

tioned shortcomings.

Proposal Different from the above solutions to incom-

plete form, we argue that the missing information can be

recovered by the correlations among features and labels.

Simple speaking, the collected data are D ¼ ðX;YÞ where
X represents the features and Y represents the labels. If V,

S, W denote the feature-feature, label-label, feature-label

correlations, respectively, they are collectively called

threefold correlations (TC). Then we can use VX, SY to

recover the missing features and labels and adopt

min
w:r:tV;S;W

VXW � SYj jj j22 to adjust the recovered results with

some fine tuning.

In terms of the real-time generation and semi-supervised

aspects, we refer to the way given in [18]. In generally

speaking, we update the parameters of the model

momentarily once an instance arrives. But in our work, a

few tricks are used. Different from what [18] adopts, when

a new labelled instance arrives, we use correlations

between features and ones between labels to recover the

missing information and update the correlations simulta-

neously; when a new unlabelled instance arrives, we

recover the missing features firstly and then adopt the

notion of dynamic updating multi-region (DUMR) which

updates current optimistic and pessimistic multiple regions

of data to predict the labels so as to update the correlations

finally.

With the combination of the above operations, we

develop a multi-view multi-label-based online method with

TC and DUMR (M2CR).

1.3 Contribution

In order to solve the shortcomings of the above-mentioned

solutions for incomplete data, real-time generation data,

and semi-supervised data, we develop M2CR which con-

sists of two main parts. One is recovering missing infor-

mation with TC (this part corresponds to incomplete form),

and the other is processing new arriving instances with

DUMR, recovering methods, and correlations among

information (this part corresponds to real-time generation

form and semi-supervised form).

Different from the past solutions for incomplete data

processing problems, TC has the following advantages. (1)

With the usage of TC, when we recover missing informa-

tion, we can use matrix multiplication rather than other

matrix-based operations including matrix factorization and

matrix completion which maybe bring a high computa-

tional complexity; (2) compared with imputation schemes

and methods using correlations between features or labels,

Fig. 1 Example of a multi-view multi-label data set
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recovering with TC can not only reduce the dependence on

data statistics and model mechanisms but also consider

more valuable correlations among information; (3) recov-

ering with TC need not a very complicated framework.

Different from the past solutions for real-time genera-

tion data and semi-supervised data processing problems,

DUMR has the following advantages. (1) Together with

recovering missing information and updating correlations

among information, DUMR can help to process semi-su-

pervised real-time generation data sets with incomplete

information better. This cannot be achieved by past solu-

tions; (2) DUMR can label an new arriving unlabelled

instance with a higher accuracy since it labels an instance

with updating the current optimistic and pessimistic mul-

tiple regions dynamically. Indeed, updating those regions

dynamically can make the classification interface be more

consistent with the current data distribution.

What’s more, besides the introduction of TC and

DUMR, M2CR has two another advantages. One is that

M2CR can process multi-view multi-label data sets, while

other last solutions are developed for single-view single-

label data, multi-view single-label data, or single-view

multi-label data. The other is that for the semi-supervised

real-time generation data, different from traditional meth-

ods, M2CR processes new arriving instances with DUMR,

recovering missing information, and updating correlations

among information.

According to the above statements, these advantages can

reflect the novelties of M2CR and its differences and

superiorities compared with the past solutions for incom-

plete data, real-time generation data, and semi-supervised

data. Then we can summarize the contribution of our work,

namely, using more feasible, simpler, informative methods

to process semi-supervised real-time generation multi-view

multi-label data sets with incomplete information.

2 Related work

In order to state the effectiveness of the proposed M2CR

clearly, we review the related work about the above-men-

tioned three cases.

2.1 Solutions for incomplete data

According to the literatures, most state-of-the-art methods

to solve incomplete data can be generally divided into three

categories.

Firstly, according to the retrospective statement of [19],

matrix factorization and matrix completion-related meth-

ods can be used to estimate the missing information and a

series of solutions have been proposed. For example, Peng

et al. [20] present a hierarchical block-based incomplete

data recovery method by using adaptive nonnegative

matrix factorization (NMF) and this method does not need

any user assistance and the training priors. Then, Tan et al.

[2] propose a multi-view weak-label learning based on

matrix completion to solve incomplete labels and noisy

features. After that, Zhang et al. [21] propose an isomor-

phic linear correlation analysis method to linearly map

multi-view data to a feature-isomorphic subspace and on

the base of learned features, the data matrix of missing

information can be modelled as a low-rank component plus

a sparse contribution, and its matrix completion can be

accomplished by an identical distribution pursuit comple-

tion model so that the missing information can be recov-

ered. In this year, Niu et al. [22] use low-rank matrix

factorization to learn a consensus representation matrix and

they apply their method in multi-view clustering tasks;

then, better clustering performances are obtained.

Secondly, as [6] stated, imputation schemes can also be

chosen to perform on missing information. These schemes

aim to fill in missing values with plausible values that are

estimated based on observed values [23]. Traditional

imputation schemes include statistical-based and machine

learning-based methods. For the statistical-based imputa-

tion methods, people use the statistical information of

observed data to fill in missing ones. Four most widely

used statistical techniques are expectation management,

linear regression, least squares, and mean/mode, and they

have been applied in different tasks [24–26, 28]. For the

machine learning-based ones, people focus on the design-

ing of models and top four used techniques include clus-

tering, decision tree, K-nearest neighbour, and random

forest[29–32]. At present, neural network and granular

computing which are active branches of machine learning

have been widely applied in imputations of missing

information. For example, Yoon et al. [33] present a gen-

erative adversarial imputation network (GAIN) for missing

information imputation, where the generator outputs a

completed vector conditioned on what is actually observed,

and the discriminator attempts to determine which entries

in the completed data were observed and which were

imputed. GAIN has been shown to outperform many state-

of-the-art imputation models. On the base of GAIN, Wang

et al. [34] propose an unsupervised missing data imputation

method named PC-GAIN, which utilizes potential category

information to further enhance the imputation power.

Meanwhile, Zhang et al. [35] introduce an encoder network

into the standard generative adversarial network architec-

ture and propose an end-to-end model to impute the

missing information in a multivariate time series. Then, Hu

et al. [4] develop an information granule-based classifier to

abstract and refine the clusters centres in multi-class sub-

spaces, and then the key structural relationship of the

classes of data distributions can be captured. After that, the

Neural Computing and Applications (2022) 34:6097–6117 6099

123



incomplete data can be imputed as hybrid numeric and

granular data and then be classified accurately.

Thirdly, in recent several years, many scholars focus on

the correlations between features or labels to process the

missing information. For example, Zhu et al. [1] exploit both

global and local label correlations to construct a model and

recover the missing label information through learning a

latent label representation and optimizing the label mani-

folds. Sun et al. [36] develop aweakly supervisedmulti-label

learning framework calledWML-LSC.WML-LSC captures

the desired feature information with low rank and sparse

constrain scheme, and it recovers the missing label assign-

ments and reconstructs the label assignment matrix with a

linear self-recovery model which is constructed by a linear

aggregation coefficient matrix reflecting the correlation of

labels. Jiang et al. [37] propose a weakly supervised multi-

label feature selection method called FSLCLC for feature

selection with incomplete label information. During the

procedure of FSLCLC, it recovers the missing labels of

partially labelled training instances by label compressing

and local feature correlations. Then Li et al. [38] propose a

probabilistic principal component analysis to determine both

long-term correlation information and short-term correlation

information for features of structural health monitoring data

and estimate missing feature information.

While through depth analysis, these above methods have

corresponding disadvantages. For the matrix factorization

and matrix completion-related methods, the high compu-

tational complexities about matrix factorization or matrix

computation make against to the improvement of perfor-

mances about methods. For those imputation schemes, they

pay more attention to impute missing data with statistical

information of observed data or mechanisms of the models

themselves and omit the valuable correlations between

information. For the methods using correlations between

features or labels, although they can reduce computational

complexities, they seldom use correlations between fea-

tures, correlations between labels, correlations between

features and labels simultaneously which maybe bring

better results for incomplete case.

2.2 Solutions for real-time generation data
and semi-supervised data

In real-world applications, limited by insufficient man-

power and real-time data generation, real-time generation

data and semi-supervised data always exist simultaneously.

Thus, for convenience, we review the work about these two

forms of data in this subsection in together.

Firstly, because semi-supervised data are ubiquitous in all

trades and professions, thus there are many related methods

which can be applied in various tasks including image

classification, clustering, expressive representation learning,

proposed for this form of data. For example, Nie et al. [11]

propose a structural regularized semi-supervised model

called AMUSE for multi-view data to solve the image

classification problem. Different from traditional conven-

tional graph-basedmulti-view learningmodelswhich learn a

linear combination of views while assuming a priori weights

distribution, AMUSE learns weights from a priori graph

structure with the proposed structural regularization term

which can lead to a more suitable structured graph for semi-

supervised learning. Bai et al. [12] focus on semi-supervised

clustering which uses pre-given knowledge as constraints to

improve the clustering performance and then analyze the

relations among multi-source constraints and propose an

uniform representation for them. Then on the base of the

relations and uniform representation, they propose a semi-

supervised clustering algorithm called SC-MPI to find out a

clustering that has a good cluster structure and a high con-

sensus of all the sources of constraints. Jia et al. [13] develop

a semi-supervised multi-view deep discriminant represen-

tation learning (SMDDRL) approach to learn an expressive

representation frommulti-view data. Different from existing

joint or alignment multi-view representation learning

methods, SMDDRL comprehensively exploits the consen-

sus and complementary properties of multi-view data and

reduces the redundancy of learned representations by

employing shared and specific multi-view deep representa-

tion learning network as well as designing orthogonality and

adversarial similarity constraints for it. Then by designing

the deep metric learning and density clustering-based semi-

supervised learning framework, SMDDRL effectively

exploits the unlabelled data to enhance its representation

learning performance.

Secondly, as a widely used solution for real-time gener-

ation data,many scholars develop some onlinemethods from

different tasks. For example, Zhang et al. [7] focus on online

feature transformation learning in the context of multi-class

object category recognition and develop an online linear

feature transformation method with the consideration about

the problem of online learning a feature transformation

matrix expressed in the original feature space. Then these

original features are mapped to kernel space, and online

nonlinear feature transformation method is developed which

can further improve the performance of online feature

transformation learning in large-scale application. Li et al.

[9] state that real industrial control systems require real-time

response and uninterrupted operations and then they propose

an adaptive regularized cost-sensitive multi-class online

learning to process data stream in the field of industrial

control and enhance the effectiveness of detecting cyberat-

tacks in industrial control systems. Baisa [39] develops an

online multi-object visual tracker using hypothesized and

independent stochastic population (HISP) filter, and this

tracker overcomes the problem of two or more objects

6100 Neural Computing and Applications (2022) 34:6097–6117

123



having similar identity. Li et al. [40] focus on the challenge of

traditional graph neural network (GNN) frameworks,

namely, difficult to handle the real-time changing network

structures as well as scale to big graph data, and then they

develop an attention-based heterogeneous multi-view graph

neural network (aHMGNN) to address this issue. With the

usage of variable graph data storage method and dynamic

node neighbourhood sampling strategy, online system

implementation of the aHMGNN can be implemented and

the above challenge of GNN can be solved.

Thirdly, different from the above methods which are

developed for semi-supervised data or real-time generation

data only, some other methods are developed for semi-

supervised real-time generation data sets. For example,

Chen et al. [41] concentrate on graph-based multi-view

learning and develop a multi-view semi-supervised learn-

ing for classification on dynamic networks (MSCD).

MSCD can obtain a sparse and smooth combination of the

views with the aid of total variation regularization for time-

varying networks and have a better classification result

when the processing data are time-varying and semi-su-

pervised. Nie et al. [42] focus on fast and accurate classi-

fication of polarimetric synthetic aperture radar (PolSAR)

data in dynamically changing environments, and they

propose an online semi-supervised active learning frame-

work for multi-view PolSAR data classification, called

OSAM. On the base of relationships among multiple views

and a randomized rule, OSAM can only query the labels of

some informative incoming instances. Then on the base of

co-regularized multi-view learning and graph regulariza-

tion, OSAM can utilize both the incoming labelled and

unlabelled instances to update the classifiers and classify

the PolSAR data quickly and accurately. Besides these

methods, our previous work [18] is also a method for semi-

supervised real-time generation data sets. In [18], we

develop an approach to generate additional unlabelled

instances which possess useful discriminant information

firstly and then we update the model continuously with an

arriving labelled or unlabelled instance so that the perfor-

mance of the model can be feasible for time-varying data.

Similarly, according to analysis, these above methods

have corresponding disadvantages as well. Some of the

above methods can only process semi-supervised data or

real-time generation data, and some of them have no ability

to process incomplete data or omit the useful correlations

among information.

3 Preliminaries

In order to solve the disadvantages of the above-mentioned

methods, we develop M2CR. For stating the framework of

M2CR clearly, we show its two preliminaries firstly. One is

a way to recover missing information with TC and the

other is DUMR. What’s more, we emphasize the motiva-

tions for the usage of TC and DUMR.

3.1 Recover missing information with threefold
correlations and its motivation
of the proposal

3.1.1 What is threefold correlations

In practical applications, there are three kinds of correla-

tions among the features and labels.

First, if two features have a strong correlation, their

values depend on each other strongly. A simple example is

age and appearance. In normal circumstances, an older age

always implies an older appearance. If we use a matrix X to

store the information of age and appearance, it is easy to

find that their correlations V can be derived from X. In

other words, V should be a function of X, namely,

V ¼ fVðXÞ.
Second, in real-world, labels of some data have corre-

lations. For example, among the logistics data, if a con-

tainer loading steels belong to building-materials-

container-class, people will classify this container as

heavy-container-class with a high probability. In other

words, if an instance belongs to class a and it will belong to

class b simultaneously with a high probability, then label a

and label b exist a strong correlation. If we use a matrix Y

to store the label information of data, we can see that

correlations between labels S are related with Y and it

should be a function of Y, namely, S ¼ fSðYÞ.
Third, there are some correlations between features and

labels. As we know, features are always used to decide

labels of data [1]. But sometimes, not all features are rel-

evant. For example, it is the grades in each subject that

determine the total score, not gender and age. So when we

label the instances, only part features play important roles.

In other words, strong correlations just exist in some fea-

tures and labels. Then, if we still adopt X to store the

features and Y to represent the labels, their feature-label

correlations W should be a function of X and Y, namely,

W ¼ fWðX;YÞ.

3.1.2 Motivation of the proposal for TC

Once we determine correlations, since V, S, W are derived

from X and Y, thus we can recover the missing information

by these correlations with a reverse operation. For exam-

ple, X ¼ f�1
V ðVÞ and Y ¼ f�1

S ðSÞ can be treated as the

recovered version of the original X and Y, respectively.

Moreover, the recovered X and Y can be tuned by X ¼
f�1
W ðW;YÞ and Y ¼ f�1

W ðW;XÞ, respectively. So we say the
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motivation of the proposal for TC is recovering the missing

information about features and labels with the usage of

these three kinds of valuable correlations among informa-

tion. Moreover, using TC rather than matrix-based opera-

tions including matrix factorization and matrix completion

to recover missing information can reduce the computa-

tional complexity and bring a simpler framework.

3.2 Dynamic updating multi-region and its
motivation of the proposal

3.2.1 Optimistic and pessimistic multiple regions

Suppose (1) U ¼ fx1; . . .; xi; . . .; xn�1g is a data pool which

consists of n� 1 instances (i ¼ 1; 2; . . .; n� 1) and each

instance of U can be represented by d features and labelled

by c classes; (2) according to information of U, we have

possessed the feature-label correlations W and from W, in

terms of each label, we choose the features which corre-

lations to this label are larger than g and gather them to be a

subset of features Ah (h ¼ 1; 2; . . .; c).

First, X � U be a feature matrix. Then for each xi, we

use Eq. (1) to define a neighbourhood granularity /ðxiÞ
w.r.t. Ah where CAh

ðxi; xpÞ can be treated as a metric

function w.r.t. Ah and it represents the similarities between

instances. The computation method of CAh
ðxi; xpÞ is given

in Eq. (2) where xik represents the value of kth feature of xi.

/Ah
ðxiÞ ¼fxp j xp 2 U;CAh

ðxi; xpÞ� c; p ¼ 1; 2; . . .; n� 1g
ð1Þ

CAh
ðxi; xpÞ ¼

Xd

k¼1

xik � xpk
�� ��2

 !1
2

ð2Þ

Second, for the X, we give its lower and upper approxi-

mations w.r.t. Ah which are denoted as NAh
ðXÞ and NAh

ðXÞ
(see Eq. (3)). Indeed, these approximations are used to

compute the cut regions of U.

NAh
ðXÞ ¼ fxi j /Ah

ðxiÞ � X; xi 2 Ug
NAh

ðXÞ ¼ fxi j /Ah
ðxiÞ \ X 6¼ £; xi 2 Ug

�
ð3Þ

Third, according to the lower and upper approximations of

X w.r.t. Ah (h ¼ 1; 2; . . .; c), we can partition the whole U

into three regions, namely, positive region, negative region,

and boundary region and denote them as POSAh
ðXÞ,

NEGAh
ðXÞ, BNDAh

ðXÞ where
POSAh

ðXÞ ¼ NAh
ðXÞ

NEGAh
ðXÞ ¼ U � NAh

ðXÞ
BNDAh

ðXÞ ¼ NAh
ðXÞ � NAh

ðXÞ

8
<

: ð4Þ

These regions indicate that in terms of the current subset of

features Ah, which instances should be (should not be/may

be) covered in X.

But since different Ahs correspond to different three

regions, thus in terms of X, we should get its multi-gran-

ulation lower and upper approximations firstly and then get

the corresponding three optimistic regions and three pes-

simistic regions. Optimistic lower and upper approxima-

tions of X are

Pc

h¼1

No
Ah
ðXÞ ¼ fxi j

Wc

h¼1

/Ah
ðxiÞ � X

� �
; xi 2 Ug

Pc

h¼1

No
Ah
ðXÞ ¼ fxi j

Vc

h¼1

/Ah
ðxiÞ \ X 6¼ £

� �
; xi 2 Ug

8
>>><

>>>:

ð5Þ

and the corresponding optimistic positive region, negative

region, and boundary region are given as below where ‘
W
’

and ‘
V
’ denote the disjunction ‘OR’ and conjunction

‘AND’ operations, respectively.

POSoðXÞ ¼
Pc

h¼1

No
Ah
ðXÞ

NEGoðXÞ ¼ U �
Pc

h¼1

No
Ah
ðXÞ

BNDoðXÞ ¼
Pc

h¼1

No
Ah
ðXÞ �

Pc

h¼1

No
Ah
ðXÞ

8
>>>>>>><

>>>>>>>:

ð6Þ

In the same way, the pessimistic lower and upper approx-

imations of X are

Pc

h¼1

Np
Ah
ðXÞ ¼ fxi j

Vc

h¼1

/Ah
ðxiÞ � X

� �
; xi 2 Ug

Pc

h¼1

Np
Ah
ðXÞ ¼ fxi j

Wc

h¼1

/Ah
ðxiÞ \ X 6¼ £

� �
; xi 2 Ug

8
>>><

>>>:

ð7Þ

and the corresponding pessimistic positive region, negative

region, and boundary region are given as below.

POSpðXÞ ¼
Pc

h¼1

Np
Ah
ðXÞ

NEGpðXÞ ¼ U �
Pc

h¼1

Np
Ah
ðXÞ

BNDpðXÞ ¼
Pc

h¼1

Np
Ah
ðXÞ �

Pc

h¼1

No
Ah
ðXÞ

8
>>>>>>><

>>>>>>>:

ð8Þ

3.2.2 Dynamic updating optimistic and pessimistic
multiple regions

When there is a new instance xs which also can be repre-

sented by d features and labelled by c classes arrives

dynamically, we should update the current optimistic and
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pessimistic multiple regions of X and the method is given

as below.

First, for each Ah, we let RX;xs
Ah

¼ ½rAh
is �ðn�1Þ�1 be an

incremental relation where i ¼ 1; 2; . . .; n� 1 and s corre-

sponds to xs. Then rAh
is is computed as follows.

rAh
is ¼ 1; if CAh

ðxi; xsÞ� c i ¼ 1; 2; . . .; n� 1

0; otherwise

�
ð9Þ

Second, DAh
¼ ½dAh

ib �ðn�1Þ�ðn�1Þ is the neighbourhood rela-

tion matrix of U and dAh

ib is computed with Eq. (10).

dAh

ib ¼ 1; if CAh
ðxi; xbÞ� ci; b ¼ 1; 2; . . .; n� 1

0; otherwise

�

ð10Þ

Then

D
0

Ah
¼

DAh
RX;xs
Ah

RX;xs
Ah

T
1

 !
ð11Þ

is an augmented neighbourhood relation matrix and its

dimension is n� n.

Third, we set a matrix BðXÞ ¼ ½bi�ðn�1Þ�1 to denote

whether instances belong to the X. Here,

bi ¼
1; if xi 2 X i ¼ 1; 2; . . .; n� 1

0; otherwise

�
ð12Þ

.

Fourth, since xs is a new arriving instance, thus the U is

updated as U
0 ¼ U [ xs and X is also updated as

X
0 ¼ X [ xs. As a result, we can get a new matrix to denote

whether instances belong to the X
0
, namely, BðXÞ is

updated as BðX0 Þ ¼ BðXÞ
bs

� �
where

bs ¼
1; if xs is unlabelled
0; otherwise

�
ð13Þ

Moreover, we can also set a column vector C
0
which ele-

ments are all 1 and its dimension is n� 1. Then we let

Q*
Ah
ðX0 Þ ¼ D

0

Ah
� BðX0 Þ & Q+

Ah
ðX0 Þ ¼ D

0

Ah
� C

0 ð14Þ

be two intermediate matrices corresponding to Ah and they

are used to update the multiple regions for X
0
.

Fifth, we let QAh
ðX0 Þ ¼ Q*

Ah
ðX0 Þ=:Q+

Ah
ðX0 Þ where ‘/.’

denotes the matrix dot divide. Each element of QAh
ðX0 Þ is

recorded as qiAh
. Then, according to QAh

ðX0 Þ, we get the

matrices corresponding to the positive, boundary, and

negative regions of X
0
with Eq. (15) where qi�POS

Ah
, qi�NEG

Ah
,

and qi�BND
Ah

can be computed by Eqs. (16)� (18) where

i ¼ 1; 2; . . .; n and h ¼ 1; 2; . . .; c.

QPOS
Ah

ðX0 Þ ¼ ½qi�POS
Ah

�n�1

QNEG
Ah

ðX0 Þ ¼ ½qi�NEG
Ah

�n�1

QBND
Ah

ðX0 Þ ¼ ½qi�BND
Ah

�n�1

8
>><

>>:
ð15Þ

qi�POS
Ah

¼
1; if qiAh

¼ 1

0; otherwise

�
ð16Þ

qi�NEG
Ah

¼ 1; if qiAh
¼ 0

0; otherwise

�
ð17Þ

qi�BND
Ah

¼ 1; if 0\qiAh
\1

0; otherwise

�
ð18Þ

Sixth, consider the c Ahs, we compute the characteristic

functions of the three optimistic regions, i.e. HðPOSoðX0 ÞÞ,
HðNEGoðX0 ÞÞ, HðBNDoðX0 ÞÞ, and three pessimistic

regions, i.e. HðPOSpðX0 ÞÞ, HðNEGpðX0 ÞÞ, HðBNDpðX0 ÞÞ.
Please see the below equation.

HðPOSoðX0 ÞÞ ¼ max
c

h¼1
ðQPOS

Ah
ðX0 ÞÞ

HðNEGoðX0 ÞÞ ¼ max
c

h¼1
ðQNEG

Ah
ðX0 ÞÞ

HðBNDoðX0 ÞÞ ¼ min
c

h¼1
ðQBND

Ah
ðX0 ÞÞ

HðPOSpðX0 ÞÞ ¼ min
c

h¼1
ðQPOS

Ah
ðX0 ÞÞ

HðNEGpðX0 ÞÞ ¼ min
c

h¼1
ðQNEG

Ah
ðX0 ÞÞ

HðBNDpðX0 ÞÞ ¼ max
c

h¼1
ðQBND

Ah
ðX0 ÞÞ

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð19Þ

Here, min and max represent the following operations and

A, B are two n� n matrices, while aij, bij represent their ith

row jth column elements, respectively.

maxðA;BÞ ¼½maxðaij; bijÞ�n�n ð20Þ

minðA;BÞ ¼½minðaij; bijÞ�n�n ð21Þ

Finally, according to Eq. (19), for the X
0
, we can get its

three optimistic regions and three pessimistic regions,

namely, POSoðX0 Þ, NEGoðX0 Þ, BNDoðX0 Þ, POSpðX0 Þ,
NEGpðX0 Þ, BNDpðX0 Þ. The construction method is straight

forward, namely, if the ith element of HðPOSoðX0 ÞÞ is 1,

then xi 2 POSoðX0 Þ. For others, the construction method is

same.

3.2.3 Motivation of the proposal for DUMR

With the usage of DUMR, we can process a semi-super-

vised real-time generation data set better. For a data set, we

can update the current optimistic and pessimistic multiple

regions when a new instance arrives and get which instance

belongs to a label definitely, which is not, and which is not
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sure. In other words, we can label an instance with a more

higher accuracy and this is also the motivation of the

proposal for DUMR.

4 Multi-view multi-label-based online
method with threefold correlations
and dynamic updating multi-region
(M2CR)

4.1 Data preparation

Figure 2 shows the description of a multi-view multi-label

data set. Suppose X 2 Rd�ðn�1Þ is a multi-view multi-label

data set and it consists of n� 1 instances. Each instance

can be described by m views, d features, and c classes. If

we suppose x j
ikj

is the kjth feature of jth view for ith

instance, then xji ¼ ðx j
i1; . . .; x

j
ikj
; . . .; x j

idj
ÞT 2 Rdj�1 repre-

sents the jth view for ith instance and xi ¼
ðx1Ti ; . . .; xj

T

i ; . . .; x
mT

i ÞT 2 Rd�1 denotes the ith instance.

Here, dj is number of features for jth view and d ¼
Pm

j¼1

dj,

i 2 ½1; n� 1�, j 2 ½1;m�, kj 2 ½1; dj�. Then, we let Xj ¼
ðxj1; . . .; x

j
i; . . .; x

j
ðn�1ÞÞ 2 Rdj�ðn�1Þ be the jth view for X and

its kjth feature vector is xjkj ¼ ðxj1kj ; . . .; x
j
ikj
; . . .;

xjðn�1ÞkjÞ 2 R1�ðn�1Þ.

In terms of the labels of X, namely, Y 2 Rc�ðn�1Þ, its
presentation and definition are similar and c is the total

number of labels. Namely, y j
ihj

is the hjth label of jth view

for ith instance and yji ¼ ðy j
i1; . . .; y

j
ihj
; . . .; y j

icj
ÞT 2 Rcj�1

represents the labels of jth view for ith instance and cj is the

number of labels in jth view. Then, Yj ¼
ðyj1; . . .; y

j
i; . . .; y

j
ðn�1ÞÞ 2 Rcj�ðn�1Þ represents the labels of

jth view for X and its hjth label vector is

yjhj ¼ ðyj1hj ; . . .; y
j
ihj
; . . .; yjðn�1ÞhjÞ 2 R1�ðn�1Þ. Then, yi ¼

ðy1Ti ; . . .; yj
T

i ; . . .; y
mT

i ÞT 2 Rc�1 denotes the labels of ith

instance. Here, c ¼
Pm

j¼1

cj, hj 2 ½1; cj�.

Then for the initial collected data, we recover them with

any feasible method including matrix completion [2] firstly

to lay the foundation for better recovery further.

4.2 Initialize correlations between features
and labels

On the base of the present X and Y which have been

recovered initially, we can compute the corresponding

feature-feature, label-label, feature-label correlations.

Here, we take the jth view for example.

First, for Xj, its kjth feature vector is xjkj . Then, if two

features (for example, the kjth feature and the pjth feature)

have a strong correlation, then values or distributions of

instances x in kjth feature are similar with the ones in pjth

feature with a high probability. Further, the feature vectors

xjkj and xjpj should be similar. Thus, the feature-feature

correlations Vj ¼ f½Vj�kjpjg 2 Rdj�dj can be computed by

feature vectors. Refer to the function of a cosine measure,

in Vj, its kjth row and pjth column element

½Vj�kjpj ¼
xj
kj
�xjpj

T

xj
kj

���
���

���
��� xjpj

�� ���� ��
represents the correlation between the

kjth feature and the pjth feature.

Second, for Yj, its hjth label vector is yjhj . Then, if two

labels (for example, the hjth label and the qjth label) have a

strong correlation, then instances belonging to the hjth

label will belong to the qjth label simultaneously with a

high probability. Further, the label vectors yjhj and yjqj

should be similar. Thus, the label-label correlations Sj ¼
f½Sj�hjqjg 2 Rcj�cj can be computed by label vectors. In Sj,

its hjth row and qjth column element ½Sj�hjqj ¼
yj
hj
�yjqj

T

yj
hj

���
���

���
��� yjqj

�� ���� ��

represents the correlation between the hjth label and the

qjth label.

Third, if the correlation between kjth feature and hjth

label is strong, then kjth feature plays an important role on

whether the instance belongs to hjth label. Thus, the fea-

ture-label correlations W j ¼ f½W j�kjhjg 2 Rcj�dj can be

computed by feature vectors and label vectors. Refer to the

traditional pattern recognition knowledge, X can be map-

ped into Y with a mapping matrix W which can be treated

as the weight matrix, for example, Y ¼ WX. Thus, with the

help of this knowledge, xjkj can be mapped into yjhj with a

weight and we treat this weight as the corresponding fea-

ture-label correlation. In other words, W j ¼ YjXj�1
is a

feasible method to compute the feature-label correlations in

jth view and its kjth row and hjth column element ½W j�kjhj
represents the correlation between the kjth feature and the

hjth label.

4.3 DUMR on Xj

Suppose according to Yj, instances in Xj can be divided

into cj clusters. Each cluster Xj
hj
2 Rdj�n

0
corresponds to a
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label, and it covers n
0
instances xjis which belong to the hjth

label. By this operation, instance xji may be covered by

multiple clusters because it belongs to multiple labels

simultaneously.

Then according to the procedure of DUMR, the opti-

mistic and pessimistic multiple regions of Xj
hj

are

Fig. 2 Description of a multi-

view multi-label data set (top:

features; bottom: labels)
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POSoðXj
hj
Þ, NEGoðXj

hj
Þ, BNDoðXj

hj
Þ, POSpðXj

hj
Þ,

NEGpðXj
hj
Þ, and BNDpðXj

hj
Þ, respectively.

4.4 Case 1: a new labelled instance arrives

Suppose xn is a new arriving instance and its label is yn.

The description of it is same as other instances. Then for

xjn 2 Rdj�1 and yjn 2 Rcj�1, we recover them firstly with the

solution of optimization problem (see Eq. (22)). The

solution of this optimization problem can adopt the simple

gradient descent optimization method.

min
w:r:t:Vj;Sj;W j

W jVjxjn � Sjyjn
�� ���� ��2

2 ð22Þ

After solving this optimization problem, we can get the

updated corresponding correlations and get W j
0
, Vj

0
, Sj

0
.

Then we can use xjn
0
¼ Vj � xjn 2 Rdj�1 and yjn

0
¼ Sj � yjn 2

Rcj�1 to recover the xn and update the corresponding X
j, Yj,

Xj
hj
to get Xj

0
, Yj

0
, Xj

hj

0

.

4.5 Case 2: a new unlabelled instance arrives

Suppose the new arriving instance is xn and its description

is same as other instances, then for each view of it,

xjn 2 Rdj�1, we recover it firstly and the recovered result is

xjn
0
¼ Vj � xjn 2 Rdj�1.

Then, we let Xj
0
¼ Xj [ fxjn

0
g 2 Rdj�n and get the

optimistic and pessimistic multiple regions of Xj
hj

0

,

namely, POSoðXj
hj

0

Þ, NEGoðXj
hj

0

Þ, BNDoðXj
hj

0

Þ,

POSpðXj
hj

0

Þ, NEGpðXj
hj

0

Þ, and BNDpðXj
hj

0

Þ.
After that, according to the gotten optimistic and pes-

simistic multiple regions, we distribute the xjn
0
into multiple

feasible clusters and give the corresponding yjn.

Finally, we update the Yj
0
¼ Yj [ fyjng 2 Rcj�n and the

corresponding correlations, W j
0
, Vj

0
, Sj

0
according to the

updated Xj
0
and Yj

0
.

4.6 Test the performance

Once we update the correlations and recover the missing

information, the present model can be treated as the best

form in terms of the present collected data. Now if some

test instances arrive (test instances are the ones which are

used to test the performance of the model rather than

training the model), we can refer to the traditional pattern

recognition knowledge and predict the labels of these test

instances by Yjt ¼ W j
0
Xjt where Xjt represents the test

instances and their labels are Yjt.

Here, we use Fig. 3 to show the framework of the pro-

posed M2CR.

5 Experiments

5.1 Experimental setting

5.1.1 Data set

We adopt some multi-view multi-label data sets including

NUS-WIDE [44, 45], CoNLL-2003 [46], Corel5k [47],

Mirflickr [48], Iaprtc12 [49], Espgame [50], EURLex-4K

[51] for experiments (see Table 1).

5.1.2 Compared method

We select the below four types of multi-view multi-label

learning methods for comparison.

(1) Methods considering correlations: MMP1 [52],

MVCRF2 [46], MVLE3 [53], TG-CMTF4 [54].

MVLE pays attention to feature-label correlations

and others consider label-label correlations.

(2) Methods considering online learning: MVECF5 [55],

MLFSNRS6 [56]. MVECF is an automated model to

identify mentions of product defects from social

media, such as online discussion forums; MLFSNRS

proposes a neighbourhood relation to effectively

Fig. 3 Description of M2CR

1 multi-view based multi-label propagation for image annotation
2 multi-view conditional random fields
3 multi-view label embedding model
4 trigraph regularized collective matrix tri-factorization framework
5 multi-view ensemble learning with contextual features
6 multi-label streaming feature selection based on neighbourhood

rough set
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solve the problem of granularity selection in neigh-

bourhood rough set [57, 58] and solves online

streaming feature selection.

(3) Methods considering semi-supervised cases:

MVOCNMF7 [59], MVMC8 [60], MV3MR9 [61].

MVOCNMF learns the low-dimensional representa-

tions of data by the constrained NMF technique and

puts forward an orthonormality constraint term to

obtain the desirable representations for each view;

MVMC applies a cross-validation strategy on the

labelled set to learn the view combination weights

effectively; MV3MR exploits the complementary

property of different features and discovers the

intrinsic local geometry of the compact support

shared by different features under the theme of

manifold regularization.

(4) Methods without the consideration about the corre-

lations, online learning, and semi-supervised cases:

ICM2L10 [62], BRSMVML11 [63]. ICM2L can

explore the individuality and commonality informa-

tion of multi-label multi-view data in a unified model

explicitly; BRSMVML can process multi-view

image classification, via embedding a block-row

regularizer into the multi-view multi-label

framework.

5.1.3 Parameter setting and selection of best parameters

Parameters of the compared methods refer to respective

references and then for M2CR, its parameter setting is

given below.

(A) We select f10%; 20%; . . .; 90%g instances of each

data set for training and validation and then the left

are used for test. For the training and validation set,

we adopt 10-fold cross-validation for experiments.

Namely, we divide this set into 10 partitions and

each round, and we select 1 partition as the

validation set and the rest 9 partitions as the training

set. On the base of the training set, we can train a

learning machine and then we can use the validation

set to validate its performance. After 10 rounds, we

can get the average performance. In other words, for

each training and validation set, 90% instances are

used for training and the left 10% instances are used

for validation. Then in the semi-supervised case, for

each partition, we further select

f10%; 20%; . . .; 90%g instances as the labelled ones

and the rest is the unlabelled part. Here, during the

experiments, if a partition is used for validation, we

suppose all instances are labelled temporarily.

Moreover, for each instance, we remove

f10%; 20%; . . .; 90%g elements (features or labels

or them both) for the incomplete experiments. All the

above selections are random.

(B) There are another two adjustable parameters in

M2CR. One is g which is used to choose features

according to feature-label correlations and the other

is c which is used to compose the neighbourhood

granularity. Here, g is selected from the set

f0:1; 0:2; . . .; 0:8; 0:9g and c can be selected from

the set f0:05; 0:1; . . .; 0:95; 1; 2; . . .; 9; 10g.
Then, in order to select the best parameters for a data set

when a multi-view multi-label learning method is used, we

adopt the similar way given in reference [43] so as to

optimize the hyper-parameters. In simple terms, (1) for

each data set, we split and process it firstly according to the

setting of Sect. 5.1.3(A). (2) Then we fix the partitions and

processing of the data set in the following experiments and

set the adjustable parameters according to the setting of

Sect. 5.1.3(B). (3) For the 10 partitions, we select 1 parti-

tion as the validation set and the rest 9 partitions as the

training set. Then, on the base of training set and validation

set, we carry out a multi-view multi-label learning method

to get the classification performances. We repeat the

experiments for ten rounds according to these 10 partitions

and get the average classification performances. Here, as

what we said before, for the validation partition, we sup-

pose all instances are labelled temporarily. (4) We try all

parameter combinations according to Sects. 5.1.3(A) and

5.1.3(B) until we get the best average classification per-

formances of the learning method. Then, the parameters

corresponding to best average classification performances

Table 1 Detailed information of multi-view multi-label data sets

Order Data Instance Label View

1 NUS-WIDE 810 81 6

2 CoNLL-2003 20744 4 2

3 Corel5k 4999 260 3

4 Mirflickr 17500 457 3

5 Iaprtc12 6952 291 3

6 Espgame 7081 268 3

7 EURLex-4K 19348 3993 3

7 semi-supervised multi-view clustering based on orthonormality-

constrained NMF
8 multi-view matrix completion
9 multi-view vector-valued manifold regularization
10 individuality- and commonality-based multi-view multi-label

learning
11 block-row sparse multi-view multi-label learning

Neural Computing and Applications (2022) 34:6097–6117 6107

123



are best parameters when we adopt a learning machine to

process a data set.

5.1.4 Experimental environment

All computations are performed on a node of compute

cluster with 32 CPUs (Intel Core Due 3.0GHz) running

Red Hat Linux Enterprise 5 with 48GB main memory. The

coding environment is MATLAB 2014a.

5.2 Experimental results

5.2.1 Classification and time performances

Figures 4 and 5 show the classification performances12 and

corresponding running time of different methods on the

used data sets. The ranks of classification performances13

can be also found in Fig. 9. According to the results, it is

found that (1) M2CR brings a better classification perfor-

mances on most cases and the training time would not add

all the time (for example, the results given by the com-

parison between ours and MVLE); (2) compared with the

methods considering online learning and the methods

without the consideration about the correlations, online

learning, and semi-supervised cases, our method performs

best on each data set, while this leads to a longer training

time in average.

5.2.2 Convergence

During the procedure of M2CR, we should optimize

Eq. (22) and whether the optimization procedure can be

converge is discussed here. Refer to [1], the convergence

results are given in Fig. 6 and in this figure, the objective

function corresponds to Eq. (22). According to results, it is

found that when a new labelled instance arrives, our

method can converge within 15 iterations in general.

5.2.3 Influence of g and c

According to the experimental setting, we know that there

are many adjustable parameters and the performances of

compared learning methods used here will be affected by

these parameters. Thus, in the following experiments, we

discuss the influence of different parameters and here, we

discuss the influence of g and c firstly. For the convenience
of presentation, we give the changes of the classification

performance w.r.t. the change of g and c. In simple

speaking, we choose a value for g from

f0:1; 0:2; . . .; 0:8; 0:9g and for c from

f0:05; 0:1; . . .; 0:95; 1; 2; . . .; 9; 10g. Then, we adjust other

parameters and get the best corresponding performances. In

the following experiments in Sects. 5.2.4 and 5.2.7, the

presentation ways are same.

Then, Fig. 7 shows the influence of g and c on the

classification performances of M2CR. According to this

figure, it is found that (1) when g	 0:3, if the value of g is

larger, the features we chosen have more stronger corre-

lations with the labels. Meanwhile, the number of those

features is fewer. This leads the useful information which

can be considered to design the learning method be less and

then the performance of a learning method is reduced. (2)

The classification performances of M2CR when g ¼ 0:1,

g ¼ 0:2, and g ¼ 0:3 are similar. This indicates that the

features whose correlations with the labels are fill in the

range [0.1, 0.3] have similar effects on improving classi-

fication performances. (3) When c	 0:15, if the value of c
is larger, for any instance, its neighbourhood granularity

will be composed by more instances whose similarities are

much more smaller. This leads to a worse classification

performance. (4) The classification performances of M2CR

when c ¼ 0:05, c ¼ 0:1, and c ¼ 0:15 are similar. This

indicates that choosing instances whose similarities are less

than 0.15 to compose a neighbourhood granularity have

similar effects on improving classification performances.

Thus, according to the above statements, we can see that

setting g ¼ 0:3 and c ¼ 0:15 can get a relative better

classification performance.

5.2.4 Influence of the percentage of training and validation
instances and labelled instances

Figure 8 shows the influence of the percentage of training

and validation instances and labelled instances on the

classification performances of M2CR14. In addition, since

we adopt 10-fold cross-validation for experiments and 90%

instances in the training and validation set are used for

training, thus the influence of the percentage of training

and validation instances is equal to the influence of the

percentage of training instances. According to the results, it

is found that (1) for most data sets (except for the Corel5k),

with the increasing of training instances, the accuracy

appears a first up and then down trend. This indicates that

when the size of a data set is kept, more training instances

maybe lead to over-fitting, while few training instances

maybe lead to under-fitting. So selecting a feasible
12 indeed, we get the classification performances about accuracy,

accþ-true positive rate, acc�-true negative rate, PPV-positive predic-

tive value, F-measure, and G-mean [64], but with the limitation of the

length for paper, only performances about accuracy are shown. While

this would not disturb our conclusions.
13 the ranks are given on the base of the six classification indexes

14 with the limitation of the length for paper, we only show the results

in terms of the accuracy under the semi-supervised case. Indeed, for

other cases, the conclusions are same
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percentage of training instances is important15; (2) for

Corel5k, the accuracy rises continuously with the increas-

ing of the percentage of training instances. After analysis,

the reason is that the size of Corel5k is not enough to lead

to the over-fitting; (3) more labelled instances brings a

better accuracy.

5.2.5 Statistical analysis

In order to check if the differences between M2CR and

other compared methods are significant, we adopt Fried-

man-Nemenyi statistical test [65] and use Fig. 9 to show

the statistical results. In this figure, ‘rank’ represents the

ranks of classification performances in terms of the com-

pared methods on the used data sets and the average rank of

the methods is given in the titles of these sub-figures. At

the left side of each sub-figure, the corresponding statistical
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15 indeed, in our experiments expect for this subsection, we show the

results with a feasible percentage of training instances set, namely, the

percentage accords to best parameters
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results are shown simultaneously. The definitions about

these statistical items can be found in [65], and we just

analyze the experimental results as below.

(1) In terms of the statistical results about Friedman test,

we give the ones of the top left sub-figure firstly. Since we

adopt 7 data sets and 5 methods for experiments about the

correlations case, thus the Friedman statistic v2F ¼ 11:086

and FF ¼ 3:932, further, F0:05ð4; 24Þ ¼ 2:776 and

F0:10ð4; 24Þ ¼ 2:195. Since FF [F0:05ð4; 24Þ and

FF [F0:10ð4; 24Þ, so we can reject the null-hypothesis and

say the differences between all compared methods on

multiple data sets are significant. For other cases, we draw

a same conclusion.

(2) Then we carry out Nemenyi test for pairwise com-

parisons and show the statistical results. (2.1) For the top

left sub-figure, namely, correlations case, the correspond-

ing critical differences (CD) are CD0:05 ¼ 2:306 and

CD0:10 ¼ 2:078. Since under the case of CD0:10, only rank

difference between M2CR and MVLE is smaller than

CD0:10, so we can say on this case, the performance of

M2CR is significantly better than MMP, MVCRF, and TG-

CMTF, but not significantly better than MVLE. Under the

case of CD0:05, since only the rank difference between

M2CR and TG-CMTF is larger than CD0:05, thus we say

that on this case, the performance of M2CR is significantly

better than TG-CMTF, but not significantly better than

MMP, MVCRF, and MVLE. (2.2) For the top right sub-

figure, namely, online learning case, since the rank dif-

ferences between M2CR and MVECF (MLFSNRS) are

larger than both CD0:10 and CD0:05, thus the performance of

M2CR is significantly better MVECF (MLFSNRS). (2.3)

For the bottom left sub-figure, namely, semi-supervised

case, the average rank of ours is 1.143 and the corre-

sponding CDs are CD0:05 ¼ 1:581 and CD0:10 ¼ 1:773.

Since 1:143þ 1:773 ¼ 2:916 and 1:143þ 1:581 ¼ 2:724,

thus under the case of CD0:05, the performance of M2CR is

significantly better than MVOCNMF and MV2MR, but not

significantly better than MVMC, while under the case of

CD0:10, the performance of M2CR is significantly better

than all compared semi-supervised methods. (2.4) For the

iteration
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bottom right sub-figure, namely, without the consideration

about the correlations, online learning, and semi-super-

vised cases, similar with the online learning case, because

the rank differences between M2CR and ICM2L

(BRSMVML) are larger than both CD0:10 and CD0:05, thus

the performance of M2CR is significantly better ICM2L

(BRSMVML).

In generally, we can validate the effectiveness of M2CR

from an average view. Specially, for online learning case

and without the consideration about the correlations, online

learning, and semi-supervised cases, our M2CR performs

significant best in statistics.

5.2.6 Online experiments

Since M2CR performs significant best in statistics for the

online learning case, thus we want to show the online

experiments through figures.

For convenience, we only select NUS-WIDE for

description and in this data set, 3 labels (‘bear’, ‘road’,

‘fish’) and 17 instances per label are selected in random. 13

out of 17 instances per label are used as the original stored

labelled training instances (see Fig. 10), and the other 2 out

of the 17 instances are used in case 1 (see red boxes in the

top sub-figure of Fig. 11), and the rest is treated as the

unlabelled ones and used in case 2 (see blue boxes in the

bottom sub-figure of Fig. 11). Then, the optimistic POS

(NEG, BND), the pessimistic POS (NEG, BND) of the

original stored ones, ones after case 1, and ones after case 2

are shown in the these figures. According to these figures, it

is found that (1) with the new labelled instances arrive, the

optimistic POS covers more instances and the pessimistic

POS would not cover more instances. Then for the opti-

mistic NEG and pessimistic NEG, they cover fewer

instances. This indicates that new labelled instances

arriving makes the positive regions be more clearly; (2)

with the new unlabelled instances arrive, although for label

‘road’, the optimistic POS covers fewer instances, the

cover areas of optimistic NEG and pessimistic NEG are

further reduced. This indicates that new unlabelled

instances arriving can make the negative regions be more

smaller. Combining the conclusion (1) and conclusion (2),

we argue that with new instances arrive, we can label the

instances accurately with a higher probability.

5.2.7 Incomplete experiments

We give the changes of the classification performance

w.r.t. the change of amount of missing information. For

convenience, we only show the changes in terms of the

accuracy, NUS-WIDE and without the consideration about

the correlations, online learning, and semi-supervised

cases. Indeed, if we consider other cases, we can still draw

the similar conclusions. Then Table 2 shows the results and

0% represents no information of features or labels is lost.

According to this table, it is found that even though we lose

more information initially, since we make full use of the

threefold correlations of features and labels, recover the

data, and update correlations continuously once a new

instance arrives, thus the accuracy of M2CR does not

reduce too much.

5.2.8 Ablation study

As we said before, M2CR can process semi-supervised

real-time generation multi-view multi-label data sets with

incomplete information and it consists of two main parts.

One is recovering missing information with threefold cor-

relations (TC), and the other is processing new arriving

instances with dynamic updating multi-region (DUMR),
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recovering methods, and correlations among information.

Among these two parts, TC and DUMR possess important

positions and we want to discuss their effects on improving

the classification accuracies.

In order to discuss the effects, we adopt ablation study.

In simple speaking, among the framework of M2CR (see

Sect. 4 and Fig. 3), the operations related with TC or

DUMR can be removed or modified. For example, in order

to measure the effects of TC, we can remove step Sect. 4.2

and use other methods rather than TC to recover missing

information. Similar, in order to measure the effects of

DUMR, we can remove step Sect. 4.3 and use other

methods rather than DUMR to process new arriving

instances, namely, label new unlabelled arriving instances.

Thus, the procedure of ablation study includes the below

three parts.

For the first part, we assess that to what extent TC helps

to improve the classification accuracies. So for the frame-

work of M2CR, we remove step Sect. 4.2 and use some

recovering methods to replace TC to recover missing

information. The alternative classical recovering methods

are AWVRF16 [32], McWL17 [2], PC-GAIN18 [34], and we

define the new modified M2CRs as AR, McR, PR,

respectively.

For the second part, we assess the effects of DUMR and

then we remove step Sect. 4.3 in the framework of M2CR

and use some classical methods including MSCD19 [41],

OSAM20 [42], SSOPMV21 [18] to replace DUMR to label

new unlabelled arriving instances. The new modified

M2CRs are defined as CM, CO, CS, respectively.

For the third part, we want to see if we don’t adopt both

TC and DUMR, how about the classification accuracies

change. So we combine the previous operations about two

parts and define the new modified M2CRs as XY where

X 2 fA;Mc;Pg and Y 2 fM;O; Sg.
Now we show the classification performances of the

above new methods on the used data sets in Fig. 12. These

data sets are semi-supervised real-time generation ones,

and information of some instances is incomplete. Accord-

ing to the experimental results, it is found that (1) com-

pared with methods without the usage of DUMR and TC,

methods with DUMR only and methods with TC only can

both improve the classification performances; (2) ours

M2CR performs best here which indicates that combining

TC with DUMR can bring better accuracies; (3) compared

with TC, DUMR has a greater effect on improving the

classification accuracies since the classification accuracies

of AR, McR, PR are better than ones of CM, CO, CS in

average.

6 Conclusions and future work

6.1 Purpose and proposal

In order to solve the semi-supervised real-time generation

multi-view multi-label data with incomplete information

which are ubiquitous in real applications, we develop a
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multi-view multi-label-based online method with threefold

correlations and dynamic updating multi-region (M2CR).

M2CR try to recover missing information with threefold

correlations and predict labels of unlabelled instances with

updating multi-region dynamically.

6.2 Experimental conclusions

Experimental results on 7 multi-view multi-label data sets

have demonstrated that (1) M2CR brings a better average

classification performance; (2) M2CR can converge within

15 iterations in general; (3) statistical results of M2CR are

significant compared with the methods considering online

learning or methods without the consideration about the

correlations, online learning, and semi-supervised cases;

(4) M2CR performs significantly better than other com-

pared methods average; (5) under most cases, with the

increase of the number of training instances, the accuracy

of M2CR appears a first up and then down trend; (6) for

M2CR, more labelled instances bring a better accuracy; (7)

M2CR is good for online learning and with new instances

arriving, it can label the instances accurately with a higher

probability; (8) even though we lose more information

about features and labels initially, M2CR still retains a

relative high accuracy; (9) compared with threefold cor-

relations, dynamic updating multi-region has a greater

effect on improving the classification accuracies.

6.3 Important advantages

Besides the ability to process multi-view multi-label data

sets, M2CR still possesses another two important advan-

tages. (1) Compared with the tradition solutions to

incomplete form, M2CR recovers the missing information

with the usage of threefold valuable correlations among

information and this operation makes the recovered infor-

mation be more authentic. Then, such an operation can

reduce the computational complexity and bring a simpler

framework; (2) compared with the tradition solutions to

real-time generation and semi-supervised forms, M2CR

combines dynamic updating multi-region with recovering

missing information and updating correlations among

information to process new arriving instances, so that it

processes semi-supervised real-time generation with

incomplete information better and labels an new arriving

unlabelled instance with a higher accuracy.

6.4 Future work

Two open issues can be considered in the future work. One

is what can we do when we have no enough space to store

the training instances and the whole model, the other is

what will happen if the correlations between features and

labels are hard to calculate and M2CR may be not suitable.
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