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a b s t r a c t 

Numerous improvements in feedback mechanisms have contributed to the great progress in object detec- 

tion. In this paper, we first present an evaluation-feedback module, which consists of an evaluation sys- 

tem and feedback mechanism. Then we analyze and summarize traditional evaluation-feedback modules. 

We focus on both the evaluation system and the feedback mechanism, and propose C ontrol D istance IoU 

and C ontrol D istance IoU loss function (CDIoU and CDIoU loss) without increasing parameters in mod- 

els, which make significant enhancements on several classical and emerging models. Finally, we propose 

A utomatic G round T ruth C lustering (AGTC) and F loating L earning R ate D ecay (FLRD) for faster regression 

in object detection. Experiments show that a coordinated evaluation-feedback module can effectively im- 

prove model performance. Both CNN and transformer-based detectors with CDIoU + CDIoU loss, AGTC, 

and FLRD achieve excellent performances. There are a maximum AP improvement of 2.9%, an average AP 

of 1.1% improvement on MS COCO, a maximum AP improvement of 8.2%, and an average AP improvement 

of 3.7% on Visdrone dataset. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Tremendous works have been made for more accurate and 

ore efficient object detection in recent years. Data augmen- 

ation [1] , deeper layers of neural networks [2] , more complex 

tructured FPN modules, and even more number of iterations 

ake the models for object detection the state-of-the-art. Un- 

oubtedly these CNN detectors [3] have achieved remarkable suc- 

ess, however, at the same time these models have huge param- 

ters and unsatisfactory FLOPs, such as Detectron2 Mask R-CNN 

101-FPN (parameters: 107M, FLOPs: 277B) [4] , ResNet-50 + NAS- 

PN (1280@384) (parameters: 104M, FLOPs: 1043B) [5] , Amoe- 

aNet+ NAS-FPN +AA(1280) (parameters: 185M, FLOPs: 1317B) 

6] and AmoebaNet+ NAS-FPN + AA(1536) (parameters: 209M, 

LOPs: 3045B). Obviously, with the increase of model size, the per- 

ormance of the model continues to improve. However, this perfor- 

ance improvement is limited. Meanwhile, detectors [7,8] under 

ransformer framework suffer from the same problem. 

This paper focuses efficient regression of object detection on 

utomatic ground truth clustering, float learning rate decay, and 
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031-3203/© 2022 Elsevier Ltd. All rights reserved. 
he evaluation system & feedback mechanism (namely IoU mod- 

les and loss functions, combined called evaluation-feedback mod- 

le) of region proposals without increasing the number of param- 

ters or FLOPs [9,10] . 

The evaluation-feedback modules have 3 main roles: (1) Evalu- 

ting region proposals, using ground truth as a criterion. (2) Rank- 

ng a set of region proposals (with the same ground truth cri- 

erion). (3) Feeding the gap between region proposals (RP) and 

round truths (GT) to the neural network, which is used to cor- 

ect the next evaluation module. Considering evaluation-feedback 

odule is fundamental, this module should be efficient and con- 

ain few parameters. A good evaluation-feedback module should 

eet the following 3 conditions: 

• A measure overlapping area. 

• The good ability to differentiate and a measure of the degree 

of difference (sometimes understood as centroid distance and 

aspect ratio). 

• The IoUs calculation can be correlated with loss functions cal- 

culation. 

Numerous previous studies have tended to focus on the study 

f feedback mechanism at the expense of evaluation system. In 

his paper, the Control Distance IoU(CDIoU) and the Control Dis- 

ance IoU loss function (CDIoU loss) are proposed and given the 

ame importance. CDIoU has good continuity and derivability, and 

implifies the calculation by measuring the distance between RP 

nd GT in a unified way, optimizing the calculation of DIoU and 

https://doi.org/10.1016/j.patcog.2022.109256
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Fig. 1. Different relative position relations, the same IoU results. The red box is 

RP and the blue one is GT, while the green dashed box is the minimum bounding 

rectangle (MBR). MBR will be used in later chapters. The red box in the fourth im- 

age is rotated, which is to highlight the disadvantages of the traditional evaluation 

method. While all the detection frameworks used in the paper (e.g. Faster R-CNN, 

Cascade R-CNN, and YOLO) can only predict horizontal boxes. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
IoU [11] for centroid distance and aspect ratio, and completing 

he evaluation quickly. The CDIoU loss function can be correlated 

ith CDIoU calculation, which enables the feedback mechanism to 

haracterize more accurately and feed back the difference between 

P and GT, thus making the objective function of the deep learn- 

ng network converge faster and improving the overall efficiency. 

he CDIoU and CDIoU loss functions are highly adaptive and show 

ignificant improvements on several different models, compared to 

raditional IoU modules and loss functions. 

To prevent the learning rate from being too large and swing- 

ng back and forth when converging to the global optimum, it is 

mportant to let the learning rate keep decreasing with the num- 

er of training rounds and converge to a gradient-decreasing learn- 

ng step. The traditional object detectors are executed with a fixed 

earning rate or a learning rate decay strategy. However, the exist- 

ng strategies neglect to provide feedback on the results of the loss 

unction in real-time during the regression process. In other words, 

he learning rate should not be decayed continuously during the 

raining process, but should be increased and decreased during the 

raining process according to the result of the loss function. We 

ropose float learning rate decay (FLRD) to build a feedback mech- 

nism for the learning rate and loss function. 

By generating anchors after analysis of ground truth in origi- 

al dataset, the results of object detectors can be improved. Faster 

CNN [12] and SSD [13] propose the foundational steps of anchor 

eneration, and then YOLOv3 generates anchor boxes by K-means 

lustering. But this method requires repeated experiments to de- 

ermine the centers and number of clusters. In order to save train- 

ng time and faster regression, we propose automatic ground truth 

lustering (AGTC), which can solve the information and number of 

luster centers (namely the scale and number of anchor boxes) in 

 specific dataset at once. 

We aim to improve the performance of 2D object detection 

ithout significantly increasing the running cost. Saving running 

ost (model size and running time) is not the priority of this arti- 

le. At the same time, under the premise of slightly improving the 

esults of general object detection, the performance of small object 

etection is significantly improved. 

The main contributions of this work can be summarized as: 

• CDIoU is proposed as a new evaluation system and CDIoU loss 

as a new feedback mechanism for more accurate regression. 

• AGTC and FLRD are proposed for faster regression. 

• Improving the results, while the number of parameters and 

running time are not increased. 

• With wide applicability, make significant improvements on sev- 

eral models. 

. Related work 

The first culmination of deep learning for object detection 

as the proposal of R-CNN [14] , Fast R-CNN and Faster R-CNN 

15] models, which laid down the basic framework and data 

rocessing for deep learning applied to object detection. YOLO 

16] provides a more straightforward way by directly regressing the 

ocation of the bounding box and the class to which the bound- 

ng exploitation belongs in the output layer, thus transforming 

he object detection problem into a regression problem. After this, 

OLOv2 [17] , YOLOv3, YOLOv4 were proposed, which made the 

eep learning network not only improve in accuracy but also in 

omputing speed. R-CNN series and YOLO series are the classi- 

al representatives [18] of two-stage model [19,20] and one-stage 

odel [21] in object detection. 

Neural network backbone and convolution kernel 

The backbone networks of deep learning are also evolving. 

eNet (1998), AlexNet (2012), VGGNet (2014), GoogLeNet (2014), 
2 
esNet (2015), and MobileNet (2017) are preserved in the path of 

eep learning development [22] . EfficientNet (2019) [23] proposes 

 more generalized idea on the optimization of current classifica- 

ion networks, arguing that the three common ways of enhanc- 

ng network metrics, namely widening the network, deepening the 

etwork and increasing the resolution, should not be independent 

f each other. 

Along with the backbone [24] , the convolution kernel [25] is 

lso evolving and changing. Deformable conv [26] adds an offset 

ariable to the position of each sampled point in the convolu- 

ion kernel, enabling random sampling around the current position 

ithout being restricted to the previous regular grid points. Dilated 

onv [27] can effectively focus on the semantic information of the 

ocal pixel blocks, instead of letting each pixel rub together with 

he surrounding blocks, which affects the detail of segmentation. 

Evaluation-feedback module 

Based on IoU, GIoU [28] focuses not only on overlapping regions 

ut also on other non-overlapping regions, which can better reflect 

he overlap of RP and GT. DIoU [11] takes the distance between the 

bject and anchor, overlap rate, and scale into consideration, which 

akes the object box regression more stable and does not have 

roblems such as scattering during training like IoU and GIoU. 

GIoU loss [29] still has the problems of slow convergence and 

naccurate regression. It is found that GIoU first tries to overlap the 

bject box by increasing the size of the detection box, and then 

ses the IoU loss term to maximize the overlap area with the ob- 

ect box [30] . 

DIoU loss and CIoU loss [11] greatly enriched the connotation of 

oU calculation results, adding the measurement of difference, in- 

luding “centroid distance” and “aspect ratio” separately. DIoU loss 

annot distinguish which RPs is more similar to GT when the cen- 

er points of RPs are at the same position. We can know that the 

alculation process of CIoU loss is more time-consuming, which 

ill eventually drag down the overall training and test time [31] . 

. Analysis of traditional IoUs and loss functions 

In this section, we systematically explain the disadvantages of 

raditional IoUs and loss functions in the formal article. Fig. 1 , 2 , 3 ,

nd 4 gradually illustrate the disadvantages of the traditional eval- 

ation systems. 

In object detection, the function of IoUs is to evaluate the sim- 

larity between RP and GT. The evaluation between RP and GT is 

iven through the IoU method, which plays a fundamental role in 

he selection of positive and negative samples. In the evaluation- 

eedback module, the most representative methods are IoU, GIoU, 

IoU loss and CIoU loss, which play a fundamental role in the 

reat progress of object detection, but there still is much room for 

ptimization. 
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Fig. 2. Comparison of IoU GIoU CDIoU and Loss of GIoU & CDIoU. PR is outside 

GT. This figure emphasizes the “insensitivity” of IoU, GIoU to tiny differences. While 

CDIoU showed satisfactory sensitivity to such tiny differences. 

Fig. 3. Comparison of multiple IoU losses. PR is inside GT. This figure emphasizes 

the “insensitivity” of IoU loss, GIoU loss, CIoU loss and DIoU loss to tiny differences. 

While CDIoU loss showed satisfactory sensitivity to such tiny differences. 

Fig. 4. DIoU loss: unuseful relative position relationship between RP and GT. in fact, 

as long as the center point of the region proposal is on arc C of circle O , the penalty 

terms of DIoU loss are consistent. 
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.1. Analysis of traditional IoUs 

IoU is a basic evaluation method, and as shown in Figure 1 , the

elative position relationship between RP and GT is obviously dif- 

erent. The human brain can clearly distinguish the differences, but 

he evaluation results of IoU are the same ( IoU = 0 . 33 ). 

Based on original IoU, many evaluation systems are derived, 

hich enrich the evaluation dimensions of previous IoU from those 

ifferent aspects. IoU only considers the calculation of overlapping 

rea. Meanwhile, GIoU pays attention to overlapping area and non 

verlapping area, and strengthens the discussion of evaluation sys- 

em. However, GIoU obviously ignored the “measurement of differ- 

nce” between RP and GT. 

The “measurement of difference” between RP and GT include 

he distance between the center points (centroid) and the ratio 

f length-width(aspect ratio). DIoU takes centroid into account in 
3 
he calculation of the evaluation system, but omits aspect ratio. As 

hown in Figure 2 , 3 , DIoU can’t recognize the difference between 

he high-thin region proposal and the short-fat region proposal, 

nd gives them the same value. But in fact, the human brain can 

asily differentiate which one is better. 

.2. IoU:Smooth L1 loss and IoU loss 

The method of smooth loss is proposed from Fast RCNN [12] , 

hich initially solves the problem of characterizing the boundary 

ox loss. Assuming that x is the numerical difference between RP 

nd GT, L 1 and L 2 loss are commonly defined as: 

 1 = | x | dL 2 (x ) 

x 
= 2 x, (1) 

 2 = x 2 . (2) 

he corresponding derivative: 

dL 1 (x ) 

x 
= 

{
1 , if x ≥ 0 

−1 , otherswise, 
(3) 

dL 2 (x ) 

x 
= 2 x. (4) 

From the derivative of loss function to x , we can know that the 

erivative of loss function L 1 to x is constant. In the late training 

eriod, when x is very small, if the learning rate is constant, the 

oss function will fluctuate around the stable value, and it is dif- 

cult to converge to higher accuracy. When the derivative of loss 

unction L 2 to x is large, its derivative is also very large and unsta-

le at the beginning of training. smooth L 1 (x ) perfectly avoids the 

hortcomings of L 1 and L 2 loss. 

mooth L 1 (x ) = 

{
0 . 5 x 2 , if | x | < 1 

| x | − 0 . 5 , otherswise , 
(5) 

d smooth L 1 (x ) 

x 
= 

{
x , if | x | < 1 

±1 , otherswise , 
(6) 

However, in the actual object detection, the loss in box regres- 

ion task is 

 loc ( t 
u , v ) = 

∑ 

i ∈{ x,y,w,h } 
smooth L 1 

(
t u i − v i 

)
, (7) 

Where v = 

(
v x , v y , v w 

, v h 
)

represents the box coordinates of GT, 

nd t u = 

(
t u x , t 

u 
y , t 

u 
w 

, t u 
h 

)
represents the predicted box coordinates, 

hat is to calculate the loss of four points respectively, and then 

dd them as the bounding box regression loss. 

emark 1. When the above losses are used to calculate the bound- 

ng box loss of object detection, the loss of four points is calculated 

ndependently, and then the final bounding box loss is obtained 

y adding. The assumption of this method is that the four points 

re independent of each other, and there is a certain correlation in 

act. The calculation of smooth can not be unified with IoU, which 

eads to errors of the feedback mechanism and evaluation system. 

he actual indicator of evaluation is to use IoU, which is not equiv- 

lent. IoU loss cannot avoid this scenario,“different RPs, same feed- 

ack results” in Figure 2 , 3 . 

 IoU = − ln (IoU) , (8) 

 IoU = 1 − IoU. (9) 
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Fig. 5. Calculation of CDIoU. Minimum bounding rectangle (MBR) is the smallest 

rectangle that can contain RP and GT. The definition of minus operation between RP 

and GT is vector subtraction. “AE, BF,...”, represent the length of the line segment. 
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.3. GIoU and GIoU loss 

On the premise of not increasing the calculation time, GIoU 

28] initially optimized the calculation of IoU for overlapping area, 

nd reduced the calculation error, but GIoU still did not take the 

easurement of the difference into account in the calculation re- 

ults. 

I oU = I oU − | C\ (A ∪ B ) | 
| C| , (10) 

 GIoU = 1 − GIoU. (11) 

GIoU loss still has the problems of slow convergence and in- 

ccurate regression. It is found that GIoU first tries to overlap the 

bject box (GT) by increasing size of the detection box (RP), and 

hen uses IoU loss term to maximize the overlap area with the ob- 

ect box. At the same time, when the two boxes contain each other, 

IoU loss will degenerate into IoU loss. At this time, the alignment 

f the bounding box becomes more difficult and the convergence 

s slow. 

.4. DIoU loss and CIoU loss 

DIoU loss and CIoU loss [11] greatly enriched the connotation 

f IoU calculation results, adding the measurement of difference, 

ncluding “centroid distance” and “aspect ratio” separately. 

 DIoU = 1 − IoU + 

ρ2 
(
b , b 

gt 
)

c 2 
(12) 

First of all, DIoU loss cannot distinguish which region proposals 

re more similar to ground truth when the center points of re- 

ion proposals are at the same position. Then when two boxes are 

ompletely coincident, L IoU = L GIoU = L DIoU = 0 ; when two boxes 

o not intersect, GIoU loss can’t distinguish region proposals ex- 

ctly and L GIoU = L DIoU → 2 . 

As shown in the Figure 4 , in fact, as long as the center point

f the region proposal is on arc C of circle O , the penalty terms of

IoU loss are consistent. This is DIoU, which loses the accuracy of 

he evaluation system. The distance of RP and GT centers are the 

ame, but the relative relationship between RP and GT can be dif- 

erent. Please take a closer look at the first and second subgraphs 

f Fig. 3 (O −→ O’,overlap), RP in the first is better then that in the

nd, but DIoU does not know that, while CDIoU does. 

The penalty term of CIoU loss is composed of a factor αv and 

IoU loss penalty term, which takes that into account the aspect 

atio of RP and GT. 

 CIoU = 1 − IoU + 

ρ2 
(
b , b 

gt 
)

c 2 
+ αv (13) 

The penalty is 

 CIoU = 

ρ2 
(
b, b gt 

)
c 2 

+ αv , (14) 

= 

v 
(1 − IoU) + v 

, (15) 

 = 

4 

π2 

(
arctan 

w 

gt 

h 

gt 
− arctan 

w 

h 

)2 

. (16) 

Because the calculation of CIoU loss involves the inverse 

rigonometric function, and through comparative experiments, we 

an know that the calculation process of CIoU loss is more time- 

onsuming, which will eventually drag down the overall training 

ime. For detailed comparison tests, see “Ablation studies ”. 
4 
. CDIoU and CDIoU loss functions 

Based on traditional IoUs and loss functions [32] , CDIoU and 

DIoU loss functions are proposed in this section. The improved 

oss functions [24,33] have to increase the computational intensity 

n order to improve the accuracy of the regression. Without in- 

reasing the operation time, the running efficiency and AP are sig- 

ificantly improved. The CDIoU loss function converges faster and 

educes the complexity of the operation significantly. 

Control Distance Intersection over Union (CDIoU) is a new eval- 

ation method that directly examines the similarity of RP and GT, 

nd it does not directly measure the distance between their cen- 

roids and the similarity of their shapes. For detailed information, 

ee Figure 5 . 

iou = 

‖ RP−GT ‖ 2 
4 MBR ′ s diagonal 

= 

AE+ BF + CG + DH 
4 W Y 

(17) 

here RP and GT represent the vector (x1, y1, x2, y2) in the Eq. 17 .

he definition of minus operation between RP and GT is vector 

ubtraction. “AE, BF,...”, represent the length of the line segment. 

he diou(L2 loss) is different from DIoU, extracting the center dis- 

ance between RP and GT and the shape of RP relative to GT at the

ame time. 

DI oU = I oU + λ(1 − diou ) (18) 

Although the formula for CDIoU does not mention “centroid 

istance” and “aspect ratio”, the final calculation results reflect 

 measure of the degree of difference between RP and GT. The 

iou(L2 loss) is different from DIoU, extracting the center distance 

etween RP and GT and the shape of RP relative to GT at the same

ime. The higher the value of CDIoU, the lower the degree of dif- 

erence; the higher the value of CDIoU, the higher the similarity. 

 CDIoU = L IoU s + diou (19) 

In order to cooperate with the calculation of CDIoU, this paper 

lso proposes the CDIoU loss function. By observing this formula, 

e can intuitively feel that after backpropagation, the deep learn- 

ng model tends to pull the four vertices of the region proposal 

oward the four vertices of the ground truth until they overlap. For 

etailed information, see Algorithm 1 and Fig. 6 . In the subsequent 

xperimental chapters of the article, we use IoU and IoU loss in 

he CDIoU and CDIoU loss. 

. Modules for faster regression 

In this section, we propose two improved methods for model 

esign. These methods can be applied to a variety of object de- 

ection models without increasing the running time of the model. 
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Algorithm 1 CDIoU and CDIoU loss function . 

Input: RP for region proposal;GT for ground truth; 

Output: CDIoU and CDIoU loss; 

For RP and GT, find MBR; 

compute IoU = 

| RP∩ GT | 
| RP∪ GT | , diou = 

‖ RP−GT ‖ 2 
4 MBR ′ s diagonal 

; 

compute CDI oU = I oU + λ(1 − diou ) ; 

compute L CDIoU = L IoU s + diou , L IoU s could be L IoU = − ln (IoU) , 

L IoU = 1 − IoU , L IoU = 1 − IoU or L DIoU , L CIoU ; 

Fig. 6. Region proposal turning and variations by CDIoU loss. 
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Table 1 

Aspect ratios and anchor sizes in different detectors. AGTC means that au- 

tomatic GT clustering generates the aspect ratio. ∗ means that in at least 6 

convolutional layers, multiple aspect ratio combinations are set up in SSD 

method. ∗∗ means that anchor sizes of AGTC follow those of Faster RCNN and 

SSD in ablation studies. Aspect ratios = width : length. 

Method Aspect ratios Anchor sizes 

Faster RCNN 1:1, 1:2, 2:1 3 

SSD 1:1, 2:1, 3:1, 1:2, 1:3 ∗

AGTC 1:1, 1.5:1, 2:1, 1:2, 1:2.5, 1:3, 1:3.5, 1:4 ∗∗
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hese tips are particularly useful for some basic models in this pa- 

er. 

.1. Floating learning rate decay 

The basic idea of learning rate decay is that the learning rate 

ecays gradually as training proceeds. Common learning rate de- 

ay methods include piecewise decay, linear decay, exponential de- 

ay, natural exponential decay, polynomial decay and cosine de- 

ay. Among them, linear decay and exponential decay are the most 

ommonly used decay methods. 

The fixed learning rate decay method initially solves the prob- 

em of excessive constant learning rate in the late stage of deep 

earning training. However, during the gradual decay of the learn- 

ng rate, the traditional methods cannot provide timely feedback 

n the impact of the decaying learning rate on the deep learning 

raining process. Traditional methods simply mechanically perform 

asks with progressively lower learning rates. In the training pro- 

ess of deep learning, too large learning rate will lead to the train- 

ng process loss function divergence, while too small learning rate 

ill lead to the training process convergence speed is too slow. 

For the above reasons, we propose float learning rate decay (or 

LRD for short) to check the loss every K iterations and increase 

he learning rate slightly, if the loss function does not decrease 

ontinuously. In this way, the learning rate will decrease and float 

ppropriately at regular intervals to promote the decrease of the 

oss function. 

 r n = 

{
1 . 1 l r n −1 , Ls < 0 

ξ l r n −1 , Ls > 0 

s = loss i − loss i −k 

(20) 

here lr n −1 represents the learning rate of the previous decay cy- 

le and lr n −1 represents the learning rate of the next decay cycle, 

s represents the difference between the loss of the first item and 

he loss of the last item in one decay cycle, and ξ represents de- 

ay rate. We take exponential decay as an example to introduce 

oating learning rate decay. 

.2. Automatic GT clustering analysis 

It is well known that AP can be effectively improved by per- 

orming cluster analysis on GT in the original dataset. The conven- 
5

ional object detectors adjust anchor sizes and aspect ratios param- 

ters based on the results of this cluster analysis. However, we do 

ot know the number of clusters through the current approach. 

he main solution is to keep trying the number of clusters N , and

hen judge by the final result AP. Obviously, this exhaustive method 

akes a lot of time. 

In this section, automatic GT clustering analysis based on orig- 

nal dataset is proposed, using K-means/PAM, Hierarchical Cluster- 

ng, Spectral Clustering, DBSCAN and Mean-shift methods respec- 

ively, where DBSCAN and Mean-shift methods are able to obtain 

he number of clusters autonomously. 

In the MS COCO dataset, we can guide the generation of anchor 

y clustering the shapes (length and width) of GT. Since the set of 

T shapes can be approximated as a dense dataset, we can take the 

BSCAN method to cluster the GT set. The width and the length of 

T are used as two dimensions to cluster the dataset of GT. 

The above methods were evaluated using SSE (sum of the 

quared errors), Silhouette Coefficient and Calinski-Harabaz , and 

hen two recommended schemes are obtained. These recom- 

ended schemes include the number of clusters and the central 

T of each cluster. We obtained anchor information from the cen- 

ral GT before executing the complex deep learning network, so 

hat the experiments in this paper are much more efficient. 

The new aspect ratios are generated by automatic GT clustering 

ethod (or AGTC for short). And for consistency, anchor sizes of 

GTC follow those of Faster RCNN and SSD (see in Table 1 ). 

. Experiments 

To ensure the rigidity and richness of the experiments, we did a 

ot of training and testing on representative models, such as Faster 

-CNN, Cascade R-CNN [34] , YOLOs and ATSS [35] . Also, we try not 

o use tricks and allow individual models to compare differences 

urely due to changes in IoUs or loss functions. Following ATSS 

orks, the multi-scale training strategy is adopted for these ex- 

eriments, i.e., randomly selecting a scale between 640 to 800 to 

esize the shorter side of images during training. 

.1. Working environment and preparation 

The following experiments were conducted on MS coco 2017 

ataset using two GeForce RTX 2080 Ti GPUs or two Tesla V100 

CIe 32GB GPUs. All models under Pytorch framework are standard 

odels without using any tricks.And we double the total number 

f iterations to 180K and the learning rate reduction points to 120K 

nd 160K. 

Dataset. We perform experiments on COCO 2017 and Visdrone. 

COCO 2017 contains 118k training images, 5k validation images 

nd 20K test-dev images. The ablation study is performed using 

he validation set, and a system-level comparison is reported on 

est-dev. Each image is annotated with bounding boxes and panop- 

ic segmentation. There are 7 instances per image on average, up 

o 63 instances in a single image in training set, ranging from small 

o large on the same images. 
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Table 2 

Analysis(%) of different values of hyperparameter λ on the MS COCO val set. 

λ 1.0 0.1 0.01 0.001 0.0001 

Faster R-CNN 35.6 36.5 37.0 38.5 38.0 

ATSS(R_50_FPN) 38.1 39.0 39.3 39.5 38.9 
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Fig. 7. Loss Function value of Faster R-CNN. 

Fig. 8. Loss Function value of ATSS-R-50-FPN-1x. 

Fig. 9. The final AP of Faster R-CNN and ATSS-R-50-FPN-1x. 
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The Visdrone dataset consists of 400 video clips formed by 

65,228 frames and 10,209 static images, captured by various 

rone-mounted cameras, covering a wide range of aspects includ- 

ng location, environment, objects (10 classes). These frames are 

anually annotated with more than 2.6 million bounding boxes or 

oints of targets of frequent interests, such as pedestrians, cars, bi- 

ycles, and tricycles. 

Training. Our method is trained with Adamw and SGD optimiz- 

rs, changing Adamw to SGD until very final stage. We adopt our 

odels with the learning rate ( 2 −5 ) for backbone. The backbone is 

he ImageNet-pretrained model with batchnorm layers fixed, and 

he Transformer parameters are initialized using the Xavier initial- 

zation scheme. The weight decay is set to be 10 −4 . 

.2. CDIoU and CDIoU loss for object detection 

In order to verify the effectiveness of CDIoU and CDIoU loss in 

bject detection, experiments are designed and applied to numer- 

us models in this paper. These models encompass existing classi- 

al models and emerging models, reflecting certain robustness and 

ide adaptability. We conduct several experiments to study the ro- 

ustness of the hyperparameter λ in Table 2 . Overall, the only hy- 

erparameter λ = 0 . 001 is quite robust and the proposed CDIoU 

an be nearly regarded as hyperparameter-free 2 . 

CDIoU and CDIoU loss are universally adaptable, exhibiting dif- 

erential performance gains on different models. As shown in 

able 3 , we can see that the more complex the backbone structure 

s, the less the CDIoU and CDIoU loss improvement is, while for 

he basic model, the CDIoU and CDIoU loss improvement is more 

bvious. By using CDIoU and CDIoU loss, the models in Table 3 im- 

roved AP by an average of 0.8%. 

CDIoU & CDIoU loss are able to improve both of basic and 

ew detectors’ performances. Lots of experiments on representa- 

ive SATA methods are token, including DETR [37] , Swin Trans- 

ormer and D2Det [38] . It’s clear that the best AP (%) of DETR and

2Det are still not better than those of ATSS + CDIoU & loss, but 

he AP has been significantly improved in Table 4 . 

.3. Ablation studies 

Faster R-CNN is a classical model, while ATSS is a new model 

ecently. In Table 5 , the evaluation system of all models is IoU, the

ost basic original one. But in the loss function, we selects differ- 

nt calculation functions as feedback mechanism. IoU, GIoU, DIoU 

nd CIoU are representative classic loss functions, which are imple- 

ented on many CNN-based and Transformer-based methods. FPS 

epresents the number of images that can be processed per sec- 

nd. CDIoU loss does not increase the amount of computation and 

arely improves FPS . 

As shown in Table 5 , we can accurately see that CDIoU loss 

unction can significantly improve the AP results by 0.2 ∼1.9 % com- 

ared to other loss functions, and this effect is more obvious in 

raditional and basic models. 

From Fig. 7 and 8 , it is clear that the loss function values of

oth Faster R-CNN and ATSS-R-50-FPN-1x models drop and reach 

onvergence faster with CDIoU and CDIoU loss function, compared 
2 Code is available in https://www.github.com/Alan- D- Chen/CDIoU- CDIoUloss 

s

i

6 
o the other loss functions (IoU loss, GIoU loss, DIoU loss, and CIoU 

oss). As the number of iterations increases, it is obvious that the 

odel using CDIoU and CDIoU loss reaches a stable state in a less 

teration even with larger original loss. When scholars run large 

etection algorithms, CDIoU and CDIoU loss can save a lot of run- 

ing time to get the same performance. Fig. 7 and 8 show the ad-

antages of CDIoU and CDIoU loss in terms of speed. 

Fig. 9 shows that the CDIoU and CDIoU loss functions can help 

he models achieve higher AP values with fewer iterations. These 

esults show that the CDIoU and CDIoU loss functions have strong 

onvergence and highlight their more accurate evaluation of re- 

ion proposals. The methods with CDIoU and CDIoU loss get bet- 

er performance in less iteration, compared to original methods. 

ig. 9 shows the advantages of CDIoU and CDIoU loss in terms of 

erformance and speed. 

In order to rigorously verify the effectiveness of CDIoU and 

DIoU loss function proposed in this paper, a large number of com- 

arative experiments are designed to suggest supporting evidence. 

e can learn from Table 6 that CDIoU loss can indeed achieve bet- 

er results than IoU loss, GIoU loss, DIoU loss, etc., while using the 

ame IoU section. 

By comparing the above experiments, we can observe that us- 

ng different IoU modules with different IoU loss functions yields 

https://www.github.com/Alan-D-Chen/CDIoU-CDIoUloss
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Table 3 

Detection models results with and without IoUs and IoU loss function on the MS COCO test-dev set. MS means multi-scale testing. + 

CDIoU & loss means that this model uses CDIoU and CDIoU loss as evaluation-feedback module. + IoU & loss means that this model uses 

IoU and IoU loss as evaluation-feedback module. The original ATSS models use IoU and GIoU loss as evaluation-feedback module, and the 

original Faster R-CNN,YOLOv4,RetinaNet-R101,ResNet-50 + NAS-FPN,Detectron2 Mask R-CNN,Cascade R-CNN models use IoU and IoU loss or 

L1-smooth as evaluation-feedback module. Bold fonts indicate the best performance. 1 x and 2 x mean the model is trained for 90K and 180K 

iterations, respectively. 

Models 

test-dev(%) 

AP AP s AP m AP l 

Faster R-CNN [12] 36.0 - - - 

YOLOv4 [12] 41.2 20.4 44.4 56.0 

RetinaNet-R101 (1024) [36] 40.8 24.1 44.2 51.2 

ResNet-50 + NAS-FPN (1280@384) [5] 45.4 - - - 

Detectron2 Mask R-CNN R101-FPN [4] 44.3 - - - 

Cascade R-CNN [34] 42.8 23.7 45.5 55.2 

FCOS [21] 43.2 26.5 46.2 53.3 

ATSS_R_50_FPN_1x [35] 39.2 - - - 

ATSS_dcnv2_R_50_FPN_1x [35] 43.0 - - - 

ATSS_R_101_FPN_2x [35] 43.6 - - - 

ATSS_dcnv2_R_101_FPN_2x [35] 46.3 - - - 

ATSS_X_101_32x8d_FPN_2x [35] 45.1 - - - 

ATSS_dcnv2_X_101_32x8d_FPN_2x [35] 47.7 - - - 

ATSS_dcnv2_X_101_64x4d_FPN_2x [35] 47.7 - - - 

Comparison test 1 

ATSS_R_50_FPN_1x + IoU & loss 38.6 20.7 37.4 45.7 

ATSS_dcnv2_R_50_FPN_1x + IoU & loss 41.9 24.0 45.8 53.8 

ATSS_dcnv2_R_101_FPN_2x + IoU & loss 45.8 25.9 48.6 56.9 

ATSS_X_101_32x8d_FPN_2x + IoU & loss 44.5 26.8 47.2 53.2 

ATSS_dcnv2_X_101_32x8d_FPN_2x + IoU & loss 46.8 27.9 49.7 58.7 

ATSS_dcnv2_X_101_32x8d_FPN_2x(MS) + IoU & loss 49.6 31.2 50.5 60.3 

Comparison test 2 

Faster R-CNN + CDIoU & loss 38.3 17.3 38.0 54.4 

YOLOv4 + CDIoU & loss 41.4 20.4 46.1 55.8 

RetinaNet-R101 (1024) + CDIoU & loss 41.2 22.5 43.1 50.9 

ResNet-50 + NAS-FPN (1280@384) + CDIoU & loss 45.8 22.1 48.0 65.1 

Detectron2 Mask R-CNN R101-FPN + CDIoU & loss 45.0 21.3 46.0 64.9 

Cascade R-CNN + CDIoU & loss 43.0 25.0 45.7 66.1 

ATSS_R_50_FPN_1x + CDIoU & loss 39.4 22.5 42.2 49.8 

ATSS_dcnv2_R_50_FPN_1x + CDIoU & loss 43.1 24.4 46.0 55.8 

ATSS_dcnv2_R_101_FPN_2x + CDIoU & loss 46.4 27.8 49.7 58.6 

ATSS_X_101_32x8d_FPN_2x + CDIoU & loss 45.2 27.8 48.3 55.2 

ATSS_dcnv2_X_101_32x8d_FPN_2x + CDIoU & loss 47.9 29.6 50.8 60.5 

ATSS_dcnv2_X_101_32x8d_FPN_2x(MS) + CDIoU & loss 50.7 33.2 52.6 62.7 

Table 4 

Detector results with CDIoU and CDIoU loss. CDIoU means that this model uses CDIoU and CDIoU loss. diff. 

means that the difference between ATSS, DETR, Swin Transformer and D2Det with or without CDIoU & loss. 

Methods ATSS ATSS(MS) DETR [37] D2Det [38] Swin Transformer [1] 

originals 46.8 49.6 44.9 47.4 58.7 

CDIoU 47.9 50.7 47.1 48.6 60.0 

diff. 1.2 1.1 2.2 1.2 1.3 

Table 5 

Comparison of effects and running results(%) of various IoU losses on the MS COCO 

val set. The default evaluation module IoUs is IoU in this table. The FPS of the 

same model with different loss terms vary so much in Table 5 , because different 

loss terms depend on different IoUs. Even if GIoU, CIoU, DIoU and CDIoU are not 

used in evaluation system, they still need to be calculated in loss terms. Backbone 

used in Faster R-CNN with FPN is VGG16. Backbone used in ATSS is R_50_FPN. 

IoUs loss Model AP FPS 

L1-smooth 

Faster R-CNN [15] 

36.0 7.5 

IoU loss 36.8 7.7 

GIoU loss 36.9 8.5 

DIoU loss 38.0 7.9 

CIoU loss 38.2 6.3 

CDIoU loss 38.5 7.7 

L1-smooth 

ATSS [35] 

37.5 11.1 

IoU loss 38.0 10.8 

GIoU loss 39.2 11.0 

DIoU loss 39.0 11.3 

CIoU loss 39.2 8.8 

CDIoU loss 39.4 11.2 
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7 
ifferent and thought-provoking results. Combining Table 5 , we 

an analyze that under the same IoU loss function condition, using 

DIoU module alone can improve the final result by 0.3 ∼ 1.8 % ; 

nder the same IoU module, using CDIoU loss function alone can 

mprove the final result by 0.2 ∼ 1.7 % . 

At the same time, if IoU module and IoU loss function could be 

nified in the computational form (eg.GIoU + GIoU loss function 

nd CDIoU + CDIoU loss function), the final result would seem to 

e better than the sum of the results of using the two optimization 

chemes independently. 

In order to verify the independence and validity of CDIoU and 

DIoU loss function, we designs the following comparison test in 

able 9 , using original IoU + IoU loss(or GIoU loss) function and 

DIoU + CDIoU loss function in training and validation stages of 

he program respectively, and finally comparing their AP results. 

e use CDIoU and CDIoU loss in the training and validation stages 

espectively, which can improve the final AP. If we used CDIoU and 
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Table 6 

Comparison of effects and running results(%) of various IoUs and IoU loss functions on the MS COCO val set. For more 

information about results of evaluation module IoU, please refer to Table 5 . IoU and IoU loss are still the most common 

evaluation-feedback modules, and we still regard them as the primary comparison standards just like GIoU, DIoU, and 

CIoU’s authors do. The ablation study shows that the evaluation system and feedback mechanism coordinate with each 

other to improve AP more significantly. However, we find the effect is small if you only change one of two. Faster R- 

CNN: 36.9% −→ 38.5%; ATSS R 50 FPN 1x:38.0% −→ 39.5% in Table 6 . CDIoU & CDIoU loss are proved to improve AP by 

2.5% to 4.0% in non-mainstream datasets by Github and local Lab researchers. 

Model 

IoUs IoU loss functions 

AP 
GIoU CDIoU IoU loss GIoU loss DIoU loss CIoU loss CDIoU loss 

Faster R-CNN [15] 

� � 36.9 

� � 37.3 

� � 38.0 

� � 38.2 

� � 38.3 

Faster R-CNN [15] 

� � 37.1 

� � 37.3 

� � 38.1 

� � 38.3 

� � 38.5 

ATSS [35] 

� � 38.0 

� � 39.3 

� � 39.0 

� � 39.2 

� � 39.4 

ATSS [35] 

� � 38.1 

� � 39.3 

� � 39.2 

� � 39.2 

� � 39.5 

Table 7 

Object detectors with different learning rate setting on the MS 

COCO val set. Epoches represent the minimum epoches to get the 

same standard result. The standard result of Faster RCNN is 36.0%, 

and the standard result of ATSS is 37.5%. Intact ATSS is trained 

for 90K or 180K iterations, respectively. Backbone used in Faster 

R-CNN with FPN is VGG16; backbone used in ATSS is R_50_FPN. 

Faster RCNN and ATSS run with original IoU and IoU loss function 

in Table 8 . 

Method Learning Rate Setting Epoches 

Faster R-CNN 

Fixed learning rate (original) 7 

Linear decay 5 

Exponential decay 5 

Floating learning rate decay 4 

ATSS Linear decay (original) 8 

Exponential decay 8 

Floating learning rate decay 6 

Table 8 

Object detectors with different anchor generation on the MS COCO val set. FPN 

is orignal part in Faster RCNN and ATSS. FPN + AGTC represents that FPN generate 

anchors with automatic GT clustering. Faster RCNN and ATSS run with original IoU 

and IoU loss function in Table 8 . MS means multi-scale. dcnv2 denotes deformable 

convolutional networks v2. 

Method Backbone Anchor generation AP 

Faster RCNN VGG16 
FPN 36.0 

FPN + AGTC 37.4 

ATSS 

R_50_FPN 

FPN 38.6 

FPN + AGTC 39.8 

dcnv2_R_50_FPN 

FPN 41.9 

FPN + AGTC 42.7 

dcnv2_R_101_FPN 

FPN 45.8 

FPN + AGTC 46.4 

X_101_32x8d_FPN 

FPN 44.5 

FPN + AGTC 44.9 

dcnv2_X_101_32x8d 
FPN 46.8 

FPN + AGTC 47.7 

dcnv2_X_101_32x8d(MS) 
FPN 49.6 

FPN + AGTC 50.5 

Fig. 10. The comparison of detectors with different learning rate setting on the MS 

COCO val set. Epoches represent the minimum epoches to get the same standard 

result. 
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DIoU loss in both training and validation stages, we could get 

ore significant improvement results. 

At the same time, we set up experiments on Faster RCNN and 

TSS method to verify float learning rate decay and AGTC. Exper- 

ments in Table 7 and Figure 10 show that floating learning rate 

ecay can effectively improve the efficiency of model operation. 

According to experiments with different backbones on Faster 

CNN and ATSS, we can infer that float learning rate decay is un- 

ble to improve results of detectors, but float learning rate decay is 

ble to reduce running time evidently, comparing to fixed learning 
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Table 9 

Comparison of effects and running results(%) in training and validation on the MS COCO train 
and val set. Originals means that original Faster R-CNN uses IoU+IoU loss as evaluation-feedback 

module and original ATSS (backbone: _R_50_FPN_1x) uses IoU+GIoU loss as evaluation-feedback 

module. 

Model 

Training Validation 

AP 
IoU loss GIoU loss CDIoU loss Originals CDIoU loss 

Faster R-CNN 

� � 36.8 

� � 37.2 

� � 37.7 

� � 38.5 

ATSS 

� � 39.2 

� � 39.3 

� � 39.3 

� � 40.2 

Fig. 11. Comparison of CDIoU-CDIoU loss, IoU-IoU loss and GIoU-GIoU loss under ATSS (backbone: _R_50_FPN_1x) on COCO. CDIoU-CDIoU loss have better performance than 

IoU-IoU loss and GIoU-GIoU loss. 
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ate, linear decay, and exponential decay. Float learning rate decay 

an reduce the running time by 10 ∼ 15% on average. 

AGTC module significantly improved the results of object 

etectors, particularly in detectors with smaller backbone net. 

able 8 shows an obvious trend. With the deepening of back- 

one network, the results (AP) produced by FPN and FPN + AGTC 

radually approach and are roughly the same in the ATSS with 

cnv2_X_101_32x8d_FPN and multi-scale. 

.4. Analysis of experiments 

The improvement effect of CDIoU + CDIoU loss tends to de- 

rease as the model is updated. First, as the backbone of the model 

eepens, the model itself enhances the strength of feature extrac- 

ion. Second, the continuous improvement of FPN modules also op- 
9 
imizes the function of traditional evaluation systems. The above 

wo points offset the advantages of CDIoU and CDIoU loss com- 

ared with the traditional evaluation-feedback modules. 

ATSS bridges the gap between anchor-based and anchor-free 

etection via adaptive training sample selection. Comparison tests 

n ATSS exclude the essential interference between anchor-based 

nd anchor-free detection. In these tests, the interference of posi- 

ive and negative sample generation is eliminated, which give tests 

ased on ATSS more representativeness. 

From Table 9 , we can clearly observe that replacing IoU module 

nd loss function separately can improve the results of the original 

odel, and replacing IoU module and loss function at the same 

ime also has a certain additive effect, achieving the synergy of 

one plus one is greater than two”. It lies on the calculation form 

onsistency between evaluation system and feedback mechanism. 
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Table 10 

The results (%) of detectors combined with different components on the MS COCO 

val set. � means that detectors run with this component. Original Faster RCNN 

setting: VGG16 + IoU & IoU loss + fixed learning rate + FPN. Original ATSS setting: 

R_50_FPN + GIoU & GIoU loss + linear learning rate decay + FPN. 

Modules CDIoU loss FLRD AGTC + FPN AP 

Faster RCNN 

36.0 

� 37.7 

� � 37.7 

� � � 39.1 

ATSS 

39.2 

� 39.4 

� � 39.4 

� � � 40.8 
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Table 12 

Detection models results with and without CAF module on the VisDrone-DET2021. 

+ CAF means that this model uses CDIoU and CDIoU loss, AGTC, and FLRD. + 

IoU & loss means that this model uses IoU and IoU loss as evaluation-feedback 

module. The original ATSS models use IoU and GIoU loss as evaluation-feedback 

module, and the original Faster R-CNN,YOLOv4,RetinaNet-R101,ResNet-50 + NAS- 

FPN,Detectron2 Mask R-CNN,Cascade R-CNN models use IoU and IoU loss or L1- 

smooth as evaluation-feedback module. dcnv2 denotes deformable convolutional 

networks v2. 1 x and 2 x mean the model is trained for 90K and 180K iterations, 

respectively. 

Models 

VisDrone-DET2021(%) 

AP AP 50 AP 75 

Comparison test 3 

Faster R-CNN [12] 32.5 - - 

YOLOv4 [12] 35.8 50.4 43.7 

RetinaNet-R101 (1024) [36] 40.8 54.1 44.2 

ResNet-50 + NAS-FPN (1280@384) [5] 42.4 - - 

Detectron2 Mask R-CNN R101-FPN [4] 44.3 - - 

Cascade R-CNN [34] 39.8 - - 

FCOS [21] 40.1 - - 

ATSS_R_50_FPN_1x + IoU & loss 34.9 50.5 37.9 

ATSS_dcnv2_R_50_FPN_1x + IoU & loss 35.0 54.0 39.8 

ATSS_dcnv2_R_101_FPN_2x + IoU & loss 35.9 56.9 38.9 

ATSS_X_101_32x8d_FPN_2x + IoU & loss 35.5 56.0 40.8 

ATSS_dcnv2_X_101_32x8d_FPN_2x + IoU & loss 37.9 57.5 39.9 

ATSS_dcnv2_X_101_32x8d_FPN_2x(MS) + IoU & loss 39.6 61.5 45.0 

Comparison test 4 

Faster R-CNN + CAF 34.8 57.5 39.4 

YOLOv4 + CAF 37.8 60.5 40.9 

RetinaNet-R101 (1024) + CAF 42.0 62.8 44.4 

ResNet-50 + NAS-FPN (1280@384) + CAF 42.9 64.5 48.8 

Detectron2 Mask R-CNN R101-FPN + CAF 43.8 61.3 45.1 

Cascade R-CNN + CAF 41.9 66.7 44.2 

ATSS_R_50_FPN_1x + CAF 37.4 63.2 41.0 

ATSS_dcnv2_R_50_FPN_1x + CAF 38.4 64.9 42.0 

ATSS_dcnv2_R_101_FPN_2x + CAF 39.8 67.8 42.4 

ATSS_X_101_32x8d_FPN_2x + CAF 40.7 68.7 45.3 

ATSS_dcnv2_X_101_32x8d_FPN_2x + CAF 45.2 69.6 49.0 

ATSS_dcnv2_X_101_32x8d_FPN_2x(MS) + CAF 47.8 73.2 51.4 
he numerical fluctuations of the feedback mechanism reflect the 

ifferences of the evaluation system, which makes the evaluation- 

eedback module more targeted (see Figure 11 ). 

From Figure 11 , it is obvious that the performancee of CDIoU is 

uch better than that of IoU and GIoU. First of all, from the com- 

arison of three groups in Fig. 11 , it can be clearly seen that the

lassification effect of CDIoU is better than that of IoU and GIoU. 

econdly, the regression (positioning) effect of CDIoU is also better 

han that of IoU and GIoU. The region proposal of IoU and GIoU 

ill split the whole object (for example, the horse’s leg and the 

og’s tail in yellow and green box). 

Table 10 represents CAF (CDIoU & CDIoU loss, AGTC, and FLRD) 

ave obvious phased improvement. There are experiments with or 

ithout CAF on object detectors in Table 11 and 12 . Detectors with 

AF have been greatly improved compared with the original ob- 

ect detection models. There is a maximum AP improvement of 

.9% and an average AP of 1.1% improvement on MS COCO and a 

aximum AP improvement of 8.2% and an average AP of 3.7% im- 

rovement on Visdrone dataset. 
Table 11 

Detection models results with and without CAF module on the MS COCO test-dev set. + CAF means that this model uses CDIoU and CDIoU loss, 

AGTC, and FLRD. + IoU & loss means that this model uses IoU and IoU loss as evaluation-feedback module. The original ATSS models use IoU and 

GIoU loss as evaluation-feedback module, and the original Faster R-CNN,YOLOv4,RetinaNet-R101,ResNet-50 + NAS-FPN,Detectron2 Mask R-CNN,Cascade 

R-CNN models use IoU and IoU loss or L1-smooth as evaluation-feedback module. dcnv2 denotes deformable convolutional networks v2. 1 x and 2 x 

mean the model is trained for 90K and 180K iterations, respectively. 

Models 

test-dev(%) 

AP AP s AP m AP l 

Comparison test 1 

Faster R-CNN [12] 36.0 - - - 

YOLOv4 [12] 41.2 20.4 44.4 56.0 

RetinaNet-R101 (1024) [36] 40.8 24.1 44.2 51.2 

ResNet-50 + NAS-FPN (1280@384) [5] 45.4 - - - 

Detectron2 Mask R-CNN R101-FPN [4] 44.3 - - - 

Cascade R-CNN [34] 42.8 23.7 45.5 55.2 

FCOS [21] 43.2 26.5 46.2 53.3 

ATSS_R_50_FPN_1x + IoU & loss 38.6 20.7 37.4 45.7 

ATSS_dcnv2_R_50_FPN_1x + IoU & loss 41.9 24.0 45.8 53.8 

ATSS_dcnv2_R_101_FPN_2x + IoU & loss 45.8 25.9 48.6 56.9 

ATSS_X_101_32x8d_FPN_2x + IoU & loss 44.5 26.8 47.2 53.2 

ATSS_dcnv2_X_101_32x8d_FPN_2x + IoU & loss 46.8 27.9 49.7 58.7 

ATSS_dcnv2_X_101_32x8d_FPN_2x(MS) + IoU & loss 49.6 31.2 50.5 60.3 

Comparison test 2 

Faster R-CNN + CAF 38.9 17.3 39.2 56.4 

YOLOv4 + CAF 41.8 20.8 47.1 56.7 

RetinaNet-R101 (1024) + CAF 42.5 22.5 43.3 54.8 

ResNet-50 + NAS-FPN (1280@384) + CAF 46.9 23.5 449.5 67.0 

Detectron2 Mask R-CNN R101-FPN + CAF 45.9 21.3 48.0 66.0 

Cascade R-CNN + CAF 44.0 26.0 46.8 68.0 

ATSS_R_50_FPN_1x + CAF 40.1 23.5 44.8 42.6 

ATSS_dcnv2_R_50_FPN_1x + CAF 43.4 24.4 48.0 58.0 

ATSS_dcnv2_R_101_FPN_2x + CAF 47.3 27.8 51.0 59.9 

ATSS_X_101_32x8d_FPN_2x + CAF 45.9 27.8 50.3 57.0 

ATSS_dcnv2_X_101_32x8d_FPN_2x + CAF 48.2 29.6 52.0 62.4 

ATSS_dcnv2_X_101_32x8d_FPN_2x(MS) + CAF 50.8 33.2 53.7 64.0 
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. Conclusion 

In previous works, scholars have focused on the designing of 

eural networks and the tuning of convolution structures, but ig- 

ored evaluation-feedback module, which improve detectors per- 

ormance in CAF manner. In this paper, we propose that an effi- 

ient regression detector should focus on the evaluation-feedback 

echanism, automatic ground truth clustering, and float learning 

ate decay. CDIoU & CDIoU loss, AGTC, and FLRD are proposed to 

mprove the performance of object detection models without in- 

reasing running time and parameters. Through a large number of 

xperiments, it is evidenced that the models improve their AP sig- 

ificantly by using CAF modules on MS COCO and Visdrone dataset, 

omparing to traditional object detection models. 

At the same time, this method also has some technical weak- 

esses. This paper aims to improve the performance of 2D object 

etection. But CAF modules can not deal with detection task in 3D 

nd video. And AGTC module is highly dependent on datasets and 

acks generalization ability. Secondly, CAF module does not signif- 

cantly reduce the size and running time of model. Thirdly, CAF 

odule ignores the role of medium objects and large objects in 

eneral object detection, and only pays attention to the impact of 

mall objects on general object detection performance. 

In the future work, we will mainly solve the application of 

AF modules in 3D object detection and video object detection. 

t the same time, we should pay attention to size-different ob- 

ects customarily. Size-different objects should use different detec- 

ion strategies. Customized solutions should be adopted for various 

bjects in computer vision in the future. Object detection is a ba- 

ic task, while semantic segmentation and instance segmentation 

eed to face more complex data. We do hope that our work will 

lay a role of cornerstone to encourage the evaluation-feedback 

echanism in computer vision subtasks (such as object detection, 

emantic segmentation, and instance segmentation) with less time 

nd lighter model size. 
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