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Noise Robust Person Search
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Abstract—Person search aims to localize and identify specific
pedestrians from numerous surveillance scene images. In this
work, we focus on the noise in person search. We catego-
rize the noise into scene-inherent noise and human-introduced
noise. Scene-inherent noise comes from congestion, occlusion,
and illumination changes. Human-introduced noise originates
from the labeling process. For scene-inherent noise, we pro-
pose a novel context contrastive loss to take advantage of the
latent contextual information from scene images. Features from
context regions are utilized to construct contrastive pairs to
constrain the feature discrimination among pedestrians in scene
images while maintaining the feature consistency of the same
identity. The network can thus learn to distinguish congested
and overlapped pedestrians and more robust features can be
obtained. For human-introduced noise, we propose a noise-
discovery and noise-suppression training process for mislabeling
robust person search. After the first training pass, the relation
between feature prototypes of different identities is analyzed and
the mislabeled pedestrians are discovered. During the second
training pass, the label noise is suppressed to reduce the negative
influence of mislabeled data. Experiments show that the proposed
context-aware noise-robust (CANR) person search can achieve
competitive performance. Further ablation studies confirm the
effectiveness of CANR.

Index Terms—Person search, person
pedestrian detection, contrastive learning.

re-identification,

I. INTRODUCTION

WITH the increasing demand for security, numer-
ous surveillance videos are being captured. Process-
ing and making good use of them is a challenging task.
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Person re-identification [1], [2] is a research area try-
ing to resolve this challenge. However, the problem set-
ting of person re-identification requires cropped pedestrian
images. So, there is a gap between the research of per-
son re-identification and application in real-world scenarios.
Simply cascading pedestrian detection [3]-[5] and person
re-identification is sub-optimal. Errors and inaccurate results
from upstream object detection will damage the performance
of person re-identification. Person search [6]—[8] is an emerg-
ing research area, which integrates pedestrian detection and
person re-identification into a unified framework. As a result,
optimizing both parts simultaneously will lead to better per-
formance and is closer to real-world applications.

Existing research on person search can be divided into
two categories: End-to-end methods and two-step methods.
End-to-end methods integrate pedestrian detection and per-
son re-identification into a single network where both two
sub-tasks of person search are optimized simultaneously
[71, [9]-[14]. Two-step methods start with two cascaded sub-
tasks and optimize each sub-task for mutual adaption so that
they can be better integrated [15]-[19]. Within those two cate-
gories, a number of methods explored similar ideas like lever-
aging query identity as guidance for feature extraction [12],
[17], [18], using extra supervision from masks [14], [19],
key-points [13], [14], contextual information [20]-[22].
However, only a few works had ever reflected on the fun-
damental difference between person search and a detection-
identification pipeline. Most of the existing person search
methods ignore the spatial relationship of pedestrians and the
latent contextual information that comes with scene images.
Some works [21], [22] utilized the contextual information with
the assumption that the co-traveler of the target person will be
relatively consistent. The assumption of consistent to-travelers
does hold due to limitations of the existing datasets: The same
pedestrians in the datasets are collected from several camera
views of the same or nearby geographical location. Their
performance under more realistic scenarios remains unknown.

In this work, we focus on the noise in person search and
take a different approach to utilize the context information
from the scene images. We categorize the noise in person
search into scene-inherent noise and human-introduced noise.
Scene-inherent noise comes from congestion, occlusion, illu-
mination variation, etc while human-introduced noise comes
from mislabeled data during labeling. Examples are shown
in Fig.2(a) and Fig.2(b) respectively. Each image in Fig.2(a)
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Fig. 1. Illustration of the difference in feature level supervision between
different approaches. Our work includes unlabeled pedestrians in the training
process and fully utilizes the latent context information.

Fig. 2. Examples of (a) scene-inherent noise and (b) human-introduced noise
from the CUHK-SYSU dataset. The ‘*.jpg’ below demonstrates the filename
of the image in the dataset. The ‘p*’ in red on the top left corner of each
bounding box denotes the identity label of each pedestrian.

shows a case where the pedestrians are highly overlapped.
Each image pair in Fig.2(b) demonstrates a case where the
same pedestrian in different images was annotated with differ-
ent identity labels. Person search aims to obtain discriminate
feature representation between different identities. Congestion
and occlusion lead to an ambiguous overlapped area between
different annotation boxes. The mislabeled pedestrians in
the training set may encourage the network to discriminate
pedestrians samples belonging to the same identity. Above
mentioned cases encourage the network to pay more attention
to illumination, viewpoints, and backgrounds in these image
samples. This may lead to inter-identity similarity and intra-
identity variation. As a result, the performance of person
search models may be compromised.

For scene-inherent noise, we propose a context contrastive
loss to extract noise-robust features. The philosophy of con-
trastive learning is utilized to compare pedestrians in scene
images to ensure feature discrimination between different
identities while maintaining the consistency between features
from the same pedestrian identity. The network can thus
learn to distinguish pedestrians under congestion and occlusion
scenarios. A unique in-batch label can be further assigned
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to the unlabeled pedestrians and the unlabeled pedestrians
can be included in the comparison. As a result, our methods
can take full advantage of contextual information in scene
images and assure the discrimination between not only labeled
pedestrians but also unlabeled pedestrians. The difference
between person re-identification, previous person search, and
our methods are discussed in Fig.l. The training process
of person re-identification only assures feature discrimination
between different pedestrian identities. Previous person search
approaches take a step forward and guarantee the discrim-
ination between labeled identity and unlabeled pedestrians.
In contrast, our method takes full advantage of contextual
information in scene images and further constrains the feature
similarity between unlabeled identities. While some methods
also include contextual information, we introduce contex-
tual information as supervision instead of a test-time assis-
tance [20]-[22]. To the best of our knowledge, we are the first
to introduce contextual information into the training process
of person search. To learn more robust features, we further
introduce the data uncertainty learning [23] into person search.
The data uncertainty learning models the embedding as a prob-
ability distribution instead of a deterministic one to capture the
inherent noise in the data and mitigate the negative influence
of the noise so that more robust features can be obtained.

For human-introduced noise, we propose a noise-

discovery and noise-suppression training schema, and a
noise-suppression Online Instance Matching(OIM) [7] loss is
proposed to suppress the noise from mislabeled pedestrians.
The training schema includes a two-pass training process.
The first training pass trains a vanilla person search network.
After the first training pass, preliminary pedestrian features are
obtained from the model trained in the first pass. Based on the
preliminary pedestrian features, a feature prototype for each
pedestrian identity is obtained from the pedestrian features
of the same identity, and label noise can be discovered by
analyzing the relation of feature prototypes from the different
pedestrians. During the second training pass, the OIM loss is
substituted with the noise-suppression OIM loss. The noise
discovered will be suppressed by cutting off the gradient flow
of mislabeled pedestrians during back-propagation. As a result,
the unexpected gradient from the label noise will be stopped
from interfering with the training process.

We summarize the motivation of this work as:

o The way of utilizing contextual information in the exist-
ing methods has some limitations and may not generalize
to more realistic scenarios.

« Relationship between pedestrians in the same scene can
be better utilized in the training process of person search
for more discriminative features.

« Noise from congestion, occlusion, and annotation process
may have a negative influence on the training process and
compromise the performance of person search network.

The contributions of this work are three folds:

« A context contrastive loss is designed to learn more robust
features under congestion and occlusion. To the best of
our knowledge, we are the first to leverage contextual
information from scene images as supervision during the
training process.
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o The data uncertainty learning is introduced to the person
search to model and alleviate inherent noise in the training
data for more robust feature learning.

« A noise discovery and noise suppression mechanism is
proposed to alleviate the negative influence of label noise.

II. RELATED WORK
A. Person Search

Person search bridges the gap between person
re-identification and real-world application by integrating
pedestrian detection and person re-identification into a unified
framework. [6] was the first work to discuss the gap and
raised interest in the community. Existing works of person
search can be categorized into two technical approaches:
end-to-end methods and two-step methods.

1) End-to-End Methods: The first end-to-end person search
method was proposed in [7]. The hierarchical relation-
ship between detection and re-identification was analyzed
in [10]. [9] proposed to detangle the mutual feature of two sub-
tasks into the norm and normalized feature for classification
and identification. To mitigate the negative influence of feature
misalignment, [13] proposed to align the partial features from
detection with regression. [14] combined instance segmenta-
tion and keypoint detection into person search. [24] fused
bounding box features from multiple backbone stages to
obtain more discriminative features. [20] proposed to aggre-
gate surroundings of pedestrians to include information like
belongings and co-travelers. [25] proposed an online pairing
loss with hard example mining for person search.

2) Two-Step Methods: Detection scores were integrated into
pedestrian similarity measurement in [8]. [19] proposed to
utilize mask as guidance information. The affine transforma-
tion was used as a differentiable Rol operation in [16] and
the detector can thus be supervised with re-identification loss.
A deeper analysis on two subtasks of person search was carried
out in [22] and a similarity measurement base on objectness
and surrounding pedestrians was proposed.

Also, some ideas have been explored with both approaches.
Knowledge distillation was utilized to achieve better perfor-
mance in [11], [15], [26]. Some other methods [12], [17], [18]
adopted query identities as guidance during feature extraction.
Some work also proposes to redefine person search as a
detection-free process using reinforcement learning [27] or
LSTM [28] to iteratively shrink the regions with target persons.
However, these methods are complex but have only limited
accuracy.

B. Person Re-Identification

Person re-identification aims at matching given pedestrians
from massive pedestrian images. Early person re-identification
methods are limited by the representability of hand-
crafted features. With the renaissance of CNN, deep-
learning-based methods have dominated the field of person
re-identification. [29] proposed a refined part pooling to
re-assign outliers in part models. [30] split pedestrian images
into patches to learn features from multiple granularities. [31]
proposed to use batch normalization neck to separate the
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conflict of metric loss and classification losses. [32] pro-
posed to dynamically align and match local information.
[33] fused triplet loss together with center loss and proposed
a center-triplet loss. [34] proposed a comparative similarity
loss based on pedestrian triplets and designed a multi-scale
network to distinguish the pedestrians better. Some other per-
son re-identification methods utilized extra information from
video sequence [35], [36]. [37] focused on the misalignment of
pedestrians and a pedestrian alignment network to learn more
consistent pedestrians features. Facing a similar challenge,
our work proposes to compare the pedestrian features in
the same scene image. Some methods focus on novel topics
like weak supervision [38], [39] and attack detection [40].
Meanwhile, some methods using GANs to bridge the domain
gap between different cameras [41], [42] or generate more
training data [43].

C. Usage of Contextual Information

Contextual information is utilized in a wide range of
research areas. [44] proposed to use feature around the target
to reweighs the class probability predicted in the task of object
detection; [45] utilized the relation between different targets
with attention; [46] designed a context loss for image trans-
formation with semantic awareness; [47] take advantage of
the contextual similarity between semantic and visual features
to deal with sparse objects association across frames; [48]
proposed a contextual bilateral loss that is robust to mild
misalignment between input and outputs images.

D. Noise and Occlusion

Reducing the interference of noise and occlusion is a long-
lasting research topic due to the actual demand in real-world
applications. [49] proposed to use Expectation-Maximization
algorithm to predict the noise level and true label with a
small amount of clean data and massive data with noise. [50]
proposed a noise-tolerant detector to mine the label and train
the object detection model in a semi-supervised fashion. [51]
utilized two CNNs to train each network with high confi-
dence samples predicted by the other network. [52] employed
compositional nets to model context and object representation
separately and increase the robustness under occlusion. [53]
add a bounding box occlusion estimator to the backbone and
train it in an adversarial manner. While our work focuses on a
similar challenge, the intention is different. [54] estimated the
credibility of the pseudo-label and minimize the negative influ-
ence of noisy labels. Our work aims to learn discriminative
person re-identification features that are robust to congestion,
occlusion, and ambiguous samples.

II1. METHOD

In this section, we will introduce CANR in detail. As a
common approach for end-to-end person search, we adopt
Faster R-CNN as our base detector. The overall framework
of CANR is shown in Fig.3(a). CANR takes scene images as
input and outputs the bounding boxes for pedestrian localiza-
tion and the corresponding features for person re-identification.
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Fig. 3. Overall framework and details of key components of CANR. (a) CANR mainly consists of an end-to-end person search network, the data uncertainty
module, and the context contrastive loss. (b) The data uncertainty module predicts the mean and variance of the feature embedding and models the feature
embedding as a probability distribution. (c) The context contrastive loss compares each pedestrian with the other pedestrians to ensure the feature discrimination
among different identities while maintaining feature consistency of the proposal regions assigned to the same ground truth bounding boxes.

The context contrastive loss and the data uncertainty learning
will be introduced in section III-A and III-B respectively. The
noise discovery and noise-suppression OIM will be introduced
in section III-C.

A. Context Contrastive Loss

Inspired by contrastive learning, we propose context con-
trastive loss to learn congestion-robust and occlusion-robust
features while fully utilize the information from scene images.
It contains two sub-losses: proposal context contrastive loss
and ground truth context contrastive loss.

Proposal context contrastive loss is illustrated in Fig.3(c).
The proposal context contrastive loss compares each fea-
ture from proposal regions with the features from ground
truth bounding boxes. It assures the consistency between
feature from each proposal region and the ground truth region
assigned to it. Meanwhile, it also guarantees the feature
discrimination between features from each proposal region and
the other ground truth regions. If the same identity exists in
the multiple images within a batch, the ground truth features
of the same identity will be summed and normalized to unit
length.

The proposal context contrastive loss for feature x from a
given positive proposal region can be acquired by:

exp (g/x - sp)

G

Ly cc =—log -
j—1€xp (gjx-sp)

ey

where x represents the feature of a proposal region assigned to
the i-th ground truth bounding box, g; and g; denote feature
of the i-th and j-th ground truth bounding boxes respectively,
G denotes the number of annotated pedestrian boxes in
the image, and s, is the scale factor for proposal context
contrastive loss. Both g; and x are unit length normalized.

Intuitively, the loss can be seen as a Lj-constrained bias-free
softmax cross-entropy loss where the features of ground truth
bounding boxes act as the weight, and the features of proposal
regions are classified into different pedestrians.

To avoid the noisy features of proposal regions from inter-
fering with features of ground truth regions. We design a
gradient scaler f (x, Sscaler) to scale the gradient from the
ground truth features by a scale sgcqr0r, the property of the
gradient scaler can be expressed as:

f(x, Sscaler) = X (2)
df (x;lsscaler) 3)
x
where x is input. During the forward propagation, the
scaler just outputs the original input feature. During back-
propagation, the gradient is scaled by Sgcqler-

To increase the number of proposals and facilitate down-
stream proposal context contrastive loss, the ground truth
bounding boxes are jittered for more proposal regions. The
coordinates of the jittered bounding boxes are obtained by:

% = gy + N (0, (A (e = ¥en))°) @)
Vji =Yg TN (O’ (25 (Ve — Ygtl))z) ®)

where N (,u, 02) denote the Normal distribution with u« as
mean and o as standard deviation; (xg7,, ygr,) and (xgs,, yer,)
denote the top left and the bottom right coordinates of the
ground truth bounding boxes; (x;,, yj;) and (x},, yj,) denote
the top left and bottom right coordinate of the jittered ones,
As denotes the magnitude of the disturbance.

The ground truth context contrastive loss is illustrated in
Fig.3(c). It constrains the discrimination between features from
different ground-truth regions. Similar to the proposal context
contrastive loss, each feature from ground truth pedestrian
bounding boxes is compared against features from the other

Sscaler - df (x, Sscaler)
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ground truth bounding boxes. The ground truth contrastive loss
for ground-truth feature g; is acquired by:

exp (g/ g; - s¢)
G
> iexp(g] i 5)

where s, is the scale for ground truth context contrastive
loss. Lg; ¢ is designed to supervise the network to be
more discriminative to the neighboring pedestrians and similar
environment.

Moreover, to learn crowd-robust pedestrian features and
facilitate the discrimination between neighboring pedestrians,
we insert a spatial attention module into the identification
network. The context contrastive loss can act as stronger
supervision over spatial attention compared with conventional
use cases. The spatial attention module can then learn to
emphasize the informative regions with pedestrians and sup-
press the distraction from neighboring pedestrians and the
background. The spatial attention module can be expressed as:

Fuir = fo (f1x7([AvgPool(F); MaxPool(F)])) ©F  (7)

(6)

Lgt?cc = - IOg

where ¥y, f5, f1x7, © and F denote the feature map after
spatial attention, sigmoid activation function, convolution with
kernel size of 7 x 7, elementwise multiplication and the input
feature map.

While L, ¢ and Lg; o have similar formulation, they are
designed based on different intuition. L, .. is designed to
assure the discrimination of pedestrian features even though
the proposal regions do not cover the target pedestrians pre-
cisely and include distraction from background or the other
pedestrians. Lg; ¢ is designed to constrain feature discrimina-
tion under congestion situations. With the context contrastive
loss, both labeled and unlabeled pedestrians can be utilized
to train the network to extract congestion robust features.
Moreover, with the context contrastive loss, the model can
also learn to distinguish the pedestrians in the same image
more directly and intuitively. With an in-batch label assigned
to the unlabeled pedestrians, the context contrastive loss can
be applied to the batch level and the context information and
the unlabeled person can be better utilized during training.

B. Data Uncertainty Module

To further minimize the negative influence of inherent noise
in the data and learn noise-robust features, we introduce
the data uncertainty learning into person search. The data
uncertainty learning captures the inherent noise in the data
by modeling the feature and the uncertainty simultaneously.
Specifically, a given feature from the identification network is
modeled as a Gaussian distribution, w.r.t the g and o. The
and o are predicted by two separate feature projectors by:

mi = fo, (zi) ®)
oi = fo, (zi) ©)

where z; is feature embedding of the i-th sample from the
identification network, u; and o; are the mean and variance
predicted by the feature predictors respectively. The 6, and
0, are the parameters for the feature projectors.
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Fig. 4. Tllustration of the first training pass (a), noise discovery (b), and the
second training pass (c). Label noise is discovered after the first training pass
and suppressed in the second training pass.

As a result, the embedding of a given pedestrian is a distri-
bution instead of a deterministic embedding. During training,
the feature embedding for the loss functions is sampled from
the predicted distribution using the re-parameterization [55] to
ensure the differentiability for back-propagation. During infer-
encing, o; is omitted and only the u; is adopted for similarity
measurement. The final features for person re-identification
are acquired by:

X = n; +eo; if train?ng (10)
", otherwise
where € ~ N (0, I) and x; denotes the i-th feature for person
re-identification.

To prevent the prediction of o; from collapsing into zero,
making distribution-based embedding degrade into the deter-
ministic embedding, KL divergence is utilized to constrain the
N ([l,i, 0.2) into normal distribution:

KL[N (xi |;Li,al-2)HN(e o, 1)]

D

1 2 2 2

) Z (ai_i +ui; - 1-In (ai./))
j=1

where Oijs Mijs D denote the j-th dimension of o;, the
Jj-th dimension of u; and the dimension of feature vector.

While the idea of data uncertainty learning has been
explored in the task of person re-identification [56], the
formulation of the data uncertainty in [56] is not suitable for
the task of person search. The main difference between person
re-identification and person search is that the ROI region may
contain background areas. However, the uncertainty formula-
tion in [56] does not explicitly constrain these background
samples to have a suitable uncertainty. This may lead to large
uncertainty for the background regions and interfere with the
uncertainty learning of foreground regions. By contrast, the
Lk in our method explicitly constrains the prediction of
uncertainty under a relational range, leading to more stable
uncertainty learning.

Lky

(1)

C. Noise Discovery and Noise Suppression

To minimize the negative influence of mislabeled pedestri-
ans during the training phase, a noise-aware training process is
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proposed to discover and suppress the mislabeled pedestrians.
It includes two separate training passes. The first pass discov-
ers the mislabeled pedestrians and the second pass cuts off
the gradient flow of the mislabeled pedestrians. A simplified
process is illustrated in Fig.4.

As illustrated in Fig.4(a), the first pass trains a person search
network with vanilla OIM loss. After the first training pass, the
potential mislabeled pedestrians in the training set is analyzed
and discovered as shown in Fig.4(b). The feature prototype of
each pedestrian is obtained for similarity comparison. Thanks
for the momentum update of the lookup table in the OIM
loss, each feature vector in the lookup table can be seen
as the feature prototype of each pedestrian. As the result,
we simply take the weight of the lookup table in OIM loss
V e REXD as the feature prototype, where L denotes the
number of pedestrian identities and D denotes the dimension
of the feature embedding. The similarity matrix § € RE*L
between different feature prototypes in the training set can be
acquired by § = V'V T. The similarity matrix S measures the
similarities between different pedestrian identities in the train-
ing set. Fig.4(c) demonstrates the noise suppression during
the second training pass, the logits predicted by the network
are dynamically cut off based on the similarity matrix S in
the classification loss (OIM in our case) by, (12), shown at
the bottom of the page, where p; denotes the probability of x
being classified into the i-th identity, I {-} denotes the indicator
function, k denotes the target label of x, S, denotes the
similarity between the i-th identity and the k-th identity, 7 is
the temperature for the OIM loss, v; denotes the j-th feature
in the LUT, u,, denotes the m-th feature in the CQ, L denotes
the size of LUT, Q denotes the size of CQ, and ¢ is a hyper-
parameter for threshold. We recommend referring to [7] for a
detailed explanation of LUT and CQ.

Next we elaborate the role of the noise supression from
the view of derivation. For ease of illustration, we discuss a
simplified classification case with softmax cross entropy loss
where the bias are omitted. The score of class ¢ is obtained
by s = I{---}w.x where x denotes the input, w. denotes
classifier weight of class ¢ and I{---} denotes the indicator
mentioned in Eqn. 12. The derivation w.r.t. w. and x can be
obtained by:

exp(sc)
LA O
OLas | 3% exp(sk)x th y#e (13)
ow. | _ exp(sc) r yv—
2k exp(sk)
OLis exp(sc)w l{- - -}
= + (14)
ox Wy z >, exp(sr)
where L. is obtain by Loy = —In(5——7~ exp(sy) ), and y is the

X exp(sk)
ground truth label for the label x.
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To illustrate the above equations with an example,
we assume there is a sample x of a specific identity with the
label y;. The same identity is also mislabeled as y, in some

. exp(sy,) OLeis .

images. The S oD in the Zz% will not be interferenced

by the score of noise label s, . As a result, B DR |
I 2 exp(sk)

be much closer to the value without noise. Thus the update
of wy, would be more stable during the training stage. The

‘;II“)—"’S will be 0, isolating the interference between x and
- %n

O0Los . . exp(sy, )wy, .
wy,. Also, S will not include E/exinp(w)”' In this way, the

network can prevent the undesired gradient of noisy labels
from interfering with the other parameters and, as a result,
minimize the negative influence of mislabeled pedestrians.

D. Training and Loss Formulation

CANR includes a two-pass training process. Generally, the
purpose of the first training pass is to discover the noise
and the second training pass suppress the noise discovered
in the first training pass to achieve better accuracy. The first
training process trains a model without noise suppression.
After the first training process, noise in the training set is
analyzed by comparing the feature prototype between different
identities. During the second training pass, a model with noise
suppression is trained. The noise suppression dynamically cut
off the gradient flow of the mislabeled samples based on the
noise discovered in the first training pass. Besides the noise
suppression introduced in the second training process, the two
training passes are identical. The training process of CANR is
demonstrated in the Algorithm 1.

The total loss for our end-to-end person search network is
defined as:

L =Lget+Loim+Lp cc+ Lgice +2Akr-Lxr (15)

where the Lg.; represents the losses from Faster R-CNN,
Ak L is the weighting factor for Lk, and the Loy represents
the online instance matching loss from [7].

E. Miscellaneous

1) Adaptive Pooling Fusion: Max pooling and average
pooling both have drawbacks [57]. Adaptive Pooling Fusion
is proposed to fuse the features from max pooling and average
pooling. The final feature representation is acquired by:

Z Ziwzaug‘i‘(l - (16)

w) Tmax

where z4,¢ and z,,4,x denote the features acquired by average
pooling and max pooling from the identification network
respectively. 4, is a weighting factor to balance features
from different pooling strategies, which is acquired by 1,, =
sigmoid (p) . p is a learnable parameter and is updated through
back-propagation.

exp(I{i =kv Six <t}v]x/7)

pi =

Z 1exp(]I{]—ka]k<t}v x/r)—i—zm 1exp( x/r)

12)
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Algorithm 1 Training Phase of CANR

Input:

Training set S, total epoches epoches

Output:

Trained Model weight W

1: Initialize the model weight W

2: for pass in {1, 2} do

for e in {1, 2, ..., epochs} do

4 for batch B sampled from S do

5 Extract pedestrian features Z .y from B

6: Calculate detection related losses, get Ly

7 Feed Zj.q into the Data Uncertainty Module, get
Fpeq and Lk (Eqn. 11)

(5]

8: Construct contrastive pairs and calculate the con-
text contrastive loss, get L, - (Eqn. 1) and Lg; ¢
(Eqn. 6)
9: if pass =1 then
10: Feed Fpeq into the Online Instance Match-
ing (OIM) loss, get Loy
11: end if
12: if pass =2 then
13: Suppress the noise from Fpeq With Py, calculate
the OIM loss, get Loy
14: end if
15: Calculate total loss L (Eqn. 15), back propagation,

and update W
16: end for

17:  end for

18: if pass = 1 then

19: Analysis the noise of the dataset and set a set of noise
pairs of identities Pyise

20:  end if

21: end for

22: return trained model weight W

2) Deformable Rol Pooling: Proposal regions from the RPN
in the faster R-CNN tend not to include all body parts of the
target pedestrian. It’s suboptimal for the fine-grained task like
person re-identification. To alleviate this issue, we introduce
the Deformable Rol Pooling into our work. Deformable Rol
Pooling learns a sample point offset for each position on the
output feature map. The context contrastive loss can also act as
guidance over the training of the offset prediction. In this way,
our person search network will learn to focus on the target
pedestrians and will be more robust to low-quality region
proposals.

F. Discussion

1) Discussion on the Triplet Loss and the Context Con-
trastive Loss: The triplet loss enforces a margin between the
similarity of positive pairs and negative pairs. The triplet loss
requires to sample p identities with k images for each identity
to form a batch during training. The sampling process ignores
the contextual information that comes with scene images.
In contrast, our method takes advantage of the contextual
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information, neighboring pedestrians under congested scenar-
i0os can be compared directly, and features robust to congestion
and occlusion can be learned. While we adopt softmax cross-
entropy to constrain the feature discrimination of pedestrians
in the same scene, triplet-style loss functions can also be
applied for a similar purpose. Furthermore, the context con-
trastive loss can be used in parallel with most loss functions.

2) Discussion on Hard Examples and the Label Noise: The
hard examples are supposed to be discriminated in the first
training phase of the noise discovery and noise suppression
process. Also, there is no point to include the extreme hard
example pairs if the ordinary training process can’t distinguish
them well. We find that the vast majority of mislabeled
pedestrians have two labels. As a result, only the maximal logit
of a given example satisfy I{i # k A Six > 1} is zeroed out
in practice. We empirically find that 0.75 is a suitable cosine
distance threshold to distinguish label noise and severe over-
lapped pedestrians (illustrated in Fig.2(a)) from hard examples
on both datasets. For severe overlapped pedestrians, they are
always in the same scene images and the context contrastive
loss will handle this situation.

3) Discussion on the Effectiveness of Data Uncertainty
Learning: To simplify the discussion, we treat the person
re-identification sub-task of person search as an isolated task
which includes Lgerp (Wrt. Lojy, Lp e and Lg; o in
our work) and Lky. The objective of Lgerp is to supervise
the network to predict discriminative person re-identification
features for each sample. The objective of Lg; to constrain
the u; to have zero meanwhile restricting the o; neither
collapsing to O nor too large. Constraining the u; to have
zero mean can help the features to distribute more evenly on
the hypersphere. For the clean samples, predicting relatively
small o; may facilitate lower Lg.;p and lead to optimal
overall loss. Noise samples would result in large Lr.;p and
giving such samples larger o; may facilitate better overall loss.
Moreover features sampled from a distribution with large o;
may cancel each other out and, as a result, have less impact
on the training compared with the ones with small ¢;. From a
different perspective, the data uncertainty learning can also be
seen as a kind of regularization where a feature after distur-
bance should still be discriminative enough to recognize the
identity.

4) Comparison With Our Previous Work: Our previous
work [58] proposed a loss function that aims to achieve
better feature discrimination between different pedestrians and
improve feature consistency of the same identity. An atten-
tion module is also proposed to help the network suppress
background clutters and stress the pedestrians. This work
focus on the scene-inherent noise and human-introduced
noise. Specifically, a context contrastive loss is proposed
to suppress interference from surrounding pedestrians under
congested scenarios; data uncertainty learning is introduced
into person search for better noise-robust person search.
Also, noise discovery methods and noise suppression loss
are proposed to mitigate the negative influence of mislabeled
pedestrians.
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1V. EXPERIMENTS
A. Dataset and Evaluation Protocol

a) The CUHK-SYSU dataset: Is collected from street
snaps shoot by handheld cameras and movie snapshots. It fea-
tures diverse scene variations and large quantities of pedestrian
identities. It has a total of 18,184 images, 43,110 bounding
box annotations, and 8,432 identity labels. The training set
of the dataset has 11,206 images and 5,532 identity labels
while the testing set has 6,978 gallery images and 2,900 query
pedestrians.

b) The PRW dataset: Contains images from video
streams of six fixed cameras on campus. It features differ-
ent camera styles and great scale variation. It has a total
of 11,816 images, 34,304 bounding box annotations, and
932 identity labels. The training set has 5,704 images and
482 identities while the testing set has 6,112 gallery images
and 2,057 query pedestrians.

c) Evaluation metrics: We adopt the cumulative matching
characteristics (CMC) and mAP as the evaluation metrics,
which are commonly used in person search. Both these
two metrics are inherited from the task of re-identification.
A match is considered positive when IoU between the pre-
dicted bounding box and the ground truth one is larger
than 0.5.

B. Implementation Details

We implemented CANR based on Faster R-CNN on top
of MMDetection with PyTorch. The ResNet-50 was adopted
as the backbone. The first four blocks (layerO to layer3) of
ResNet-50 were adopted as the stem network and the last
block (layer4) was adopted as the re-identification network.
On top of the feature from the stem network, the Regional
Proposal Network [62] was utilized to extract potential regions
containing pedestrians. The extracted proposal regions were
sampled and then pooled using Rol Align [63]. The feature
maps obtained from the ROI align were then sent to the
identification network. The Online Instance Matching (OIM)
loss, the context contrastive loss, and the KL divergence loss
were utilized to supervise the re-identification sub-task. Mean-
while, losses of Faster R-CNN were utilized to supervise the
detection sub-task. The model was trained with two NVIDIA
RTX 2080Ti in distributed data-parallel or an RTX 3090 with
equivalent settings. We follow the standard 2x schedule in
object detection, the batch size was set to 4 for each GPU, the
learning rate is set to 4e-3, and the weight decay was set to
le-4. The Ak is set to le-3 according to [23]. For the PRW
dataset, the s, was set to 8 and s, was set to 8. Given that the
number of pedestrians varies dramatically in different images
of the CUHK-SYSU dataset, we refer to [64] and empirically
set s, to 54/2In (ng,), where ng, is the number of ground truth
regions in each batch. The ground truth contrastive loss and
bounding box jittering are empirically omitted for the CUHK-
SYSU dataset. For the rest of the parameters, we followed
the settings of NAE [9] and MMDetection.

C. Comparison With State-Of-the-Art Methods

To evaluate the performance of CANR, the performance of
CANR is compared against the state-of-the-art methods on the
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Fig. 6. The mAP of CANR and CANR+ on the CUHK-SYSU under different
gallery sizes. Compared to existing end-to-end person search works, CANR+
achieves the best performance under different gallery sizes.

CUHK-SYSU and the PRW datasets. Existing state-of-the-art
methods are categorized into two-step methods [15], [16], [18],
[19], [22] and end-to-end methods [7], [9]-[14], [20], [21],
[24], [28], [59]-[61]. The results involved in the comparison
are taken from the original papers. Some of the state-of-
the-art methods rely on external information like key points,
masks, and knowledge distillation from an external network.
To make the comparison fair, we present the extra information
required for the state-of-the-art methods. ‘Keypoints’ and
‘Mask’ means key points or masks are required during train-
ing; ‘Knowledge Distillation” means feature-level supervision
from an external network is utilized, ‘Detection Confidence’
means the detection confidence weighted similarity is used
during the retrieval process. It should also be noted that
DMRN [59] and AlignPS [61] are based on stronger detectors.
AlignPS [61] also combines features from different scales for
a more robust pedestrian feature representation.
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TABLE I

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE CUHK-SYSU AND PRW DATASETS

7055

Methods Publication Additional Information | CUHK-SYSU PRW

Required for ReID mAP Top-1 | mAP Top-1
Two-Step Methods
MGTS[19] ECCV 18 Mask 83.00 83.70 | 32.60 72.10
CLSA[15] ECCV18 None 87.20  88.50 | 38.70  65.00
RDLR[16] ICCV19 None 93.00 9420 | 4290 70.20
TCTS[18] CVPR20 None 93.90 95.10 | 46.80 87.50
Faster R-CNN + PCB + OR[22] TIP21 None 9293  93.69 | 43.01 65.87
End-to-End Methods
OIM[7] CVPR17 None 75.50  78.70 | 21.30  49.90
NPSM[28] ICCV17 None 7790  81.20 | 2420 53.10
QEEPS[12] CVPR19 None 88.90 89.10 | 37.10 76.70
GRAPH[21] CVPR19 None 84.10 86.50 | 3340 73.60
BPNet[14] AAAI20 Keypoint&Mask 88.40 90.50 | 48.50 87.90
HOIM[10] AAAI20 None 89.74  90.83 39.77 80.36
APNet[13] CVPR20 Keypoint 88.90 89.30 | 41.90 81.40
BINet[11] CVPR20 Knowledge Distillation 9030 9140 | 4720 87.00
NAE[9] CVPR20 Detection Confidence 91.50 9240 | 43.30 80.90
NAE+[9] CVPR20 Detection Confidence 92.10 9290 | 44.00 81.10
BUFF[24] MM20 None 90.70  91.60 | 42.20 81.00
DCARJ20] MM20 None 87.50 88.70 | 38.80 77.70
IIDFC[58] TCSVT21 None 9196 93.34 | 4343 83.37
DMRN[59] AAAI21 None 9320 9420 | 46.90 83.30
DKD[60] AAAI21 Knowledge Distillation 93.09 9424 | 50.51 87.07
AlignPS[61] CVPR21 None 93.10 9340 | 4590 81.90
AlignPS+[61] CVPR21 None 94.00 9450 | 46.10 82.10
CANR(Ours) TCSVT22 None 9239 9321 4341 83.81
CANR+(Ours) TCSVT22 None 9386 94.52 | 4478 83.86
The results are presented in Table.l. For the CUHK- TABLE II

SYSU dataset, CANR achieves 92.39% on mAP and 93.21%
on Top-1. With deformable ROI pooling, CNAR+ achieves
93.86% on mAP and 94.52% on Top-1. For the PRW dataset,
CANR achieves 43.41% on mAP and 83.81% on Top-1,
CANR+ achieves 44.78% on mAP and 83.86% on Top-1.
Without the requirement of additional information, CANR and
CANR+ achieve state-of-the-art-comparable performance on
the CUHK-SYSU dataset and competitive performance on the
PRW dataset. To investigate this phenomenon, we analyzed
the statistical information of both datasets. Specifically, the
pedestrian bounding box pairs and pedestrian per image is
evaluated to indicate the extent of congestion in the dataset.
The results are shown in Fig.5. Compared with the PRW
dataset, the CUHK-SYSU dataset has a more congested
scenario. Remind that one of our motivations is to focus
on the scene inherited noise originated from congestion and
occlusion. As a result, CANR and CANR+ will perform better
in the congested scenario and this may account for the superior
performance compared to the other methods on the CUHK-
SYSU dataset. While the performance is not as competitive
on the PRW dataset, CANR and CANR+ also bring satisfying
improvement on top of the baseline and achieves competitive
performance.

The performance under different gallery sizes is also
evaluated on the CUHK-SYSU dataset. The performance is
compared against state-of-the-art end-to-end person search
methods and the results are shown in Fig.6. As the gallery
size increases, the performance of all methods gradually
decreases, which indicates that the task of person search

ABLATION STUDY OF EACH COMPONENT OF CANR ON THE PRW
DATASET. ‘OIM*’ DENOTES THE OIM RE-IMPLEMENTED, ‘BSL’
DENOTES THE BASELINE BUILT ON ToP OF OIM*, ‘DUM’
DENOTES THE DATA UNCERTAINTY MODULE, ‘CCL’
DENOTES THE CONTEXT CONTRASTIVE LOSS, ‘PF’
DENOTES THE POOLING FUSION, ‘BJ’ DENOTES THE
BOUNDING BOX JITTERING, ‘NS’ DENOTES THE
NOISE-SUPPRESSION LOSS, ‘DP’ DENOTES
THE DEFORMABLE POOLING

OIM* BSL DUM CCL PF BJ NS DP | mAP(%) Top-1(%)
7 X X X X X X X 38.18 77.10
v v/ X X X X X X 39.15 79.92
v v/ v/ X X X X X 41.67 80.80
v v/ v/ v X X X X 42.48 82.21
v v/ v/ v X X X 42.68 82.55
v v/ v v oV X X 43.58 83.18
v v/ v/ v VR 4341 83.81
v v/ v/ v O/ 44.78 83.86
v v/ X X X v X X 39.61 79.29

is more challenging under larger gallery sizes. Our method
achieves the best performance across different gallery sizes,
which shows the effectiveness of CANR and CANR+-.

D. Ablation Study

To evaluate the effectiveness of each component, ablation
studies on each component were conducted on the PRW
and CUHK-SYSU datasets. The results are shown in Table.Il
and Table.Ill. We re-implement the OIM [7] and the OIM
re-implemented is denoted as OIM* in the following part
of this paper. Spatial attention and BNNeck are further
added to act as the baseline for our method. For the PRW
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TABLE III

ABLATION STUDY OF EACH COMPONENT OF
CANR ON THE CUHK-SYSU DATASET

OIM* BSL PF CCL NS DUM DP | mAP(%) Top-1(%)
v X X X X X X 88.41 88.38
v v X X X X X 90.90 91.62
v v v X X X X 91.28 91.69
v v v v X X X 91.79 92.48
v v v v v X X 91.81 92.66
v v v v v 4 X 92.39 93.21
v 4 v v v 4 v 93.86 94.52

Fig. 7. Comparison of shift sensitiveness between OIM and CANR. The
green box and the red box denote the ground truth annotation of the targeted
pedestrian and the neighboring pedestrian. The blue ones indicate the shifted
boxes. Compared with the OIM, CANR tends to be more discriminative
to inaccurate proposal regions. CANR is also more discriminative between
neighboring pedestrians.

dataset, the OIM* achieves 38.18% and 77.10% in Top-1.
The baseline gets 39.15% in mAP and 79.92% in Top-1. This
setting is adopted as the baseline of our method. With the
data uncertainty module, we get 41.67%(12.52%) in mAP
and 80.80%(10.88%) in Top-1. On top of that, we add
context contrastive loss and get 42.48%(10.81%) in mAP
and 82.21%(11.41%) in Top-1. We further add the pool-
ing fusion module and get 42.68%(10.20%) in mAP and
82.55%(10.34%) in Top-1. With bounding box jittering as
data augmentation, we get 43.58%(10.90%) in mAP and
83.18%(10.63%) in Top-1. With the noise-suppression loss,
we get almost identical mAP and 83.81%(10.63%) in Top-1.
With all parts of CANR+, we get 44.78%(11.37%) in mAP
and 83.86%(10.04%) in Top-1, which is a competitive result
among end-to-end person search methods. The CUHK-SYSU
dataset covers a wide variety of scenarios and many scene
images contain abundant pedestrians. Therefore, there are
enough positive samples for sampling. In this case, using
BJ cannot bring positive effects and may disturb the data
distribution of the proposal regions. As a result, we discarded
the bounding box jittering on the CUHK-SYSU dataset. Based
on the ablation study on the CUHK-SYSU dataset, similar
results can be observed. To investigate the influence of the
gradient scaler. We compare the scale gradient strategy with
the stop gradient strategy and use the intact gradient strategy
on the CUHK-SYSU dataset. Stop gradient prevents the gradi-
ent from back-propagating to previous parts while using intact
gradient is equivalent to removing the gradient scaler. The
results are shown in Table IV. Compared to the other settings,
the scale gradient strategy achieves the best performance.
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TABLE IV
RESULTS OF ANALYTICAL EXPERIMENT ON GRADIENT SCALER

Setting mAP(%) Top-1(%)
Stop Gradient 92.29 92.90
Gradient Scaler 92.39 93.21
Intact Gradient 92.31 92.97
TABLE V

COMPARISON OF DETECTION AND RE-IDENTIFICATION
PERFORMANCE ON THE CUHK-SYSU DATASET

Method Detection RelD
Recall(%) AP(%) | mAP(%) Top-1(%)
Faster R-CNN 91.27 88.97 N/A N/A
OIM* 90.34 87.44 88.41 88.38
CANR(Ours) 92.18 89.27 92.39 93.21
CANR+(Ours) 92.59 89.77 93.86 94.52

To evaluate the localization performance of CANR. Faster
R-CNN, which is our base detection method, was trained on
the CUHK-SYSU dataset. We keep the parameter setting from
MMDetection, a standard 2x training schedule was adopted
for training and the batch size was aligned with CANR.
OIM [7] is re-implemented and evaluated on the CUHK-
SYSU dataset. The hyper-parameter of OIM* was aligned with
CANR for comparability. The results are shown in Table.V.
CANR achieves 92.18% in recall and 89.27% in average
precision(AP), which is a 0.91% and 0.30% performance
improvement on recall and AP respectively compared with
Faster R-CNN. This shows that CANR can facilitate the
detection sub-task while achieving competitive performance
on the re-identification sub-task. With CANR+-, a slightly
better detection can be further obtained. The OIM* achieved
a slightly lower detection performance, which confirms the
conflict [9] between two sub-tasks of person search. Compared
with OIM*, CANR not only achieves better performance on
detection but also outperforms OIM* on the re-identification
task by a large margin, which shows the effectiveness of our
method.

Further analytical experiments are conducted to understand
the underlying reasonability of CANR. We shift the ground
truth bounding box of a pedestrian and generate a group of
boxes between two neighboring pedestrians. This process is
illustrated in the left part of Fig.7(a). The generated boxes
are selected as the proposal regions for the Rol Align. Then,
features corresponding to these regions are obtained. Cosine
distance is calculated between the features from ground truth
bounding boxes and the generated boxes. The result is shown
in Fig.7(b) and the red line indicates the IoU between two
ground truth boxes. Compared with the OIM*, CANR is
more discriminative to inaccurate proposal regions. CANR
also gives a lower cosine distance between two adjacent
pedestrians. Through this experiment, we may conclude that
CANR is robust to inaccurate region proposals while more
discriminative between neighboring pedestrians, which shows
the effectiveness of CANR.

We also compare the runtime of CANR with different
methods and the results are shown in Table.VI. The CANR
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Fig. 8. Visualization of retrieval results. The blue boxes represent pedestrians to be queried, the green boxes show correct matches, and the red boxes indicate
incorrect matches. Compared with NAE and OIM, CANR is more robust to extreme illumination condition (a), illumination changes (b), congestion (a), and

occlusion (c, d).

Ours

Image OIM*

Fig. 9. Visualization of activation map of OIM* and our method. For each
image triplet, the left image is the original image, the middle one is the
activation map from OIM* and the one in the right is the activation map of
our method.

only adds marginal overhead over OIM and is faster compared
with the NAE and NAE+ while has better accuracy. With
acceptable overhead, CANR+ achieves better performance.
To better understand how the data uncertainty module works
during training, we visualize the loss curve of Agy - Lgy
and Loy in Fig.10. In the early stage of the training, the
re-identification feature is random and the representability

TABLE VI

SPEED COMPARISON ON DIFFERENT GPUS, RUNTIME
MEASURED IN MILLISECONDS

GPU(TFLOPs) OIM* NAE NAE+ CANR CANR+
P40(11.8) - 158 161 - -
V100(14.1) - 83 98 - -

RTX2070(7.9) 117 137 - 126 162

RTX2080Ti(13.4) 93 102 - 99 118

7
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Fig. 10. Visualization of the loss curve during training on the PRW dataset.

is limited. Thus, we initialize the 6, to have a small o;
and facilitate the training of the re-identification features.
Moreover, It’s not practical to model the u and o in this
stage, which leads to the plateau of Lk in the early stage.
After the identification feature obtain enough representability
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TABLE VII
COMPARISON WITH OUR PREVIOUS WORK
Method Backbone mAP(%) Top-1(%)
CANR 43.41 83.81
IDFC58] | ReSNet30 | 39 81.92
CANR 44.74 83.62
IDFC(58] | RESZNe-30 | 43ys 83.37
CANR ResNeSt-50 47.93 85.22

Before After Before _ After

Before Aﬁer'

Image Baseline Image Baseline Ours

Fig. 11. Comparison of activation maps before and after the spatial attention.

(i.e. the Loy (re-identification loss) gets good enough), the
Lk starts to takes effect as discussed in Section-III-F.3.

We also compare CANR with our previous work [58]
in Table.VII. In a fair comparison, this work shows supe-
rior performance compared with the previous work. It is
also worth mentioning that this work is much simpler and
does not include CloU, HOIM, specially selected anchors,
stronger backbone, etc. The performance of our work is further
improved when using a stronger backbone.

E. Visualization

To have a better understanding of different methods,
retrieval results of our method, the OIM, and the NAE [9]
are visualized. The results are shown in Fig.8. Persons in
blue bounding boxes indicate persons to be queried and
the retrieval results are marked in green and red, indicat-
ing correct matches and incorrect matches respectively. For
simplicity, only Top-1 retrieval results are shown. Fig.8(a),
Fig.8(b), Fig.8(c), Fig.8(d) demonstrate scenes with extreme
illumination condition, dramatic illumination changes, target
pedestrian occluded, query pedestrian occluded respectively.
CANR successfully retrieves the correct pedestrian while the
NAE and OIM fail. From the results, we may conclude
that CANR is more robust to illumination changes, illumi-
nation variation, and occlusion, which shows the effectiveness
of CANR.

To have a deeper insight into the improvement, we visualize
the activation map of OIM* and our method. The activation
maps of scene images are visualized in Fig.9. Compared to
the OIM*, our method tends to be more capable of extracting
pedestrian features in the crowded scenario. Our method also
tends to focus the discriminative patterns like shoes, textures
from clothes, faces, and hairstyles. To analyze the role of
spatial attention in our method, we visualize and compare
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Fig. 12.  Visualization of uncertainty under different level of occlusion.

the activation maps before and after the spatial attention.
The results are shown in Fig.11. For each group, the first
image shows the image patch corresponding to the proposal
region. The latter two subgroups of images compare the
visualization result of the baseline and our methods. Generally,
the visualization results of the baseline are similar, which
indicates that spatial attention may not work as expected
in the baseline. By comparison, the spatial attention in our
method tends to enhance the pedestrian regions. Moreover,
our method tends to focus on more comprehensive details of
pedestrians.

To have a deeper intuition on the data uncertainty. We grad-
vally add occlusion to a pedestrian and visualize the uncer-
tainty predicted by the network. The results are shown in
Fig.12. The visualization indicates that the more occlusion
added to the pedestrian, the larger data uncertainty pre-
dicted, which confirms the discussion in the Method section
and demonstrates the effectiveness of the data uncertainty
module.

V. CONCLUSION

In this paper, we focus on the noise in person search.
We categorize the noise into scene inherent noise and human-
introduced noise. For scene inherent noise, we propose a
context contrastive loss and introduce the data uncertainty
learning into person search. The context contrastive loss
compares pedestrians in scene images to ensure the dis-
crimination between congested pedestrians and more robust
features can be obtained. As an extra advantage, the unla-
beled pedestrians are fully utilized in the training process.
To the best of our knowledge, we are the first to utilize the
context information of scene images as supervision during
the training process. The data uncertainty learning model the
embedding as a distribution for more discriminative features.
For scene-inherent noise, we propose a noise discovery and
noise resistant mechanism to discover mislabeled pedestri-
ans and suppress the negative influence of noise. Extensive
experiments show that CANR and CANR+ can achieve
competitive performance compared with state-of-the-art
methods.
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