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Abstract— Person search aims to localize and identify specific1

pedestrians from numerous surveillance scene images. In this2

work, we focus on the noise in person search. We catego-3

rize the noise into scene-inherent noise and human-introduced4

noise. Scene-inherent noise comes from congestion, occlusion,5

and illumination changes. Human-introduced noise originates6

from the labeling process. For scene-inherent noise, we pro-7

pose a novel context contrastive loss to take advantage of the8

latent contextual information from scene images. Features from9

context regions are utilized to construct contrastive pairs to10

constrain the feature discrimination among pedestrians in scene11

images while maintaining the feature consistency of the same12

identity. The network can thus learn to distinguish congested13

and overlapped pedestrians and more robust features can be14

obtained. For human-introduced noise, we propose a noise-15

discovery and noise-suppression training process for mislabeling16

robust person search. After the first training pass, the relation17

between feature prototypes of different identities is analyzed and18

the mislabeled pedestrians are discovered. During the second19

training pass, the label noise is suppressed to reduce the negative20

influence of mislabeled data. Experiments show that the proposed21

context-aware noise-robust (CANR) person search can achieve22

competitive performance. Further ablation studies confirm the23

effectiveness of CANR.24

Index Terms— Person search, person re-identification,25

pedestrian detection, contrastive learning.26

I. INTRODUCTION27

W ITH the increasing demand for security, numer-28

ous surveillance videos are being captured. Process-29

ing and making good use of them is a challenging task.30
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Person re-identification [1], [2] is a research area try- 31

ing to resolve this challenge. However, the problem set- 32

ting of person re-identification requires cropped pedestrian 33

images. So, there is a gap between the research of per- 34

son re-identification and application in real-world scenarios. 35

Simply cascading pedestrian detection [3]–[5] and person 36

re-identification is sub-optimal. Errors and inaccurate results 37

from upstream object detection will damage the performance 38

of person re-identification. Person search [6]–[8] is an emerg- 39

ing research area, which integrates pedestrian detection and 40

person re-identification into a unified framework. As a result, 41

optimizing both parts simultaneously will lead to better per- 42

formance and is closer to real-world applications. 43

Existing research on person search can be divided into 44

two categories: End-to-end methods and two-step methods. 45

End-to-end methods integrate pedestrian detection and per- 46

son re-identification into a single network where both two 47

sub-tasks of person search are optimized simultaneously 48

[7], [9]–[14]. Two-step methods start with two cascaded sub- 49

tasks and optimize each sub-task for mutual adaption so that 50

they can be better integrated [15]–[19]. Within those two cate- 51

gories, a number of methods explored similar ideas like lever- 52

aging query identity as guidance for feature extraction [12], 53

[17], [18], using extra supervision from masks [14], [19], 54

key-points [13], [14], contextual information [20]–[22]. 55

However, only a few works had ever reflected on the fun- 56

damental difference between person search and a detection- 57

identification pipeline. Most of the existing person search 58

methods ignore the spatial relationship of pedestrians and the 59

latent contextual information that comes with scene images. 60

Some works [21], [22] utilized the contextual information with 61

the assumption that the co-traveler of the target person will be 62

relatively consistent. The assumption of consistent to-travelers 63

does hold due to limitations of the existing datasets: The same 64

pedestrians in the datasets are collected from several camera 65

views of the same or nearby geographical location. Their 66

performance under more realistic scenarios remains unknown. 67

In this work, we focus on the noise in person search and 68

take a different approach to utilize the context information 69

from the scene images. We categorize the noise in person 70

search into scene-inherent noise and human-introduced noise. 71

Scene-inherent noise comes from congestion, occlusion, illu- 72

mination variation, etc while human-introduced noise comes 73

from mislabeled data during labeling. Examples are shown 74

in Fig.2(a) and Fig.2(b) respectively. Each image in Fig.2(a) 75
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Fig. 1. Illustration of the difference in feature level supervision between
different approaches. Our work includes unlabeled pedestrians in the training
process and fully utilizes the latent context information.

Fig. 2. Examples of (a) scene-inherent noise and (b) human-introduced noise
from the CUHK-SYSU dataset. The ‘*.jpg’ below demonstrates the filename
of the image in the dataset. The ‘p*’ in red on the top left corner of each
bounding box denotes the identity label of each pedestrian.

shows a case where the pedestrians are highly overlapped.76

Each image pair in Fig.2(b) demonstrates a case where the77

same pedestrian in different images was annotated with differ-78

ent identity labels. Person search aims to obtain discriminate79

feature representation between different identities. Congestion80

and occlusion lead to an ambiguous overlapped area between81

different annotation boxes. The mislabeled pedestrians in82

the training set may encourage the network to discriminate83

pedestrians samples belonging to the same identity. Above84

mentioned cases encourage the network to pay more attention85

to illumination, viewpoints, and backgrounds in these image86

samples. This may lead to inter-identity similarity and intra-87

identity variation. As a result, the performance of person88

search models may be compromised.89

For scene-inherent noise, we propose a context contrastive90

loss to extract noise-robust features. The philosophy of con-91

trastive learning is utilized to compare pedestrians in scene92

images to ensure feature discrimination between different93

identities while maintaining the consistency between features94

from the same pedestrian identity. The network can thus95

learn to distinguish pedestrians under congestion and occlusion96

scenarios. A unique in-batch label can be further assigned97

to the unlabeled pedestrians and the unlabeled pedestrians 98

can be included in the comparison. As a result, our methods 99

can take full advantage of contextual information in scene 100

images and assure the discrimination between not only labeled 101

pedestrians but also unlabeled pedestrians. The difference 102

between person re-identification, previous person search, and 103

our methods are discussed in Fig.1. The training process 104

of person re-identification only assures feature discrimination 105

between different pedestrian identities. Previous person search 106

approaches take a step forward and guarantee the discrim- 107

ination between labeled identity and unlabeled pedestrians. 108

In contrast, our method takes full advantage of contextual 109

information in scene images and further constrains the feature 110

similarity between unlabeled identities. While some methods 111

also include contextual information, we introduce contex- 112

tual information as supervision instead of a test-time assis- 113

tance [20]–[22]. To the best of our knowledge, we are the first 114

to introduce contextual information into the training process 115

of person search. To learn more robust features, we further 116

introduce the data uncertainty learning [23] into person search. 117

The data uncertainty learning models the embedding as a prob- 118

ability distribution instead of a deterministic one to capture the 119

inherent noise in the data and mitigate the negative influence 120

of the noise so that more robust features can be obtained. 121

For human-introduced noise, we propose a noise- 122

discovery and noise-suppression training schema, and a 123

noise-suppression Online Instance Matching(OIM) [7] loss is 124

proposed to suppress the noise from mislabeled pedestrians. 125

The training schema includes a two-pass training process. 126

The first training pass trains a vanilla person search network. 127

After the first training pass, preliminary pedestrian features are 128

obtained from the model trained in the first pass. Based on the 129

preliminary pedestrian features, a feature prototype for each 130

pedestrian identity is obtained from the pedestrian features 131

of the same identity, and label noise can be discovered by 132

analyzing the relation of feature prototypes from the different 133

pedestrians. During the second training pass, the OIM loss is 134

substituted with the noise-suppression OIM loss. The noise 135

discovered will be suppressed by cutting off the gradient flow 136

of mislabeled pedestrians during back-propagation. As a result, 137

the unexpected gradient from the label noise will be stopped 138

from interfering with the training process. 139

We summarize the motivation of this work as: 140

• The way of utilizing contextual information in the exist- 141

ing methods has some limitations and may not generalize 142

to more realistic scenarios. 143

• Relationship between pedestrians in the same scene can 144

be better utilized in the training process of person search 145

for more discriminative features. 146

• Noise from congestion, occlusion, and annotation process 147

may have a negative influence on the training process and 148

compromise the performance of person search network. 149

The contributions of this work are three folds: 150

• A context contrastive loss is designed to learn more robust 151

features under congestion and occlusion. To the best of 152

our knowledge, we are the first to leverage contextual 153

information from scene images as supervision during the 154

training process. 155
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• The data uncertainty learning is introduced to the person156

search to model and alleviate inherent noise in the training157

data for more robust feature learning.158

• A noise discovery and noise suppression mechanism is159

proposed to alleviate the negative influence of label noise.160

II. RELATED WORK161

A. Person Search162

Person search bridges the gap between person163

re-identification and real-world application by integrating164

pedestrian detection and person re-identification into a unified165

framework. [6] was the first work to discuss the gap and166

raised interest in the community. Existing works of person167

search can be categorized into two technical approaches:168

end-to-end methods and two-step methods.169

1) End-to-End Methods: The first end-to-end person search170

method was proposed in [7]. The hierarchical relation-171

ship between detection and re-identification was analyzed172

in [10]. [9] proposed to detangle the mutual feature of two sub-173

tasks into the norm and normalized feature for classification174

and identification. To mitigate the negative influence of feature175

misalignment, [13] proposed to align the partial features from176

detection with regression. [14] combined instance segmenta-177

tion and keypoint detection into person search. [24] fused178

bounding box features from multiple backbone stages to179

obtain more discriminative features. [20] proposed to aggre-180

gate surroundings of pedestrians to include information like181

belongings and co-travelers. [25] proposed an online pairing182

loss with hard example mining for person search.183

2) Two-Step Methods: Detection scores were integrated into184

pedestrian similarity measurement in [8]. [19] proposed to185

utilize mask as guidance information. The affine transforma-186

tion was used as a differentiable RoI operation in [16] and187

the detector can thus be supervised with re-identification loss.188

A deeper analysis on two subtasks of person search was carried189

out in [22] and a similarity measurement base on objectness190

and surrounding pedestrians was proposed.191

Also, some ideas have been explored with both approaches.192

Knowledge distillation was utilized to achieve better perfor-193

mance in [11], [15], [26]. Some other methods [12], [17], [18]194

adopted query identities as guidance during feature extraction.195

Some work also proposes to redefine person search as a196

detection-free process using reinforcement learning [27] or197

LSTM [28] to iteratively shrink the regions with target persons.198

However, these methods are complex but have only limited199

accuracy.200

B. Person Re-Identification201

Person re-identification aims at matching given pedestrians202

from massive pedestrian images. Early person re-identification203

methods are limited by the representability of hand-204

crafted features. With the renaissance of CNN, deep-205

learning-based methods have dominated the field of person206

re-identification. [29] proposed a refined part pooling to207

re-assign outliers in part models. [30] split pedestrian images208

into patches to learn features from multiple granularities. [31]209

proposed to use batch normalization neck to separate the210

conflict of metric loss and classification losses. [32] pro- 211

posed to dynamically align and match local information. 212

[33] fused triplet loss together with center loss and proposed 213

a center-triplet loss. [34] proposed a comparative similarity 214

loss based on pedestrian triplets and designed a multi-scale 215

network to distinguish the pedestrians better. Some other per- 216

son re-identification methods utilized extra information from 217

video sequence [35], [36]. [37] focused on the misalignment of 218

pedestrians and a pedestrian alignment network to learn more 219

consistent pedestrians features. Facing a similar challenge, 220

our work proposes to compare the pedestrian features in 221

the same scene image. Some methods focus on novel topics 222

like weak supervision [38], [39] and attack detection [40]. 223

Meanwhile, some methods using GANs to bridge the domain 224

gap between different cameras [41], [42] or generate more 225

training data [43]. 226

C. Usage of Contextual Information 227

Contextual information is utilized in a wide range of 228

research areas. [44] proposed to use feature around the target 229

to reweighs the class probability predicted in the task of object 230

detection; [45] utilized the relation between different targets 231

with attention; [46] designed a context loss for image trans- 232

formation with semantic awareness; [47] take advantage of 233

the contextual similarity between semantic and visual features 234

to deal with sparse objects association across frames; [48] 235

proposed a contextual bilateral loss that is robust to mild 236

misalignment between input and outputs images. 237

D. Noise and Occlusion 238

Reducing the interference of noise and occlusion is a long- 239

lasting research topic due to the actual demand in real-world 240

applications. [49] proposed to use Expectation-Maximization 241

algorithm to predict the noise level and true label with a 242

small amount of clean data and massive data with noise. [50] 243

proposed a noise-tolerant detector to mine the label and train 244

the object detection model in a semi-supervised fashion. [51] 245

utilized two CNNs to train each network with high confi- 246

dence samples predicted by the other network. [52] employed 247

compositional nets to model context and object representation 248

separately and increase the robustness under occlusion. [53] 249

add a bounding box occlusion estimator to the backbone and 250

train it in an adversarial manner. While our work focuses on a 251

similar challenge, the intention is different. [54] estimated the 252

credibility of the pseudo-label and minimize the negative influ- 253

ence of noisy labels. Our work aims to learn discriminative 254

person re-identification features that are robust to congestion, 255

occlusion, and ambiguous samples. 256

III. METHOD 257

In this section, we will introduce CANR in detail. As a 258

common approach for end-to-end person search, we adopt 259

Faster R-CNN as our base detector. The overall framework 260

of CANR is shown in Fig.3(a). CANR takes scene images as 261

input and outputs the bounding boxes for pedestrian localiza- 262

tion and the corresponding features for person re-identification. 263
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Fig. 3. Overall framework and details of key components of CANR. (a) CANR mainly consists of an end-to-end person search network, the data uncertainty
module, and the context contrastive loss. (b) The data uncertainty module predicts the mean and variance of the feature embedding and models the feature
embedding as a probability distribution. (c) The context contrastive loss compares each pedestrian with the other pedestrians to ensure the feature discrimination
among different identities while maintaining feature consistency of the proposal regions assigned to the same ground truth bounding boxes.

The context contrastive loss and the data uncertainty learning264

will be introduced in section III-A and III-B respectively. The265

noise discovery and noise-suppression OIM will be introduced266

in section III-C.267

A. Context Contrastive Loss268

Inspired by contrastive learning, we propose context con-269

trastive loss to learn congestion-robust and occlusion-robust270

features while fully utilize the information from scene images.271

It contains two sub-losses: proposal context contrastive loss272

and ground truth context contrastive loss.273

Proposal context contrastive loss is illustrated in Fig.3(c).274

The proposal context contrastive loss compares each fea-275

ture from proposal regions with the features from ground276

truth bounding boxes. It assures the consistency between277

feature from each proposal region and the ground truth region278

assigned to it. Meanwhile, it also guarantees the feature279

discrimination between features from each proposal region and280

the other ground truth regions. If the same identity exists in281

the multiple images within a batch, the ground truth features282

of the same identity will be summed and normalized to unit283

length.284

The proposal context contrastive loss for feature x from a285

given positive proposal region can be acquired by:286

L p_cc = − log

⎛
⎝ exp

(
g�

i x · sp
)

∑G
j=1 exp

(
g�

j x · sp

)
⎞
⎠ (1)287

where x represents the feature of a proposal region assigned to288

the i -th ground truth bounding box, gi and g j denote feature289

of the i -th and j -th ground truth bounding boxes respectively,290

G denotes the number of annotated pedestrian boxes in291

the image, and sp is the scale factor for proposal context292

contrastive loss. Both gi and x are unit length normalized.293

Intuitively, the loss can be seen as a L2-constrained bias-free 294

softmax cross-entropy loss where the features of ground truth 295

bounding boxes act as the weight, and the features of proposal 296

regions are classified into different pedestrians. 297

To avoid the noisy features of proposal regions from inter- 298

fering with features of ground truth regions. We design a 299

gradient scaler f (x, sscaler ) to scale the gradient from the 300

ground truth features by a scale sscaler , the property of the 301

gradient scaler can be expressed as: 302

f (x, sscaler ) = x (2) 303

d f (x, sscaler )

dx
= sscaler · d f (x, sscaler ) (3) 304

where x is input. During the forward propagation, the 305

scaler just outputs the original input feature. During back- 306

propagation, the gradient is scaled by sscaler . 307

To increase the number of proposals and facilitate down- 308

stream proposal context contrastive loss, the ground truth 309

bounding boxes are jittered for more proposal regions. The 310

coordinates of the jittered bounding boxes are obtained by: 311

x ji = xgti + N
(

0,
(
λs

(
xgt2 − xgt1

))2
)

(4) 312

y ji = ygti + N
(

0,
(
λs

(
ygt2 − ygt1

))2
)

(5) 313

where N
(
μ, σ 2

)
denote the Normal distribution with μ as 314

mean and σ as standard deviation;
(
xgt1, ygt1

)
and

(
xgt2, ygt2

)
315

denote the top left and the bottom right coordinates of the 316

ground truth bounding boxes;
(
x j1, y j1

)
and

(
x j2, y j2

)
denote 317

the top left and bottom right coordinate of the jittered ones, 318

λs denotes the magnitude of the disturbance. 319

The ground truth context contrastive loss is illustrated in 320

Fig.3(c). It constrains the discrimination between features from 321

different ground-truth regions. Similar to the proposal context 322

contrastive loss, each feature from ground truth pedestrian 323

bounding boxes is compared against features from the other 324
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ground truth bounding boxes. The ground truth contrastive loss325

for ground-truth feature gi is acquired by:326

Lgt_cc = − log

⎛
⎝ exp

(
g�

i gi · sg
)

∑G
j=1 exp

(
g�

j gi · sg

)
⎞
⎠ (6)327

where sg is the scale for ground truth context contrastive328

loss. Lgt_cc is designed to supervise the network to be329

more discriminative to the neighboring pedestrians and similar330

environment.331

Moreover, to learn crowd-robust pedestrian features and332

facilitate the discrimination between neighboring pedestrians,333

we insert a spatial attention module into the identification334

network. The context contrastive loss can act as stronger335

supervision over spatial attention compared with conventional336

use cases. The spatial attention module can then learn to337

emphasize the informative regions with pedestrians and sup-338

press the distraction from neighboring pedestrians and the339

background. The spatial attention module can be expressed as:340

Fat t = fσ ( f7×7([AvgPool(F); MaxPool(F)])) � F (7)341

where Fat t , fσ , f7×7, � and F denote the feature map after342

spatial attention, sigmoid activation function, convolution with343

kernel size of 7 × 7, elementwise multiplication and the input344

feature map.345

While L p_cc and Lgt_cc have similar formulation, they are346

designed based on different intuition. L p_cc is designed to347

assure the discrimination of pedestrian features even though348

the proposal regions do not cover the target pedestrians pre-349

cisely and include distraction from background or the other350

pedestrians. Lgt_cc is designed to constrain feature discrimina-351

tion under congestion situations. With the context contrastive352

loss, both labeled and unlabeled pedestrians can be utilized353

to train the network to extract congestion robust features.354

Moreover, with the context contrastive loss, the model can355

also learn to distinguish the pedestrians in the same image356

more directly and intuitively. With an in-batch label assigned357

to the unlabeled pedestrians, the context contrastive loss can358

be applied to the batch level and the context information and359

the unlabeled person can be better utilized during training.360

B. Data Uncertainty Module361

To further minimize the negative influence of inherent noise362

in the data and learn noise-robust features, we introduce363

the data uncertainty learning into person search. The data364

uncertainty learning captures the inherent noise in the data365

by modeling the feature and the uncertainty simultaneously.366

Specifically, a given feature from the identification network is367

modeled as a Gaussian distribution, w.r.t the μ and σ . The μ368

and σ are predicted by two separate feature projectors by:369

μi = fθμ (zi ) (8)370

σ i = fθσ (zi ) (9)371

where zi is feature embedding of the i -th sample from the372

identification network, μi and σ i are the mean and variance373

predicted by the feature predictors respectively. The θμ and374

θσ are the parameters for the feature projectors.375

Fig. 4. Illustration of the first training pass (a), noise discovery (b), and the
second training pass (c). Label noise is discovered after the first training pass
and suppressed in the second training pass.

As a result, the embedding of a given pedestrian is a distri- 376

bution instead of a deterministic embedding. During training, 377

the feature embedding for the loss functions is sampled from 378

the predicted distribution using the re-parameterization [55] to 379

ensure the differentiability for back-propagation. During infer- 380

encing, σ i is omitted and only the μi is adopted for similarity 381

measurement. The final features for person re-identification 382

are acquired by: 383

xi =
{

μi + εσ i if training

μi otherwise
(10) 384

where ε ∼ N (0, I) and xi denotes the i -th feature for person 385

re-identification. 386

To prevent the prediction of σ i from collapsing into zero, 387

making distribution-based embedding degrade into the deter- 388

ministic embedding, KL divergence is utilized to constrain the 389

N
(
μi , σ 2

i

)
into normal distribution: 390

L K L = K L
[

N
(

xi | μi , σ
2
i

)∣∣∣∣∣∣N (ε | 0, I)
]

391

= 1

2

D∑
j=1

(
σ 2

i j
+ μ2

i j
− 1 − ln

(
σ 2

i j

))
(11) 392

where σi j , μi j , D denote the j -th dimension of σ i , the 393

j -th dimension of μi and the dimension of feature vector. 394

While the idea of data uncertainty learning has been 395

explored in the task of person re-identification [56], the 396

formulation of the data uncertainty in [56] is not suitable for 397

the task of person search. The main difference between person 398

re-identification and person search is that the ROI region may 399

contain background areas. However, the uncertainty formula- 400

tion in [56] does not explicitly constrain these background 401

samples to have a suitable uncertainty. This may lead to large 402

uncertainty for the background regions and interfere with the 403

uncertainty learning of foreground regions. By contrast, the 404

L K L in our method explicitly constrains the prediction of 405

uncertainty under a relational range, leading to more stable 406

uncertainty learning. 407

C. Noise Discovery and Noise Suppression 408

To minimize the negative influence of mislabeled pedestri- 409

ans during the training phase, a noise-aware training process is 410
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proposed to discover and suppress the mislabeled pedestrians.411

It includes two separate training passes. The first pass discov-412

ers the mislabeled pedestrians and the second pass cuts off413

the gradient flow of the mislabeled pedestrians. A simplified414

process is illustrated in Fig.4.415

As illustrated in Fig.4(a), the first pass trains a person search416

network with vanilla OIM loss. After the first training pass, the417

potential mislabeled pedestrians in the training set is analyzed418

and discovered as shown in Fig.4(b). The feature prototype of419

each pedestrian is obtained for similarity comparison. Thanks420

for the momentum update of the lookup table in the OIM421

loss, each feature vector in the lookup table can be seen422

as the feature prototype of each pedestrian. As the result,423

we simply take the weight of the lookup table in OIM loss424

V ∈ R
L×D as the feature prototype, where L denotes the425

number of pedestrian identities and D denotes the dimension426

of the feature embedding. The similarity matrix S ∈ R
L×L

427

between different feature prototypes in the training set can be428

acquired by S = V V �. The similarity matrix S measures the429

similarities between different pedestrian identities in the train-430

ing set. Fig.4(c) demonstrates the noise suppression during431

the second training pass, the logits predicted by the network432

are dynamically cut off based on the similarity matrix S in433

the classification loss (OIM in our case) by, (12), shown at434

the bottom of the page, where pi denotes the probability of x435

being classified into the i -th identity, I {·} denotes the indicator436

function, k denotes the target label of x, Si,k denotes the437

similarity between the i -th identity and the k-th identity, τ is438

the temperature for the OIM loss, v j denotes the j -th feature439

in the LUT, um denotes the m-th feature in the CQ, L denotes440

the size of LUT, Q denotes the size of CQ, and t is a hyper-441

parameter for threshold. We recommend referring to [7] for a442

detailed explanation of LUT and CQ.443

Next we elaborate the role of the noise supression from444

the view of derivation. For ease of illustration, we discuss a445

simplified classification case with softmax cross entropy loss446

where the bias are omitted. The score of class c is obtained447

by sc = I{· · · }wc x where x denotes the input, wc denotes448

classifier weight of class c and I{· · · } denotes the indicator449

mentioned in Eqn. 12. The derivation w.r.t. wc and x can be450

obtained by:451

∂Lcls

∂wc
=

⎧⎪⎪⎨
⎪⎪⎩

exp(sc)∑
k exp(sk)

xI{· · · } y �= c

−x + exp(sc)∑
k exp(sk)

x y = c
(13)452

∂Lcls

∂x
= −wy +

∑
c

exp(sc)wcI{· · · }∑
l exp(sl)

(14)453

where Lcls is obtain by Lcls = − ln(
exp(sy)

�k exp(sk)
), and y is the454

ground truth label for the label x.455

To illustrate the above equations with an example, 456

we assume there is a sample x of a specific identity with the 457

label yt . The same identity is also mislabeled as yn in some 458

images. The exp(syt )∑
k exp(sk)

in the ∂Lcls
∂wyt

will not be interferenced 459

by the score of noise label syn . As a result, exp(syt )∑
k exp(sk)

will 460

be much closer to the value without noise. Thus, the update 461

of wyt would be more stable during the training stage. The 462

∂Lcls
∂wyn

will be 0, isolating the interference between x and 463

wyn . Also, ∂Lcls
∂x will not include exp(syn )wyn

�l exp(sl)
. In this way, the 464

network can prevent the undesired gradient of noisy labels 465

from interfering with the other parameters and, as a result, 466

minimize the negative influence of mislabeled pedestrians. 467

D. Training and Loss Formulation 468

CANR includes a two-pass training process. Generally, the 469

purpose of the first training pass is to discover the noise 470

and the second training pass suppress the noise discovered 471

in the first training pass to achieve better accuracy. The first 472

training process trains a model without noise suppression. 473

After the first training process, noise in the training set is 474

analyzed by comparing the feature prototype between different 475

identities. During the second training pass, a model with noise 476

suppression is trained. The noise suppression dynamically cut 477

off the gradient flow of the mislabeled samples based on the 478

noise discovered in the first training pass. Besides the noise 479

suppression introduced in the second training process, the two 480

training passes are identical. The training process of CANR is 481

demonstrated in the Algorithm 1. 482

The total loss for our end-to-end person search network is 483

defined as: 484

L = Ldet + L O I M + L p_cc + Lgt_cc + λK L · L K L (15) 485

where the Ldet represents the losses from Faster R-CNN, 486

λK L is the weighting factor for L K L and the L O I M represents 487

the online instance matching loss from [7]. 488

E. Miscellaneous 489

1) Adaptive Pooling Fusion: Max pooling and average 490

pooling both have drawbacks [57]. Adaptive Pooling Fusion 491

is proposed to fuse the features from max pooling and average 492

pooling. The final feature representation is acquired by: 493

z = λw zavg + (1 − λw) zmax (16) 494

where zavg and zmax denote the features acquired by average 495

pooling and max pooling from the identification network 496

respectively. λw is a weighting factor to balance features 497

from different pooling strategies, which is acquired by λw = 498

sigmoid (p) . p is a learnable parameter and is updated through 499

back-propagation. 500

pi = exp
(
I
{
i = k ∨ Si,k < t

}
v�

i x/τ
)

∑L
j=1 exp

(
I
{

j = k ∨ S j,k < t
}
v�

j x/τ
)

+ ∑Q
m=1 exp

(
u�

m x/τ
) (12)
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Algorithm 1 Training Phase of CANR
Input:
Training set S, total epoches epoches
Output:
Trained Model weight W
1: Initialize the model weight W
2: for pass in {1, 2} do
3: for e in {1, 2, . . ., epochs} do
4: for batch B sampled from S do
5: Extract pedestrian features Z ped from B
6: Calculate detection related losses, get Ldet

7: Feed Z ped into the Data Uncertainty Module, get
Fped and L K L (Eqn. 11)

8: Construct contrastive pairs and calculate the con-
text contrastive loss, get L p_cc (Eqn. 1) and Lgt_cc

(Eqn. 6)
9: if pass = 1 then

10: Feed Fped into the Online Instance Match-
ing (OIM) loss, get L O I M

11: end if
12: if pass = 2 then
13: Suppress the noise from Fped with Pnoise, calculate

the OIM loss, get L O I M

14: end if
15: Calculate total loss L (Eqn. 15), back propagation,

and update W
16: end for
17: end for
18: if pass = 1 then
19: Analysis the noise of the dataset and set a set of noise

pairs of identities Pnoise

20: end if
21: end for
22: return trained model weight W

2) Deformable RoI Pooling: Proposal regions from the RPN501

in the faster R-CNN tend not to include all body parts of the502

target pedestrian. It’s suboptimal for the fine-grained task like503

person re-identification. To alleviate this issue, we introduce504

the Deformable RoI Pooling into our work. Deformable RoI505

Pooling learns a sample point offset for each position on the506

output feature map. The context contrastive loss can also act as507

guidance over the training of the offset prediction. In this way,508

our person search network will learn to focus on the target509

pedestrians and will be more robust to low-quality region510

proposals.511

F. Discussion512

1) Discussion on the Triplet Loss and the Context Con-513

trastive Loss: The triplet loss enforces a margin between the514

similarity of positive pairs and negative pairs. The triplet loss515

requires to sample p identities with k images for each identity516

to form a batch during training. The sampling process ignores517

the contextual information that comes with scene images.518

In contrast, our method takes advantage of the contextual519

information, neighboring pedestrians under congested scenar- 520

ios can be compared directly, and features robust to congestion 521

and occlusion can be learned. While we adopt softmax cross- 522

entropy to constrain the feature discrimination of pedestrians 523

in the same scene, triplet-style loss functions can also be 524

applied for a similar purpose. Furthermore, the context con- 525

trastive loss can be used in parallel with most loss functions. 526

2) Discussion on Hard Examples and the Label Noise: The 527

hard examples are supposed to be discriminated in the first 528

training phase of the noise discovery and noise suppression 529

process. Also, there is no point to include the extreme hard 530

example pairs if the ordinary training process can’t distinguish 531

them well. We find that the vast majority of mislabeled 532

pedestrians have two labels. As a result, only the maximal logit 533

of a given example satisfy I
{
i �= k ∧ Si,k > t

}
is zeroed out 534

in practice. We empirically find that 0.75 is a suitable cosine 535

distance threshold to distinguish label noise and severe over- 536

lapped pedestrians (illustrated in Fig.2(a)) from hard examples 537

on both datasets. For severe overlapped pedestrians, they are 538

always in the same scene images and the context contrastive 539

loss will handle this situation. 540

3) Discussion on the Effectiveness of Data Uncertainty 541

Learning: To simplify the discussion, we treat the person 542

re-identification sub-task of person search as an isolated task 543

which includes L ReI D (w.r.t. L O I M , L p_cc and Lgt_cc in 544

our work) and L K L . The objective of L ReI D is to supervise 545

the network to predict discriminative person re-identification 546

features for each sample. The objective of L K L to constrain 547

the μi to have zero meanwhile restricting the σ i neither 548

collapsing to 0 nor too large. Constraining the μi to have 549

zero mean can help the features to distribute more evenly on 550

the hypersphere. For the clean samples, predicting relatively 551

small σ i may facilitate lower L ReI D and lead to optimal 552

overall loss. Noise samples would result in large L ReI D and 553

giving such samples larger σ i may facilitate better overall loss. 554

Moreover features sampled from a distribution with large σ i 555

may cancel each other out and, as a result, have less impact 556

on the training compared with the ones with small σ i . From a 557

different perspective, the data uncertainty learning can also be 558

seen as a kind of regularization where a feature after distur- 559

bance should still be discriminative enough to recognize the 560

identity. 561

4) Comparison With Our Previous Work: Our previous 562

work [58] proposed a loss function that aims to achieve 563

better feature discrimination between different pedestrians and 564

improve feature consistency of the same identity. An atten- 565

tion module is also proposed to help the network suppress 566

background clutters and stress the pedestrians. This work 567

focus on the scene-inherent noise and human-introduced 568

noise. Specifically, a context contrastive loss is proposed 569

to suppress interference from surrounding pedestrians under 570

congested scenarios; data uncertainty learning is introduced 571

into person search for better noise-robust person search. 572

Also, noise discovery methods and noise suppression loss 573

are proposed to mitigate the negative influence of mislabeled 574

pedestrians. 575
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IV. EXPERIMENTS576

A. Dataset and Evaluation Protocol577

a) The CUHK-SYSU dataset: Is collected from street578

snaps shoot by handheld cameras and movie snapshots. It fea-579

tures diverse scene variations and large quantities of pedestrian580

identities. It has a total of 18,184 images, 43,110 bounding581

box annotations, and 8,432 identity labels. The training set582

of the dataset has 11,206 images and 5,532 identity labels583

while the testing set has 6,978 gallery images and 2,900 query584

pedestrians.585

b) The PRW dataset: Contains images from video586

streams of six fixed cameras on campus. It features differ-587

ent camera styles and great scale variation. It has a total588

of 11,816 images, 34,304 bounding box annotations, and589

932 identity labels. The training set has 5,704 images and590

482 identities while the testing set has 6,112 gallery images591

and 2,057 query pedestrians.592

c) Evaluation metrics: We adopt the cumulative matching593

characteristics (CMC) and mAP as the evaluation metrics,594

which are commonly used in person search. Both these595

two metrics are inherited from the task of re-identification.596

A match is considered positive when IoU between the pre-597

dicted bounding box and the ground truth one is larger598

than 0.5.599

B. Implementation Details600

We implemented CANR based on Faster R-CNN on top601

of MMDetection with PyTorch. The ResNet-50 was adopted602

as the backbone. The first four blocks (layer0 to layer3) of603

ResNet-50 were adopted as the stem network and the last604

block (layer4) was adopted as the re-identification network.605

On top of the feature from the stem network, the Regional606

Proposal Network [62] was utilized to extract potential regions607

containing pedestrians. The extracted proposal regions were608

sampled and then pooled using RoI Align [63]. The feature609

maps obtained from the ROI align were then sent to the610

identification network. The Online Instance Matching (OIM)611

loss, the context contrastive loss, and the KL divergence loss612

were utilized to supervise the re-identification sub-task. Mean-613

while, losses of Faster R-CNN were utilized to supervise the614

detection sub-task. The model was trained with two NVIDIA615

RTX 2080Ti in distributed data-parallel or an RTX 3090 with616

equivalent settings. We follow the standard 2x schedule in617

object detection, the batch size was set to 4 for each GPU, the618

learning rate is set to 4e-3, and the weight decay was set to619

1e-4. The λK L is set to 1e-3 according to [23]. For the PRW620

dataset, the sp was set to 8 and sg was set to 8. Given that the621

number of pedestrians varies dramatically in different images622

of the CUHK-SYSU dataset, we refer to [64] and empirically623

set sp to 5
√

2ln
(
ngt

)
, where ngt is the number of ground truth624

regions in each batch. The ground truth contrastive loss and625

bounding box jittering are empirically omitted for the CUHK-626

SYSU dataset. For the rest of the parameters, we followed627

the settings of NAE [9] and MMDetection.628

C. Comparison With State-Of-the-Art Methods629

To evaluate the performance of CANR, the performance of630

CANR is compared against the state-of-the-art methods on the631

Fig. 5. Statistics of (a) pedestrians per image in both dataset, (b) IoU of
pedestrian pairs.

Fig. 6. The mAP of CANR and CANR+ on the CUHK-SYSU under different
gallery sizes. Compared to existing end-to-end person search works, CANR+
achieves the best performance under different gallery sizes.

CUHK-SYSU and the PRW datasets. Existing state-of-the-art 632

methods are categorized into two-step methods [15], [16], [18], 633

[19], [22] and end-to-end methods [7], [9]–[14], [20], [21], 634

[24], [28], [59]–[61]. The results involved in the comparison 635

are taken from the original papers. Some of the state-of- 636

the-art methods rely on external information like key points, 637

masks, and knowledge distillation from an external network. 638

To make the comparison fair, we present the extra information 639

required for the state-of-the-art methods. ‘Keypoints’ and 640

‘Mask’ means key points or masks are required during train- 641

ing; ‘Knowledge Distillation’ means feature-level supervision 642

from an external network is utilized, ‘Detection Confidence’ 643

means the detection confidence weighted similarity is used 644

during the retrieval process. It should also be noted that 645

DMRN [59] and AlignPS [61] are based on stronger detectors. 646

AlignPS [61] also combines features from different scales for 647

a more robust pedestrian feature representation. 648
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TABLE I

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE CUHK-SYSU AND PRW DATASETS

The results are presented in Table.I. For the CUHK-649

SYSU dataset, CANR achieves 92.39% on mAP and 93.21%650

on Top-1. With deformable ROI pooling, CNAR+ achieves651

93.86% on mAP and 94.52% on Top-1. For the PRW dataset,652

CANR achieves 43.41% on mAP and 83.81% on Top-1,653

CANR+ achieves 44.78% on mAP and 83.86% on Top-1.654

Without the requirement of additional information, CANR and655

CANR+ achieve state-of-the-art-comparable performance on656

the CUHK-SYSU dataset and competitive performance on the657

PRW dataset. To investigate this phenomenon, we analyzed658

the statistical information of both datasets. Specifically, the659

pedestrian bounding box pairs and pedestrian per image is660

evaluated to indicate the extent of congestion in the dataset.661

The results are shown in Fig.5. Compared with the PRW662

dataset, the CUHK-SYSU dataset has a more congested663

scenario. Remind that one of our motivations is to focus664

on the scene inherited noise originated from congestion and665

occlusion. As a result, CANR and CANR+ will perform better666

in the congested scenario and this may account for the superior667

performance compared to the other methods on the CUHK-668

SYSU dataset. While the performance is not as competitive669

on the PRW dataset, CANR and CANR+ also bring satisfying670

improvement on top of the baseline and achieves competitive671

performance.672

The performance under different gallery sizes is also673

evaluated on the CUHK-SYSU dataset. The performance is674

compared against state-of-the-art end-to-end person search675

methods and the results are shown in Fig.6. As the gallery676

size increases, the performance of all methods gradually677

decreases, which indicates that the task of person search678

TABLE II

ABLATION STUDY OF EACH COMPONENT OF CANR ON THE PRW
DATASET. ‘OIM*’ DENOTES THE OIM RE-IMPLEMENTED, ‘BSL’

DENOTES THE BASELINE BUILT ON TOP OF OIM*, ‘DUM’
DENOTES THE DATA UNCERTAINTY MODULE, ‘CCL’
DENOTES THE CONTEXT CONTRASTIVE LOSS, ‘PF’

DENOTES THE POOLING FUSION, ‘BJ’ DENOTES THE

BOUNDING BOX JITTERING, ‘NS’ DENOTES THE

NOISE-SUPPRESSION LOSS, ‘DP’ DENOTES
THE DEFORMABLE POOLING

is more challenging under larger gallery sizes. Our method 679

achieves the best performance across different gallery sizes, 680

which shows the effectiveness of CANR and CANR+. 681

D. Ablation Study 682

To evaluate the effectiveness of each component, ablation 683

studies on each component were conducted on the PRW 684

and CUHK-SYSU datasets. The results are shown in Table.II 685

and Table.III. We re-implement the OIM [7] and the OIM 686

re-implemented is denoted as OIM* in the following part 687

of this paper. Spatial attention and BNNeck are further 688

added to act as the baseline for our method. For the PRW 689
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TABLE III

ABLATION STUDY OF EACH COMPONENT OF
CANR ON THE CUHK-SYSU DATASET

Fig. 7. Comparison of shift sensitiveness between OIM and CANR. The
green box and the red box denote the ground truth annotation of the targeted
pedestrian and the neighboring pedestrian. The blue ones indicate the shifted
boxes. Compared with the OIM, CANR tends to be more discriminative
to inaccurate proposal regions. CANR is also more discriminative between
neighboring pedestrians.

dataset, the OIM* achieves 38.18% and 77.10% in Top-1.690

The baseline gets 39.15% in mAP and 79.92% in Top-1. This691

setting is adopted as the baseline of our method. With the692

data uncertainty module, we get 41.67%(↑2.52%) in mAP693

and 80.80%(↑0.88%) in Top-1. On top of that, we add694

context contrastive loss and get 42.48%(↑0.81%) in mAP695

and 82.21%(↑1.41%) in Top-1. We further add the pool-696

ing fusion module and get 42.68%(↑0.20%) in mAP and697

82.55%(↑0.34%) in Top-1. With bounding box jittering as698

data augmentation, we get 43.58%(↑0.90%) in mAP and699

83.18%(↑0.63%) in Top-1. With the noise-suppression loss,700

we get almost identical mAP and 83.81%(↑0.63%) in Top-1.701

With all parts of CANR+, we get 44.78%(↑1.37%) in mAP702

and 83.86%(↑0.04%) in Top-1, which is a competitive result703

among end-to-end person search methods. The CUHK-SYSU704

dataset covers a wide variety of scenarios and many scene705

images contain abundant pedestrians. Therefore, there are706

enough positive samples for sampling. In this case, using707

BJ cannot bring positive effects and may disturb the data708

distribution of the proposal regions. As a result, we discarded709

the bounding box jittering on the CUHK-SYSU dataset. Based710

on the ablation study on the CUHK-SYSU dataset, similar711

results can be observed. To investigate the influence of the712

gradient scaler. We compare the scale gradient strategy with713

the stop gradient strategy and use the intact gradient strategy714

on the CUHK-SYSU dataset. Stop gradient prevents the gradi-715

ent from back-propagating to previous parts while using intact716

gradient is equivalent to removing the gradient scaler. The717

results are shown in Table IV. Compared to the other settings,718

the scale gradient strategy achieves the best performance.719

TABLE IV

RESULTS OF ANALYTICAL EXPERIMENT ON GRADIENT SCALER

TABLE V

COMPARISON OF DETECTION AND RE-IDENTIFICATION

PERFORMANCE ON THE CUHK-SYSU DATASET

To evaluate the localization performance of CANR. Faster 720

R-CNN, which is our base detection method, was trained on 721

the CUHK-SYSU dataset. We keep the parameter setting from 722

MMDetection, a standard 2x training schedule was adopted 723

for training and the batch size was aligned with CANR. 724

OIM [7] is re-implemented and evaluated on the CUHK- 725

SYSU dataset. The hyper-parameter of OIM* was aligned with 726

CANR for comparability. The results are shown in Table.V. 727

CANR achieves 92.18% in recall and 89.27% in average 728

precision(AP), which is a 0.91% and 0.30% performance 729

improvement on recall and AP respectively compared with 730

Faster R-CNN. This shows that CANR can facilitate the 731

detection sub-task while achieving competitive performance 732

on the re-identification sub-task. With CANR+, a slightly 733

better detection can be further obtained. The OIM* achieved 734

a slightly lower detection performance, which confirms the 735

conflict [9] between two sub-tasks of person search. Compared 736

with OIM*, CANR not only achieves better performance on 737

detection but also outperforms OIM* on the re-identification 738

task by a large margin, which shows the effectiveness of our 739

method. 740

Further analytical experiments are conducted to understand 741

the underlying reasonability of CANR. We shift the ground 742

truth bounding box of a pedestrian and generate a group of 743

boxes between two neighboring pedestrians. This process is 744

illustrated in the left part of Fig.7(a). The generated boxes 745

are selected as the proposal regions for the RoI Align. Then, 746

features corresponding to these regions are obtained. Cosine 747

distance is calculated between the features from ground truth 748

bounding boxes and the generated boxes. The result is shown 749

in Fig.7(b) and the red line indicates the IoU between two 750

ground truth boxes. Compared with the OIM*, CANR is 751

more discriminative to inaccurate proposal regions. CANR 752

also gives a lower cosine distance between two adjacent 753

pedestrians. Through this experiment, we may conclude that 754

CANR is robust to inaccurate region proposals while more 755

discriminative between neighboring pedestrians, which shows 756

the effectiveness of CANR. 757

We also compare the runtime of CANR with different 758

methods and the results are shown in Table.VI. The CANR 759
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Fig. 8. Visualization of retrieval results. The blue boxes represent pedestrians to be queried, the green boxes show correct matches, and the red boxes indicate
incorrect matches. Compared with NAE and OIM, CANR is more robust to extreme illumination condition (a), illumination changes (b), congestion (a), and
occlusion (c, d).

Fig. 9. Visualization of activation map of OIM* and our method. For each
image triplet, the left image is the original image, the middle one is the
activation map from OIM* and the one in the right is the activation map of
our method.

only adds marginal overhead over OIM and is faster compared760

with the NAE and NAE+ while has better accuracy. With761

acceptable overhead, CANR+ achieves better performance.762

To better understand how the data uncertainty module works763

during training, we visualize the loss curve of λK L · L K L764

and L O I M in Fig.10. In the early stage of the training, the765

re-identification feature is random and the representability766

TABLE VI

SPEED COMPARISON ON DIFFERENT GPUS, RUNTIME
MEASURED IN MILLISECONDS

Fig. 10. Visualization of the loss curve during training on the PRW dataset.

is limited. Thus, we initialize the θσ to have a small σ i 767

and facilitate the training of the re-identification features. 768

Moreover, It’s not practical to model the μ and σ in this 769

stage, which leads to the plateau of L K L in the early stage. 770

After the identification feature obtain enough representability 771
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TABLE VII

COMPARISON WITH OUR PREVIOUS WORK

Fig. 11. Comparison of activation maps before and after the spatial attention.

(i.e. the L O I M (re-identification loss) gets good enough), the772

L K L starts to takes effect as discussed in Section-III-F.3.773

We also compare CANR with our previous work [58]774

in Table.VII. In a fair comparison, this work shows supe-775

rior performance compared with the previous work. It is776

also worth mentioning that this work is much simpler and777

does not include CIoU, HOIM, specially selected anchors,778

stronger backbone, etc. The performance of our work is further779

improved when using a stronger backbone.780

E. Visualization781

To have a better understanding of different methods,782

retrieval results of our method, the OIM, and the NAE [9]783

are visualized. The results are shown in Fig.8. Persons in784

blue bounding boxes indicate persons to be queried and785

the retrieval results are marked in green and red, indicat-786

ing correct matches and incorrect matches respectively. For787

simplicity, only Top-1 retrieval results are shown. Fig.8(a),788

Fig.8(b), Fig.8(c), Fig.8(d) demonstrate scenes with extreme789

illumination condition, dramatic illumination changes, target790

pedestrian occluded, query pedestrian occluded respectively.791

CANR successfully retrieves the correct pedestrian while the792

NAE and OIM fail. From the results, we may conclude793

that CANR is more robust to illumination changes, illumi-794

nation variation, and occlusion, which shows the effectiveness795

of CANR.796

To have a deeper insight into the improvement, we visualize797

the activation map of OIM* and our method. The activation798

maps of scene images are visualized in Fig.9. Compared to799

the OIM*, our method tends to be more capable of extracting800

pedestrian features in the crowded scenario. Our method also801

tends to focus the discriminative patterns like shoes, textures802

from clothes, faces, and hairstyles. To analyze the role of803

spatial attention in our method, we visualize and compare804

Fig. 12. Visualization of uncertainty under different level of occlusion.

the activation maps before and after the spatial attention. 805

The results are shown in Fig.11. For each group, the first 806

image shows the image patch corresponding to the proposal 807

region. The latter two subgroups of images compare the 808

visualization result of the baseline and our methods. Generally, 809

the visualization results of the baseline are similar, which 810

indicates that spatial attention may not work as expected 811

in the baseline. By comparison, the spatial attention in our 812

method tends to enhance the pedestrian regions. Moreover, 813

our method tends to focus on more comprehensive details of 814

pedestrians. 815

To have a deeper intuition on the data uncertainty. We grad- 816

ually add occlusion to a pedestrian and visualize the uncer- 817

tainty predicted by the network. The results are shown in 818

Fig.12. The visualization indicates that the more occlusion 819

added to the pedestrian, the larger data uncertainty pre- 820

dicted, which confirms the discussion in the Method section 821

and demonstrates the effectiveness of the data uncertainty 822

module. 823

V. CONCLUSION 824

In this paper, we focus on the noise in person search. 825

We categorize the noise into scene inherent noise and human- 826

introduced noise. For scene inherent noise, we propose a 827

context contrastive loss and introduce the data uncertainty 828

learning into person search. The context contrastive loss 829

compares pedestrians in scene images to ensure the dis- 830

crimination between congested pedestrians and more robust 831

features can be obtained. As an extra advantage, the unla- 832

beled pedestrians are fully utilized in the training process. 833

To the best of our knowledge, we are the first to utilize the 834

context information of scene images as supervision during 835

the training process. The data uncertainty learning model the 836

embedding as a distribution for more discriminative features. 837

For scene-inherent noise, we propose a noise discovery and 838

noise resistant mechanism to discover mislabeled pedestri- 839

ans and suppress the negative influence of noise. Extensive 840

experiments show that CANR and CANR+ can achieve 841

competitive performance compared with state-of-the-art 842

methods. 843
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