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Abstract

Speaker recognition achieved great progress recently, how-
ever, it is not easy or efficient to further improve its per-
formance via traditional solutions: collecting more data and
designing new neural networks. Aiming at the fundamental
challenge of speech data, i.e. low information density, mul-
timodal learning can mitigate this challenge by introducing
richer and more discriminative information as input for iden-
tity recognition. Specifically, since the face image is more
discriminative than the speech for identity recognition, we
conduct multimodal learning by introducing a face recogni-
tion model (teacher) to transfer discriminative knowledge to
a speaker recognition model (student) during training. How-
ever, this knowledge transfer via distillation is not trivial be-
cause the big domain gap between face and speech can eas-
ily lead to overfitting. In this work, we introduce a multi-
modal learning framework, VGSR (Vision-Guided Speaker
Recognition). Specifically, we propose a MKD (Margin-
based Knowledge Distillation) strategy for cross-modality
distillation by introducing a loose constrain to align the
teacher and student, greatly reducing overfitting. Our MKD
strategy can easily adapt to various existing knowledge dis-
tillation methods. In addition, we propose a QAW (Quality-
based Adaptive Weights) module to weight input samples via
quantified data quality, leading to a robust model training. Ex-
perimental results on the VoxCeleb1 and CN-Celeb datasets
show our proposed strategies can effectively improve the ac-
curacy of speaker recognition by a margin of 10% ∼ 15%,
and our methods are very robust to different noises.

Introduction
A wealth of information is contained in the speaker’s voice
which can be abstracted into different properties, such as
gender, age, tone, etc. These properties can contribute to
identity recognition, i.e. speaker recognition. Speaker recog-
nition is widely applied in the real world. For example,
in some smart audio devices, personalized configurations
can be loaded by recognizing the speaker. In addition, it
has important applications in security systems, investiga-
tion, forensics, etc. I-vector (Dehak et al. 2010) is a tradi-
tional speaker recognition method. With the popularity of
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deep learning, neural networks (Nagrani, Chung, and Zisser-
man 2017; Snyder et al. 2018; Okabe, Koshinaka, and Shin-
oda 2018) started to become the mainstream and achieved
promising progress. However, speaker recognition is funda-
mentally difficult, the voices of two speakers are likely very
similar, since the population (the number of speakers) can
be very large and the information density of speech is very
low. The intuitive solution is to collect bigger data and de-
sign more effective neural networks, however, this solution
maybe not very efficient and does not approach the fun-
damental difficulty: the low information density of speech
data.

Multimodal learning mitigates the challenges of speaker
recognition at their root by introducing richer and more dis-
criminative information as input for speaker recognition. For
identity recognition, face images clearly convey much more
identity-related information than voice, and faces are more
widely applied than speech for identity recognition. It in-
spires researchers to use both face and speech for identity
recognition (Tao, Das, and Li 2020; Sarı et al. 2021; Qian,
Chen, and Wang 2021). Their experimental results show
that the multimodal speaker recognition is much stronger
than that using speech only as input. However, their mul-
timodal speaker recognition assumes face and speech are al-
ways available during the training and test periods. Actually,
many applications have only speech input and do not have
face images as input, e.g. most smart speakers do not have
cameras.

Multimodal learning motivates us to ask a question: can
we use multimodal learning for the scenarios of speech input
only? This question triggers us to bridge the multimodal and
speech only identity recognition by introducing a new set-
ting: training data with both annotated speech and face data
and test set with speech data only. Existing works (Inoue
2021; Cai, Wang, and Li 2022) have a similar multimodal
setting, but their training data is unlabelled.

We think our aforementioned setting is technically feasi-
ble. This feasibility results from (1) technical soundness and
(2) available data. For (1), we assume the two modalities
(face and speech) are highly correlated for identity recogni-
tion. In this way, the feature space of the networks trained
separately by these two modalities is also correlated. Based
on this assumption, the stronger modality (face) can trans-
fer the knowledge in feature space to the weaker modality
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(speech) during the training, making the student network
more discriminative than that without teacher (face model)
supervision. During the test period, the speech network only,
which already learns the discriminative knowledge from the
teacher, can conduct robust identity recognition. This pro-
cess is illustrated in Fig. 1. Then we explain the soundness
of the assumption where face and speech are very corre-
lated for identity recognition. Biological studies (Kamachi
et al. 2003; Smith et al. 2016) show that human speech is
correlated with facial appearance, and some attributes (such
as gender, age, race, and some hormone levels) influence
both appearance and voice. The success of voice-face cross-
modality matching (Nagrani, Albanie, and Zisserman 2018)
and speech-to-face generation (Duarte et al. 2019; Oh et al.
2019) tasks also demonstrates that this correlation can be
learned by neural networks. For (2), fortunately, a multi-
modal recognition dataset (Chung, Nagrani, and Zisserman
2018) with aligned face and speech data is available. With
this dataset, we can investigate our solutions under the afore-
mentioned setting.

Figure 1: Cross-modal knowledge transfer. The face model
(teacher) transfers the discriminative knowledge to the
speech model (student) during training. During test, the
speech model only conducts identity recognition. The same
shape (star, triangle, diamond) represents the same identity.

To achieve the knowledge transfer from a stronger modal-
ity (face) to a weaker one (speech) during training, we in-
troduce knowledge distillation. Knowledge distillation is a
technique to supervise the training of a student network by a
stronger teacher model. Knowledge distillation is well stud-
ied and has widely been applied to speech analysis, com-
puter vision, etc. From the source of knowledge, knowledge
distillation can be categorized as feature-based, relation-
based, and response-based methods (Gou et al. 2021).
Feature-based methods (Romero et al. 2015) conduct dis-
tillation using the output from the last or intermediate layers
of the neural network. Relation-based methods (Tung and
Mori 2019; Park et al. 2019; Peng et al. 2019) capture the
relationship between different samples or different layers as
knowledge. Response-based methods (Hinton et al. 2015)
use the output of the last layer of networks, i.e. logits for

knowledge transfer.
However, we empirically find that simply applying ex-

isting knowledge distillation methods to our cross-modal
teacher-student learning cannot achieve desirable perfor-
mance. We think two possible reasons lead to this degraded
performance: (1) the big domain gap in latent space between
two modalities and (2) the quality of input data (face and
speech) not well aligned. Specifically, for (1), most exist-
ing knowledge distillation methods minimize the difference
(l1 or l2 norm) between the teacher and student, forcing the
student to behave exactly the same as the teacher. However,
the domain gap between two modalities (face and speech) is
clearly big and forcing them to be exactly the same can eas-
ily lead to overfitting. For (2), empirically, if the data quality
of two streams (face and speech) does not match, e.g. a very
blurry face supervises an audio sequence of good quality, the
performance of distillation will be degraded.

In this paper, we propose a VGSR (Vision-Guided
Speaker Recognition) method which can improve the ac-
curacy and generalizability of speaker recognition. Specif-
ically, we propose a distillation strategy, MKD (Margin-
based Knowledge Distillation), which introduces a loose
constraint with a margin between two modalities instead of
forcing them to be exactly the same. Our MKD can facilitate
the student to learn the discriminative features while avoid-
ing overfitting to learn irrelevant features. Furthermore, our
MKD can easily adapt to many mainstream distillation loss
functions. Specifically, we reformulate the existing feature-
based distillation (Romero et al. 2015), relation-based dis-
tillation (Tung and Mori 2019), and response-based distil-
lation (Hinton et al. 2015) loss functions to adapt them to
our cross-modality knowledge transfer. As aforementioned,
the quality of input data can greatly affect the distillation
performance. Thus, we propose a weighting method, QAW
(Quality-based Adaptive Weights), which quantifies the data
quality by l2 norm and then weights the samples using the
quality scores for distillation, greatly improve the model ro-
bustness.

Our method is trained on the multimodal dataset Vox-
Celeb2 (Chung, Nagrani, and Zisserman 2018) and evalu-
ated on the speech dataset in VoxCeleb1 (Nagrani, Chung,
and Zisserman 2017) and CN-Celeb (Fan et al. 2020). The
results show that the VGSR method can effectively improve
the performance of speaker recognition (around 10% ∼
15%). In addition, since our method is quality-aware, and
less affected by low quality samples, showing promising
model robustness, e.g. robustness against noises.

Our contributions can be summarized as:

• We introduce a practical and technically feasible setting
to the society: annotated face and speech data for train-
ing, and speech data only for test. Based on this setting,
we propose a cross-modality learning method VGSR,
leading to the promising accuracy and model robustness
for speaker recognition.

• Due to the big domain gap of different modalities, the
existing knowledge distillation methods do not work well
for cross-modality knowledge transfer. We propose a dis-
tillation strategy, MKD, which introduces a loose align-
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ment between the teacher and student, to effectively
avoid overfitting caused by the modality domain gap. Our
MKD can work in a plug-and-play way, easily adapting
to existing distillation loss functions.

• We propose a quality-aware sample weighting method,
QAW, which can improve the robustness of our method,
effectively avoiding the negative effect caused by low
quality samples.

• We conduct extensive experiments on VoxCeleb1, Vox-
Celeb2, and CN-Celeb, the results show that our method
can effectively improve the accuracy of speaker recogni-
tion, and the robustness against noises.

Related Work
Speaker Recognition
Speaker recognition is the task of voice-based biomet-
ric identification, which plays an important role in smart
voice assistants. I-vector (Dehak et al. 2010) is a traditional
speaker recognition method.

Recently, the deep neural network has achieved better per-
formance in speaker recognition than the traditional method.
Snyder et al. (Snyder et al. 2018) proposed X-Vector, an
early speaker recognition model for deep learning. Chung et
al. (Chung, Nagrani, and Zisserman 2018) propose the Vox-
Celeb2 dataset, which is one of the most commonly used
speaker recognition datasets, and establish a new benchmark
using the ResNet model (He et al. 2016). Okabe et al. (Ok-
abe, Koshinaka, and Shinoda 2018) propose the attentive
statistics pooling method, which does attention weighting
and adds statistics when pooling. Chung et al. (Chung et al.
2020) compare various loss functions in speaker recognition
tasks and proposes angular prototypical loss to achieve the
best results. Desplanques et al. (Desplanques, Thienpondt,
and Demuynck 2020) propose a powerful speaker recogni-
tion model ECAPA-TDNN.

Some researchers also try to combine face images and au-
dio for audio-visual speaker recognition. With the addition
of visual modalities, promising recognition performance can
be achieved. Sar et al. (Sarı et al. 2021) propose to learn
joint audio-visual embeddings and perform cross-modal ver-
ification. Qian et al. (Qian, Chen, and Wang 2021) proposes
and compares multiple multimodal fusion methods. How-
ever, this type of method may encounter the problem that
the face image cannot be acquired when it is used in prac-
tice. Unlike them, we use speech input only during test.

Knowledge Distillation
Knowledge distillation is a technique that uses a high-
performance teacher model to guide student model train-
ing and is often used for model compression. As for the
type of knowledge, Gou et al. (Gou et al. 2021) classifies
knowledge distillation into three categories: feature-based,
relation-based, and response-based. Feature-based methods
use features from the last or intermediate layers to dis-
till. Zagoruyko and Komodakis (Zagoruyko and Komodakis
2017) propose the attention transfer method, which encour-
aging the student model to learn the spatial attention dis-
tribution of the teacher model. Relation-based methods use

relationships between samples. Tung and Mori (Tung and
Mori 2019) propose the similarity preserving method, en-
couraging the similarity of activations between samples and
samples of the teacher model and the student model to be
consistent. Response-based methods use the output of the
last layer of the model, the logits, for distillation. The ear-
liest knowledge distillation method (Hinton et al. 2015) is
achieved by minimizing the kl divergence between the log-
its of the teacher model and the student model.

As for cross-modal knowledge distillation, most methods
operate between two very similar modalities. Gupta et al.
(Gupta, Hoffman, and Malik 2016) propose a method to use
a model of RGB images as a teacher model to guide the
training of depth and optical flow image models. Tian et al.
(Tian, Krishnan, and Isola 2019) proposes contrastive rep-
resentation distillation, which implements cross-modal dis-
tillation from RGB images to depth images. Some meth-
ods that distill between disparate modalities usually use the
teacher modality to provide labels for the student model in
an unsupervised setting. Inoue (Inoue 2021) uses the face
recognition model to provide positive and negative pairs for
unlabeled speech data, and uses metric learning to train the
speaker recognition model. Unlike them which use an unsu-
pervised setting, in this work, we explore a supervised cross-
modal distillation. Zhang et al. (Zhang, Chen, and Qian
2021) use a multi-modal teacher of face and speech to guide
the training of single-modal student, and find that the gap
between the speech and the teacher system is large, making
it difficult to improve the performance. This paper focuses
on solving problems such as large modal gaps.

Method
Our method uses a dual stream of visual and speech inputs
in the training phase to transfer knowledge from the visual
modality to the speech modality. In the test phase, the speech
model only conducts identity recognition.

Algorithmic Overview
The overall structure of our proposed method VGSR
(Vision-Guided Speaker Recognition) is shown in Fig. 2. We
have two networks, teacher (face encoder) and student (au-
dio encoder). The teacher network transfers the knowledge
to student via the proposed Margin-based Knowledge Distil-
lation (MKD). To make the MKD more robust, the Quality-
based Adaptive Weight (QAW) is used to weight the sam-
ples based on data quality to avoid the negative effects of
low-quality data. In practice, we find the performance is not
satisfying if we directly use face features from a pre-trained
face recognition model because of the big domain gap be-
tween face and speech. We use a projection head, a three-
layer MLP, to narrow down the domain gap.

Formally, we have a face image IT , subscript T means
teacher. The image is encoded by a pre-trained face encoder
Encoderf and we obtain the features ET as shown in Eq.
(1). In order to extract speech-related features, the origi-
nal features ET are further fine-tuned through the projec-
tion head, a three-layer MLP . To avoid overfitting by fine-
tuning, the original features ET and the fine-tuned features
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Figure 2: The overview of VGSR method where the teacher (face recognition model) transfers discriminative knowledge to
the student (speech model). The MKD strategy enables effective cross-modal knowledge transfer, greatly reducing overfitting.
MKD can work with diverse distillation strategies, i.e., feature-, relation- and response-based. QAW module can weight the
training samples based on the quantified data quality, leading to a robust training. A pretrained face recognition model is used
and it is fine-tuned by a projection head.

are mixed in a certain ratio α, to obtain the final teacher fea-
tures FT , as shown in Eq. (2).

ET = Encoderf (IT ) (1)

FT = α · ET + (1− α) ·MLP (ET ) (2)

As for the speech branch, the input speech is encoded by
the audio encoder to obtain the student feature FS . The total
loss is the combination of the identity loss supervised with
label information in speaker recognition and the distillation
loss MKD, and the distillation loss has an adaptive sample
weight w generated by the QAW module,

L = Lidentity(FS , label) +w · Ldistillation(FS , FT ) (3)

We detail MKD and QAW in the next section.

Margin-Based Knowledge Distillation (MKD)
Empirically, we cannot achieve desirable performance if we
simply use the existing knowledge distillation method. Af-
ter extensive experiments and analysis, we realize the exist-
ing knowledge distillation methods use l1 or l2 loss to force
the student to learn to be exact to the teacher. It works well
if the domain gap between teacher and student is relatively
small. However, in our task, the cross-modality domain gap
between face and speech is very big. The existing knowledge
distillation methods tend to cause overfitting. Motivated by
metric learning (Schroff, Kalenichenko, and Philbin 2015)
which usually uses a margin to separate positive and neg-
ative pairs, we introduce a margin m to relatively loosely
align the teacher and student. In this way, we do not push

the student forward to be exactly the same as the teacher. In-
stead, we use a margin m to bound the maximal similarity
between face and speech. This margin brings a mechanism
that can potentially ask the student to learn the discrimina-
tive information from the teacher and effectively avoid over-
fitting.

The existing distillation methods can simply categorized
as feature-based, relation-based, and response-based accord-
ing to Gou et al. (Gou et al. 2021). Our Margin-based knowl-
edge distillation (MKD) can easily adapted to these main-
stream distillation methods. Then we formulate MKD for
different distillation methods.

Feature-based. Feature-based knowledge distillation
aligns the teacher and student using the output from the last
or intermediate layers of the model. We empirically find the
cosine similarity works better than l2 similarity for feature-
based distillation. Cosine similarity requires angular similar-
ity rather than numerical equality.

Our MKD introduces a hyperparameter m to construct the
distillation loss over cosine similarity,

Lfea =

⌊
m− FT · FS

∥FT ∥ · ∥FS∥

⌋
(4)

where ⌊⌋ means cut down to 0, equivalent to max(·, 0).
Clearly, when the similarity between the two modalities
reaches m, the loss becomes 0.

Relation-based. Relation-based knowledge distillation
usually exploits the relationship between different samples.
The typical method is to maintain the similarity between
samples, which helps to learn the structural features in the
teacher model. Specifically, after obtaining the output fea-
ture F ∈ Rb×c, where b is the batch size and c is the num-
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ber of channels of the feature map, we calculate the cosine
similarity between every two samples, and a b× b similarity
matrix can be obtained, as shown in Eq. (5).

Fn = F/ ∥F∥ ; G = Fn · FT
n (5)

Then the goal of the distillation loss is to let the student
model learn the similarity of the teacher model. Our MKD
introduces a hyperparameter m to achieve,

Lrel =
⌊
(GT −GS)

2 −m
⌋

(6)
Clearly, the loss becomes 0 when the difference of two sim-
ilarity matrices from two modalities is smaller than m.

Response-based. Response-based knowledge distillation
uses logits to align the teacher and student. Logits L is the
vector obtained after passing through the classification layer.
The logits can introduce very high-level information used by
teacher to supervise the student.

Again, we introduce a margin m for relaxation to achieve,

Lres =
⌊
(LT − LS)

2 −m
⌋

(7)

Quality-Based Adaptive Weight (QAW)
In our practice of cross-modal distillation, we find the qual-
ity of data can greatly affect the performance. It is not hard
to understand this. For example, if the quality of the face im-
age is poor (e.g blurry faces) and the audio data is very high,
the teacher (face model) potentially misleads the student. It
motivates us to weight the samples by data quality.

There exist many specialized models which can quantify
data quality, however, these models are usually computation-
ally expensive. Kim et al. (Kim, Jain, and Liu 2022) prove
that there is a high correlation between feature norm and
input sample quality. Therefore, we use this simple and ef-
fective way to quantify the data quality. In this work, we
quantify data quality by using l2 norm of the features ∥zi∥,
and normalizing it to remove the effect of numerical size,

Qi =
∥zi∥ − µz

σz
(8)

where µz and σz are the mean and standard deviation of all
∥zi∥ in a batch.

The final sample weight is determined by the difference
of data quality over two modalities,

∆Q = QT −QS (9)

wi =
e∆Qi∑N
j=0 e

∆Qj

(10)

where N is the batch size.

Experiments
Implementation Details
Input. During training, we use randomly cropped 2 seconds
speech segments, without any other data enhancements. 40-
dimensional filter-banks (Fbank) with a window of width
25ms and step 10ms are used as the input. For the visual
modality, we take 1 frame from each video, crop out the face

part, then align it, and finally scale it to 112×112 size as the
input of the network.

Datasets. Our model is trained on the VoxCeleb2 (Chung,
Nagrani, and Zisserman 2018) dataset and we do the
evaluation on the VoxCeleb1 (Nagrani, Chung, and Zis-
serman 2017) dataset. Both datasets are collected from
Youtube. VoxCeleb1 dataset contains 1,251 speakers and
over 100,000 utterances, only has data for audio modality.
Its original test set contains 37,720 randomly selected pairs,
and the hard-set test set contains 552,536 pairs of the same
race and gender. VoxCeleb2 dataset contains over a million
utterances from over 6,000 speakers and provides both audio
and visual modalities. There are no common speakers in the
two datasets.

To test the generalizability across datasets, tests were also
performed on the CN-Celeb (Fan et al. 2020) dataset. The
CN-Celeb dataset contains 11 genres of interviews, singing,
movies, etc., in Chinese language. It is very different from
the training dataset VoxCeleb, which can effectively test the
generalization. Its test set contains 18,849 utterances from
200 speakers and provides 3,484,292 test pairs, which can
largely eliminate chance.

Model. For the speaker recognition model, we use X-
Vector (Snyder et al. 2018), VGGM (Nagrani, Chung,
and Zisserman 2017), ECAPA-TDNN (Desplanques, Thien-
pondt, and Demuynck 2020) and ResNet34 (with ASP (Ok-
abe, Koshinaka, and Shinoda 2018) for aggregate temporal
frames). These models are representatives of the most com-
monly used and advanced models in speaker recognition.
The loss function is a combination of angular prototypical
loss (Chung et al. 2020) and cross-entropy loss. The teacher
model is a pretrained face recognition model IR-50 taken
from (Wang et al. 2021).

Optimization. We use the Adam optimizer with an initial
learning rate of 1e-3 decreasing by 25% every 3 epochs and
a weight decay of 5e-5. Each batch has 100 speakers, and
each speaker has 2 audio utterances. The network is trained
for 36 epochs, on an Nvidia RTX 3090 GPU, it takes about 9
hours to train X-Vector and about 2 days to train ResNet34.

Evaluation. Ten 4-second temporal crops are sampled
from each test segment for evaluation, and we calculate the
distance between all possible pairs (10 × 10 = 100), and use
the mean distance as the score. This is the same as (Chung,
Nagrani, and Zisserman 2018; Chung et al. 2020). We re-
port two most commonly used evaluation metrics in speaker
recognition: the Equal Error Rate (EER) and the minimum
value of Cdet. EER is the rate at which both acceptance and
rejection errors are equal. And Cdet can be calculated by

Cdet = Cmiss×Pmiss×Ptar+Cfa×Pfa×(1−Ptar) (11)

where we assume a prior target probability Ptar of 0.01
and equal weights of 1.0 between misses Cmiss and false
alarms Cfa.

To evaluate the robustness under noise, we use the musan
dataset (Snyder, Chen, and Povey 2015) to augment our test
set. For each piece of test audio, we mix a piece of noise. We
set different noise levels based on the decibel gap between
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model EER (O) minDCF (O) EER (H) EER (∆db = 15) EER (∆db = 10) EER (∆db = 5)
ResNet34 (w/o dist.) 1.71% 0.205 3.32% 2.78% 3.71% 5.61%

KD (Hinton et al. 2015) 1.70% 0.208 3.60% 2.74% 3.73% 5.52%
PKD (Passalis and Tefas 2018) 1.67% 0.204 3.21% 2.71% 3.57% 5.36%

SP (Tung and Mori 2019) 2.18% 0.259 4.11% 3.50% 4.62% 6.97%
ICKD (Liu et al. 2021) 1.75% 0.209 3.35% 2.88% 3.70% 5.48%
MKD (Feature-based) 1.51% 0.178 3.21% 2.37% 3.26% 4.97%
MKD (Relation-based) 1.59% 0.187 3.26% 2.63% 3.54% 5.51%
MKD (Response-based) 1.57% 0.193 3.07% 2.61% 3.62% 5.53%

MKD (Feature-based) + QAW 1.54% 0.165 3.13% 2.37% 3.20% 4.77%

Table 1: Knowledge distillation comparisons using ResNet34. O and H represent the original and hard test set of VoxCeleb1,
respectively. The right 3 columns are the test results after adding noises with different levels.

the original speech and the noisy speech. The larger the ∆db,
the smaller the noise.

∆db = dbaudio − dbnoise (12)

Baseline Results

We first compare the performance of popular speaker recog-
nition methods: X-Vector (Snyder et al. 2018), VGGM (Na-
grani, Chung, and Zisserman 2017), ECAPA (Desplanques,
Thienpondt, and Demuynck 2020), and ResNet34 (Chung
et al. 2020), the input is unified as a 40-dimensional fbank
without data augmentation, and the results are shown in Ta-
ble 2. ResNet34 model achieves the best performance.

method EER (O) minDCF (O) EER (H)
X-Vector (ASP) 7.20% 0.704 13.44%
VGGM (TAP) 4.37% 0.510 7.68%
ECAPA (ASP) 1.75% 0.225 3.67%

ResNet34 (ASP) 1.71% 0.205 3.32%

Table 2: Performance of Baselines. O and H represent the
original and hard test sets of VoxCeleb1, respectively.

We then compare the student (speech model) with the
teacher (face model). The ResNet34 model is used for stu-
dent model which achieve best performance in speech. Since
the VoxCeleb1 does not have visual modality data which is
needed by the teacher, this test was performed on the test set
of the VoxCeleb2 dataset. The results in Table 3 show that
the pre-trained face recognition model without fine-tuning
greatly outperforms the audio model, justifying our assump-
tion that the teacher (face model) is much stronger than the
student (speech model).

model EER minDCF
Student Model (Audio) 2.89% 0.263
Teacher Model (Visual) 1.97% 0.120

Table 3: Comparisons between the teacher and student on
VoxCeleb2 testset.

Comparisons with State-of-the-Art
Note that not all distillation methods can be used for our
task. For example, since the spatial locations of visual and
speech modalities are not correlated, methods using spatial
locations (Zagoruyko and Komodakis 2017) for distillation
cannot be applied. Apart from these methods, we compare
with some very popular distillation methods (Hinton et al.
2015; Passalis and Tefas 2018; Tung and Mori 2019; Liu
et al. 2021) in Table 1. Results show that these methods can-
not effectively improve the performance due to the overfit-
ting. Clearly our MKD family can greatly improve the per-
formance by introducing a loose distillation which can ef-
fectively reduce overfitting.

Apart from ResNet-34, we also test our method using a
light-weight X-Vector (Snyder et al. 2018) model in Table 4.
Since ICKD (Liu et al. 2021) method cannot work with X-
Vector, we only compare with KD (Hinton et al. 2015), PKD
(Passalis and Tefas 2018) and SP (Tung and Mori 2019)
methods. Results show our method can achieve the greatest
performance gains.

model EER (O) minDCF (O) EER (H)
X-Vector 7.20% 0.704 13.44%

KD 7.08% 0.700 12.55%
PKD 6.36% 0.606 10.28%
SP 7.73% 0.751 15.47%

VGSR (Ours) 6.29% 0.585 9.94%

Table 4: Knowledge distillation comparisons using X-
Vector. O and H represent the original and hard test set of
VoxCeleb1, respectively.

Comparisons with Cross-Dataset Settings
To evaluate the cross-dataset generalizability, the ResNet34
model is trained on VoxCeleb2 and tested on CN-Celeb.
These two datasets are very different in terms of video
scenes and languages. Since the CN-Celeb dataset is col-
lected from a variety of actual scenarios such as interviews,
singing, vlog, etc., it is more difficult and has a higher er-
ror rate compared to VoxCeleb as shown in Table 5. Com-
pared to the baseline, our proposed approach VGSR effec-
tively improves the cross-dataset generalizability.
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model EER minDCF
ResNet34 (w/o dist.) 14.49% 0.759

VGSR (Ours) 13.03% 0.713

Table 5: Cross-dataset generalizability test. Trained on Vox-
celeb2, tested on CN-Celeb.

Ablation Study
In this section, we conduct abation study to verify the effec-
tiveness of different components of our methods. We per-
form this study using ResNet34 on VoxCeleb1.

Effect of projection head hyperparameter α. The face
embedding from a pretrained face model might have a big
discrepancy against speech embedding. We propose a learn-
able projection head to reduce this discrepancy with the ex-
pectation that the feature from projection head can more eas-
ily align with the speech feature. This feature itself can de-
grade the face recognition performance of the original fea-
ture. Thus, we introduce a hyperparameter α in Eq. (2) to
balance these two features. From Table 6, if α is too small,
it means we mainly rely on the projected feature, the face
recognition performance might be degraded greatly; If α
is too large, we mainly use the original face embedding,
which is very far from speech feature. It will cause difficulty
for teacher-student distillation. Neither is the best choice,
choosing an intermediate value of 0.6 gives the best results.

α EER minDCF
0.2 1.68% 0.210
0.4 1.67% 0.195
0.5 1.52% 0.183
0.6 1.51% 0.178
0.8 1.68% 0.199

Table 6: Effect of mixing ratio of projection head.

Effect of distillation hyperparameter m. The margin m
controls the degree of similarity that the teacher and student
should achieve. We use feature-based distillation for this ex-
periment. From Table 7, if m is too large, the constraints are
too loose and the supervision is weak; If the m is too small,
it may lead to over-fitting. The best performance is achieved
by cos(30◦).

m EER minDCF
0 1.66% 0.188

cos(10◦) 1.62% 0.180
cos(20◦) 1.71% 0.197
cos(30◦) 1.51% 0.178
cos(40◦) 1.64% 0.197
cos(50◦) 1.60% 0.189

Table 7: Effect of margin values.

Effect of MKD and QAW. We conduct evaluations on
the original test set of VoxCeleb1 and its noisy version
by adding various noises from musan dataset. As shown
in Table 1, different types of knowledge can effectively

be improved, and the feature-based knowledge can achieve
the biggest improvements. In addition, the performance
achieved by using QAW is further improved, especially in
the case of noises.

Visualization of Features

To understand the features we learned, we visualize the fea-
tures extracted by the face model, its projection head, and the
speech model after applying our MKD and QAW. To achieve
these features, we use 200 samples randomly selected from
the test set. We conduct dimensionality reduction by t-SNE
on these features. From Fig. 3, we can see that there is a large
domain gap between the two modalities of face (red) and
speech (blue), which is difficult to align them directly. Af-
ter the mapping of the projection head (green), the distance
between face and speech features is reduced, making the
teacher-student distillation easier. In addition, the features
extracted by the projection head and speech model do not
completely overlap because the MKD strategy uses a mar-
gin to avoid overfitting. Moreover, based on the annotation
of gender (dark), it can be seen that the features mapped by
the projection head well indicate gender, which is a shared
attribute in face and speech, justifying our assumption that
face and speech are highly correlated in feature space.

Figure 3: Features extracted by different models. Color red,
green and blue represent the features from face model, pro-
jection head and speech model respectively. Dark and light
colors represent male and female respectively.

Conclusion
In this paper, we propose the VGSR method that utilizes
a more discriminative face recognition model as a teacher
to guide the student (speech) to improve the performance
of speaker recognition. To achieve a promising cross-modal
distillation performance between vision-speech modalities,
we propose the MKD distillation method and a quality-
aware weighting strategy, QAW. Experiments show that our
method can effectively transfer discriminative knowledge
from face to speech. We hope our cross-modality knowledge
transfer strategies can introduce insights into other multi-
modal learning tasks.
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