
Applied Intelligence (2023) 53:20272–20292
https://doi.org/10.1007/s10489-023-04543-2

A new clustering algorithm based on connectivity

JiaqiangWan1 · Kesheng Zhang1 · Zhenpeng Guo1 ·Duoqian Miao1,2

Accepted: 24 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The k-median problem is the theoretical foundation of partitioning-based clustering algorithms. It was first proposed
in 1964 and later it was demonstrated that k-median problem is an NP-hard problem in a network. To be exact, the k-
median problem under Euclidean distance is NP hard. Fortunately, the k-median problem under connectivity measure is
proved to be a deterministic polynomial problem in this study, and the optimal solution is solved. According to the work
above, a connectivity-based clustering theory and algorithm is proposed, obtaining the theoretically optimal partition within
polynomial time, and an outstanding performance in real data sets.
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1 Introduction

In recent years, the field of clustering has flourished, the
research enthusiasm has increased, and many excellent
algorithms have emerged (such as [1, 2]). The so-called
clustering refers to the division of data into multiple groups,
the data objects in each group are similar to each other, and
the groups represent different categories, respectively, the
greater the similarity within the group, the more significant
the difference between the groups, meaning a better
clustering algorithm [3]. These clustering algorithms have
a wide range of applications and are relevant in statistics,
computational geometry, optimization, image processing,
and various other fields [4–7]. In this work, we focus on
partition-based clustering theories and algorithms. K-means
algorithm is the most classical algorithm for the k-way
partition problem (k-median problem or k-center problem).
It is one of the most widely used clustering algorithms, and
has spawned many well-performing variational algorithms
[8]. We propose a k-median problem based on connectivity
and a corresponding clustering model. Finally, the proposed
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model achieves excellent performance in our experiments.
The k-median problem derives from the facility location

problem. Hale and Moberg [9] early proposed facility
location problem in the seventeenth century. It investigates
where to physically locate facilities to minimize the total
cost of serving all nodes. In 1964, the location problem
was studied further, and the k-median problem was first
formulated by Hakimi [10]. The objective of the k-median
problem is to select (at most)k best servers. The k-servers
problem is also called metric uncapacitated k-median
problem. Concerning the at-most-k-servers problem, it
is called capacitated k-median problem. Unless specified
otherwise, the k-median problem denotes the k-servers
problem in general.

Since the traditional k-median problem is subjected to
triangle inequality (In a triangle, the sum of arbitrary
two edges is bigger than the rest), it is an NP-hard
problem [11]. In fact, connectivity can be used as a
similarity metric, breaking the constraint of the triangle
inequality. Based on this connectivity-based similarity,
theoretically optimal partitioning can be ensured. There
are few studies on connectivity-based clustering theory,
but there are some studies on connectivity-based similarity.
In recent clustering studies, a portion of researchers has
focused on connectivity-based similarity studies. Liao
et al. [12] have used dimension transformation to consider
the connectivity problem in the beginning, not only
explicitly considering the similarity of attribute information,
but also implicitly considering the local graph structure.
Guo et al. [13] improved the accuracy of local center
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allocation by adding connectivity information to distance
calculation. Hadi [14] proposed a new method to calculate
the distance between a pair of clusters in a data
set, which is simple and interpretable. Geng and Tang
[15] regarded the similarity of elements in data as
the connectivity of vertices in undirected graphs, which
enables the determination of clustering centers and the
assignment of class become very simple, natural and
effective.

To sum up, there are three common problems for research
on Connectivity-based clustering:

1. Hyperparameters.
2. Similarity: It is hard to design and calculate

connectivity-based similarity.
3. Optimal solution: Most current algorithms do not

consider the minimum total cost, so they cannot obtain
the theoretical optimal solution.

In the traditional k-median problem, Euclidean distance
describes the relationship between two nodes, and each
node is served by the nearest server. In fact, the closest
server may be incapable of pointing the most suitable
cluster in a complicated distribution (e.g., two overlapping
spiral clusters). Then, the traditional k-median model is
applied hardly to grouping irregularly-shaped clusters. The
connectivity between two nodes is taken as the new cost
function to overcome the influence of irregular shapes.
Hence, we suggest a new cost function and propose a new k-
median model with polynomial complexity. Then, the new
k-median model and the corresponding clustering algorithm
is not only suited to cope with arbitrarily clusters shaped but
also ensures optimal solutions.

The significance of our work can be summarized
as follows:

1. Converting the traditional k-median problem to a k-
median problem in MST relies on the connectivity
metric.

2. The globally optimal solution of the proposed k-median
problem is proved and obtained within polynomial
time. Then, it is guaranteed that the clustering result is
optimal in theory.

The rest of the paper is organized as follows. Related
work about the k-median problem is given in Section 2.
Section 3 defines a k-median problem based on connectivity
and gives the solution. Through the k-median problem
based on connectivity, a novel clustering algorithm is given
in Section 4. The experiments and analysis are shown in
Section 5. The last part is the conclusion.

2 Related work

The researches on facility location problem include
two categories: the k-center problem and the k-medoids
problem/ k-median problem.

The k-center problem is also called the absolute location
problem. It would select a location, which does not
necessarily locate in those client locations, to establish a
server. The objective of the k-center problem is to find
locations for at most k servers to minimize the maximal
distance between a client and its nearest server [16]. It was
demonstrated that the k-center problem is NP-hard [17].
The problem can already be solved by different methods
such as heuristic algorithms [18], approximate algorithms
[19], exact algorithms [20]. Among these algorithms,
approximate algorithms are the most efficient and reliable.
At least three known approximation algorithms are known
so far: the Sh algorithm [21, 22], the Gon algorithm [23, 24],
and the HS algorithm [25, 26].

The k-medoids partition is based on a location model (the
k-median model) with the following general formulation
[27]: Given a finite number of users, whose demands for a
given service are known and must be satisfied, and given
a limited set of possible locations among which k must be
chosen for the location of service centers, select the sites
in such a way as to minimize the total distance traveled by
the users. In the formulation used in clustering, the sets of
users and possible locations coincide, and both correspond
to the set of objects to be clustered. The location of a
center is interpreted as the selection of an object as a
representative object (or center type, median, or medoid)
of a cluster. With respect to the k-median problem, the
objective [16] is to find locations for at most k servers
to minimize the sum of distances between a client and its
nearest server. Hence, the k-medoids problem is also the
(metric uncapacitated) k-median problem. The k-median
problem is an NP-hard problem [11]. That is, it is NP-
hard to solve exactly in general metric spaces. In order to
decrease the time complexity, many approximate schemes
were proposed, such as the constant-factor approximation
algorithm [28–31] , the reverse greedy algorithm [32],
the approach independent of data size [33], the online-
median approach [34], and the incremental approach [35].
Some scholars have also solved the complex manifold
problem by setting up natural core nodes. Besides, some
new applications of the k-median problem were proposed.
For example, the k-median problem is applied to tree graphs
[36] and graded distances [16].

Based on the k-centers and k-medoids problems,
the k-means and k-medoids models were formed, and
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then the related clustering algorithms were proposed.
MacQueen [37] first proposed a k-means algorithm in
1967. Kaufman [27] proposed PAM algorithm (one of
the first k-medoids algorithms). Since the dissimilarity
measures are subjected to triangle inequality (In a
triangle, the sum of arbitrary two edges is more
than the rest one.), the partitioning models above
are NP-hard problems. Therefore, the related clustering
algorithms are approximation schemes (e.g. [1, 2, 38, 39]),
not ensuring the theoretically optimal partition. Most of
the researchers believe that spectral clustering (including
the two-way-cut and multiway-cut algorithms e.g. [40,
41]) is a better method owing to the solid theoretical
proof—spectral theory. In fact, spectral clustering does not
guarantee the quality of the solution of the relaxed problem
compared with the exact resolution [42]; the partitioning
strategy also uses the k-means algorithm. Hence, the
optimal partition is also incapable to been guaranteed.
In addition, JiaQiang Wan focused on connectivity and
studied the transitive-closure-based dissimilarity measure
[43], which broke the law of triangle inequality and
could cope with data with complex manifolds. So, the k-
median problem based on connectivity is more worthy of
study.

In addition to the theoretical research above, researchers
also pay much attention to dealing with arbitrary shape clus-
ters. Partitioning methods (like K-means) have difficulties
in finding clusters with non-spherical shapes. On the con-
trary, density-based clustering is able to discover clusters
with arbitrary shapes, and the number of clusters. DBSCAN
[44] is known as a classical clustering method based on
density. The further research on DBSCAN focused on
parameter reduction and performance optimization, such as
RNN-DBSCAN [45]. In 2014, another density-based clus-
tering algorithm DPC [46] (Clustering by Fast Search and
Find of Density Peaks) was proposed. Clustering research
based on density peaks is gradually increasing. LDP-MST
[47] employs local density peaks to construct minimum
spanning tree (MST) and then cluster in MST. According
to density peaks, GADPC [48] clusters the closer nodes
which have stronger graph connectivity and higher den-
sity. These methods show good performance in clustering
arbitrary shape data.

In fact, there is an important problem in the density-based
methods: the algorithms above are derived from rules rather
than mathematical models. Hence, the optimal partition is
also incapable to been guaranteed. Especially, we hope that
our clustering algorithm can not only deal with arbitrary
shape data, but also obtain the optimal partition. So, a new
algorithm is proposed in this study.

3 Clustering theory based on connectivity

A k-median problem based on connectivity was designed
and finally get a solution theorem for k-medians. Due to the
adoption of the connectivity metric, the k-median problem
in the fully connected graph is converted to one in MST and
the corresponding proofs show that the optimal solutions of
both are equivalent. The following inference gives the idea
for solving the k-median problem based on connectivity.

3.1 A k-median problem based on connectivity

The traditional k-median problem (metric uncapacitated k-
median problem.) is briefly given as follows: Firstly, build
a total cost function–the sum of the costs that all nodes
respectively select their nearest servers (medians) to obtain
service; next, minimize the total cost function through
selecting the optimal k medians. There is an example shown
in Fig. 1. Suppose the three nodes, o, p and q are three
medians. Each node selects the respective nearest server
(median) to obtain service. The nodes served by the same
median form a single cluster. Then, we would get 3 clusters
(see Fig. 1). According to the shapes of the 3 clusters,
u should have been classified into p′s cluster instead of
q ′s cluster. However, the traditional k-median model would
give the opposite result. Obviously, this partition is not
unreasonable, implying that the traditional k-median model
is not applied to the irregular clusters.

Fig. 1 Uncapacitated k-median problem
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Fig. 2 k-median problem based on connectivity

In order to overcome the impact of the irregular clusters,
we propose a k-median problem based on connectivity. It
tries to find three new medians to respectively serve the
three regions, c1, c2 and c3. Obviously, if Euclidean distance
is taken to measure the service cost, the clustering result
would keep the same as Fig. 1. Considering a single cluster
is always a continuous region, each node of the cluster
always has high connectivity to other intra-cluster nodes.
Hence, we suggest a connectivity measure to describe the
cost of each node, and then a k-median problem based on
connectivity is formed, which is suited to irregularly-shaped
clusters. Given that the high connectivity between u and
the other nodes in c1, u is classified into c1. Finally, the k-
median problem based on connectivity reflects the optimal
partition as shown in Fig. 2.

3.2 A new cost function

Theorem 1 Given a data set X = {x1, x2, . . . , xn},
SDM is a symmetric dissimilarity matrix of X.
MST denotes a minimum spanning tree of SDM .
Treepath(xi, xj ) denotes the MST path from xi

to xj . max (Treepath(xi, xi)) denotes the weight
of the longest edge of the path Treepath(xi, xj ).
PC(xi, xj ) = {path 1, path 2, . . . , path L} denotes the
collection which contains all possible paths from xi to xj in
SDM . Then,

max(Treepath(xi, xj )) ≡ min(max(path 1), max(path 2),

· · · max(path L))

(see Proof 1)

Notice: In the following contents, max(G) denotes
the weight of the longest edge of the graph G.
min(G) denotes the weight of the shortest edge of the
graph G. For example, max(Treepath (xi,xj )) denotes
the weight of the longest edge of the MST path
Treepath (xi, xj ); for a MST path Treepath(xixj ) ={
oi o1 , o1 o2 , o2 o3 . . . ol−1 ol , ol xj

}
, max(

Treepath(xi, xj )) = max({z|z = |e |, e ∈ Treepath(xi,

xj )}). In addition, if xi = xj , max(T reepath(xi, xj )) = 0.

Definition 1 (Cost function – cost(xi, xj )) Given a data set
X = {x1, x2, . . . , xn}, SDM is the symmetric dissimilarity
matrix of X, implying a weighted undirected graph. The cost
function is defined as:

cost(xi, xj ) = max(T reepath(xi, xj ))

The essence of the cost function is to reflect the weighted
connectivity between two nodes in a MST . Meanwhile,
the connectivity degree is given by the longest edge of a
MST path. If the MST is unique, T reepath(xi, xj ) is
an unambiguous path. Considering that minimum spanning
trees which are built from different start nodes may
be not unique, T reepath(xi, xj ) may be an ambiguous
path. However, max(T reepath(xi, xj )) is always unique
according to Theorem 1, implying T reepath(xi, xj ) can
be from any MST . So, cost(xi, xj ) is a definite measure.

Considering that the complexity of Theorem 1 is
too high, we compute the cost function according to
Definition 1.

3.3 The equivalent problem

Through introducing the cost function above, the k-median
problem based on connectivity is formed:

Given a data set X = {x1, x2, . . . , xn}, containing k

clusters C = {c1, c2, . . . , ck}, the task of the clustering
problem is to discover the k clusters. We select one node
in each cluster, and let it serve the cluster. Suppose that the
collection of service nodes is SN = {sn1, sn2, . . . , snk},
where sni belongs to ci and only serves ci . Let cost(sni, o)

denote the cost of sni which serves o . Then, the service
cost of ci is denoted by Ccost(sni, ci) = ∑

o∈ci

cost(sni, o),

and the total cost is T cost(SN, C) =
k∑

i=1
Ccost(sni, ci).

If Ccost (sni, ci) ≡ min ({z | z = Ccost (o, ci) , o ∈ ci})
holds, then sni is a median of ci . If the total cost
T cost(SN, C) is the lowest, then SN is a set of optimal
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Algorithm 1 Cost function algorithm.

medians. Thus, the k-median problem based on connectivity
is described as

arg min
(SN,C)

T cost(SN, C)

In actual practice, each node always selects the lowest-cost
server to obtain service. Then, the service cost of node p

should be

Ncost(p)SN = min({z | z = cost(o, p), o ∈ SN})

where p ∈ X, cost (sn∗, p) ≡ Ncost(p)SN. The total cost of
all clusters is also the total cost of all nodes. Thus, the total
cost of all nodes is the dual problem of the original problem.
Then, we obtain a new total cost function, Tcost(SN, C) =∑

p∈X cost (sn∗, p) , sn∗ ∈ SN where sn∗ denotes
the corresponding server. Assuming that C denotes an
optimal partition and SN provides the optimal service
nodes, then T cost(SN, C) is the minimum total cost.
Hence, for each p ∈ X, cost (sn∗, p) ≤ N cos t (p)SN

holds. cost (sn∗, p) ≥ Ncost(p)SN also holds because
Ncost(p)SN = min({z | z = cost(o, p), o ∈ SN}).
Thus, for each p ∈ X, cost (sn∗, p) ≡ Ncost(p)SN

holds. Hence, Tcost(SN, C) ≡ Tcost(SN)(=∑
p∈X Ncost(p)SN) holds for the optimal median

collection SN and the optimal partition C. Then, the dual
problem of the original problem is represented by

arg min
SN,|SN |≡k

T cost(SN).

Generally, the optimal median collection SN is not
unique because a number of equivalent medians exist, such
that Ccost(sn′

i , ci) ≡ Ccost(sni, ci) holds for sn′
i ∈ ci ,

sni ∈ ci , and sn′
i �= sni . In addition, if ∃p 
 Ncost(p)SN ≡

cost (Sni, p) ≡ cost(Snj , p), sni, snj ∈ SN , then
the optimal partition C is non-unique. Meanwhile, some
optimal partitions may be falsely optimal. For example, a
cluster intercross may occur when the total cost function
presented earlier obtains the optimal solution. Therefore, we
add a few constraints: Similar nodes should be classified
into a same cluster, and the bound of a single cluster should
be continuous. Finally, the refined problem is given as
follows.

Given a data set X = {x1, x2, . . . , xn}, SDM denotes
the symmetric dissimilarity matrix of X; MST denotes a
minimum spanning tree of SDM; and T reepath(xi, xj )

denotes the MST path from xi to xj . The refined problem
can be addressed as:

arg min
SN

T cost(SN) s.t .

Constraint 1 :
If cost(xi, xj ) < Ncost(xi)SN ≡ Ncost(xj )SN , xi and

xj must obtain service from a same server.
Constraint 2 :
∃{st1, st2 · · · stk} and must obtain service from a same

server. where sti(i = 1, 2 · · · k) is a connected sub-tree of
MST .


 {V (st1) , V (st2) · · · V (stk)} is an optimal solution (
V (sti) denotes the node collection of sti .).

It is demonstrated that the solution of the constrained
problem above is also the globally optimal solution of
the original problem (see Proof 2). So, the constrained
problem above is taken as the equivalent problem of the
k-median problem based on connectivity.

3.4 Solve the optimal medians

The optimal solution for the aforementioned equivalent
problem is a collection composed of k medians. In the
following contents, we design a heuristic method (O(k∗n2))

to search for the k optimal medians:

1. For a data set X = {
x1,x2, . . . , xn

}
, the first server

s1 = arg min
s∈X

∑
o∈X

cost(s, o).

2. The second server s2 = arg min
s∈X/{s1}

∑
o∈X

min(cost(s1, o),

cost(s, o)).
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3. Next,
sk = arg min

s∈X/{s1,s2···sk−1}
∑
o∈X

min(cost(s1, o), cost(s2, o)...

cost(sk−1, o), cost(s, o)).
4. Finally, the optimal medians Sk = {s1, s2...sk} ⊂ X are

gradually obtained.

Theorem 2 Given a data set X = {x1, x2, . . . , xn},
Ncost(p)SN = min({z | z = cost(o, p), o ∈ SN}) denotes
the cost of p, and Tcost(SN) = ∑

p∈X Ncost(p)SN denotes
the total cost on SN (SN ⊂ X and |SN |≡ k ). Then,
Sk = {s1, s2...sk} ⊂ X is a solution to arg min

SN,|SN |≡k

T cost(SN).

(see Proof 3)

Generally, heuristic methods do not ensure an optimal
solution. However, through a theoretical demonstration,
S = {S1, S2, · · · , Sk}is validated to be a solution to
arg min

SN,|SN |=k

Tcost(SN) In addition, Theorem 2 means the first

i optimal medians Si is a subset of Sk.(i ≤ k). Therefore, a
series of optimal solutions exists, such that

S1 ⊂ S2 · · · ⊂ Si · · · ⊂ Sk .

In order to minimize the total cost function, the servers
must have high connectivity to most of the nodes. Hence,
unlike general medians or centers, our medians always
locate in the dense regions of big sub-clusters instead of
the centers of clusters. Figure 3 gives an example which
supports this proposition. Suppose the first three optimal
servers are p, q and o in sequence. Then, when k = 2, only
p and q are taken as the optimal medians. Meanwhile, node
p serves c1 ∪ c3 and q serves c2. When k = 3, p, q and o

Fig. 3 k-median problem based on connectivity

respectively serve c1, c2 and c3. Obviously, o, p and q do
locate in the dense regions. When k = 2, o would not be
taken as a server; on the contrary, p and q are recognized
as servers. Hence, it is concluded that the optimal servers
always locate in big sub-clusters.

3.5 Relevant proof

3.5.1 Proof 1 – Theorem 1

Lemma 1 If the node set of a cycle is arbitrarily divided
into two disjoint nonempty subsets, there exist at least two
edges whose endpoints belong to the two nonempty subsets
respectively.

Proof of Lemma 1 We argue by contradiction. Let us
consider the following two cases:

Case 1. If there has no edge connected the two nonempty
subsets, then we easily obtain that the cycle is disconnected,
a contradiction.

Case 2. If there has a unique edge, say uiuj , connected
the two nonempty subsets, then there exists a unique path
from ui to uj is in the cycle, implying that uiuj is not the
edge of the cycle, a contradiction. So, Lemma 1 holds.

Lemma 2 Let C be an arbitrary cycle of the connected
graph G = (V , E), and C’s longest edge is unique. Then
the unique longest edge in C doesn’t locate in the minimum
spanning tree MST of G.

Proof of Lemma 2 Denote {u1, u2, ..., uk} by the node set of
C. Without loss of generality, assume that uiuj is the unique
longest edge of C. If uiuj locates in the minimum spanning
tree MST of G, then we delete the edge C in MST ,
yielding that MST is decomposed into two connected sub-
trees MST1 and MST2. Let V (C1) = V (C) ∩ V (MST1)

andV (C2) = V (C) ∩ V (MST2). ThenV (C1) and V (C2)

are nonempty; one of which contains at least ui , the other
contains at least uj , otherwise deleting uiuj in MST , MST

is also connected, a contradiction to the minimum spanning
tree. By Lemma 1, there exists other edge ulum connected
the sub-trees MST1 and MST2, which is shorter than uiuj

in G, implying that the whole of MST1, MST2, and ulum

possesses less total weight than MST , a contradiction.
So, Lemma 2 holds.

Proof of Theorem 1 For convenience, we design some
conditions: MST is an arbitrary minimum spanning
tree. There are two arbitrary nodes xi and xj . Let
T reepath(xi, xj ) denote the MST path from xi to xj .
There exists an edge a b ∈ T reepath

(
xi, xj

)
such
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that |a b|≡ max (Treepath (xi, xj )) holds. The paths,
which do not contain a b in PC(xi, xj ), make up of
a collection sub pc, Let P t denote an arbitrary path in

sub−pc, implying a b /∈ pt .

∵ a b ∈ T reepath(xi, xj ) and a b /∈ pt .
∴ T reepath(xi, xj )and pt are two different paths.
∵ T reepath(xi, xj ) ∪ pt constructs a circle Cir which

contains the edge a b .
∴Lemma1 2 ⇒ ∣∣a b

∣∣ ≤ max(Cir), and the longest
edge of Cir must locate in pt .

∴ max(pt) ≥ |a b|≡ max(T reepath(xi, xj ))

∵ pt denotes an arbitrary path in sub pc.
∴ ∀pt ∈ sub−pc, 
 max(pt) ≥ mx(T reepath(xi, xj ))

∵ ∀ph ∈ PC/sub−pc, | a b |∈ ph

∴ ∀ph ∈ PC/sub pc, max(ph) ≥ | a b |≡
max(T reepath(xi, xj ))

∴ max(T reepath(xi, xj )) ≤
min(max(path1), max(path2), · · · max(pathL))

∵ PC(xi, xj ) = {path1, path2, · · · pathL} denotes the
collection including all possible paths between xi and xj

inSDM .
∴ T reepath(xi, xj ) ∈ PC(xi, xj )

∴ max(T reepath(xi, xj )) ≥ min(max(path1),

max(path2), · · · max(pathL))

∴ max(T reepath(xi, xj )) ≡ min(max(path1),

max(path2), · · · max(pathL))

3.5.2 Proof 2 – equivalent problem

The demonstration process contains two parts:

1. The solution of the refined problem is a globally optimal
solution of the original problem under Constraint 1.

2. The solution of the refined problem is a globally optimal
solution of the original problem under Constraint 2.

Validation: The solution of the refined problem is a
globally optimal solution under Constraint 1.

Given a data set X = {x1, x2, . . . , xn}, it includes
k optimal regions, C = {c1, c2, . . . , ck}, |c1| +
|c2| . . . |ck| ≡ n, and SN = {sn1, sn2, . . . , snk}
denotes the corresponding k optimal medians such that
Ccost(sni, ci) = ∑

o∈ci

cost(sni, o) obtains the mini-

mum cost of Ci , and T cost (SN) obtains the mini-
mum total cost. Let Ncost(p)SN = min({z | z =
cost(o, p), o ∈ SN}) Suppose ∃ a and b, 
 cost(a, b) <

N cos t (a)SN ≡ Ncost (b)SN , Ncost(a)SN ≡ cost (sna, b),
and Ncost(b)SN ≡ cost (snb, b) where sna, snb ∈ SN ,
sna ∈ ca , snb ∈ cb, ca, cb ⊂ C. Then, a and
b must be classified into a same cluster according to
Constraint 1.

Because of Ncost(a)SN ≡ Ncost(b)SN , a

and b can be together classified into either ca

or cb. Firstly, let a and b be classified into ca .
By Theorem 1, max(T reepath(sna, b)) ≤ max
(T reepath(sna, a) ∪ T reepath(a, b)) Then, cost(sna, b)

≤ max(cost(sna, a), cost(a, b)) where cost(sna, b)

= max(T reepath(sna, b)) and max(cost(sna, a), cost
(a, b)) = max(T reepath(sna, a) ∪ T reepath(a, b)).
Due to cost(a, b) < Ncost(a)SN ≡ Ncost(b)SN ,
max(cost(sna, a), cost(a, b)) ≡ cost(sna, a) holds.
Then, cost(sna, b) ≤ max(cost(sna, a), cost(a, b)) ≡
cost(sna, a) ≡ Ncost(a)SN ≡ Ncost(b)SN , that
is, cost(sna, b) ≤ Ncost(b)SN holds. If other
nodes do not apply Constraint 1, then ∀o ∈ X/b,


 cost (sn∗, o) ≤ Ncost(o), where sn∗ is the given
server of o. So, Tcost(SN, C′) = ∑k

i=1 Ccost (sni, ci) ≤∑
p∈X Ncost(p)SN = Tcost(SN) where C′ denotes

a new partition after applying Constraint 1. Because
T cost (SN) obtains the minimum total cost on SN ,
Tcost(SN, C′) ≥ Tcost(SN) holds. So, Tcost(SN, C′) ≡
Tcost(SN) holds. Similarly, if a and b are classified into cb,
Tcost(SN, C′) ≡ Tcost(SN) also holds. So, the solution
of the refined problem is a globally optimal solution
under Constraint 1.

Validation: The solution of the refined problem is a
globally optimal solution under Constraint 2.

There are two arbitrary nodes pm, ql such that

Ncost (pm)SN ≡ cost(snp, pm)

< min({z |z=cost (sn, pm), sn ∈ SN/snp})

Ncost (ql)SN ≡ cost(snq, ql)

≡ min({z | z = cost (sn, ql) , sn ∈ SN/snq})
Let T reepath(xi, xj ) denote the path from xi to xj in a

minimum spanning tree, MST .
∵ All nodes are connected in MST .
∴ ∃T reepath(snp, pm) =

{ snp p1 , p1 p2 · · · , pm−1 pm }
∵

Ncost(pm)SN ≡ cost(snp, pm)

< min({z |z=cost(sn, pm), sn ∈ SN/snp})
∴ ∀snu ∈ SN/snp, cost(pj , pm) ≤ cost(snp, pm) <

cost(snu, pm), j ≤ m

∴ cost (snu, pm) > cost(pj , pm)

∵ cost(snu, pm) ≤ max(cost(snu, pj ), cost(pj , pm))

∴ cost(snu, pm) ≤ cost(snu, pj )

∵ T reepath(snp, pj ) ⊆ T reepath(snp, pm) and
Ncost(pm)SN ≡ cost(snp, pm)
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∴ cost(snp, pj ) ≤ cost(snp, pm) < cost(snu, pm)

∴ cost(snp, pj ) < cost(snu, pj )

∴ ∀snu ∈ SN/snp, 
 cost(snp, pj ) < cost(snu, pj )

∴ Ncost
(
pj

)
SN

≡ cost(snp, pj ) < min({z | z =
cost(sn, pj ), sn ∈ SN/snp}), j ≤ m

∴ ∀pj ∈ {p1, p2 · · · pm}, 
 Ncost(pj )SN ≡ cost(snp,

pj ) < min({z | z = cost(sn, pj ), sn ∈ SN/snp}), j ≤ m

∵ All nodes are connected in MST

∴ ∃T reepath(p′
m, ql) = { p′

m q1 , q1 q2 · · · ,

ql−1 ql }, where N cost (qi)SN ≡ cost(snq, qi) ≡ min({z |
z = cost(sn, qi), sn ∈ SN/snq}), i = 1, 2 · · · l, and

Ncost(p′
m)SN ≡ cost(snq, p′

m) < min({z | z =
cost(sn, p′

m), sn ∈ SN/snq}).
∴ ∃T reepath(snq, ql) = { snq p′

1 , p′
1 p′

2 · · · ,

p′
m−1 p′

m , p′
m q1 , q1 q2 · · · , ql−1 ql }∀Ncost(o)SN

≡ cost(snp, o), o ∈ V (T reepath(snq, ql))

∴ Classify {p′
1, p

′
2 · · · , p′

m, q1, q2 · · · ql} into snq ’s
cluster. Meanwhile, it is obvious that they locate in
a sub-tree of MST (because there exists the path
T reepath(p′

m, ql)).
∴ Similarly, each node locates in the respective sub-tree

sti .
∵ For each o ∈ V (sti), Ncost(o) ≡ cost(sni, o) holds.
∴ Ccost(sni, V (sti)) ≡ ∑

o∈V (sti )

Ncost(o)

∴ Similarly, for each sub-tree sti , Ccost(sni, V (sti)) ≡∑
o∈V (sti )

Ncost(o) holds.

∴ T cost(SN, {V (st1), V (st2) · · · V (stk)}) =
k∑

i=1
Ccost

(sni, ci) ≡ ∑
o∈X

Ncost(o) = T cost(SN)

∴ The solution of the refined problem is a globally
optimal solution under Constraint 2.

∴ The solution of the refined problem is globally
optimal under Constraints 1 and 2.

3.5.3 Proof 3 – Theorem 2

The process of validating the globally optimal medians
includes 2 key steps:

1. The first server s1 is an optimal median (Correspond to
sn1 ).

2. The first i servers are i optimal medians (Correspond to
{sn1, sn2 · · · sni} ⊆ SN).

Validation: The first server s1 is an optimal median
(sn1). Before demonstration, the partitioning rules are given
as follows:

1. Given a set of service nodes (servers), SN =
{sn1, sn2, . . . snk}, each node selects the lowest-cost

service node to obtain service, that is, Ncost(p)SN =
min({z | z = cost(o, p), o ∈ SN})

2. Each cluster must be subjected to Constraints 1 and 2.

Lemma 3 There is a set of arbitrary servers, SN =
{sn1, sn2, . . . snk} and let Ncost(p)SN = min({z | z =
cost(o, p), o ∈ SN}) denote the cost of p. Then, each
node selects the respective lowest-cost server to obtain
service, and all nodes are classified into k clusters C =
{c1, c2, . . . ck} according to SN . If the partition is subject
to Constraints 1 and 2, then

max(cost(sni, b1), cost(snj , b2)) ≤ cost(b1, b2)

holds, where sni, snj ∈ SN , sni, b1 ∈ ci , sj , b2 ∈ cj ,
V (T reepath (b1, b2)) / {b1, b2} X/(ci∪cj ), and T reepath

(b1, b2) denotes the MST path from xi to xj .

Notice: V (T reepath (b1, b2)) / {b1, b2}X/(ci ∪ cj )

means that b1 and b2 denote two boundary nodes of ci and
cj , respectively. V (G) denotes the node collection of G.

Proof of Lemma 3 As for the demonstration of Lemma 3,
Fig. 4 gives the necessary details. All edges are the edges
of an arbitrary minimum spanning tree. Each circle denotes
a cluster. Because each node always selects the lowest-
cost server to obtain service, each server would cover
a continuous region, denoted by a circle in Fig. 4. The
demonstration is given as follows:

∵ sni, b1 ∈ ci , snj , b2 ∈ cj .

Fig. 4 Constraints
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∴ cost(snj , b2) ≤ cost(sni, b2) = max(cost(sni,

b1), cost(b1, b2)), and cost(sni, b1) ≤ cost(snj , b1) =
max(cost(snj , b2), cost(b1, b2)).

∴ max(cost(sni, b1), cost(snj , b2)) ≤ max(cost(snj ,

b2), cost(b1, b2)), and max(cost(sni, b1), cost(snj , b2)) ≤
max(cost(sni, b1), cost(b1, b2)).

∴
max(cost(sni, b1), cost(snj , b2)) ≤
min(max(cost(sni, b1), cost(b1, b2)),

max(cost(snj , b2), cost(b1, b2)))

.

∵

min(max(cost(sni, b1), cost(b1, b2)),

max(cost(snj , b2), cost(b1, b2)))

= min(max(cost(sni, b1), cost(snj , b2),

cost(b1, b2)),

max(min cost(sni, b1), cost(snj , b2)), cost(b1, b2)))

.

∴ max(cost(sni, b1), cost(snj , b2)) ≤ max(min(cost
(sni, b1), cost(snj , b2)), cost(b1, b2)).

∴

max(cost(sni, b1), cost(snj , b2))

≤ min(cost(sni, b1), cost(snj , b2)) (1)

or

max(cost(sni, b1), cost(snj , b2)) ≤ cost(b1, b2) (2)

∵ (1) ⇒ cost (sini , b1) ≡ cost
(
snj , b2

)
, and sni, b1 ∈

ci , snj , b2 ∈ cj .
∴ Ncost(b1)SN ≡ Ncost(b2)SN holds. (Due to each

node selects the respective lowest-cost server to obtain
service, cost(sni, b1) ≡ Ncost(b1)SN and cost(snj , b2) ≡
Ncost(b2)SN .).

∴ Constraint 1 ⇒ max(cost(sni , b1), cost(snj , b2)) ≤
cost (b1, b2).

∴ (1) and (2) ⇒ max(cost(sni, b1), cost(snj , b2)) ≤
cost (b1, b2).

∴ Lemma 3 holds.

Lemma 4 There is a set of optimal medians
SN = {sn1, sn2 · · · snk} which minimizes f (SN) =
T cost(SN), |SN |≡ k. Meanwhile, according to the parti-
tioning rules above, all nodes are classified into k optimal
clusters C = {c1, c2 · · · ck}. The first server s1 is one of the
k optimal medians, that is,

Ccost(sn1, c1) ≡ Ccost(s1, c1), sn1, s1 ∈ c1

Proof of Lemma 4 Given a data set X = {x1, x2, . . . , xn}
which contains k optimal clusters—C = {c1, c2, . . . , ck},
SDM denotes the symmetric dissimilarity matrix of X

and MST is a minimum spanning tree of SDM . Let
T reepath(xi, xj ) denote the edge collection of the MST

path from xi to xj . V (G) denotes the node collection of G.
The optimal cluster collection C = {c1, c2 · · · ck} is subject
to |c1|+| c2|. . . |ck|≡ n,

and the optimal median collection is SN =
{sn1, sn2, . . . , snk}. According to Theorem 2, the server
collection is obtained, Sk = {s1, s2 · · · sk}. There is a path
T reepath (b1, b2) (b1 ∈ c1, b2 ∈ c2)which does not con-
tain any o ∈ (c1 ∪ c2)/{b1, b2} (see Constraint 2). Others
details are shown in Fig. 5. All edges of Fig. 5 are the edges
of MST and each circle denotes an optimal cluster.

Suppose the first server s1 locates in c1, and the
optimal median of c1 is sn1. If Ccost(sn1, c1) ≡
Ccost(s1, c1) holds, s1 is an optimal median due
to T cost({sn1, sn2, sn3 · · · snk}, C) ≡ T cost({s1, sn2,

sn3 · · · snk}, C), where {sn1, sn2, sn3 · · · snk} is a set of
optimal medians and C is the corresponding optimal
partition.

∵ T reepath(s1, xj ) = T reepath(s1, b1) ∪ T reepath

(b1, b2) ∪ T reepath(b2, xj ), xj ∈ c2;
T reepath(sn1, xj ) = T reepath(sn1, b1) ∪ T reepath(b1,

b2) ∪ T reepath(b2, xj ), xj ∈ c2.
∴ cost(s1, xj ) = max(cost(s1, b1), cost(b1, b2),

cost(b2, xj )), xj ∈ c2 and cost(sn1, xj ) = max(cost(sn1,

b1), cost(b1, b2), cost(b2, xj )), xj ∈ c2

∵Lemma 3 ⇒ cost (b1, b2) ≥ cost (sn1, b1)

∴ cost(sn1, xj ) = max(cost(b1, b2), cost(b2, xj )), xj ∈
c2

∵ max(cost(b1, b2), cost(b2, xj )) ≤ max(cost(s1, b1),

cost(b1, b2), cost(b2, xj )) = cost(s1, xj )

∴ cost(sn1, xj ) ≤ cost(s1, xj ), xj ∈ c2

∴ ∀xj ∈ c2cost(sn1, xj ) ≤ cost(s1, xj )

∴ Ccost(sn1, c) ≤ Ccost(s1, c2)

Fig. 5 Constraints
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∴ Similarly, ∀c ∈ C/ {c1} , 
 Ccost (sn1, c) ≤
Ccost (s1, c)

∴
∑

o∈X/c1

cost(sn1, o) ≤ ∑
o∈X/c1

cost(s1, o)

∵ Ccost(sn1, c1) ≤ Ccost(s1, c1) (because sn1 is the
medians of c1)

∴
T cost(sn1) = Ccost(sn1, c1) +

∑
o∈X/c1

cost(sn1, o)

≤ Ccost(s1, c1)

+
∑

o∈X/c1

cost(s1, o) = T cost(s1) (3)

∵ When all nodes are classified into one cluster, S1

minimizes f (SN) = T cost(SN), |SN |≡ 1.
∴

T cost(sn1) ≥ T cost(s1) (4)

∴ (3) and (4) ⇒ Tcost (sn1) ≡ Tcost (s1).
∵
Ccost(sn1, c1) + ∑

o∈X/c1

cost(sn1, o) = T cost(sn1) ≡
T cost(s1) = Ccost(s1, c1) + ∑

o∈X/c1

cost(s1, o);

Ccost(sn1, c1) ≤ Ccost(s1, c1);
∑

o∈X/c1

cost(sn1, o) ≤
∑

o∈X/c1

cost(s1, o)

∴
∑

o∈X/c1
cost(sn1, o) ≡ ∑

o∈X/c1
cost(s1, o) and

Ccost(sn1, c1) ≡ Ccost(s1, c1)

∴ T cost(SN ′, C) ≡ T cost(SN, C) ≡ T cost(SN) holds
where SN = {sn1, sn2, sn3 · · · snk} denotes the optimal
median collection, C is the optimal partition, and SN ′ =
{s1, sn2, sn3 · · · snk}.

∴ s1 is an optimal median.
Validation: The first i servers are optimal medians, that

is, {s1, s2 · · · si} ⊆ SN = {sn1, sn2 · · · snk}, i ≤ k, where
SN is a set of optimal medians.

The rules of partitioning k regions include two items:

1. Each node selects the lowest-cost server, that is
Ncost(p)Sk

= min ({z | z = cost(o, p), o ∈ Sk})
denotes the cost of p, where Sk = {s1, s2 · · · sk} is the
first k servers obtained by Theorem 2.

2. Each cluster is subjected to Constraints 1 and 2.

There is a set of optimal medians SN = {sn1, sn2 · · · snk}
such that T cost(SN) obtains the minimum total cost.Si =
{s1, s2 · · · si} denotes the first i servers. Next, let’s
demonstrate that T cost({s1, s2 · · · si, sni+1 · · · snk}) ≡
T cost(SN) holds.

Proof of Theorem 2 Given a data set X = {x1, x2, . . . , xn}
which contains k optimal clusters C = {c1, c2, . . . , ck}
(|c1|+| c2|. . . |ck|≡ n), let SDM denote the symmetric

dissimilarity matrix of X and MST denote a minimum
spanning tree of SDM . The optimal median collection
is denoted by SN = {sn1, sn2, . . . , snk}. Theorem 2
gives the first i servers Si = {s1, s2 · · · si}. According
to the first i servers and the partition rules above,
we would get a partition SCi = {sc1, sc2 · · · sci}
(|sc1| + |sc2| . . . |sci | ≡ n). Now, let us demonstrate the
first i servers are optimal (by inductive method), that is,
T cost({s1, s2 · · · si, sni+1 · · · snk}) ≡ T cost(SN).

When i = 1
∵ Lemma 4⇒The first 1 server is one of the k optimal

medians.
∴The first iservers are optimal medians.
When i > 1

Suppose the first i − 1 servers are optimal medi-
ans, and then we can replace {sn1, sn2 · · · sni−1} with
{s1, s2 · · · si−1}. Let si ∈ ci denote the i-th server, and then
we have Si = {sn1, sn2 · · · sni−1, si}. As for the first i

servers, there is a partition SCi according to the partition
rules above, SCi = {sc1, sc2 · · · sci} |sc1|+|sc2| . . . |sci | ≡
n. Let snj ∈ cj denote the server of scj , j < i, and sni ∈ ci

denote an optimal median of ci . In Fig. 6, all edges are
the edges of MST . The first i-1 servers cover the region A
(SCi/sci) and si serves the other one, B ( = sci ). The details
are shown in Fig. 6.

The demonstration includes 2 steps:

1. Demonstrate that each optimal cluster in regionB is
whole. To be exact, if B contains a part (e.g. cb) of
an optimal cluster cd instead of the whole cd , C′ =
{c1, c2 · · · cd/cb, · · · cu ∪ cb, · · · ck} is also an optimal
partition (imply, T cost(SN, C) ≡ T cost(SN, C′)

Fig. 6 The first i optimal medians
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where C = {c1, c2 · · · cd · · · cu · · · ck} denotes an
optimal partition and SN is the corresponding optimal
median collection.).

2. Demonstrate that si is an optimal median.

According to Constraints 1 and 2, if A and B jointly split
one of the k optimal clusters, the details would be shown as

Fig. 6. Let cd = ca ∪ cb ∪ cc, b1 ∈ ca, b2 ∈ cb, b1 b2 ∈
MST , si ∈ ci , (V (T reepath(b1, b2))/{b1, b2}) ⊆ X/(ci ∪
cj ). cu is the most similar cluster of ca in scj , ca, cj , cu ⊆
scj , and cv is the most similar cluster of cb, cb, ci, cv ⊆ sci .

Notice: It is unknown that whether ci is cd . We would
discuss the different cases in the following demonstration.

(ci �= cd )
∵ In the partition SCi , snj denotes the server of scj and

si denotes the server of sci ; b1 ∈ ca ⊆ scj , b2 ∈ cb ⊆ sci ,
(V (T reepath(b1, b2))/{b1, b2}) ⊆ X/(ci ∪ cj ).

∴ Lemma 3 ⇒ max(cost(snj , b1), cost(si , b2)) ≤
cost(b1, b2)

∵ Lemma 3 ⇒ cost(snv, b6) ≤ cost(b5, b6) and
cost(snu, b4) ≤ cost(b3, b4)

∴ cost(snv, b2) ≤ cost(b2, b6) and cost(snu, b1) ≤
cost(b1, b4)

∵ T reepath(si, b2) = T reepath(si, b6) ∪ T reepath

(b2, b6), T reepath(snj , b1) = T reepath(snj , b4) ∪
T reepath(b1, b4)

∴ cost(b2, b6) ≤ cost(si, b2); cost(b1, b4) ≤ cost(snj ,

b1)

∴ cost(snv, b2) ≤ cost(si , b2); cost(snu, b1) ≤
cost(snj , b1)

∴ max(cost(snu, b1), cost(snv, b2)) ≤ max(cost(snj ,

b1), cost(si , b2))

∴

max(cost(snu, b1), cost(snv, b2)) ≤ cost(b1, b2) (5)

∵
T reepath(snu, b1) = T reepath(snu, b3) ∪ T reepath

(b1, b3), T reepath(snv, b2) = T reepath(snv, b5) ∪
T reepath(b2, b5)

∴ cost(snu, b1) ≥ cost(snu, b3); cost(snv, b2) ≥ cost
(snv, b5)

∴

max(cost(snu, b3), cost(snv, b5)) ≤ cost(b3, b5) (6)

∵ Lemma 3 ⇒ cost(snd, b5) ≤ cost(b5, b6), cost
(snd, b3) ≤ cost(b3, b4)

∴ max(cost(snd, b3), cost(snd, b5)) ≤ max(cost(b3,

b4), cost(b5, b6))

∵ T reepath(b3, b5) ⊆ (T reepath(snd, b3)∪T reepath

(snd, b5))

∴ max(cost(snd, b3), cost(snd, b5)) ≥ cost(b3, b5)

∴ cost(b3, b5) ≤ max(cost(b3, b4), cost(b5, b6))

∵

T reepath(snu, b3) = T reepath(snu, b4)

∪ T reepath(b3, b4)

T reepath(snv, b5) = T reepath(snv, b6)

∪ T reepath(b5, b6)

∴

max(cost(snu, b3), cost(snv, b5))

≥ max(cost(b3, b4), cost(b5, b6)) ≥ cost(b3, b5) (7)

∴ (6) and (7)⇒ max(cost(snu, b3), cost(snv, b5)) ≡
cost(b3, b5)

∵

T reepath(snu, b1) = T reepath(snu, b3)

∪ T reepath(b1, b3)

T reepath(snv, b2) = T reepath(snv, b5)

∪ T reepath(b2, b5)

∴

(5) ⇒ max(cost(b3, b1), cost(b5, b2)) ≤ cost(b1, b2) (8)

∴ max(cost(b3, b1), cost(b5, b2), cost(b1, b2)) ≤
cost(b1, b2)

∵ T reepath(b3, b5) = T reepath(b3, b1) ∪ T reepath

(b1, b2) ∪ T reepath(b2, b5)

∴ cost(b3, b5) = max(cost(b3, b1), cost(b5, b2),

cost(b1, b2)) ≤ cost(b1, b2)

∵ cost(b3, b5) ≥ cost(b1, b2) T reepath(b1, b2) ⊂
T reepath(b3, b5)

∴ cost(b3, b5) ≡ cost(b1, b2)

∵
Lemma 3 ⇒ max(cost(snd, b3), cost(snd, b5)) ≤

max(cost(b3, b4), cost(b5, b6));
and T reepath(b3, b5) ⊆ (T reepath(snd, b3) ∪

T reepath(snd, b5)) ⇒ cost(b3, b5) ≤ max(cost(snd, b3),

cost(snd, b5)).
∴ cost(b3, b5) ≤ max(cost(b3, b4), cost(b5, b6))

∴

(7) ⇒ max(cost(b3, b4), cost(b5, b6)) ≡ cost(b1, b2) (9)

(Notice: There exist two cases: 1. T reepath(snd, b3)

passes by b1 b2 ; 2. T reepath(snd, b5) passes by b1 b2 . It

is obvious that the two paths cannot pass by b1 b2 at the
same time. So, we respectively talk about the two cases in
the following contents.)

∵ Case 1: T reepath(snd, b3) passes by b1 b2

∴ cost(snd, b3) ≥ cost(b1, b2)

∵ Lemma 3 ⇒ cost(b4, b3) ≥ cost(snd, b3)

∴ cost(b4, b3) ≥ cost(b1, b2)

∵ (9) ⇒ cost(b4, b3) ≤ cost(b1, b2)
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∴

cost(b4, b3) ≡ cost(b1, b2) (10)

∵ Given a node collection V (T reepath(b3, b1)) =
{b3, m1, m2 · · · mt, b1}, a node o ∈ ca is subject to
V (T reepath(b1, b3)) ∩ (V (T reepath(o, mj ))/mj ) = ∅,
j ≤ t , we have

T reepath(snd, o) = T reepath(snd, b1)

∪ T reepath(b1, mj )

∪ T reepath(mj , o))

T reepath(snu, o) = T reepath(snu, b3)

∪ T reepath(b3, mj )

∪ T reepath(mj , o)).

∴

cost(snd, o) = max(cost(snd, b1), cost(b1, mj ), cost(mj , o))

cost(snu, o) = max(cost(snu, b3), cost(b3, mj ), cost(mj , o))

∵ Case 1 ⇒ T reepath(b1, b2) ⊂ T reepath(snd, b1)

∴ max(cost(snd, b1), cost(b1, mj )) ≥ cost(b1, b2)

∵ Lemma 3 ⇒ cost(b4, b3) ≥ cost(snd, b3) ≥
cost(snd, mj )

∴ (10) ⇒ cost(b1, b2) ≥ cost(snd, mj ) =
max(cost(snd, b1), cost(b1, mj ))

∴ max(cost(snd, b1), cost(b1, mj )) ≡ cost(b1, b2)

∴ cost(snd, o) = max(cost(b1, b2), cost(mj , o))

∵ Lemma 3 ⇒ cost(snu, b4) ≤ cost(b3, b4)

∴ (10) ⇒ cost(snu, b4) ≤ cost(b1, b2)

∵ (10) ⇒ cost(b1, b2) ≥ cost(b1, b3) ≥ cost(b3, mj )

∴ max(cost(snu, b4), cost(b3, b4), cost(b3, mj )) ≡
cost(b1, b2)

∵ T reepath(snu, b3) = T reepath(snu, b4)∪T reepath

(b3, b4)

∴ max(cost(snu, b3), cost(b3, mj )) ≡ cost(b1, b2)

∴ cost(snu, o) = max(cost(b1, b2), cost(mj , o))

∴ cost(snu, o) = max(cost(b1, b2), cost(mj , o))

∴ cost(snd, o) = max(cost(b1, b2), cost(mj , o)) ≡
cost(snu, o)

∴ ∀o ∈ ca, 
 cost (snu, o) ≡ cost (snd, o)

∴
T cost(SN, C′) ≡ T cost(SN) holds, where C′ =

{c1, c2, cd/ca, cd+1, cd+2, · · · cu ∪ ca, cu+1, cu+2, ck}.
∴ C′ = {c1, c2, cd/ca, cd+1, cd+2, · · · cu ∪ ca, cu+1,

cu+2, ck} is an optimal partition.
∴ The clusters which B contains are whole optimal

clusters on Case 1.
∵ Case 2: T reepath(snd, b5) passes by b1 b2 .
∴ Similarly, C′ = {c1, c2, cd/cb, cd+1, cd+2, · · · cv ∪

cb, cu+1, cu+2, ck} is an optimal partition.
∴ Each optimal cluster in B is whole on Case 2.

∴ Each optimal cluster which B contains is whole when
either T reepath(snd, b3) or T reepath(snd, b5) passes by

b1 b2 .
∴ Each optimal cluster in B is whole when cd �= ci .
ci = cd

When cd(= cv) = ci happens, the related demon-
stration is given as follows. Similarly, there exist

two cases: 1T reepath(snd, b3). passes by b1 b2; 2.

T reepath(snd, b5) passes by b1 b2. It is obvious that the

two paths cannot pass by b1 b2 at the same time. So,
we respectively talk about the two cases in the following
contents.

∵ Case 1: T reepath(snd, b3) passes by b1 b2.
∴ cost(si , b3) = max(cost(si , b2), cost(b1, b2),

cost(b1, b3)); cost(b1, b2) ≤ cost(si , b3)

∵ Lemma 3 ⇒ cost(si, b3) ≤ cost(b3, b4); cost(snj ,

b1) ≤ cost(b1, b2)

∴ cost(b1, b2) ≤ cost(si , b3) ≤ cost(b3, b4); cost(b3, b4)

≤ cost(snj , b1) ≤ cost(b1, b2)

∴ cost(b3, b4) ≡ cost(b1, b2); cost(b3, b1) ≤ cost(b1,

b2)

∴ Similarly, ∀o ∈ ca, 
 cost (snu, o) ≡ cost (snd, o) ≡
Ncost(o)SN .

∴
T cost(SN, C′) ≡ T cost(SN) holds, where C′ =

{c1, c2, cd/ca, cd+1, cd+2, · · · cu ∪ ca, cu+1, cu+2, ck}.
∴ Each optimal cluster in B is whole on Case 1.
∵ SCi is obtained according to the first i servers. Then,

the partition is subject to Ncost(o)Si
≡ cost(s∗, o) where

o ∈ X is an arbitrary node and s∗ ∈ Si denotes the given
server of o.

∴ T cost(Si) ≡ (
∑

cj ∈SCi/sci

Ccost(snj , cj )) + Ccost(si ,

sci) where Si = {sn1, sn2 · · · sni−1, si}
∴ T cost(Si) ≡ T cost(Si, SCi)

∵ Ncost(o)Si
≡ cost(s∗, o)

∴
Ccost(si , sci) = ∑

o∈sci

Ncost(o)Si
(= Ccost(Si, sci) =

∑
o∈sci

cost(Si, o)) (where in let cost(Si, o) = Ncost(o)Si
.).

∴ T cost(Si, SCi) ≡ T cost({sn1, sn2 · · · sni−1, Si},
SCi)

∵ Each o ∈ ca ( ∈ scj ) is subjected to cost(Si, o) =
Ncost(o)Si

≡ cost(s∗, o) where s∗ ∈ Si denotes the given
server of o.

∴ T cost({sn1, sn2 · · · sni−1, Si}, SCi) ≡ T cost ({sn1,

sn2 · · · sni−1, Si}, SC′
i ) where SC′

i = {sc1, sc2 · · ·
scj /ca · · · sci ∪ ca}

∴ Similarly,
T cost({sn1, sn2 · · · sni−1, Si}, SCi) ≡ T cost ({sn1,

sn2 · · · sni−1, Si}, SC′
i ) where SC′

i = {sc1, sc2 · · ·
scj /ca, · · · cd}. (cd ≡ ci = sci ∪ ca ∪ · · · , sci = cb).
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∴ T cost({sn1, sn2 · · · sni−1, Si}, SC′
i ) ≡ T cost(Si,

SCi)

∵ T cost(Si) ≤ T cost((Si ∪ snd)/si}) where Si = {sn1,

sn2 · · · sni−1, si}, and T cost({sn1, sn2 · · · sni−1, snd}) ≤
T cost({sn1, sn2 · · · sni−1, snd}, SC′

i ) (due to SC′
i/cd is

subject to Ncost(o)Si
≡ cost(s∗, o) and snd serves cd .)

∴ T cost(Si) ≤ T cost({sn1, sn2 · · · sni−1, snd}, SC′
i )

∴ T cost({sn1, sn2 · · · sni−1, Si}, SC′
i ) ≤ T cost({sn1,

sn2 · · · sni−1, snd}, SC′
i )

∴
Ccost(Si, cd) ≤ Ccost(snd, cd) (11)

∵ SN denotes the optimal medians.
∴

T cost(SN) ≤ T cost(SN ′) (12)

where SN ′ = {sn1, sn2 · · · sni−1, si , sni+1 · · · snk}.
∵ T cost(SN ′) is subject to Ncost(o)SN ′ ≡ cost(s∗, o),

where s∗ denotes the given server, and si ∈ cd .
∴ For each o ∈ X/cd , Ncost(o)SN ′ ≡ cost(s∗, o) ≡

Ncost(o)SN and s∗ �= si .
(According to Lemma 3, o is always closer to its server

than other cluster’s node.)
∴

∑
o∈X/cd

Ncost(o)SN ′ ≡ ∑
o∈X/cd

cost(s∗, o) ≡
∑

o∈X/cd

Ncost(o)SN where s∗ �= si is the given server of o.

∴ (12)⇒ ∑
o∈cd

Ncost(o)SN ≤ ∑
o∈cd

Ncost(o)SN ′ .

∵ Si ⊆ SN ′.
∴

∑
o∈cd

Ncost(o)SN ′ ≤ ∑
o∈cd

Ncost(o)Si
.

∴ Ccost(snd, cd) = ∑
o∈cd

Ncost(o)SN ≤
∑

o∈cd

Ncost(o)Si
= Ccost(Si, cd).

∴ (11) ⇒ Ccost(snd, cd) ≡ Ccost(Si, cd).
∴

T cost(SN, C) ≡ T cost({sn1, sn2 · · · snd−1, Si , snd+1 · · · snk}, C)

(13)

where SN = {sn1, sn2 · · · snk} is an optimal median
collection and C = {c1, c2 · · · ck} is the corresponding
partition.

∵ T cost({sn1, sn2 · · · snd−1, Si, snd+1 · · · snk}, C) ≥
T cost(SN ′, C) (Ccost(Si, cd) ≥ Ccost(SN ′, cd) due to
Si ⊂ SN ′ and SN ′ = {sn1, sn2 · · · sni−1, si , sni+1 · · · snk}
); and T cost(SN ′, C) ≥ T cost(SN ′).)

∴ T cost({sn1, sn2 · · · snd−1, Si, snd+1 · · · snk}, C) ≥
T cost(SN ′)

∴ (13)⇒ T cost(SN, C) ≥ T cost(SN ′)
∵ SN denotes optimal medians, and C is the correspond-

ing partition.
∴ T cost(SN, C) ≡ T cost(SN) ≤ T cost(SN ′)
∴ T cost(SN) ≡ T cost(SN, C) ≡ T cost(SN ′)

∴ SN ′ = {sn1, sn2 · · · snd−1, si , snd+1 · · · snk} is an
optimal median collection.

∴ si is an optimal median on Case 2.
∴ Each optimal cluster in B is whole or si is an optimal

median when cd = ci .
∵ It is demonstrated that each optimal cluster in B is

whole when cd �= ci .
∴ Each optimal cluster in B is whole or si is an optimal

median on any case.
∵ (When) B contains one or several whole optimal

clusters. (Suppose B has w optimal clusters and the w

optimal medians are {snB1, snB2 · · · snBw} ⊂ SN, w < k )
∴ Lemma 4 ⇒ si is one of the w optimal medians when

divide B into w optimal regions.
∴ si ∈ {snB1, snB2 · · · snBw} when B contains one or

several whole optimal clusters.
∴ si is one of the k optimal medians on any case.
∵ The first i − 1 servers are optimal medians (the

supposition of inductive method), and si is also an optimal
median.

∴ The first i servers are optimal medians, that is, Sk =
{s1, s2...sk} minimizes f (SN) = T cost(SN), |SN |≡ k .

∴ Theorem 2 holds.

4 Clustering algorithm

4.1 Connectivity-based optimal partitioningmodel

Given a data set X = {x1, x2, . . . , xn}, k optimal medians
Sk = {s1, s2...sk} can be solved according to 2. According
to the k optimal medians Sk = {s1, s2...sk}, partition
X = {x1, x2, . . . , xn} into k clusters C = {c1, c2 · · · ck}.
The whole process above is an optimal partitioning model
(OPM) that minimizes the total cost of C = {c1, c2 · · · ck}.

The algorithm is as follows:
Step 1(Building the tree of X): Build the minimum

spanning tree(MST) according to the Prim algorithm, the
Krusakl algorithm or others.

Step 2(Computing the cost function of X): According
to Algorithm 1 and MST, the cost function CF =[
cost

(
xi, xj

)]
n×n

is obtained;
Step 3(Solving K optimal medians): According to

Theorem 2 and CF = [
cost

(
xi, xj

)]
n×n

, the optimal
medians Sk = {s1, s2...sk} are obtained;

Step 4(Connectivity-based clustering): Each node p

selects the median with the smallest cost(connectivity) for
clustering (Ncost(p)Sk

= min({z | z = cost(o, p), o ∈
Sk})). Partitioning X = {x1, x2, . . . , xn} into k clusters
C = {c1, c2 · · · ck} according to Sk = {s1, s2...sk}, and such
that the total cost is minimized. Each node always selects
the lowest-cost server to obtain service; if a given node has
a unique lowest-cost server, then the node and its server are
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classified into a same cluster; and If a given node has at least
two lowest-cost servers, then the best one is determined by
the MST built from the given node.

The detailed algorithm is described as follows:
According to the number of the lowest-cost servers of

each node, all nodes are divided into the following types.
(1) Ncost(x) ≡ cost (sni, x) < min({z | z =

cost(o, x), o ∈ SN/sni}), that is, x only has one optimal
server;

(2) Ncost(x) ≡ cost (sni, x) ≡ min({z | z =
cost(o, x), o ∈ SN/sni}), that is, x has at least two optimal
servers.

The first ‘for’ loop groups (1) into the corresponding
clusters; and the second ‘for’ loop deals with (2). In the
second ‘for’ loop, the s tree is built by the Prim algorithm,
and the s tree stops if a newly merged node has been
assigned a cluster label ‘i’ (Line 9). Next, all nodes of the
s tree are classified into the i-th cluster (Line 10). Finally,
we get a partition, C = {c1, c2 · · · ck}, where ci is served by
si .

Algorithm 2 OPM algorithm.

Example: Give a data set X including 2 (c1, c2), clusters
an arbitrary minimum spanning tree (MST ) of X is shown
in Fig. 7(1). Suppose the uniquely optimal server of u is
s1 and o has two lowest-cost servers (medians), s1 and
s2. Given that the uniquely optimal server of u is s1, u

is classified into cluster c1 in the first ‘for’ loop, that is,

classlb(u) = 1. Meanwhile, the classlb of o, p, and q nodes
are 0 in the first ‘for’ loop (see Fig. 7(2)). With regard to o,
the second ‘for’ loop build a minimum spanning tree s tree

according to the Prim algorithm and then assign a suitable
cluster label. The s tree starts from o and stop merging
other nodes if the newly-merged node has been assigned
a cluster label. Since u has been assigned the cluster label
‘1’, the s tree must stop after merging u. Then, a sub-
tree including o, q, p and u is obtained. Finally, o, q and
p are assigned the cluster label classlb(u), that is, o, q,
p are classified into u′s cluster in the second ‘for’ loop
(see Fig. 7(3)).

The current partitioning algorithms derive from two
clustering models: the k-means and k-medoids models.
The representative algorithms are k-means algorithm
and Partitioning Around Mediods (PAM). In fact, these
algorithms are not the complete mappings of their models.
Considering those models are NP-hard problems, the
corresponding clustering algorithms cannot guarantee that
their clustering results minimize the total cost functions. In
other words, the current algorithms are incapable to ensure
the optimal clustering result in theory. On the contrary, our
algorithm obtains the optimal partition. On the one hand,
the partition minimizes the total cost function; on the other
hand, it is subjected to Constraints 1 and 2 (see Proof 4).
Hence, our algorithm is a perfect mapping of the equivalent
k-median problem and guarantees that the final partition is
theoretically optimal.

The first ‘for’ loop means O (k∗n) time in the OPM
algorithm. With respect to the second ‘for’, the running time
is less than O

(
n2

)
. The time of building a heap is O(n). If

m (< n) nodes is not grouped in the first ‘for’, the total time
of building heaps is at most O (n∗m) in the Line 9. Since
the input MST is a minimum spanning tree, the number of
each node’s edges is O(1). Then, the total time of modifying
heaps is O(m ∗ lg(n)). In general, only a few of the m nodes
need to build a heap, implying the total time of building
heaps in the best case is O(n). Hence, the second ‘for’ costs
O (n + m∗ lg(n)) time (The time complexity in the worst
case is O (n∗m). Thus, the running time of the proposed
algorithm is O (k∗n + m∗ lg(n)).

In Table 1, the time complexity of the four steps
corresponding to the entire algorithm process is shown. The
step3 has the highest time complexity and determines the
overall time O

(
k∗n2

)
.

4.2 Validate theminimum total cost

Generally, heuristic methods are incapable to find the
optimal solution. Hence, readers may doubt that the k

optimal servers do not necessarily minimize the total cost.
Therefore, in addition to the theoretical demonstration, we
conduct actual experiments to verify the minimum total
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Fig. 7 Example

cost. SN ′ = arg min
SN,|SN |≡k

T cost(SN) can be obtained by

using the exhaustion method. Then, the minimum total cost
T cost(Sk, C) can be verified by computing T costK =
T cost(SN ′) (Algorithm 3) .

The minimum total cost can be computed by the
exhaustion algorithm and then our algorithm can be verified.
The validation process is a NPC problem and the running
time is O

(
k∗Ck

n

)
. Hence, the validation experiments cannot

be carried out when the scale of a given data set and k are
very large.

Algorithm 3 Exhaustion algorithm.

4.3 Proof 4 – Algorithm

Lemma 5 There are 3 nodes o, p, q such that
max(T reepath(o, p)) < max(T reepath(o, q)). Then, in

the process of building a minimum spanning tree from o, p
would be earlier merged into the tree than q.

Proof of Lemma 5 According to Lemma 3, max(T reepath

(a, b)) keeps the same in different minimum spanning trees.
Hence, max(T reepath(a, b)) always denotes the weight of
the longest edge of T reepath(a, b) .

According to the Prim algorithm, we can build a mini-
mum spanning tree MST from o. Let G = T reepath(o,

q) ∪ T reepath (o, p) where T reepath (o, q) MST and
T reepath (o, p) MST . In G, we build a new minimum
spanning tree from o according to the Prim algorithm.
Because max(T reepath(o, p)) < max(T reepath(o, q))

holds, the longest edge of T reepath(o, p) is shorter than
T reepath(o, p)′s longest edge. The Prim algorithm always
use a short edge to determine the next merged node, which
is not longer than T reepath(o, p)′s longest edge. Hence,
o and q would be connected before selecting ’s longest
edge. Similarly, in the process of constructing MST , o and
q has been connected before selecting T reepath(o, p)′s
longest edge. So, p would be earlier merged into MST

than q.

Proof of Algorithm 2 Validation: On the one hand, the
final result must be subject to Constraints 1 and 2; on the
other hand, the final result must minimize the total cost
function.

In the proposed algorithm, the first type of nodes (the first
‘for’ loop) is the special case of the second type of nodes in

Table 1 Time complexity
Best Worst Average

Step1 O (E + n log n) O
(
n2

)
O

(
n2

)

Step2 O
(
n2

)
O

(
n2

)
O

(
n2

)

Step3 O
(
k∗n2

)
O

(
k∗n2

)
O

(
k∗n2

)

Step4 O (k∗n) O (k∗n + m∗n) O (k∗n + m∗ lg(n))
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essence. Therefore, we only validate the second ‘for’ loop
is subject to Constraints 1 and 2.

Given two nodes xi , xj ∈ cu, an optimal median,
snu ∈ cu, suppose cost(xi, xj ) < Ncost(xi)SN ≡
Ncost(xj )SN . Then, according to the proposed algorithm,
we would built a minimum spanning tree from xi (or
xj ) Due to cost(xi, xj ) < Ncost(xi)SN ≡ cost(snu, xi),
max(T reepath(xi, xj )) < max(T reepath(snu, xi)) holds.
Then, according to Lemma 5, xj would be earlier merged
into the minimum spanning tree (containing xj ) than snu.
In the proposed algorithm, the minimum spanning tree
stops when it meets an node served by snu, and then the
tree is classified into snu

′s cluster. Hence, xi and xj are
classified into a same cluster. So, the algorithm is subject to
Constraint 1.

Given a node p, it costs the same and lowest cost in
several different medians. Let SNC = {snc1, snc2 · · · sncl}
denote those medians, and then

Ncost(p) = max(T reepath(snc1, p))

≡ max(T reepath(snc2, p)) · · ·
≡ max(T reepath(sncl, p))

< max(T reepath(o, p)), o ∈ SN/SNC

holds. According to Lemma 5, if a minimum spanning
tree sub tree, built from p, stops merging other nodes till
a median is merged, p would firstly reach a median of
SNC instead of any one of SN/SNC. Then, if we build
a new minimum spanning tree s tree from any node p of
sub tree, the new tree always firstly reach the same median.
If |SNC|≡ 1 (implying s tree = p), p has a uniquely
optimal medians. Then, p uniquely belongs to that optimal

median. So, the s tree uniquely belongs to the median’s
cluster and locates in the tree sub tree. If |SNC|> 1, the
minimum spanning tree s tree, built from p, stops till it
meets a node q which has a unique optimal median. It is
obvious that the s tree is a subset of sub tree. According to
the proposed algorithm, the tree s tree is classified into q ′s
cluster. So, each cluster is a sub-tree, that is, the algorithm
is subject to Constraint 2.

According to Lemma 5, the s tree always firstly
reach its optimal median. Meanwhile, each node selects
the firstly-meeting median sn to obtain service. Hence,
cost(sn, p) = min({z | z = cost(o, p), o ∈ SN}) ≡
Ncost(p)SN holds. Then, T cost(SN, C′) ≡ T cost(SN)

where C′ is obtained by the proposed algorithm. In
Theorem 2, Sk minimizes f (SN) = T cost(SN). So,
the proposed algorithm obtains the minimum total cost
T cost(Sk, C

′).

5 Experiments and analysis

The proposed method is able to obtain the optimal partition
in theory. Now, we would observe the performance in real
applications. In this section, the distance matrix is taken
as the SDM. NMI and ARI are taken as the evaluation
criterion of clustering performance. For comparing to the
current partitioning models (the k-means and the k-medoids
models), k-means, k-medoids and normalized spectral
clustering algorithms are used in Sections 5.1 and 5.2 has
compared K-MEANS [37], RNN-DBSCAN [45], LDP-
MST [47], GADPC [48] and OPM.

Fig. 8 Group irregular clusters. OPM algorithm: 1-1,2-1; k-means algorithm: 1-2,2-2; k-medoids algorithm: 1-3,2-3; normalized spectral
clustering algorithm: 1-4,2-4
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5.1 Experiments for rationality analysis

Because OPM is a clustering algorithm based on minimum
spanning tree, it can hadle complex manifold data. Then, we
give a set of synthetic data sets as shown in Fig. 8 and then
observe the different clustering results. Obviously, OPM
displays outstanding performance in grouping irregular
clusters (see Fig. 8 (1-1,2-1)). However, other algorithms
(k-means, k-medoids and normalized spectral clustering
algorithms) give wrong results. In general, a single cluster
covers a continuous region, that is, each node of a single
cluster has high connectivity to others intra-cluster nodes.
Hence, some far nodes may belong to a same cluster owing
to their high connectivity. Since the k-means and the k-
medoids models only consider the absolute distance and
neglect the connectivity, they cannot correctly partition
the far and connected nodes. As for OPM algorithm, the
proposed cost function reflects the connectivity. Then, if two
nodes are connected via some intermediate nodes, they are
classified into a same cluster. Hence, our algorithm is able
to detect arbitrarily-shaped clusters.

From the above results, we can see other partitioning
algorithms (k-means, k-medoids, normalized spectral clus-
tering) cannot deal with manifold data sets. On the contrary,
OPM can get satisfactory clustering results for the data sets
which contain complex-manifold clusters. That is, OPM is
a better partitioning algorithm for manifold data sets.

In addition, based on the clustering theory above, the
minimum total cost of k-median problem is obtained. Thus,
the clustering results can ensure that minimum total cost and
theoretical optimal partition.

5.2 Experiments for performance evaluations

Next, we do experiments on real data sets and compare
the clustering performance according to NMI and ARI.
For the sake of evaluating the clustering effect of OPM,
it is compared with K-MEANS [37], RNN-DBSCAN [45],
LDP-MST [47] and GADPC [48]. The data sets come
from UCI website and joensuu.fi (https://cs.joensuu.fi/sipu/
datasets/). In the two tables (Tables 2 and 3), some of the
results are from the related references. Meanwhile, some
experiments are supplemented in the whole data and we try
to get high scores by adjusting the parameters. In addition,
all experiments need to specify the number of clusters k.

The following analysis of the OPM algorithm is based
on the three common problems summarized previously.
The results of the analysis of the algorithm are given in
Table 4. The only parameter in the OPM is the number
of clusters k, which needs to be given in advance. The
optimal solution model ensures that the OPM can obtain
the theoretically optimal solution. Then, the new k-median
model and the corresponding OPM algorithm is suited to
cope with arbitrarily shaped clusters. Finally, OPM shows

Table 2 NMI evaluation

K-MEANS RNN-DBSCAN LDP-MST GADPC OPM

Synthetic data sets

Spiral 3.7751e-04 1 1 1 1

R15 0.9281 0.9876 0.9913 0.9942 0.9893

Pathbased 0.5493 0.6345 0.52015 — 0.7311

Jain 0.3571 0.9570 1 1 1

Flame 0.3941 0.9002 0.9269 1 1

D31 0.9257 0.8936 0.9647 — 0.9573

Compound 0.6640 0.8408 0.8418 0.9122 0.9071

Real-world data sets

Wine 0.4241 0.3789 0.4327 — 0.3982

Seeds 0.6949 0.3133 0.5418 0.6982 0.6605

Iris 0.7582 0.6667 0.8058 0.8057 0.8705

Segment 0.4903 0.6521 0.6083 — 0.6952

Control 0.6846 0.7837 0.8 — 0.8092

Sonar 0.0058 0.0318 3.9620e-05 — 0.0615

Abalone 0.1582 0.0790 0.0823 — 0.1553

Banknote 0.0303 0.6289 0.1286 — 0.6111

Yeast1 0.0797 0.1291 0.0466 — 0.1097

Bold means the highest score
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Table 3 ARI evaluation

K-MEANS RNN-DBSCAN LDP-MST GADPC OPM

Synthetic data sets

Spiral −0.0060 1 1 1 1

R15 0.8169 0.9823 0.9891 0.9928 0.9857

Pathbased 0.4642 0.5786 0.4291 — 0.6133

Jain 0.3004 0.9804 1 1 1

Flame 0.4312 0.9550 0.9666 1 1

D31 0.8267 0.7875 0.9484 — 0.9353

Compound 0.1965 0.8582 0.8269 0.8513 0.8577

Real-world data sets

Wine 0.3518 0.3603 0.3627 — 0.2534

Seeds 0.7166 0.1989 0.4010 0.6982 0.6886

Iris 0.7302 0.6448 0.7592 0.8057 0.8858

Segment 0.2832 0.5213 0.3874 — 0.5855

Control 0.5065 0.6065 0.6143 — 0.6184

Sonar 0.0011 −0.0045 −0.0040 — −0.0045

Abalone 0.1501 0.0212 0.0095 — 0.1137

Banknote 0.0485 0.5534 −0.0021 — 0.6262

Yeast1 0.0189 0.0039 0.0124 — 0.0928

Bold means the highest score

a good clustering effect on manifold data sets according to
Tables 2 and 3.

The performance of RNN-DBSCAN is dependent on
the choice of k. Therefore, its performance is stable with
respect to k as evidences by the heuristic for choosing k.
LDP-MST tunes for several times to get the best clustering
results, which enables its superiority on clustering data
sets with complex structured clusters and large number
of noise nodes. GADPC provides detection measures for
outliers. Then, GADPC has good adaptability in parameter
sensitivity. In addition, the algorithms above may lead
to unstable results due to hyperparameters and different
initialization, but in general they are stable. OPM shows
stable performance due to no hyperparameters. In addition,
the Sonar data set and the Abalone data set represent
aggregated structures whose data are not separated well.
Thus, all algorithms exhibit non-ideal results in this type
of data set. In summary, the performance of OPM is

relatively ideal and equally stable on suitable clustered
data.

In Tables 2 and 3, most of the clustering scores of OPM
are significantly higher than others. However, in some data
sets, OPM shows an ordinary performance. In fact, some
of the data sets above have fuzzy boundaries, and their
clusters even overlap. For convenience, we transform the
seeds data set into a 2-D data set (see Fig. 9(1)). The three
clusters of the seeds data set overlap with one another and
the bounds of the clusters are ambiguous. Obviously, this
distribution is not subjected to Constraints 1 and 2. Thus, the
OPM exhibits an ordinary performance in partitioning the
seeds data set. By contrast, the clusters of the iris data set
have clear boundaries, i.e., the iris data set is significantly
subjected to Constraints 1 and 2. Hence, the OPM obtains
high scores. If we separate the 3 clusters like Fig. 9(2),
the distribution completely satisfies Constraints 1 and 2.
Then, OPM algorithm can get a 100% correct partition. In

Table 4 Performance
evaluations No hyperparameters Minimizing total cost Good results

K-MEANS � �
RNN-DBSCAN

LDP-MST � �
GADPC �
OPM � � �

20289



J. Wan et al.

Fig. 9 The seeds data sets

the following contents, Constraints 1 and 2 are transformed
into Lemma 3. In short, the constraints mean that the intra-
cluster connectivity must be higher than the connectivity
between clusters. Then, if a data set satisfies this constraint
to a great extent, OPM can get the realistically optimal
partition.

5.3Weakness analysis

The goal of clustering is to obtain the optimal partition
of reality. If the total cost of the real optimal partition is
minimal, then this partition is also the theoretical optimal
partition. The new k-median model proposed in this paper
can solve the real optimal partition correctly. If the total cost
of the real optimal partition is not the minimum, the model
will not get the real optimal partition, which is contrary to
the clustering goal. When there are outliers, the theoretical
optimal partition and the real optimal partition may not be
the same partition, and the model fails.

In our model, the smallest total cost is not necessarily
the optimal partition when outliers occur. In the case of
outliers, the total generation value under the ideal partition
is not necessarily the minimum. The following is a partition
diagram with outliers and proves that the total cost under the
ideal partition is not the minimum.

As shown in the Fig. 10, there are two clusters c1 and
c2 obtained by the ideal partition, and the corresponding
medians are p and q (Theorem 2 and Algorithm 2), where
there is an outlier o, and s represents the distance between
the outlier o and the nearest node in the c1 cluster.

∵ According to Theorem 2 and Algorithm 2, the optimal
partition C={c1, c2} is obtained, and the optimal medians
are p and q.

Fig. 10 Partition with outliers

∴ This gives the minimum total cost T otalcost(C) =
cost(c1) + cost(c2), where cost(c1) = cost(p, o) +∑

xε(c1/o) cost(p, x), and cost(c2) = ∑
xεc2 cost(q, x).

∵ S represents the distance of the outlier o from the
nearest node in the c1 cluster.

∴ cost(p, o) = s.
∴ T otalcost(C) = s + ∑

xε(c1/o) cost(p, x) + ∑
xεc2

cost(q, x).
∵ When o is an outlier and s is large enough, the

optimal partition C′ = {o, (c1/o) + c2} and the optimal
medians o and p are obtained according to Theorem 2 and
Algorithm 2.

∴ At this time, T otalcost(C′) = ∑
xε{(c1/o)+c2}

cost(p, x) + cost(o, o), where cost(o, o) = 0.
∵ When o is an outlier and s is large enough.
∴ s + ∑

xε(c1/o) cost(p, x) + ∑
xεc2 cost(q, x) >∑

xε{(c1/o)+c2} cost(p, x).
∴ T otalcost(C) > T otalcost(C′).
∴ The ideal partition and the minimum total cost cannot

be guaranteed when there are outliers.
The noise influences the clustering results, it is recom-

mended to remove these noise nodes. Of course, not all
noise nodes have an impact on the algorithm. When a sub-
cluster is large enough or not particularly small, outliers that
are not very far from this sub-cluster do not affect the selec-
tion of the medians of this sub-cluster. The above influence
is very small, which means that the outlier error is ignored
in this sub-cluster.

6 Conclusion

A k-median problem based on connectivity and the
corresponding clustering algorithm are proposed in this
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study. Since the k-median problem based on connectivity
takes the connectivity to measure the service cost, the
far and connected nodes would be classified into the
same cluster. Hence, the corresponding clustering algorithm
is suited to partition arbitrarily-shaped clusters. Based
on experiments using synthetic and actual data sets, the
outstanding performance of the proposed algorithm is
verified. Meanwhile, the applied scope is also analyzed, and
an easy-to-understand constraint is provided as a guide for
applying the algorithm: The intra-cluster connectivity must
be higher than the connectivity between clusters.

On the one hand, the k-median problem based on
connectivity is solvable in polynomial time; on the other
hand, the corresponding clustering algorithm is a perfect
mapping of the k-median problem based on connectivity.
Hence, the clustering result is an optimal partition of the k-
median problem based on connectivity in theory. To the best
of our knowledge, the current partitioning algorithms are not
strictly subjected to their partitioning models. The k-means
and k-medoids algorithms cannot guarantee that their results
would converge to the globally optimal solutions. In this
study, we successfully obtain the globally optimal solution
within polynomial time. Hence, the new k-median model
provides the perfect theoretical support for the research on
partitioning problems.
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