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ABSTRACT

In this paper, we point out that the essential differences be-
tween CNN-based and Transformer-based detectors, which
cause worse performance of small object in Transformer-
based methods, are the gap between local information and
global dependencies in feature extraction and propagation.
To address these differences, we propose a new vision Trans-
former, called Hybrid Network Transformer (Hyneter). Dif-
ferent from the divide and conquer strategy in previous meth-
ods, Hyneters consist of Hybrid Network Backbone (HNB)
and Dual Switching module (DS), which integrate local in-
formation and global dependencies, and transfer them simul-
taneously. Based on the balance strategy, HNB extends the
range of local information by embedding convolution layers
into Transformer blocks, and DS adjusts excessive reliance
on global dependencies outside the patch. Ablation studies
illustrate that Hyneters surpass the state-of-the-art results on
multiple vision tasks.

Index Terms— Object Detection, Transformer, Hybrid
Network, CNN

1. INTRODUCTION

Convolutional neural networks (CNNs) have dominated com-
puter vision modeling for years. With the help of increas-
ingly large neural networks and progressively complex con-
volution structures, the performance has seen significant im-
provement in recent time. However, scholars have focused
on greater model size, more diverse convolution kernel, and
more sophisticated structures of network, which lead to a less
progress of general performance with disproportionate huge
model size.

On the other hand, Transformer has made tremendous
progress in vision tasks, which originates from natural lan-
guage processing. Designed for sequence modeling and
transduction tasks, the Transformer is notable for its use of
attention to model global dependencies. Compared to CNN-
based methods, vision Transformer and its follow-ups [1]
expose the difference in size-sensitive performance, for they
adopt different strategies for local information and global
dependencies [2].
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The essential differences between Transformer-based and
CNN-based detectors are derived from the gap between local
information and global dependencies in feature extraction and
propagation. However, we have not found enough studies on
these differences. In this paper, we devote to find the answer
and propose a new vision Transformer.

(a) Human (b) Separated Human (c) Inverted Human

(d) Horse (e) Bird/Kite (f) Cow

Fig. 1. An illustration of restructured objects. We restruc-
ture thousands of objects in multiple-class images of COCO.
(d) ∼ (f) are supposed to detected as unrecognized la-
bels, but as Pseudo labels (horse, bird/kite, and cow) by
Transformer-based detectors.The Transformer-based should
detect (b) and (c) as unrecognized labels, but True label (hu-
man).

The exploration begins with an unexpected experiment
shown in Figure 1. We restructure thousands of objects with
diverse backgrounds. A human, for example, is restructured
as horse, bird/kite, cow, etc. in Figure 1. However, CNN-
based detectors show much better performance. This rate of
being detected as pseudo labels (Pseudo Rate) demonstrates
that Transformer-based methods are reliant on global depen-
dencies and obtain inadequate local information of feature in
details [2, 3]. However, the CNN-based ones are just the op-
posite.

The CNN-based methods extract feature with rich lo-
cal information by convolution layers [4, 5, 6]. While
Transformer-based methods extract feature by providing
the capability to decode and encode global dependencies
in Transformer blocks [7, 8] (see Figure 2). Compared
to CNN-based methods, Transformer-based methods have
worse performance in small objects.

In this paper, we propose a new vision Transformer, called
Hybrid Network Transformer (Hyneter), which consists of
Hybrid Network Backbone (HNB) and Dual Switching mod-IC
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(a) Transformer-based (b) CNN-based (c) Hybrid

Fig. 2. An illustration of feature maps on Transformer-based,
CNN-based and Hybrid methods. Hybrid feature map (c) in-
tegrates the characteristics of global dependencies (a) and lo-
cal information (b), which is beneficial to objects of all sizes.

ule (DS). Hybrid network backbone is presented with equiv-
alent position of intertwined distribution of convolution and
self-attention. Our backbone extends the range of local in-
formation by embedding convolution layers into Transformer
blocks in stages, so that local information and global depen-
dencies will be passed to Neck or Head simultaneously. The
Dual Switching module establishes cross-window connec-
tions in order to maintain local information inside the patch,
while weakening excessive reliance on global dependencies
outside the patch.

Ablation studies illustrate that Hyneters with HNB and
DS achieve the state-of-the-art performance by a large mar-
gin of +2.1 ∼ 13.2AP on COCO in object detection. Fur-
thermore, Hyneters surpass previous best performance on
multiple tasks, such as object detection(60.1AP on COCO),
semantic segmentation (54.3AP on ADE20K), and instance
segmentation (48.5APmask on COCO) in Tables 1 ∼ 5.

2. HYBRID NETWORK TRANSFORMER

In this section, we propose a new vision Transformer, called
Hybrid Network Transformer, that capably serves as a back-
bone for multiple computer vision tasks. An overview of
Hyneter is presented in Figure 3 (a). Data is preprocessed
as Method in [9].

2.1. Hybrid Network Backbone

Many hybrid backbones [10] are presented in previous works,
which put convolution and self-attention in the non equivalent
position. Previous methods employ self-attention within the
CNN backbone architecture or use them outside, which com-
pletely cleavage the relation of local information and global
dependencies by separated distribution of convolution and
self-attention. Hybrid network backbone is presented with
equivalent position of intertwined distribution of convolution
and self-attention, which extends the range of local informa-
tion, so that local information and global dependencies will

be passed to Neck or Head simultaneously.
There are 4 stages in our backbone, starting with a con-

volution layer of 3 multi-granularity kernels. The number of
tokens is reduced by this multi-granularity convolution layer,
and dimension is multiplied. The data feature S (C ′×H

4 ×
W
4 )

will be sent into convolution layers and Transformer blocks.
As shown in Figure 3 (b), the Transformer blocks extract

feature maps of global dependencies and CNN layers extract
feature maps of local information in the Stage 1 and 2. The
output (C × H×W

4×4 ) of the final Transformer block in Stage 1
will be re-viewed and permuted as X(C × H

4 ×
W
4 ). After

the convolution layers, the S turns into S1 with the same size
(C × H

4 ×
W
4 ). The dot product between S1 and X is the key

operation of combination for global dependencies and local
information. The X1 (X1 = S1 · X) after dot product op-
eration, will go to activation function X2 = tanh(X1). The
addition of X2 and X copy will be the output of Stage 1. Af-
ter being re-viewed and permuted twice, the addition turns to
the input (X ′) of Stage 2.

With hybrid network approach, consecutive self-attention
Transformer blocks are computed as

X = Re-view( GMSA (S))

S1 = Conv1(S)⊕ Conv2(S)⊕ Conv3(S)

X ′ = Re-view(X ⊕ tanh (X · S1))

(1)

2.2. Dual Switching

The Dual Switching module will be implemented in Stage 3
and 4, in order to maintain local information while weakening
excessive reliance on global dependencies. Global dependen-
cies from global self-attention are conducted in Transformer
blocks. For efficiency, the global multi-head self-attention
(GMSA) will be implemented within local windows in a non-
overlapping manner.

As illustrated in Figure 3 (c), the ouput of Transformer
block will be re-viewed and permuted as X(C × H

4 ×
W
4 ).

Then, adjacent columns in the feature map will switch with
each other. After the column switching, adjacent rows in
the feature map will switch with each other, too. The solo-
switching is finished. Finally, the interlaced columns/rows in
solo-switched feature map will switch with each other, again.

The Dual Switching module establishes cross-window
connections while maintaining local information in the patch,
which is followed by layerNorms (LN), Transformer blocks,
and multi-layer perceptions (MLP) with residual connection
modules. Dual Switching suspends the procedure of estab-
lishing excessive global dependencies, meanwhile, retaining
local information for small object performance (APS). With
Dual Switching module, the process is computed as

Xl+1 = GMSA (LN (Xl)) +Xl

X ′l+1 = MLP (LN (Xl+1)) +Xl+1

(2)
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Fig. 3. (a) The architecture of Hyneter 1.0. In one stage, there are 2 Transformer blocks in Transformer part (top) and 2-
layer multi-granularity convolution layers in CNN layers part (bottom). Positional encoding is only in the first Transformer
block. (b) An illustration of unidirectional feature integration between Transformer block (top) and CNN layer (bottom). (c)
An illustration of Dual Switching. The process is implementing as (1)→(4).

where Xl and X ′l+1 denote the the feature in Stage l and the
input of Stage l + 1.

Architecture Variants. We establish basic model, called
Hyneter 1.0, to have of size and computation complexity sim-
ilar to DETR-DC5-R101. This paper also presents Hyneter
Plus and Max, which are 2 versions of around 2.0× and 4.0×
the model size and computation complexity, respectively.

3. EXPERIMENTS

In this section, we first ablate the important design elements
of Hyneter. Then, we conduct experiments on multiple
datasets in several vision tasks.

3.1. Ablation studies

Settings. The following experiments were conducted on MS
COCO 2017 dataset using two GeForce RTX 3090 GPUs
and 2 Tesla V100 PCIe 32GB GPUs. For the ablation study
and comparisons, we consider four typical object detection
frameworks: Swin Transformer (V1, V2)[9, 11], and DETRs
(DETR[12], UP-DETR[13], Conditional DETR[14]).

Dataset. We perform experiments on COCO 2017 detec-
tion datasets, containing 118k training images, 5k validation
images and 20K test-dev images. The ablation study is per-
formed using the validation set, and a system-level compar-
ison is reported on test-dev. Each image is annotated with
bounding boxes and panoptic segmentation.

We conduct ablation studies on COCO 2017 object detec-
tion in Table 1. Hyneter brings consistent +3.2 ∼ 4.8AP and
+4.1 ∼ 6.8 APS gains over pure Transformer detectors. Fur-
thermore, HNB brings +1.6 ∼ 2.7 AP and +1.7 ∼ 3.8 APS

gains over original detectors, just with slightly larger model
size. Meanwhile, DS gets +1.6 ∼ 2.1 AP and +1.2 ∼ 3.0
APS gains over original ones, with the same model size.

Method Originals HNB DS AP APs AP/APs #param.
Hyneter 1.0

baseline
X 52.3 21.5 2.43 85M
X X 55.0 25.3 2.17 90M
X X X 57.1 28.3 2.02 90M

Hyneter Plus

baseline
X 54.8 23.0 2.38 125M
X X 56.4 26.7 2.11 134M
X X X 58.0 27.9 2.08 134M

Hyneter Max

baseline
X 55.7 25.7 2.17 227M
X X 58.3 27.4 2.10 247M
X X X 60.1 29.8 2.07 247M

Table 1. Object detection performance (%) on Hyneter
vatiants with Mask R-CNN frameworks on MS COCO
test-dev set. Originals means pure Transformer baselines
without HNB or DS, which is similar to Swin-T structurally.

3.2. Object Detection and Instance Segmentatio on MS
COCO

Setting. For the ablation study, we consider 4 typical ob-
ject detection frameworks: Mask R-CNN, ATSS, DETR, and
Swin Transformer with the same setting (multi-scale train-
ing, ADamW optimizer with initial learning rate of 0.00001
and weight decay of 0.05 ) in mmdetection [15]. We adopt
ImageNet-22K pre-trained model as initialization for system-
level comparison.

Dataset is mentioned in Ablation studies.
Comparison to ResNet. Our Hyneter architecture brings

consistent +5.0 ∼ 15.7 AP and +1.7 ∼ 4.2 APS gains over
ResNet-50, with acceptable larger model size. All Hyneters
achieve significant gains of +14.8 ∼ 15.6AP and +3.6 ∼
4.3APS over ResNet-50 or ResNet-101 (see Table 3).

Comparison to Swin Transformer. The comparison of
Hyneter and Swin Transformer under different backbones
with Mask R-CNN is showed in Table 3. Hyneters achieve a
high detection accuracy of 60.1AP and 29.8APS , which are
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Method Backbone AP APs AP/APs #param.

Mask R-CNN R-50 42.3 24.7 1.71 82M
Hyneter-plus 58.0 27.9 2.07 134M

ATSS R-50 43.5 25.7 1.69 32M
Hyneter-plus 56.0 27.4 2.04 53M

DETR R-50 + trans 42.0 20.5 2.05 41M
Hyneter-plus 47.0 24.7 1.90 93M

Table 2. Object detection performance (%) with various
frameworks on MS COCO val set. R50 + trans means that
R50 and Transformer Blocks as DETR Backbone.

Backbone AP APsAP/APsAPmaskAPmask
50 APmask

75 #params.
R-50 42.3 24.7 1.71 32.5 55.4 31.7 82M
R-101 44.5 25.5 1.74 35.9 60.7 36.8 101M
Swin-T 49.8 21.4 2.33 41.5 70.1 42.0 86M
Swin-S 51.4 25.1 2.05 41.5 70.1 42.0 107M
Swin-B 51.5 25.0 2.06 42.0 74.0 42.6 145M
Swin-L 57.8 26.7 2.16 – – – 284M
Hyneter-1.0 57.1 28.3 2.02 45.1 78.3 42.2 90M
Hyneter-plus 58.0 27.4 2.08 46.9 79.9 45.0 134M
Hyneter-Max60.1 29.8 2.07 48.5 82.1 46.7 247M

Table 3. Object detection (with Mask R-CNN) performance
(%) with various backbones on COCO val set.

significant improvement of +2.3 ∼ 7.3 AP and +3.1 ∼ 6.9
APS over Swin series methods with lighter model size.

Comparison to previous state-of-the-arts. Table 4
lists the comparison of our best results with precious state-
of-the-art methods. Hyneter method achieves +60.1AP
and 29.8APSon COCO test-dev set, surpassing the previ-
ous best performances by +9.4AP (ATSS [17]), +5.0AP
(EfficientDet-D7x [16]), +13.2AP (Deformable DETR
[18]), and +2.1AP (Swin-L [9] with HTC++ and multi-
scale testing). Furthermore, Hyneters greatly improve APS ,
comparing with Swin Transformer series. Our best model
(Hyneter Max) achieves 48.5APmask, 82.1APmask

50 , and
46.7APmask

75 with competitive model size, surpassing all
previous best results.

3.3. Semantic Segmentation on ADE20K

Setting. In training, we employ the AdamW optimizer with
an initial learning rate of 1.0× 10−5, a weight decay of 0.01,
a scheduler that uses linear learning rate decay, and a linear
warmup of 1,500 iterations. Models are trained on 2 GPUs
with 4 images per GPU for 140K iterations

Dataset. ADE20K has more than 25K images of complex
daily scenes, including various objects in natural space envi-
ronment (20.2k for training, 2K for validation, 3K for test).

Table 5 lists the mIoU, and model size (#param) for dif-
ferent method/backbone pairs. From these results, it can be
seen that Hyneter Max is +4.3mIoU higher than SETR with
much lighter model size. It is also +6.0mIoU higher than
ResNeS200, and +9.4mIoU higher than ResNeSt-101. Our
Hyneter series with UperNet achieve 50.6mIoU, 53.0mIoU ,

Method AP APs AP/APs #param.
ATSS(ResNeXt-101-DCN) 50.7 33.2 1.53 –
EfficientDet-D7x(1537) 55.1 – – 77M

DETR series Backbone: DC5-R50 or R50
DETR 43.3 22.5 1.92 41M
UP-DETR 42.8 20.8 2.06 –
Deformable DETR 46.9 27.7 1.69 –
Conditional DETR 45.1 25.3 1.78 44M

Swin Transformer with Cascade Mask R-CNN
Swin-B (HTC++) 56.4 25.1 2.25 160M
Swin-L (HTC++) 57.1 25.6 2.23 284M
Swin-L (HTC++)* 58.0 26.0 2.23 284M

Ours with Mask R-CNN
Hyneter-1.0 57.1 28.3 2.02 90M
Hyneter-plus 58.0 27.9 2.08 134M
Hyneter-Max 60.1 29.8 2.07 247M

Table 4. System-level comparison (%) on MS COCO
test-dev set. * indicates multi-scale testing. The frame-
works in Swin Trans (Swin-Transformer [9]) is Cascade Mask
R-CNN. EfficientDet-D7x(1537)[16]

Method Backbone val mIoU test score #param.
DANet ResNet-101 45.2 – 69M
Dlab.v3+ ResNet-101 44.1 – 63M
OCRNet ResNet-101 45.3 56.0 56M
UperNet ResNet-101 44.9 – 86M
OCRNet HRNet-w48 45.7 – 71M
Dlab.v3+ ResNeSt-101 46.9 55.1 66M
Dlab.v3+ ResNeSt-200 48.4 – 88M
SETR T-Large 50.3 61.7 308M
UperNet Swin-S 49.3 – 81M
UperNet Swin-B 51.6 – 121M
UperNet Swin-L 53.5 62.8 234M
UperNet Hyneter 1.0 50.6 62.0 82M
UperNet Hyneter Plus 53.0 63.4 125M
UperNet Hyneter Max 54.3 65.9 231M

Table 5. Results of semantic segmentation on the ADE20K
val and test set. The comparison data is from Appendix A2.3
in [9].

and 54.3mIoU on the val set, surpassing the previous Swin
Transformer series by +0.8 ∼ 1.4mIoU .

4. CONCLUSION

In this work, we propose a new vision Transformer, called
Hyneter, to address the differences between CNN-based and
Transformer-based detectors by integrating and transfering
local information and global dependencies simultaneously
in feature extraction and propagation. Hyneters achieve the
state-of-the-art performance on multiple tasks significantly,
and surpass previous best methods. Although Hyneters have
made significant achievements, the method cannot reduce the
model size. We will continue to research around this goal.
We do hope that Hynerters will play a role of cornerstone to
encourage balancing methods between local information and
global dependencies in computer vision.
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