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Abstract
Multi-label classification is a challenging issue because it simultaneously embraces the characteristics of the imbalanced class distribu-
tion for each label and the uncertain label correlation among the whole label space. The decision-theoretic rough set can describe the 
roughness of concepts in the sense of minimizing decision risk but fails to consider the case where concepts are compatible. We argue 
that it is feasible to analyze the uncertainty of coarse-grained logical labels with limited label correlation assumptions and reduce the 
classification error for those uncertain instances by learning fine-grained numerical labels. Consequently, we develop a multi-granular 
label information system by introducing a multi-granular threshold with a three-way-based label enhancement (MGT-LEML) model. 
With the second-order label correlation assumption, we deduce the pseudo-positive and pseudo-negative classes for each label. 
The decision-theoretic rough set evaluates the possibility of misclassification independently, and a novel uncertain measure called 
instance uncertainty degree determines whether it is necessary to conduct label enhancement afterward. In this way, instances with 
the most uncertain classifications across label space compute fine-granule numerical labels by label enhancement, whereas remaining 
unchanged otherwise. We analyze the comparison results among nine algorithms on eight benchmarks with six metrics to demonstrate 
the superiority of the proposed MGT-LEML algorithm over state-of-the-art multi-label classification algorithms. Compared with the 
HNOML algorithm, our algorithm achieves significant improvement. Concretely, the performance is reduced by 2.9% in Hamming 
Loss, 12.4% in Ranking Loss, 14.3% in One Error, 465.5% in Coverage, and is increased by 14.2% in Average Precision.

Keywords Multi-label classification · Multi-granular · Three-way decisions · Decision-theoretic rough sets · Uncertainty · 
Label enhancement

1 Introduction

Label ambiguity is a widespread issue in multi-label learning 
[1–3]. The classifier learns a projection with known logical 
labels and determines the relevance between the instances 
and the labels for the unseen instances. It is applied widely 

across many practical applications, such as text semantic 
analysis [4], X-ray disease screening [5], crowdsourcing [6], 
scene classification [7], and age estimation [8, 9].

Most multi-label classification researches focus on the 
novelty of learning strategy. Problem transformation and 
algorithm adaptation are two representative strategies 
to design the multi-label classifier. The first group takes 
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advantage of the existing learning mechanism on single-
label classification algorithms and promotes the multi-label 
model by decomposing it into a couple of subproblems. The 
processing on each subproblem is much similar to that of 
binary or multi-class cases. For this point, we have solutions 
like BR [10], RAkEL [11], LLSF [12] and TSEN [13]. In 
contrast, the latter group tailors the existing algorithms to 
satisfy the requirement of multi-output. Well-known works 
include MLkNN [14], ML-Forest [15], MLTSVM [16] and 
so on. Both learning strategies employ calibrated thresh-
old to determine the final label associations [17]. For bet-
ter generalization, the function of the classification model 
is mostly linear, and the calibrated threshold determines 
the position of the hyperplane. The instances around the 
hyperplane have a larger possibility of misclassification, and 
vice versa. Whatever the value of the calibrated threshold 
is, some instances are inevitably closer to hyperplane than 
others. Considering the multifaceted semantics and combi-
nations of each label, the difficulties in constructing optimal 
classification are still challenging.

Conventional multi-label learning only concerns qualita-
tive label relevance, but label distribution is a more gener-
alized case and assumes that all labels can quantitatively 
describe some semantics of instances with varying descrip-
tion degrees. For an arbitrary instance, the description 
degree develops a data structure similar to a probability 
distribution, and learning with such supervised informa-
tion is defined as label distribution learning [18]. With this 
assumption, a picture can have the descriptions like vast sky, 
some seagull, and not similar to a boat. Compared with the 
label space represented by logical labels ( for comparison, 
the same picture may have logical labels as sky, seagull and 
no boat), and label distribution offers stronger supervisions 
[19, 20].

The acquisition of label distribution by manual annota-
tion is costly as it requires sophisticated discrimination 
within similar instances. One alternative solution is to 
leverage label enhancement by learning numerical label 
representations based on smoothness assumptions from 
both the feature and label sides. Tao et al. [21] constructed 
a low-rank stacked matrix with vertically placed features 
and logical labels. Reconstruction constraints on both 
feature sides and label sides support the enhancement. 
Li et al. [22] generated label distribution by employing 
label propagation on fully-connected graphs over training 
instances. Xu et al. [23] devised a label recovery strategy 
by combining the fitness of instance-label reconstruction 
error with the assumption of neighbourhood-based label 
similarity. Shao et al. [24] extended the previous work 
by proposing a unified framework with numerical label 
regression and label enhancement. All the aforementioned 
papers advocated the superiority of label enhancement 
against logical labels for multi-label classification, yet they 

do not systematically discuss how to identify and rectify 
the performance degeneration from the most uncertain 
instances. In reality, this is an essential technique for peo-
ple in searching for an effective and economic solution.

Granular computing emphasized the approximate for-
mulation of information granules in analyzing uncertain 
concepts. Traditionally, the information granules are the 
deduction of expanded mathematical models from fuzzy 
sets, rough sets and so on [25–27]. While the enriched 
approximation semantics draw some elegant conclu-
sions on the description and computation of concepts, the 
restricted portability originating from the model compo-
nents becomes a barrier in dealing with complicated cases 
like multi-label classification.

Three-way decisions [28], originated from the granu-
lar computing method, are the classical methodologies in 
dealing with uncertainty. As theoretical research deepens, 
it becomes a theory of thinking in three, with the three 
subsequent procedures as trisecting, acting, and outcome 
(a.k.a. TAO [29–31]), respectively. The three-way deci-
sions divide concepts into three parts that solve various 
practical problems, and the semantics of the three pro-
cedures are problem-dependent [32–37]. For a concept 
identification task, the trisecting procedure discriminates 
the instances into three different conditions, whereas the 
uncertain-driven third option serves for those uncertain 
instances. The acting procedure takes corresponding 
actions (acceptance, rejection, or further classification) in 
accordance with the trisecting, whereas the outcome pro-
cedure evaluates the performance of all certain decisions. 
For the three-way decisions on multi-label classifications 
[38–40], the three-way framework is either bounded by 
logical or numerical labels, which does not substantially 
boost the upper bound of multi-label classification.

This paper proposed a novel method called multi-
granular labels with three-way decisions for multi-label 
classification (MGT-LEML). We argue that label enhance-
ment and logical label-based models can be cooperated 
to address the multi-label classification. Given the label-
specific separation margin, the model determines the label 
associations directly if instances are with a large separa-
tion margin across all labels, and reclassifies the associa-
tions with latent enhanced labels otherwise. Throughout 
the whole paper, we conclude the contributions into three 
aspects: 

(1) We propose a novel information system with multi-
granular labels. By combining the learned implicit 
numerical labels with explicit logical labels, we 
develop a novel formulation for minimizing classifica-
tion uncertainty. This learning mechanism simulates 
the hierarchical perceptions of humans when facing 
uncertainty.
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(2) Existing approaches improve classification effective-
ness by either generating multi-granular features or 
finding an appropriate feature representation, but the 
learning target (i.e., labels) keeps the nature of single-
granularity. In contrast, we leverage numerical labels 
and logical labels for uncertain instances and certain 
instances, respectively. It enriches three-way-based 
multi-label classification.

(3) The finer-granule numerical labels are only neces-
sary for uncertain instances instead of the whole with 
the measurement of instance uncertainty degree. The 
instance uncertainty degree measures the uncertainty 
classification distribution over the label space and 
develops hierarchically. We optimize the local esti-
mation of classification uncertainty by employing a 
decision-theoretic rough set.

We organize the remaining parts. Section 2 presents the pre-
liminary; We propose the main idea for multi-label classifi-
cation in Sect.  3; Sect. 4 designs the compared experiments 
and analyzes the experimental results; Sect. 5 discusses 
some open issues regarding the proposed method; Sect. 6 
concludes the work.

2  Preliminaries

This section reviews some preliminaries regarding multi-
label classification, label-specific feature learning and 
label enhancement, which will be components in proposed 
MGT-LEML.

2.1  Multi‑label classification

Multi-label classification learns a projection from feature 
space to label space so that the associated labels for an 
unseen instance can be determined simultaneously. Label 
correlation is intensively studied to alleviate the imbalanced 
class distribution issue. Generally, there are three kinds of 
label correlation assumptions (i.e., first-order strategy, sec-
ond-order strategy, and high-order strategy):

The first-order strategy is a straightforward extension of 
single-label classification in that it learns label association 
independently. MLkNN [14] determined the label associa-
tion of instances by estimating the maximum posterior prob-
ability within the k-neighborhood. LIFT [41] improved the 
label association by enhancing the feature representation by 
calculating label-dependent clusters in kernel space. The 
second-order strategy takes a pairwise assumption of label 
correlation. LLSF [12] assumed the stronger the label cor-
relation within two labels is, the more likely the features 
are shared. Glocal [42] exploited the global and local label 
correlations in latent label space to reduce the influence of 

missing labels. MDFS [43] analyzed the local label correla-
tions in the feature manifold, which is then regularized by 
global label correlation. The high-order strategy takes the 
most considerations on label correlation. MASP [44] embed-
ded the high-order label correlations for feature extraction 
and generates stable predictions for queried instance-label 
pair. For the sake of computation, some algorithms like 
fRAkEL [45], MLR [46], and ACkEL [47] construct a cov-
ering representation of label subset and achieve a balanced 
complexity between the subproblem count and the subprob-
lem itself.

In this study, we consider second-order label correlation 
as they do not introduce much computational overhead and 
report acceptable accuracy.

2.2  Label‑specific feature learning

Label-specific feature attempts to explore the characteristics 
of different labels by searching different feature combinations, 
which differs from finding an identical feature representation 
that works for the whole. The pioneering work, LIFT [41], 
generated label-specific features by employing k-means clus-
tering. A fixed number of clusters from different perspectives 
characterize the underlying structure of positive and negative 
classes. With these augmented features, all kinds of binary 
classifiers complete the multi-label classification in the unit of 
the label. FRS-SS-LIFT [17] claimed that LIFT neglected the 
problems incurred from feature redundancy and label ambigu-
ity, and alleviated the drawbacks by employing a fuzzy rough 
set. The rationality is two-fold: firstly, a fuzzy rough set is 
competitive in attribute reduction, which removes the irrel-
evant features before conducting a feature mapping; secondly, 
a fuzzy rough set presents a well-defined approximation for 
concept with fuzziness and roughness, and the removal of 
uncertain instances not only reduce loss in effectiveness but 
also brings in acceleration in efficiency. LLSF [12] argued 
that LIFT ignored the label correlations, and incorporated the 
second-order and high-order label correlation from observed 
label space. The second-order label correlation assumes that 
one label is at most correlated with another, and the high-order 
label correlation assumes that label correlation holds in differ-
ent subsets of labels. This work extends to LSML [48], where 
a revised label-specific feature learning solves the degener-
ated performance incurred by missing labels. The label-spe-
cific feature learning classifier is trained with the recovered 
label to decrease the deviated estimation of label correlation. 
MULFE [49] constructed label-specific features by leveraging 
label correlation on feature mapping induced by LIFT. The 
adjustable weights on cluster centers embrace the maximal 
margin across labels. LSR-LSF [50] reviewed the sparseness 
of label-specific features and examined the label ambiguity 
by leveraging reshape operation on label space. With label 
propagation and cosine similarity constraint, the enriched label 
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space exhibited more refined representations in numerical style 
while maintaining the second-order label correlation. SENCE 
[51] emphasized the degeneration of clustering randomness in 
LIFT and addressed it by employing the clustering ensemble 
technique. The mixture-based clustering ensemble adopted the 
expectation-maximization algorithm. However, it still fails to 
leverage label correlation.

In our work, we consider LLSF [12] as a component. The 
reasons are as follows: 

1. It leverages the label correlation information, which is 
very important in boosting classification performance.

2. We assume that the logical labels are available across 
the entire label space in the training stage. The missing 
label issue is beyond our scope.

3. The primary goal is to explore the classification uncer-
tainty induced by the logical label-based model. There-
fore label enrichment on all labels is not preferred.

4. This algorithm is simple in its design and describes the 
label difference intuitively with different weights.

Based on the previous characteristics, the objective function 
for the i-th label is given as formula (1):

Where X denotes the features, wi denotes the weights of fea-
tures related to the label li , where the contribution of a par-
ticular feature is more significant if the corresponding weight 
is larger, and is irrelevant to li if the weight reaches zero. yi 
denotes the ground-truth on label li . rij = 1 − cij , where cij 
quantifies the correlation strength between li and lj calculated 
by cosine measure. The symbol � and � are parameters. wi⊤wj 
means the correlation of li and lj from feature view. A higher 
correlation between label li and label lj implies a larger inner 
product between wi and wj , and vice versa. Regarding the 
objective functions with the alike of the form (1) as a whole, 
we rewrite the objective function as formula (2):

Where W =
[
w1,w2,… ,wl

]
 denotes a weight matrix from 

all label-specific features in the order of label sequence. 
Label correlation matrix R =

[
rij
]
 is calculated regarding 

second-order label relevance. The notation tr(⋅) denotes the 
rank of a matrix.

2.3  Label enhancement

Label enhancement attempts to reconstruct the latent but 
refined description between instances and labels by employ-
ing learning automatically instead of labeling artificially. 

(1)min
wi

1

2

‖‖‖Xw
i − yi

‖‖‖
2

2
+

𝛿

2

l∑
j=1

rijw
i⊤wj + 𝜂

‖‖‖w
i‖‖‖1

(2)min
W

1

2
‖XW − Y‖2

F
+

𝛿

2
tr
�
RW⊤W

�
+ 𝜂�‖W�‖1

The idea of label enhancement can be traced back to LEMLL 
[24]. This method leveraged topological information hidden 
on the feature side by employing local linear embedding, 
and the established optimization framework is in a wrapped 
manner. CFSM [52] explored a cost-sensitive feature reduc-
tion strategy as the pre-processing of label enhancement. By 
combining the neighbourhood-based granules for the feature 
side, label significance for logical labels, and the feature 
cost with representative probability distribution functions, 
a filtering-based feature selection criterion is defined. The 
features with higher scores served as refined input for fur-
ther processing. BD-LE [53] claimed that information loss 
existed if only unidirectional projection from the feature side 
to the label is available. It mitigated this loss by developing a 
bidirectional loss function, where the inverse mapping from 
label side to feature offered the reconstruction error infor-
mation. L2 [54] presented an end-to-end solution involving 
both label enhancement and label distribution. In particular, 
an adaptive similarity graph constructed by locally linear 
embedding is alternatively optimized with label distribu-
tion learning. LELSF [55] argued that the projection from 
the feature to the enriched label may not be completely lin-
ear, and not all features contribute to the enrichment of an 
arbitrary label. In this work, the linear property hold from 
features with high dimensionality to numerical labels, where 
both label-specific and label-common feature components 
are involved. LEFND [56] alleviated the performance degen-
eration from redundant features by replenishing the fuzzy 
discrimination index. In this method, the label enhancement 
is independent of the label distribution learning, where label 
enhancement adopts some first-order statistics to estimate 
the soft connection between logical labels and numerical 
labels. MDLRML [57] exploited both feature manifold and 
label manifold based on smoothness assumption. Although 
the deduced multi-output regressor is competitive in enhanc-
ing local data fitness, the label enhancement module is still 
independent of the classifier training.

In our work, we consider LEMLL [24] as a component. 
The reasons are as follows: 

1. The combination of label enhancement and logical label 
learning is an inspiring attempt to reduce uncertainty 
and contributes to knowledge representation.

2. It leverages adequate information reducing the ambigu-
ity of label semantics (i.e., both topology information 
on the feature side and the closeness assumption on the 
label side) without introducing additional operations. 
The simplicity property seems more appropriate to 
explain the effectiveness of our idea.

Inspired by the previous knowledge, we have the following 
objective function:
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Where we assume that the projection is linear, (i.e., 
f (xi) = ��

(
xi
)
+ b ), it maps the instances to a higher 

dimensional space and then does a linear mapping to predict 
label set. �i = ui −��

(
xi
)
− b is the difference between the 

restored numerical labels and the numerical labels predicted 
by the classifier and the loss function 

n∑
i=1

LR
�
Ri

�
 uses the idea 

of allowing for small errors, and Ri is the Euclidean distance, 
‖U − Y‖2

F
 constrains the restored numeric labels to be as 

similar as possible to the original logical labels. 
tr
�
U⊤MU

�
= ‖U −WU‖2

F
 uses the smooth assumption that 

the organizational structure of the feature space is similar to 
that of the label space. M = (I −W)⊤(I −W) , where W is 
the weight of graph G = (V,E,W) , and this component rep-
resents the associations on arbitrary two instances. In graph 
G, any instances within a distance � are ignored, whereas the 
remaining are approximately represented by the combina-
tions of k-neighborhood, denoted as formula (4):

(3)

min
�,b,U

n∑
i=1

LR
�
Ri

�
+ 𝜇‖Θ‖2

F
+ 𝜆‖U − Y‖2

F
+ 𝛾tr

�
U⊤MU

�

s.t. Ri =
���i��2 =

�
�⊤
i
�i;

�i = ui −�𝜑
�
xi
�
− b

LR(R) =

�
0 R < 𝜀;

R2 − 2R𝜀 + 𝜀2 R ⩾ 𝜀.

3  The MLT‑LEML model

3.1  Notations

Table 1 presents a nomenclature which elaborates on the 
major notations and the corresponding mathematical 
meanings.

3.2  Basic idea

MGT-LEML learns two projections (i.e., f 1 and f 2 ) sequen-
tially from the feature ( X ) to the label ( Y ) and introduces 
two thresholds for the determination of logical and numeri-
cal labels in coarse and refined granules, respectively. Fig-
ure 1 illustrates the pipeline.

The learning target in our case is multi-granularity in the 
form of multi-label. Specifically, the coarse granularity is 
developed from the logical label model, whereas the fine 
granularity is constructed according to the requirement of 

(4)
min
W

n∑
i=1

�����
xi −

∑
j≠i

Wijxj

�����

2

s.t.
n∑
i=1

Wij = 1.

Table 1  Notations of MGT-
LEML

Notations Mathematical meanings

�.. loss function
Dl multi-label instances set
Du unseen instances set
X feature space
Y label space
xi an instance
y1
i

logical label
y2
i

numerical label
xu an unseen instance
x∗
u

an uncertainty instance in unseen instance set
f 1(⋅) logical label model learnt by LLSF
f 2(⋅) numerical label model learnt by LEMLL
W weight parameter in LLSF
� mapping from feauture to high dimension space
b, � parameter of linear mapping in LEMLL
f 1
i

(
xu
)

the output on label li of logical label function learnt by LLSF

f 2
i

(
x∗
u

)
the output on label li of numerical label function learnt by LEMLL

y∗
u

the label set learnt by f2
ŷu the label set learnt by f1
D(�0,�0) uncertain instance set on li
¬D(�0,�0) certain instance set on li
�u final predicted multi-label set of X2
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uncertainty analysis. Then a novel information system is 
defined as Definition 1.

Definition 1 A multi-granular label information system 
(MGLIS) is a quadruple denoted as MGLIS = (X,Y,V , f ) , 
where X is observed feature space and Y is the label 
space with multi-granularity; f = {f 1, f 2} is the projec-
tion from the feature to label space, where f 1 and f 2 iden-
tifies the coarse and fine label, respectively. The coarse 
label of instance xi is represented by y1

i
 , which satisfies 

y1
i
∈ {0, 1}l . In contrast, the fine label of instance xi is 

represented by y2
i
 , which satisfies y2

i
∈ [−1, 1]l if available 

and NA otherwise.

Definition 1 shows that an instance may have at most 
two levels of the label, where the coarse level and refined 
label correspond to the logical and numerical label, 
respectively. To facilitate understanding, we present an 
example of MGLIS in Table 2.

In what follows, we elaborate on how to establish and 
apply the MGLIS. Concretely, we discuss the functionality 

of multi-granular thresholds (see Sect. 3.3) and how they 
work for multi-label classification (see Sect. 3.4).

3.3  Multi‑granular label representations

The classification for coarse granule label representation 
(i.e., the logical labels) follows the settings of LLSF [12] 
such that the label-specific features determine the logical 
labels.

However, the classification for fine granule label repre-
sentation (i.e., the numerical labels) has some differences 
to LEMLL [24] in that the instances to be enhanced are 
those uncertain instances instead of the whole. The ration-
ality is that given linear projection learned by f 1 , instances 
with smaller separation margins to hyperplane have a 
larger possibility of misclassification, and vice versa. In 
other words, the classification results have a smaller pos-
sibility for corrections if we conduct label enhancement 
on the instances of certain classifications. Consequently, 
the refined-granule labels in Table 2 are not invariably 
available (see instance x7 and x8).

Different from the single-label case in that the sepa-
ration margin corresponds to only linear projection, the 
separation margins exhibit a collection of margins for 
each label. This means we can devise different strategies 
to find uncertain instances. For those uncertain instances 
x∗
u
∈ D(�,�) , f 2 generates the label distribution and com-

pletes the classification with a new virtual label u0 . There-
fore, the final predicted label yu ∈ Yu is shown as formula 
(5):

(5)yu =

{
ŷu, xu ∈ ¬D(𝛽0,𝛼0);

y∗
u
, xu ∈ D(𝛽0,𝛼0).

Fig. 1  Pipeline of MGT-LEML. The multi-granular thresholds serves 
for logical label learning (at coarse granule) and numerical label 
learning (at refined granule), respectively

Table 2  An illustration of multi-
granular label representation

Instances Attributes Coarse granule Refined granule

Logical labels Numerical labels

a1 a2 a3 l1 l2 l3 u1 u2 u3

x1 1 1 0 1 0 1 0.4 −0.2 0.4
x2 1 0 0 1 0 1 0.6 −0.1 0.3
x3 1 1 0 1 1 0 0.5 0.4 −0.1
x4 1 0 1 1 1 0 0.6 0.3 −0.1
x5 0 1 1 0 1 1 −0.1 0.5 0.4
x6 0 1 1 0 1 1 −0.1 0.3 0.6
x7 0 0 0 1 1 0 NA NA NA
x8 1 1 1 0 1 1 NA NA NA
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3.4  Label enhancement with three‑way decisions

For an unseen instance xu ∈ Du , we specify which label pre-
dictions are uncertain by computing regression based on the 
formula (6).

Where W =
[
w1,w2,… ,wl

]
 is learnt from formula (1). 

Due to the linear model property, the calibrated threshold 
l0 constitutes a hyperplane with f i

1
(x

⋅
) = l0,∀i ∈ {1, 2,

⋯
, l} . 

Instances whose regression values are close to l0 are more 
uncertain than those with a larger separation margin to the 
l0 . In what follows, we will show how to pick the uncertainty 
instances on each label.

The associated labels in multi-label are sparsely distrib-
uted across the label space, leading to even more imbal-
anced class distributions for each label. This means the 
count of the associated label (i.e., positive class, denoted 
by 1) can be far smaller than the count of the unassociated 
label (i.e., negative class, denoted by 0). In this case, we 
require an uncertain theory that embraces the following 
properties: 

1. Cost-sensitive: It should indicate the cost difference for 
two representative misclassifications. That is, the deci-
sion cost of judging a label that should be relevant to 
an example as irrelevant should be significantly higher 
than the decision cost of deciding a label that should be 
irrelevant to an example to be relevant.

2. Boundary awareness: It should allow some vagueness 
for labels to seek the appropriate actions for deferment 
decisions when the confidence of evidence is not ade-
quate.

Fortunately, the decision-theoretic rough set (DTRS) [28] 
satisfies the above-mentioned requirements. For a classi-
cal binary classification problem, it enumerates all possible 
combinations (six states) given three actions (acceptance, 
rejection and deferment) and presents a set of loss functions 
(see Table 3, denoted as �.. ). Meanwhile, the decision cost 
incurred by taking different actions is determined by the 
cumulative sum of the combination of the loss function with 
evidence measured by conditional probability.

The semantics of detailed settings of the six loss func-
tions are as follows. 

1. When an instance is actually with a label li and we also 
decide that the instance has the label li , then the decision 
risk �ap should be very low.

(6)f1
(
xu
)
= Wxu. 2. When an instance is actually with a label li but we do not 

decide the label-instance association, then the decision 
risk �bp should be higher than that of �ap.

3. When an instance is actually with a label li but we decide 
the instance is without the label li , then the decision risk 
�np should be very high.

4. When an instance is actually without a label li and we 
also decide that the instance is without label li , then the 
decision risk �nn should be very low.

5. When the instance is actually without a label li but we 
do not decide the label-instance association, the decision 
risk �bn should be higher than �nn.

6. When an instance is actually without a label li but we 
decide that the instance is with the label li , then the deci-
sion risk �an should be very high.

The six losses cover all possible actions when taking three-
way decisions.

Generally, the following two assumptions are satisfied: 

(1) 0 ⩽ �ap ⩽ �bp ⩽ �np , 0 ⩽ �nn ⩽ �bn ⩽ �an;

(2) 𝜆np−𝜆bp

𝜆bn−𝜆nn
>

𝜆bp−𝜆ap

𝜆an−𝜆bn
.

We denote P
(
[x]li |x

)
 as the probability that an instance x is 

with label li condition on the instances x . The decision risks 
that instance is with label li (acceptance), defer to the deci-
sion (deferment) is without the label li (rejection), as shown 
in formula (7):

Based on the Bayesian minimizing decision cost principle, 
the decision risk Cost

(
ap|x

)
 indicating the instance x is with 

label li (acceptance) reaches the minimum if

hold.
The decision risk Cost

(
ab|x

)
 do not decide label asso-

ciation between the instance x and the label li (deferment) 
reaches the minimum, if

(7)

Cost
(
ap|x

)
= �apP

(
[x]li |x

)
+ �anP

(
¬[x]li |x

)
;

Cost
(
ab|x

)
= �bpP

(
[x]li |x

)
+ �bnP

(
¬[x]li |x

)
;

Cost
(
an|x

)
= �npP

(
[x]li |x

)
+ �nnP

(
¬[x]li |x

)
.

(8)Cost
(
ap|x

)
⩽ Cost

(
ab|x

)
.

(9)Cost
(
ap|x

)
⩽ Cost

(
an|x

)
.

Table 3  Loss Functions for 
Decisions with Two States

ap ab an

[x]li �ap �bp �np

¬[x]li �an �bn �nn



3744 International Journal of Machine Learning and Cybernetics (2023) 14:3737–3752

1 3

hold.
The decision risks Cost

(
an|x

)
 indicating that instance x is 

without the label li (rejection) reaches the minimum if

hold.
� and � can be computed as formula (14) and formula 

(15), respectively.

For taking actions, we accept x ∈ [x]li if P
(
[x]li |x

)
⩾ � , 

reject x ∈ [x]li if P
(
[x]li |x

)
⩽ � and defer to decide x ∈ [x]li 

otherwise.
Due to the imbalanced class distribution of multi-label, 

the paper introduces the same six loss functions on all labels 
independently and deduces the trisecting based on formula 
(14) and (15). Therefore, the classification on label li is 
uncertain if P

(
[x]li |xu

)
∈ (�, �).

Recall that the output of LLSF on an arbitrary label li (that 
is f i

1
(xu) ) satisfies f i

1
(xu) ∈ (−0.5, 1.5) , we can approximately 

regard the value f i
1
(xu) as the conditional probability of xu 

being the positive label (that is P([x]li |xu) ). The tri-partition 
threshold (i.e., 

(
�0, �0

)
 ) in the sense of original regression 

can be estimated as:

Based on Bayesian minimizing cost principle, we deduce the 
three-way classification as formula (18):

Where 0 ⩽ 𝛽0 < l0 < 𝛼0 ⩽ 1 and 1 ⩽ i ⩽ l.

(10)Cost
(
ab|x

)
⩽ Cost

(
ap|x

)
.

(11)Cost
(
ab|x

)
⩽ Cost

(
an|x

)
.

(12)Cost
(
an|x

)
⩽ Cost

(
ap|x

)
.

(13)Cost
(
an|x

)
⩽ Cost

(
ab|x

)
.

(14)� =
�bn − �nn(

�bn − �nn
)
+
(
�np − �bp

) .

(15)� =
�an − �bn(

�an − �bn
)
+
(
�bp − �ap

) .

(16)�0 = 2� − 0.5.

(17)�0 = 2� − 0.5.

(18)f i
1

�
xu
�
=

⎧⎪⎨⎪⎩

1 f i
1

�
xu
�
⩾ 𝛼0;

0.5 𝛽0 < f i
1

�
xu
�
< 𝛼0;

0 f i
1

�
xu
�
⩽ 𝛽0.

Unlike single-label which the uncertainty of instances 
is equivalent to the uncertainty of labels, it is likely for 
instances with some uncertain labels. Formally, let

denote the multi-label classification on instance xu , 
f i
1

(
xu
)
⩾ �0 and f j

1

(
xu
)
⩽ �0 may hold simultaneously. To 

correct the possible misclassifications, we take the optimistic 
strategy and define the uncertain instances selection princi-
ple D(�0,�0)

 as formula (20):

It is worth mentioning that the D(�0,�0)
 is a realization of the 

acting procedure in three-way decisions. An instance is 
uncertain if it contains at least an uncertain label prediction 
and defers the classification until we obtain the latent label 
distributions. For an undetermined instance x∗

u
∈ D(�0,�0) , the 

regression estimation of label distribution forms into the 
formula (21).

For each label li , we can determine the label relevance 
regarding x∗

u
 by introducing a virtual label u0 , as described 

in formula (22).

Formally, let

denote the multi-label classification on instance x∗
u
.

3.5  Algorithm complexity

We introduce multi-granular labels with three-way deci-
sions for multi-label classification in Algorithm 1.

(19)ŷu =
{
f 1
1

(
xu
)
, f 2

1

(
xu
)
,… , f l

1

(
xu
)}

.

(20)
D(𝛽0,𝛼0) = ∪

{
xu|∃i ∈ {1, 2,… , l} ∧ 𝛽0 < f i

1

(
xu
)
< 𝛼0

}
.

(21)f2
(
x∗
u

)
= ��

(
x∗
u

)
+ b.

(22)f i
2

(
x∗
u

)
=

{
1 f i

2

(
x∗
u

)
⩾ u0;

0 f i
2

(
x∗
u

)
< u0.

(23)yu
∗ =

{
f 1
2

(
x∗
u

)
, f 2

2

(
x∗
u

)
,… , f l

2

(
x∗
u

)}
.
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Algorithm 1 MGT-LEML
Require: Known labeling instances Dl, balance factors δ, η, µ, λ, γ, ε.
Ensure: yu on unseen instances Yu.
1: Generate W based on objective function defined in formula (2) based on

Dl, δ, and η.
2: Generate Θ, b based on objective function defined in formula (3) based

on Dl, µ, λ, γ, ε.
3: Generate β and α based on formula (14) and (15).
4: Generate β0 and α0 based on formula (16) and (17).
5: Generate regression results regarding LLSF (f1(x)) based on Du and

formula (6).
6: for i = 1 to l do
7: Compute f i

1(xu) as described in formula (18).
8: end for
9: Generate ŷu as described in formula (19).

10: Generate D(β0,α0) as described in formula (20).
11: for u = 1 to |Du| do
12: for i = 1 to l do
13: if x∗

u ∈ D(β0,α0) then
14: Compute f2 (x∗

u) � y∗
u as described in formula (21).

15: Determine f i
2 (x

∗
u) ∈ {0, 1}l as described in formula (22).

16: end if
17: end for
18: Generate y∗

u as described in formula (23).
19: end for
20: Generate yu ∈ Yu as described in formula (5).

The quantitative analysis of the complexity of Algo-
rithm  1 explains step by step. Step 1 occupies 
O
(
t1
(
d2 l + dl2

)
+ d3 + l3

)
 , where t1 is the iteration count for 

solving LLSF, d is the count of feature dimensionality, and 
l  i s  the  count  of  labels .  Step  2  occupies 
O
(
t2|Dl|2

(
d2 l + dl2

)
+ d3

)
 , where t2 is the iteration count 

for solving LEMLL. Step 3 and step 4 occupy the O(1) for 
threshold generation. The complexity from step 5 to step 8 

is O
(|Du|l

)
 . Step 9 costs O(l) , whereas step 10 takes 

O
(|Du|l

)
 . From step 11 to step 19, the computational com-

plexity is O
(
|D(�0,�0)|l

)
 . Step 20 takes the complexity of 

O
(
|D(�0,�0)|l

)
 . Note that t2 ≫ t1, |D(𝛽0,𝛼0)| ≪ |Dl| , thus the 

ove ra l l  t he  complex i t y  o f  MGT-LEML i s 
O
(
t2|Dl|2

(
d2 l + dl2

)
+ d3

)
.

4  Experiments

4.1  Settings

We evaluate the classification effectiveness of MGT-LEML 
on eight publicly available benchmarks[58]. These datasets 
are of small or medium size, as the complexity of MGT-
LEML is considerable. Table 4 describes the characteristics 
of the considered datasets, including the instances count (# 
Instance), the features count (# Features), the labels count (# 
Labels), the average count of associated labels per instances 
(# Cardinality) and the corresponding domains.

Table 4  Data characteristics

Data set # Instances # Features # Labels # Cardi-
nality

Domain

bibtex 7395 1836 159 2.402 text
birds 645 260 19 1.014 audio
emotions 593 72 6 1.869 music
enron 1702 1001 53 3.39 text
genbase 662 1185 27 1.252 biology
medical 978 1449 45 1.245 text
langua-

gelog
1460 1004 75 1.18 text

scene 2407 294 6 1.074 image
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We examine whether MGT-LEML gains superior classi-
fication performance against eight logical label-based algo-
rithms. The comparisons of MGT-LEML include MLkNN, 
LIFT, MLTSVM, Glocal, HNOML, fRAkEL, and MCGM. 
Next, we will introduce the detail.

• MLkNN1 [14]: It is an algorithm adaption of kNN that 
generates the multi-output simultaneously. The parameter 
k sets 10.

• LIFT2 [41]: It learns label-specific feature mapping based 
on k-means clustering. The ratio parameter sets among 
{0.1, 0.2,… , 0.5}.

• LLSF3 [12]: It learns label-specific features while pre-
serving second-order label correlation. � , � set among 
{2−10, 2−9,… , 29, 210} . The parameter �1 sets 0.5.

• MLTSVM4 [16]: It learns distance differences in ker-
nel space from multiple non-parallel hyperplanes. The 
penalty coefficient and kernel parameter are searched in 
{2−6, 2−5,… , 25, 26} and {2−4, 2−3,… , 23, 24} , respec-
tively.

• Glocal5 [42]: It learns a function from explicit feature 
space to latent labels while capturing both global and 
local label correlation in the form of second-order. The 
penalty parameter sets 1.

• HNOML [59]: It leverages the data locality by imposing 
label embedding and label enriching. Penalty parameters 
� , � , � set among {10−3, 10−2,… , 103}.

• fRAkEL6 [45]: It selects a proportion of key instances to 
conduct Random k-label sets. The label set size takes the 
empirical value of 3, whereas the base classifier count is 
configured as twice the label cardinality count. The base 
classifier adopts LibLinear.7

• MCGM8 [60]: It learns group-based projection by lever-
aging group-based local correlation with label-specific 

but local features. The parameter � and � are searched 
in {10−4, 10−3,… , 1} , whereas � and � are searched in 
{10−2, 10−1,… , 102}.

• MGT-LEML: Proposed method. f1 takes the following 
settings ( � = 28 , � = 24 , maximal iteration count t1 is 100 
and calibrated threshold l0 = 0.5 ), whereas f2 takes the 
following settings ( k = 10 , � = 0.1 , � =

1

4
 , � = 1 , � =

1

64
 , 

calibrated threshold u0 = 0 , maximal iteration count t2 is 
200, �(⋅) adopts linear kernel function). For simplicity, 
the six losses for each label adopt the recommendation 
in [38], as shown in Table 5, where y∗i = 1 represents 
the event that instances are associated with label li , and 
otherwise if y∗i = 0.

Based on formula (14) and (15), the pair of thresholds 
� and � are computed respectively as 2

7
 and 5

8
 . The adjusted 

thresholds �0 and �0 are 1
14

 and 3
4
 by applying formula (16) 

and (17), respectively.
We use six metrics [61] (Hamming Loss, Ranking Loss, 

One Error, Coverage, Average Precision, and Micro F1) to 
measure classification performance. The first four metrics 
report better performance if the values are smaller, denoted 
as the notation ↓ . For metrics Average Precision and Micro 
F1, the larger the values are, the better the performance will 
be, denoted as ↑ . The value labelled in brackets ranks the 
algorithm performance, and Avg rank shows the average 
ranking list of each algorithm on all data sets. We annotate 
the best performance value in bold size. All experiments 
are implemented by Matlab on a desktop with Intel(R) 
Core(TM) i7 processor and 32GB RAM (Table 6).

4.2  Results

Table 6 enumerates the representative statistics of classi-
fication performance measured by the six evaluation met-
rics from the nine algorithms. The average performance on 
considered metrics is from six times five-fold cross-valida-
tion and is independent of data randomness. Based on the 
reported average performance, we rank the algorithms as the 
metric declares from the best to the worst. The best perfor-
mance is in bold size. From the metric view, MGT-LEML 
ranks first at 66.67% and second at 16.67% 16.67%. From 
the dataset view, MGT-LEML ranks first at 47.92% ( 23

48
 ), 

second at 20.83% ( 10
48

 ) and third at 6.25% ( 3
48

 ). It achieves the 
least loss on metric Coverage (with 100% in the first place), 
whereas becomes the worst on metric Micro F1 (with an 
average ranking in fourth place). Meanwhile, we observe 
that the performance of MGT-LEML improves at 87.5% ( 42

48
 ) 

compared with LLSF, which further validates the effective-
ness of MGT-LEML.

Table 5  Loss functions settings for decisions of label l
i

ap ab an

y∗i = 1 �ap ∶ 0 �bp ∶ 3v �np ∶ 8v

y∗i = 0 �an ∶ 7v �bn ∶ 2v �nn ∶ 0

1 code available at http:// www. lamda. nju. edu. cn/ code_ MLkNN. ashx
2 code available at http:// cse. seu. edu. cn/ Perso nalPa ge/ zhang ml/ index. 
htm
3 code available at https:// jiunh wang. github. io/
4 code available at http:// www. optim al- group. org/ Resou rce/ 
MLTSVM. html
5 code available at http:// www. lamda. nju. edu. cn/ code_ Glocal. ashx
6 code available at http:// github. com/ KKimu ra360/ fast_ RAkEL_ mat-
lab
7 code available at https:// www. csie. ntu. edu. tw/ ~cjlin/ libli near/
8 code available at https:// github. com/ Jiang hongMA/ MC- GM

http://www.lamda.nju.edu.cn/code_MLkNN.ashx
http://cse.seu.edu.cn/PersonalPage/zhangml/index.htm
http://cse.seu.edu.cn/PersonalPage/zhangml/index.htm
https://jiunhwang.github.io/
http://www.optimal-group.org/Resource/MLTSVM.html
http://www.optimal-group.org/Resource/MLTSVM.html
http://www.lamda.nju.edu.cn/code_Glocal.ashx
http://github.com/KKimura360/fast_RAkEL_matlab
http://github.com/KKimura360/fast_RAkEL_matlab
https://www.csie.ntu.edu.tw/%7ecjlin/liblinear/
https://github.com/JianghongMA/MC-GM
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We employ Friedman test [62] to examine whether statis-
tical differences hold for selected evaluation metrics, given 
the experimental results generated by multiple algorithms 
across selected datasets. Parameters K and N mean the 
count of comparing algorithms and datasets, respectively. 
Rj = (1∕N)

∑N

i=1
r
j

i
 ranks the average value of the j-th algo-

rithm on all data sets. The null hypothesis ( H0 ) thinks that 
all algorithms’ performances have no difference statistically. 
The Friedman statistic FF obeys the F-distribution that the 
numerator is K − 1 and the denominator is (K − 1)(N − 1):

where

Table 7 enumerates the Friedman statistics[62] for all evalu-
ation metrics FF and the corresponding critical value given 
the 72 times of five-fold cross-validation (9 comparing algo-
rithms × 8 datasets). On all metrics, the average performance 
is different statistically. It signifies that the classification per-
formance on all metrics has statistical differences. Therefore, 

(24)FF =
(N − 1)�2

F

N(K − 1) − �2

F

.

(25)�2

F
=

12N

K(K + 1)

[∑
j

R2

j
−

K(K + 1)2

4

]
.

we can further examine the superiority of MGT-LEML over 
the considered algorithms with some post hoc tests.

We employ the Holm procedure [62] to conduct pair-
wise comparisons between MGT-LEML (denoted as 
R1 ) and the remaining algorithms (denoted as Rj , where 
j = 2, 3,… , 9 ). The notation zj (with j = 2, 3,… , 9 ) records 
the average ranking of a particular evaluation metric in 
ascending order and is computed as follows:

We use pj to represent the p-value of zj . MGT-LEML gains 
statistical superiority at confidence level � = 0.05 if the zj is 
smaller than the corresponding pj . For readability, we high-
light those algorithms with bold size from Tables 8, 9, 10, 
11, 12.

As shown from Tables 8, 9, 10, 11, 12, and 13, MGT-
LEML is statistically superior to algorithm Glocal on 
metrics Hamming Loss and Coverage, and is statistically 
superior to algorithms MLTSVM and MCGM on all met-
rics except for metrics One Error and Micro F1, and is 
statistically superior to algorithm fRAkEL on metrics 
Ranking Loss and Coverage, and is statistically superior 
to algorithm LLSF on metrics Hamming Loss and Ranking 
Loss, and is statistically superior to algorithms LIFT and 
HNOML on metrics Coverage, and is statistically superior 
to algorithm MLkNN on metrics Hamming Loss and Aver-
age Precision.

5  Discussions

Although the MGT-LEML achieves satisfying classifi-
cation performance as a whole, the compromised results 
on Micro F1 imply that the discrimination on the minor 
class (i.e., instances with certain classifications) requires 
improvement. The smaller ranking of MGT-LEML against 
LLSF on all metrics except Micro F1 demonstrates that 

(26)zj =
(
R1 − Rj

)/√
K(K + 1)

6N
(2 ⩽ j ⩽ K).

Table 7  Friedman statistics F
F
 on five metrics and the referred criti-

cal value at significance level � = 0.05 . The Friedman statistics for 
each metric (i.e., F

F
 ) are estimated from the differences of average 

ranking mentioned from Table 6, whereas the critical value is deter-
mined by the count of datasets (i.e., N) and algorithms (i.e., k)

Metrics FF Critical value

Hamming loss 19.9417 2.1087
Ranking loss 31.1417
One error 22.6583
Coverage 45.2000
Average precision 26.9667
Micro F1 22.6167

Table 8  Comparisons of MGT-LEML with remaining algorithms examined by Holm procedure on metric Hamming Loss. The algorithms in 
bold size are statistically inferior to MGT-LEML at significance level � = 0.05

j Algorithm zj p Holm

2 MCGM −3.742771 0.000182 0.00625
3 MLTSVM −3.377622 0.000731 0.00714
4 Glocal −3.103761 0.001911 0.00833
5 LLSF −2.647326 0.008113 0.01000
6 ML kNN −2.556039 0.010587 0.01250
7 HNOML −2.282177 0.022479 0.01667
8 fRAkEL −2.145247 0.031933 0.02500
9 LIFT −1.506237 0.132006 0.05000
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three-way decisions significantly improve the upper bound 
of classification accuracy, and such dominance applies to 
varying domains. However, the effectiveness of employ-
ing three-way decisions requires more comprehensive 
comparisons. Firstly, the settings of six loss functions 
are from experts, which means the results are only effec-
tive and may be sub-optimal. It is worth examining how 
much the classification performance fluctuates as the loss 

functions change. Although the latent label correlation is 
unknown, the relationship between data characteristics and 
loss functions may reveal some insightful ideas. Secondly, 
how to leverage the distribution of uncertain classifica-
tions to determine the uncertain instance remains an open 
issue. In our approach, we formulate a classical Top-K 
problem. Thus, we raise three questions here. (1) How to 
objectively measure the influence of label correlation; (2) 
how to determine the optimal components of uncertain 
instances; and (3) how much performance difference lies 
between the optimal solution and the presented three-way-
based label enhancement schema. We believe there are 
some trade-off factors between computational efficiency 
and performance improvement. Thirdly, it is conducive 
to learning the label-dependent weights from instances of 
both global and local label correlations. We believe such 
examinations can facilitate the understanding of multi-
label classification. Nevertheless, the MGT-LEML is a 
promising solution and reveals that leveraging uncertainty 
is conducive to boosting classification performance.

Table 9  Comparisons of MGT-LEML with remaining algorithms 
examined by Holm procedure on metric Ranking Loss. The algo-
rithms in bold size are statistically inferior to MGT-LEML at signifi-
cance level � = 0.05

j Algorithm zj p Holm

2 MLTSVM −4.381780 0.000012 0.00625
3 fRA kEL −4.107919 0.000040 0.00714
4 MCGM −3.377622 0.000731 0.00833
5 LLSF −2.875543 0.004033 0.01000
6 Glocal −2.282177 0.022479 0.01250
7 HNOML −2.190890 0.028460 0.01667
8 MLkNN −1.688811 0.091256 0.02500
9 LIFT −1.278019 0.201243 0.05000

Table 10  Comparisons of MGT-LEML with remaining algorithms 
examined by Holm procedure on metric One Error. The algorithms in 
bold size are statistically inferior to MGT-LEML at significance level 
� = 0.05

j Algorithm zj p Holm

2 Glocal −2.373465 0.017600 0.00625
3 MLkNN −2.327822 0.019900 0.00714
4 MCGM −2.327822 0.019900 0.00833
5 HNOML −2.053960 0.040000 0.01000
6 LLSF −1.095445 0.273300 0.01250
7 LIFT −0.639010 0.522800 0.01667
8 MLTSVM −0.274043 0.784100 0.02500
9 fRAkEL 0.822130 1.000000 0.05000

Table 11  Comparisons of MGT-LEML with remaining algorithms 
examined by Holm procedure on metric Coverage. The algorithms in 
bold size are statistically inferior to MGT-LEML at significance level 
� = 0.05

j Algorithm zj p Holm

2 MCGM −5.842374 0.000000 0.00625
3 MLTSVM −4.290493 0.000018 0.00714
4 Glocal −3.651484 0.000261 0.00833
5 LIFT −3.468910 0.000523 0.01000
6 fRA kEL −3.012474 0.002591 0.01250
7 HNOML −2.464752 0.013711 0.01667
8 MLkNN −1.825742 0.067889 0.02500
9 LLSF −1.734455 0.082837 0.05000

Table 12  Comparisons of MGT-LEML with remaining algorithms 
examined by Holm procedure on metric Average Precision. The algo-
rithms in bold size are statistically inferior to MGT-LEML at signifi-
cance level � = 0.05

j Algorithm zj p Holm

2 MCGM −4.609998 0.000004 0.00625
3 MLTSVM −3.560197 0.000371 0.00714
4 ML kNN −2.784256 0.005365 0.00833
5 HNOML −2.236534 0.025317 0.01000
6 fRAkEL −2.099603 0.035764 0.01250
7 LLSF −1.962672 0.049684 0.01667
8 Glocal −1.734455 0.082837 0.02500
9 LIFT −1.551881 0.120691 0.05000

Table 13  Comparisons of MGT-LEML with remaining algorithms 
examined by Holm procedure on metric MicroF1. The algorithms in 
bold size are statistically inferior to MGT-LEML at significance level 
� = 0.05

j Algorithm zj p Holm

2 fRAkEL −2.556039 0.010600 0.00625
3 MLkNN −1.962673 0.049700 0.00714
4 Glocal −1.643168 0.100300 0.00833
5 HNOML −1.141089 0.253800 0.01000
6 LIFT −0.684653 0.493600 0.01250
7 MCGM 0.136931 1.000000 0.01667
8 LLSF 0.182574 1.000000 0.02500
9 MLTSVM 1.095445 1.000000 0.05000
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6  Conclusions

This paper presents a novel label enhancement-based multi-
label classification model with multi-granular thresholds. 
Following the theory of three-way decisions, this model 
identifies uncertain instances and improves the classifica-
tion by label enhancement. Results on benchmarks have 
demonstrated that, with fine-granularity supervision, the 
reduction of label ambiguity leads to significant improve-
ments in classification performance. For the forthcoming, 
we will focus on components optimization for both trisecting 
and acting. In addition, we will examine the performance of 
MGT-LEML in the specific application domain.
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