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a b s t r a c t

Sample selection is a fundamental technique utilized in image classification with noisy labels. A
plethora of sample selection approaches published in the literature are based on a small-loss strategy,
in which division thresholds are set manually and the correlation between sample losses is ignored.
Furthermore, one of the most evident shortcomings of these approaches is that noisy samples with
low-quality pseudo-labels can negatively impact the model resulting in poor performance. In this
study, a shadowed-sets-based semi-supervised sample selection network called SSS-Net is developed
to address these limitations. Our approach leverages a novel technique that combines a loss-similarity-
based-clustering method (LSCM) with the shadowed-sets theory to adaptively select clean samples.
We then introduce an original high-quality pseudo-label sample reselection (HPSR) strategy, which is
designed through the co-training of two networks, to pick the samples with high-quality pseudo-labels.
Finally, the selected samples are utilized to further train the network and complete classification. This
study presents an automated approach that determines optimal division thresholds to select clean
samples adaptively. Furthermore, it improves the current semi-supervised sample selection method
by effectively utilizing noisy samples. The suitability and promising performance of the proposed
approach are supported through experimental studies using five real-world datasets. Comparative
studies involving several state-of-the-art methods are also reported.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The impressive success of machine learning is largely at-
ributed to the massive amount of labeled data [1–3]. However,
t is extremely expensive and time-consuming to obtain high-
uality annotations. Many affordable techniques, such as web
mage crawling or machine labeling [4,5], have been widely
sed to generate labeled data. Regrettably, these techniques are
rone to generate unreliable labels, commonly known as noisy
abels [6]. Various methods have been proposed to mitigate the
egative impact of noisy labels, which can be classified into three
ypes [1,7]: robust architecture [8–11], robust regularization us-
ng loss functions [12,13], and sample selection strategies [14–
9].
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This study focuses on sample selection strategies, which aim
to select samples with reliable labels as training datasets to
develop a classification network. It has been observed that deep
neural networks tend to learn simple patterns before fitting la-
bel noise [20]. Therefore, many sample selection methods adopt
a small-loss strategy. They ‘‘warm-up’’ the network for a few
epochs by training on all data to obtain losses, after which sam-
ples with loss values below a certain threshold are classified as
clean (with mostly reliable labels), and the remaining samples
are noisy ones (with mostly unreliable labels), as illustrated in
Fig. 1(a). This study categorizes small-loss-based sample selec-
tion methods into two types: supervised learning (SL) methods
[17–19] and semi-supervised learning (SSL) methods [14–16,21–
25], as shown in Fig. 1(b) and (c).

The SL methods select the clean samples according to the
small-loss strategy and fine-tune the network with the clean
samples, which may lead to waste of noisy samples. In contrast,
SSL methods generate pseudo-labels on the noisy samples and
the network can be obtained based on both the clean samples

with reliable labels and the noisy samples with pseudo-labels.
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Fig. 1. Sample selection based on the small-loss strategies.
pparently, the latter outperforms the former by fully utilizing
seudo-labeled samples. However, in existing sample selection
ethods, the thresholds for selecting clean samples are deter-
ined manually based on the sample losses without considering

he correlation between sample losses. Furthermore, utilizing
oisy samples with low-quality (LQ) pseudo-labels in SL may
egatively impact the model training.
To address these challenges, a shadowed-sets-based semi-

upervised sample selection network, namely SSS-Net, is formu-
ated in this study. The frame diagram of the model is shown in
ig. 2. First, to perform the operation of adaptive selection of clean
amples, the novel technique combined with the loss-similarity-
ased-clustering method (LSCM) and the shadowed-sets theory
s developed. To be more specific, after conducting a warm-up
peration and obtaining the sample losses, the LSCM algorithm is
esigned to preliminarily simulate the distribution of clean and
oisy samples and calculate the membership degrees of samples
elonging to clean samples. A technique to automatically calcu-
ate partition thresholds is proposed based on the shadowed-sets
heory and the membership degrees. The thresholds are used to
eparate clean and noisy samples. As a result, samples can be
lassified into two types: clean samples and noisy samples with
ncertain labels that require further evaluation of their reliability.
hen, in order to fully utilize the noisy samples obtained in the
revious step while avoiding the negative impact of LQ pseudo-
abeled noisy samples, we design a high-quality pseudo-label
ample reselection (HPSR) algorithm. This algorithm selects sam-
les with high-quality (HQ) pseudo-labels (as shown in Fig. 1(d)),
reating them along with the clean samples as the training set
o build the network. It is worth noting that both the clean
amples and the HQ pseudo-label samples determined by one
etwork are regarded as training data to build the other network.
urthermore, two networks are trained simultaneously to avoid
rrors that may occur during single network training. Overall, the
ain contributions in this study are outlined as follows:

• To better select clean samples, the LSCM algorithm was
designed to simulate the distribution of clean and noisy
samples, and calculate the membership degree of samples
belonging to clean samples based on the distribution.

• To address the issue of manually determined division
thresholds in existing sample selection methods, an adap-
tive division technique is developed based on the shadowed-
sets theory. To the best of our knowledge, this is the first
time that the shadowed-sets theory has been utilized to
improve the classification on noise labeled images.

• To better utilize noisy samples and avoid the negative im-

pact of LQ pseudo-labels, the HPSR algorithm is designed to

2

reselect the HQ pseudo-labeled samples for model training.
This not only reduces the number of training samples but
also enhances the network’s performance.

In summary, this study aims to create a deep convolutional
neural network for accurately classifying noise-labeled images. To
achieve this, a novel clustering technique based on loss similar-
ity is developed to simulate the distribution of clean and noisy
samples for the purpose of identify clean samples. The study
also incorporates the shadowed-sets theory to adaptively calcu-
late the division threshold for sample selection. Additionally, the
study introduces an original strategy for reselecting high-quality
pseudo-labeled samples that efficiently utilizes noisy samples.
The study is organized as follows: In Section 2, we briefly re-
view the techniques reported in the literature. In Section 3, we
introduce and explain a shadowed-sets-based semi-supervised
sample selection network called SSS-Net in detail. In Section 4, we
reported a number of experiments. Finally, concluding comments
are reached in Section 5.

2. Literature review

Sample selection is a commonly used strategy to handle train-
ing datasets that contain noisy labeled samples. One approach to
sample selection involves training two or more networks simul-
taneously and selecting samples based on disagreements among
these networks. However, this can lead to higher computational
costs [1,20]. Another commonly employed heuristic in sample
selection is to identify clean samples based on lower loss values,
as compared to noisy samples. This approach is utilized in several
recent methods and can be classified as either SL or SSL methods.

Several early studies reported in the literature focused on SL
methods, with the network updated only based on clean sam-
ples. MentorNet [19] serves as a representative SL approach by
pre-training an additional network to select clean samples and
guide the training process. To prevent confirmation bias due to
the selection of a single network, multi-networks are frequently
utilized for sample selection training. LongReMix [26] introduced
a two-stage learning process. The first stage identifies a small but
precise set of clean labels, and the second stage augments this set
with new clean samples to improve the robustness of the model.
The study in [18] presented a decoupled method to build two
networks simultaneously, and then selected samples based on a
disagreement between these two networks. Multi-round learning
is also used as an effective method in [1] to iteratively refine the
selected set of clean samples by repeating the training round. In a
nutshell, these studies highlight the importance of clean samples,
while little attention has been paid to the noisy samples.
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Fig. 2. A general overview of the SSS-Net.
Currently, sample selection strategies are combined with SSL
ethods to enhance the utilization of noisy samples, which has
een demonstrated to be more effective than the use of SL meth-
ds [21]. For instance, [27] presents a SSL framework to make
etter use of pseudo-negative labels data with low prediction
onfidence, by decreasing the probability of pseudo-negative la-
els. In [22], the SELFIF method is introduced as a way to refurbish
he labels of all noisy samples to increase the number of available
raining samples. However, using the entire set lacks a mech-
nism to filter out erroneous labels. To address this, the RoCL
ethod, presented in [23], employs a more precise detection
trategy for both clean and noisy samples. It corrects noisy sam-
les with pseudo-labels and uses two-phase learning strategies:
upervised training on clean samples and self-supervision on
elabeled noisy samples. The study completed in [15] presents the
ivideMix method, in which clean samples are treated as labeled
ata, and the remaining noisy samples are treated as unlabeled.
oth transformed labeled and unlabeled data are used to train
he SSL model. In [24], the AUGDESC method is formulated by
xamining multiple augmentation strategies and incorporating
hem into the DivideMix method to improve classification results
n synthetic and real-world noisy label datasets. In [25], the
uthors explore semantic clustering and the SSL method called
canmix to deal with noisy labeled samples. This approach uses
elf-supervised training to pre-train DivideMix, resulting in supe-
ior robustness to severe label noise and competitive robustness
o non-severe label noise problems.

As mentioned above, it is worth noting that the SSL methods
an leverage noisy samples to achieve superior results over SL
ethods. However, there is still a significant exploratory space

or analyzing and utilizing noisy samples effectively. Further-
ore, it is evident that the process of separating original noisy

abeled datasets into clean and noisy samples is central to the
hallenges of sample selection. Motivated by these considera-
ions, this study introduces SSS-Net, which aims to enhance the
lassification performance based on noisy labeled images.

. The proposed method

In this section, we introduce SSS-Net, a shadowed-sets-based
emi-supervised sample selection network for classifying noise-
abeled images. We have outlined the research objective and
eneral process of SSS-Net in the Introduction, and have illus-
rated it using Fig. 2. Furthermore, this section elaborates on the
hree main phases in detail, which include the LSCM algorithm,
n adaptive division technique, and a HPSR algorithm. The first
wo approaches aim to identify clean samples, while the last one
s employed to re-select HQ pseudo-labeled samples.
3

3.1. The loss-similarity-based-clustering method

To identify the clean samples, this paper introduces the LSCM
algorithm that learns the distribution of both clean and noisy
samples. Based on this distribution, the algorithm calculates the
membership degree of each sample belonging to clean sam-
ple set. The obtained membership degree forms the basis for
implementing the subsequent automatic division algorithm.

Given a training dataset D = (X, Y ) = {(xi, yi)}ni=1, where
xi and yi ∈ [0, 1]c refer to an image and the one-hot label
in c classes, respectively. The cross-entropy losses l(θ ) of the
deep neural network with parameter vector θ is expressed as
follows [15]:

l(θ ) = {l(xi)}ni=1 = −

{
c∑

c=1

yci log(p
c
model(xi, θ ))

}n

i=1

(1)

where pcmodel is the network’s output softmax probability for class
c. To learn the distribution of clean and noisy samples, we have
employed a two-class clustering method that fits the similarity
between sample losses. Further details about this method will be
discussed in the experimental studies section. In this way, one
can obtain two clusters, namely the relatively clean samples and
the noisy samples, which are denoted as CLEANrel and NOISYLSCM ,
respectively.

Since noisy samples may still exist in CLEANrel, it is indis-
pensable to further capture the clean samples from CLEANrel.
To quantify this, we consider a fuzzy set representation. The
membership degree of CLEANrel considered in this study is defined
over the space U = {xi}ni=1,

µ : U → [0, 1]
xi → µ(xi)

(2)

where µ refers to a membership function of U . The membership
function is defined in the following form:

µ(xi) =

⎧⎨⎩
1, l(xi) ≤ a
(b − l(xi))/(b − a), a < l(xi) < b
0, b ≤ l(xi)

(3)

where µ(xi) ∈ [0, 1] is the membership degree, indicating the
degree of xi belonging to U , and U refers to CLEANrel in this study.
a and b are two parameters with lmin ≤ a < b ≤ lmax, where
lmax and lmin refer to the maximum and minimum loss values
of CLEANrel. We set a = lmin + 1/2(lmax − lmin) and b = lmin +

3/4(lmax − lmin). The clean samples can be further selected from
CLEANrel on the basis of the membership degree and a division
threshold, which is described in the following subsection.
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Fig. 3. High-quality pseudo-label sample reselection method.
B

S
v
o
s
a
s
l
w

C

D
r
w
l
c

N

b
r
a

N

3

p
p
h
H
f
T
l
o

e
p
p

.2. The adaptive selection technique

The division thresholds for sample selection are crucial in
dentifying clean samples. However, in existing methods, the
hresholds are usually set manually based on experience or pa-
ameter tuning to find an optimal value [28,29]. Therefore, in
his study, an adaptive method to systematically determine the
ivision thresholds is developed based on the shadowed-sets
heory. We briefly recall ideas of shadowed sets used in the
roposed method.

efinition 1 (Shadowed Sets [30,31]). A shadowed set S on uni-
erse U = {xi}ni=1 is defined as a mapping from U to the set
0, [0, 1], 1}, viz., S : U → {0, [0, 1], 1}, where mapping S is given
s follows:

µ(xi) =

⎧⎨⎩
1, α ≤ µ(xi) ≤ 1
[0, 1], β < µ(xi) < α

0, 0 ≤ µ(xi) ≤ β

(4)

here α and β are division thresholds with 0 ≤ β < α ≤ 1. The
ptimal values of α and β are obtained by solving the following
inimization problem [30,31],

argmin
(α,β)

V(α,β) (µ(xi))

= min |

∑
α≤µ(xi)≤1

(1 − µ(xi)) +

∑
0≤µ(xi)≤β

µ(xi)

− card(xi | β < µ(xi) < α) |

(5)

where card(·) denotes the cardinality. For the sake of computa-
tional complexity, it is assumed that the α + β = 1 [30]. In this
way, the division thresholds (α, β) can transform the data U into
hree disjoint regions, viz., elevated region 1, shadow region [0, 1]
and reduced region 0, and it has a one-to-one correspondence
in Three-way decisions including positive region (POS), boundary
region (BND) and negative region (NEG).

Definition 2 (Three-way Decisions [31,32]). Suppose U = {xi}ni=1
is a nonempty finite set of elements, and a nonempty finite set
of conditions is given. U can be partitioned into three pairwise
disjoint regions using a mapping function f .

f : U → {POS, BND,NEG} (6)

where POS, BND and NEG denote the regions of acceptance,
non-commitment and rejection, respectively. Compared to the
conventional two-way decisions of accepting or rejecting, the
three-way decisions involving a ‘‘no-commitment’’ option re-
quires further analysis to determine whether it should be ac-
cepted or rejected. Specifically, POS, BND, and NEG can be further
4

expressed based on the division thresholds α and β obtained
through shadowed-sets theory, as shown below:

POS = {xi ∈ U | α ≤ µ(xi) ≤ 1}
ND = {xi ∈ U | β < µ(xi) < α}

NEG = {xi ∈ U | 0 ≤ µ(xi) ≤ β}

(7)

imilarly, in the scenario of noise labeled sample selection, the di-
ision thresholds can be calculated using the membership degree
n the basis of the shadowed-sets theory, which separates the
amples into three disjoint regions, namely clean regions, bound-
ry regions, and noisy regions. These three regions denote clean
amples with reliable labels, uncertain samples with uncertainty
abels and noisy samples with unreliable labels, respectively,
hich are represented below:

LEAN = {xi ∈ U | α ≤ µ(xi) ≤ 1}
BND = {xi ∈ U | β < µ(xi) < α}

NOISY = {xi ∈ U | 0 ≤ µ(xi) ≤ β}

(8)

ue to the uncertainty of the samples located in the boundary
egions, we consider them to be potentially unreliable. Therefore,
e classify all samples into two types: clean samples with reliable

abels, and noisy samples with potentially unreliable labels. This
lassification is presented in the following format:

CLEAN = {xi ∈ U | α ≤ µ(xi) ≤ 1}
OISYadaptive = {xi ∈ U | 0 ≤ µ(xi) < α}

(9)

ased on the description above, which includes the LSCM algo-
ithm and the adaptive division technique, the total noisy samples
re composed with two parts, as shown below:

OISYtotal = NOISYLSCM + NOISYadaptive (10)

.3. High-quality pseudo-label sample reselection strategy

In existing SSL methods, all clean and noisy samples with
seudo-labels are considered as training sets. However, it is im-
ortant to note that noisy samples with LQ pseudo-labels can
ave a negative effect on the training model. To overcome this, a
PSR algorithm is proposed to utilize the noisy samples more ef-
ectively while avoiding the negative impact of LQ noisy samples.
he algorithm comprises two main parts: generating pseudo-
abels for all noisy samples as shown in Fig. 3(b) and selecting
nly the HQ pseudo-label samples in Fig. 3(c).
In the process of generating pseudo-labels, in order to avoid

rrors that may occur during a single network training, we em-
loyed two networks using a co-training approach to generate
seudo-labels. Specifically, for each sample x , we obtained the
i
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utput softmax probability P over C classes in the following
anner,
1
i (cm) = net (xi, θ1)

P2
i (cm) = net (xi, θ2)

(11)

here net(θ1) is a deep conventional neural network with pa-
rameters vector θ1, and net(θ2) is another deep neural network
with parameters vector θ2. P1

i (cm) is the softmax probability that
sample xi belongs to class cm ∈ C using net(θ1). P2

i (cm) is the
softmax probability that sample xi belongs to class cm using
et(θ2). Finally, the prediction probability of sample xi belongs

to class cm can be calculated by averaging the outputs of these
two networks,

Predi(cm) = mean (P1
i (cm), P

2
i (cm)) (12)

n other words, cm is the pseudo-label of sample xi. Similarly, for
nother sample xj(xi ̸= xj), the predicted probability of sample

xj belonging to a certain category cn ∈ C can be calculated as
follows,

P1
j (cn) = net (xj, θ1)

P2
j (cn) = net (xj, θ2)

Predj(cn) = mean (P1
j (cn), P

2
j (cn))

(13)

where P1
j (cn) is the output softmax probability that sample xj

belongs to class cn using net(θ1). P2
j (cn) is the softmax probabil-

ity that sample xj belongs to class cn using net(θ2). Predj(cn) is
the prediction probability calculated by averaging the outputs of
net(θ1) and net(θ2), namely, cn is the pseudo-label of sample xj.

Usually, we take the maximum value of the softmax layer as
the predicted probability, and the corresponding class with the
highest probability is considered as the predicted label, which
is also known as the pseudo-label. The higher the probability
is, the more reliable the pseudo-label becomes, indicating its
higher quality. Therefore, we compare the predicted probabilities
of samples xi and xj, and select the sample with higher prediction
probability as HQ sample for the following model training. The
specific process is as follows:

HQ =

{
xi, Predj(cn) < Predi(cm)
xj, Predi(cm) ≤ Predj(cn)

(14)

where Predi(cm) and Predj(cn) are the prediction probabilities of
samples xi and xj.

3.4. Loss calculation

The loss of the SSS-Net is defined as follows:

LCL = −
1

|CL|

∑
x,y∈CL

∑
c∈C

yc log(pcmodel(x, θ ))

LHQ = −
1

|HQ |

∑
x,y∈HQ

∥y − pmodel(x, θ )∥2
2

(15)

here the loss on clean samples LCL is the cross-entropy loss and
he loss on HQ pseudo-label samples LHQ is the mean squared.
is an image and y is the one-hot label over C classes. pcmodel is

he network’s output softmax probability for class c . According
o the previous work in [33], the following regularization term is
tilized to regularize the model’s average output:

reg =
1
C

∑
log

⎛⎝ 1
C

/
1

|CL| + |HQ |

∑
(x, θ )

⎞⎠ (16)

c∈C x∈(CL+HQ ) c

5

where c is the label over C classes, the final loss is given as
follows:

L = LCL + λuLHQ + λrLreg (17)

here the parameters λu and λr are the same as in the previous
ork [15] to regularize the loss. The SSS-Net model for classi-

ication on noise labeled images is implemented in the form of
lgorithm 1.

. Experimental studies

.1. Datasets and experimental setup

Various datasets were utilized to support and quantify per-
ormance of the developed SSS-Net. These datasets included
ynthetic datasets, namely CIFAR-10 and CIFAR-100, as well as
eal-world datasets such as Clothing1M, WebVision, and
LSVRC2012. For the synthetic datasets, we generated noisy labels
y randomly replacing a percentage of the training data with all
ossible labels. In this study, we experimented with 20%, 50%,
nd 80% label noise levels. More information about the genera-
ion mechanism of noisy labels can be found in [15]. Regarding
he real-world datasets, these datasets already contain a certain
raction of label noise, thus, we did not introduce any additional
oise. Below, we provide further details on these datasets.
CIFAR-10 and CIFAR-100: The CIFAR-10 and CIFAR-100 data-

ets have 10 categories of images and 100 categories, respec-
ively, where each contains 60k color images of size 32 × 32 for
lassification, and 50k for training and 10k for testing.
Clothing1M: The Clothing1M is a large-scale real-world data-

et with 14 categories of noisy labels, involving 1 million training
mages captured from online shopping websites.

WebVision and ILSVRC2012: Webvision is another real-world
ataset, with over 2.4 million images captured from the web in
mageNet ILSVRC2012. Following previous work [15], the SSS-
et is studied on the mini-WebVision 1.0 dataset and ImageNet
LSVRC2012 validation set, where the mini-WebVision has the
irst 50 classes of the Google image subset.

Experimental Setup of Backbone Networks. We follow the
o-training strategy in [34] and use MixMatch [15] as the semi-
upervised method. For the CIFAR-10 and CIFAR-100 dataset, we
ollow the reported work in [34,35] using a 34-layer ResNet as
ackbone, which can be implemented using the SGD (momentum
0.9) with an initial learning rate of 0.02 (reduced by 0.002

fter 150 epochs), weight decay of 0.0005 and a batch size of
28. The number of epochs of the warm-up periods were set as
0 and 30 for the CIFAR-10 and CIFAR-100, respectively, and the
odel was trained for 300 epochs. As for the Clothing1M dataset,

he ResNet-50 with ImageNet pre-trained weights is employed
ith an initial learning rate of 0.002 (reduced by 0.0002 after 40
pochs). The Inception-ResNet is utilized on the mini-WebVision
nd ILSVRC2012 datasets with an initial learning rate of 0.01
reduced by 0.001 after 50 epochs). The network is trained using
GD (momentum = 0.9), a weight decay of 0.001 and a batch
ize of 32. The warm-up period is 1 epoch and the network is
rained for 100 epochs. The above parameters are set on the basis
f Refs. [15,34].

.2. Results of combining different clustering methods

In light of the previous work in [15], we have combined
n existing no-clustering-based method with various clustering
echniques, such as K-means, MiniBatchKMeans, and Hierarchi-
al, as outlined in Table 1. Our results demonstrate that the
ierarchical clustering incorporated model outperforms other in-

orporated models in terms of both the best test accuracy and
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Algorithm 1 The SSS-Net model.

Input: train dataset (X, Y ), test dataset (X ′, Y ′), randomly initialization parameters θ1, θ2.
utput: test accuracy.
1: θ1, θ2 = Warm − up (X, Y , θ1, θ2) // standard training for a specific number of epochs
2: loss1 = Net (X, Y , θ1)
3: loss2 = Net (X, Y , θ2)
4: while i < MaxEpoch do
5: cluster = argminc1,c2 = LSCM(loss1) // c1 and c2 refer to the clustering results.
6: µA = T (cluster) // T is the membership function.
7: α, β = shadowedsets (µA)
8: CL = AdaptiveSelection (X, α, β) // CL refers to CLEAN .
9: HQ = HPSR (NOISYtotal)

10: for iter = 1 to num_iters do
11: from CL draw a mini-batch {xcl, y}
12: from HQ draw a mini-batch {xhq}
13: L = Lcl + λuLhq + λrLreg
14: θ1 = SGD(L, θ1)
15: end for
16: loss2 = Net (X, Y , θ1) // model per-sample loss2 with θ1
17: use loss2 and steps 5-15 to obtain θ2
18: losses1 = Net (X, Y , θ2) // model per-sample loss1 with θ2
19: accuracy = test (X ′, Y ′, θ1, θ2)
20: end while
21: return test accuracy.
Table 1
Clustering analysis on CIFAR-10 and CIFAR-100.
Dataset CIFAR-10 CIFAR-100

Clustering/Noise ratio 20% 50% 80% 20% 50% 80%

Best 96.00 90.28 77.82 78.23 67.95 50.96Backbone w/No-Clustering Avg 93.49 83.76 56.27 76.26 61.33 30.56

Best 96.14 94.43 91.52 78.72 77.48 58.23Backbone w/K-Means Avg 95.61 94.19 90.92 77.75 77.30 58.18

Best 96.66 95.26 88.60 79.89 76.39 55.91Backbone w/MiniBatchKMeans Avg 96.28 95.05 86.01 79.28 75.97 55.22

Best 96.75 95.51 91.44 80.67 77.42 59.89Backbone w/Hierarchical Avg 96.53 95.24 91.25 80.12 77.28 59.41
the average accuracy of the last 20 epochs for noise ratios of 0.2,
0.5, and 0.8. These findings suggest that hierarchical clustering is
a promising approach for improving model performance.

Fig. 4 shows the test accuracy achieved by different clustering
ethods during 300 epochs of the training cycle on the CIFAR-
0 and CIFAR-100. It can be observed that all methods exhibit
imilar performance during the network’s warm-up phase, and
he accuracy significantly increases after 150 epochs due to the
pdate of model parameters, as described in the experimen-
al setup subsection. Overall, one can conclude that combining
lustering methods within the existing model can effectively im-
rove accuracy. It is worth noting that the hierarchical clustering
ethod outperforms the other mentioned methods in terms of

est accuracy and stability, across various noise ratios. Therefore,
e employed the hierarchical clustering method in the following
xperimental studies.

.3. Comparison with state-of-the-art methods

In the compared methods, for the Clothing1M dataset, ResNet-
0 is used as backbone network, and for the mini-WebVision and
LSVRC2012 datasets, the backbone framework used is Inception-
esNet. For the CIFAR-10 and CIFAR-100 datasets, Resnet-18,
esNet-32, ResNet-34, and ResNet-101 are used in different state-
f-the-art methods. The compared methods mostly focus on im-
roving accuracy, which increases the complexity of the model
6

and requires a significant amount of time spent on parameter
tuning to determine the division thresholds manually.

However, the proposed method not only focuses on improving
accuracy but also emphasizes adaptability and complexity. Ac-
cording to Tables 2–4, our experimental results obtained on five
datasets demonstrate consistent superiority over the compared
methods, particularly showing significant improvements on the
CIFAR-100 dataset. For example, compared to the latest method,
our method achieves a maximum increase of 3.06% in accu-
racy and an average improvement of 2.75% when the CIFAR-100
dataset has a 20% noise rate. Furthermore, the proposed method
enhances the adaptability of the model by automatically obtain
the optimal division threshold. Additionally, the complexity of the
proposed method is reduced by selecting and retaining only high-
quality pseudo-labeled samples for model training (as shown
in Table 6). More specifically, compared with existing methods,
the proposed SSS-Net offers the following advantages: Firstly,
existing methods have not considered the correlation between
sample losses. In this study, we designed the LSCM, which can aid
in selecting clean samples. Secondly, by utilizing the shadowed-
sets theory, we can select clean samples adaptively, which avoids
the problem of artificially determining the division thresholds in
existing methods. Moreover, existing SSL methods use all pseudo-
labeled samples without considering that noisy samples with
low-quality pseudo-labels can have a negative impact on the
model’s performance. To address this, we propose the HPSR strat-
egy, which selects samples with high-quality pseudo-labels, and
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Fig. 4. Comparison with different clustering methods with various label noise on CIFAR-10 (left) and CIFAR-100 (right).
discarding low-quality pseudo-labeled samples to improve the
efficiency of the proposed model.

In summary, the SSS-Net demonstrates significant superior-
ity and originality. We have conducted experiments using com-
parative methods under the same experimental conditions and
hyperparameter settings to verify and support this conclusion.
For specific experimental details, such as the network backbone,
parameter setup, and dataset partitioning, refer to the Experi-
mental Setup section. Here, we provide a more detailed analysis
7

of our conclusions based on the specific experimental results.
Table 2 shows the best test accuracy (%) across all epochs and
the average test accuracy (%) during the last 20 epochs on the
CIFAR-10 and CIFAR-100 datasets with different levels of label
noise ranging from 20% to 80%. The comparison results show
that our proposed method outperforms other methods for most
noise ratios, particularly for low noise-ratio datasets. Additionally,
the t-SNE method [46] was used to visualize the features of the
testing images on CIFAR-10 with 20%, 50%, and 80% label noise.
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Table 2
Comparison results with state-of-the-art methods on CIFAR-10 and CIFAR-100.
Dataset CIFAR-10 CIFAR-100

Method/Noise ratio 20% 50% 80% 20% 50% 80%

Best 86.8 79.4 62.9 62 46.7 19.9Cross-Entropy Avg 82.7 57.9 26.1 61.8 37.3 8.8

O2U-Net (2019) [36] Best 91.6 89.59 43.41 74.12 69.21 39.39

Best 89.5 85.7 67.4 65.6 51.8 27.9Co-teaching+ (2019) [15] Avg 88.2 84.1 45.5 64.1 45.3 15.5

Best 89.89 85.11 55.77 – – –INCV (2019) [34] Avg 89.71 84.78 52.27 – – –

MentorMix (2020) [37] Best 95.6 – 81.0 78.6 – 41.2

Best 96.1 94.6 93.2 77.3 74.6 60.2DivideMix (2020) [15] Avg 95.7 94.4 92.9 76.9 74.2 59.6

RoCL (2021) [23] Best – – 86.02 – – 54.51

Best 96.3 95.4 93.8 79.5 77.2 66.4Augmentation (2021) [24] Avg 96.2 95.1 93.6 79.2 77.0 66.1
Sel-CL+ (2022) [38] Best 95.5 93.9 89.2 76.5 72.4 59.6

UNICON (2022) [39] Best 96.0 95.6 93.9 78.9 77.6 63.9

Best 96.0 94.5 93.5 77.0 75.7 66.0ScanMix (2023) [25] Avg 95.7 93.9 92.6 76.0 75.4 65.0

Best 96.18 95.19 94.09 78.03 75.84 62.24LongMix (2023) [26] Avg 95.98 94.79 93.73 77.56 74.87 61.60

Best 97.00 95.79 92.02 81.09 77.92 61.51Ours Avg 96.61 95.60 91.69 80.31 77.10 61.12
Table 3
Comparison results with state-of-the-art methods on the WebVision and
ImageNet.
Dataset WebVision ILSVRC2012

Method top1 top5 top1 top5

INCV (2019) [34] 65.24 85.34 61.60 84.98
MentorMix (2020) [37] 76.00 90.20 72.90 91.10
DivideMix (2020) [15] 77.32 91.64 75.20 90.84
RoCL (2021) [23] 80.04 92.68 75.81 92.28
DSOS (2022) [40] 78.76 92.32 75.88 92.36
Sel-CL+ (2022) [38] 79.96 92.64 76.84 93.04
LongMix (2023) [26] 78.92 92.32 – –
ScanMix (2023) [25] 80.04 93.04 75.76 92.60
Ours 79.32 93.32 75.96 93.42

Table 4
Comparison results with state-of-the-art methods on Clothing1M.
Dataset Clothing1M

Meta-Learning (2019) [41] 73.47
P-correction (2019) [42] 73.49
PTD-R-V (2020) [43] 71.67
BARE (2021) [44] 72.28
CTRR (2022) [45] 72.90
DSOS (2022) [40] 73.63
Ours 73.99

Fig. 6 illustrates these clusters, where each cluster represents a
category and different colors correspond to different labels. The
three figures on the bottom layer show the testing images with
varying ratios of noisy labels, while the upper layer indicates that
the testing images are accurately categorized into 10 classes with
true labels. This demonstrates that our model performs well in
terms of learning the true class distribution and is robust to noisy
labels.

Table 3 summarizes the baseline accuracies reported in the
orresponding papers. It is evident that SSS-Net outperforms
ther methods in terms of top-1 and top-5 accuracy on the
alidation datasets of mini-WebVision and ImageNet ILSVRC12.
able 4 reports the comparison results of various methods, in-
luding Meta-Learning and DSOS, on the Clothing1M dataset. The
8

Table 5
Results of ablation study results on CIFAR-10 and CIFAR-100.
Dataset CIFAR-10 CIFAR-100

Methods/Noise ratio 20% 50% 80% 20% 50% 80%

Best 97.00 95.79 92.02 81.09 77.92 61.51Proposed methods Avg 96.61 95.60 91.69 80.31 77.10 61.12
Best 96.09 92.69 79.26 76.81 64.75 51.16w/o LSCM Avg 95.12 91.71 78.83 76.46 64.28 50.78

Best 96.83 95.75 91.75 80.86 77.37 60.10w/o Shadowed sets Avg 96.54 95.51 91.34 79.99 76.57 59.41

Best 96.85 95.69 91.23 80.84 77.31 61.17w/o HPSR Avg 96.58 95.41 90.90 80.03 76.64 60.70

proposed method demonstrates a significant advantage in test ac-
curacy over the other three methods. Additionally, the proposed
method also exhibits a narrow advantage over the P-correction
and Meta-Learning methods.

4.4. Ablation study

In this section, we validate the effectiveness of each module
in the proposed method by conducting ablation experiments.
The ablation studies, by removing different components from
the proposed method, can be implemented on the CIFAR-10 and
CIFAR-100 datasets to provide insights into what makes the pro-
posed model successful. The results in Table 5 are the best test
accuracy and the average accuracy of the last 20 epochs when
the accuracy of model is stable, where the decrease in accuracy
suggests the indispensable of each component. Specifically, we
can see that LSCM significantly improves the accuracy of the
model, demonstrating the effectiveness of sample losses and clus-
tering used in this paper for selecting clean samples. Compared
with the method with manually setting thresholds, the method
of automatically calculating thresholds based on shadowed-sets
theory can improve the accuracy by an average of 0.85% and a
maximum of 1.71% on the CIFAR-100 dataset with different noise
rates. This indicates that the automatically obtained thresholds
are more reasonable, and, as shown in Table 6, this method

of automatically calculating thresholds has little effect on the
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Fig. 5. Results of AUC on CIFAR-10 and CIFAR-100.
Fig. 6. Visualized results of the SSS-Net on the CIFAR-10 with 20%, 50% and 80% label noise.
omplexity of model training. The HPSR preserves high-quality
seudo-labeled samples and discards low-quality ones, which
ecreased computation time by around 12%–25% across various
oise rates on CIFAR-10, as shown in Table 6. Moreover, on the
IFAR-10 dataset with different noise rates, the accuracy can be
mproved by an average of 0.36% and a maximum of 0.79%.

.5. Model evaluation

Fig. 5 shows the AUC (Area Under Curve) values of the SSS-
et model on CIFAR-10 and CIFAR-100 datasets during the first
00 epochs. One can see that our method has high reliability
nd stability both at low label noise and higher label noise.
urthermore, it is also apparent that the proposed method has
ignificant advantages in terms of 20% label noise and 50% label
9

noise over the 80% label noise, which can also be supported and
verified as illustrated in Table 2.

To evaluate the efficiency of the proposed model, we con-
ducted an experiment comparing the computing time of the
backbone and the backbone combine with three modules (LSCM,
shadow-sets-based adaptive selection, and HPSR) over 200
epochs on the CIFAR-10 dataset. We tested the models under
varying label noise rates of 20%, 50%, and 80%. Our results, pre-
sented in Table 6, show that combining LSCM increased computa-
tion time by approximately 10%–18% across different noise rates.
The shadowed-sets module for automatic threshold calculation
slightly increased computation time by about 2%–5% compared to
the backbone. However, HPSR, which consists of two parts, rese-
lection of high-quality samples and discarding low-quality noisy
samples, reduced computation time by approximately 12%–25%
across various noise rates.
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Table 6
Time spent of each module on CIFAR-10.
Dataset CIFAR-10

Noise ratio 20% 50% 80%

Backbone 723.0 m 638.0 m 519.0 m
Backbone w/LSCM 855.0 m 703.0 m 605.0 m
Backbone w/Shadowed sets 760.0 m 674.0 m 529.0 m
Backbone w/HPSR 537.0 m 493.0 m 458.0 m

5. Conclusions

A shadowed-sets-based semi-supervised sample selection net-
ork, namely SSS-Net, is developed in this study for classification
n noise labeled images. Apparently, each component involved in
he proposed model is indispensable, which is supported in the
blation studies subsection. The superiority and effectiveness of
he proposed LSCM, shadowed-sets-based adaptive sample selec-
ion method and the HPSR approach are supported and verified
y a great deal of experiments using synthetic and real-world
atasets that are compared with state-of-the-art methods for
lassification of noise labeled images. And we demonstrated the
tability of the model by calculating the AUC value. In the future,
t could be worth studying the combination of learning from noisy
abels with other aspects of learning, such as label-free sample
earning.
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