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A B S T R A C T

This article develops a multi-view multi-label learning for incomplete data which are ubiquitous with the
usage of three kinds of representations including within-view representation, cross-view representation, and
consensus-view representation. Different from the recent learning machines, the proposed learning machine
takes the feature-oriented information, label-oriented information, and associated information between features
and labels in multiple representations together and exploits the hidden useful information of available
instances with the usage of instance–instance correlations, feature–feature correlations, label-label correlations,
and feature–label correlations. The developed learning machine is named as within- cross- consensus-
view representation-based multi-view multi-label learning with incomplete data (WCC-MVML-ID). Extensive
experiments on multiple multi-view and multi-label data sets with incomplete data validate the effectiveness of
WCC-MVML-ID and it can be concluded that (1) WCC-MVML-ID outperforms other compared learning machines
and its performances are more stable even though the missing rates of features and labels being larger; (2)
compared with within-view information and consensus-view information, cross-view information is more useful
for the processing problem about incomplete data; (3) WCC-MVML-ID can converge within 45 iterations.
1. Introduction

Multi-view multi-label (MVML) data sets are ubiquitous in current
real-world applications [1–4]. Different from traditional multi-view
data sets [5–8] and multi-label data sets [9,10], a MVML instance can
be represented by multiple features coming from different views and
tagged by multiple class labels. Take Fig. 1-(a) as an example. There
is an animal data set consisting of four instances, ‘Livestock’, ‘Marine
mammal’, ‘Insect’, and ‘Bird’. Each instance shows some animals and
the instance can be labeled with multiple class labels. In addition, these
animals can be demonstrated with four views where different views
represent features from diversity shooting angles. In terms of such a
MVML data set, traditional multi-view learning and multi-label learning
maybe have no ability to process and a corresponding solution on the
base of information about views and labels is subsequently proposed.
This solution is named multi-view multi-label learning and it is more
feasible for processing MVML data. We take the data set given in Fig. 1-
(a) for experiment to validate that. In order to process this data set, we
select three traditional solutions. One is multiple-view multiple-learner
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semi-supervised learning machine (MVMLSS) which is developed for
multi-view data [11], another is multi-label classification machine
with hierarchical embedding (MLCHE) which aims to process multi-
label data [12], the third is multi-view based multi-label propagation
(MVMLP) [13] which is a MVML solution. Suppose the selected three
solutions have been fully trained, then according to Fig. 1-(b), it is
found that for each instance, MVMLSS can only recognize one label and
MLCHE cannot recognize all labels. In addition, sometimes MVMLSS
and MLCHE give new labels unexpectedly (see the red words in Fig. 1-
(b)). The main reason is that MVMLSS cannot train multiple labels of
an instance simultaneously while MLCHE have to mix multiple features
coming from different views in together and such an operation leads
to the loss of some priori knowledge. That is why the MVML learning
should be researched.

Moreover, for such a MVML data set, the instances, features, labels
have three representations at least including the within-view represen-
tation, cross-view representation, and consensus-view representation.
The within-view representation captures the information of data in
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Fig. 1. Representation of a MVML animal data set and a simple experiment to validate the effectiveness of a MVML learning.
each view, the cross-view representation demonstrates the shared in-
formation and information source of two different views, and the
consensus-view representation contains the consensus information and
information source of all different views.

In order to process those data sets, scholars develop many MVML
solutions based on different representations. For example, Cheng et al.
develop a MVML learning framework with view feature attention al-
location and the within-view and consensus-view representations are
obtained [14]; Zhao et al. learn view complementarity information
and label consistency information in view-specific labels and propose
a view-specific label learning method in MVML to solve the problem
of non-aligned views [15]. They also develop a MVML feedforward
neural network model which considers consensus-view representation
and within-view representation information in MVML learning and use
a similar ensemble learning method to construct the final model [16];
Zhao et al. propose a multi-view partial label machine based on maxi-
mum margin partial label learning so as to ensure the label consensus
of multiple views and they employ a heuristic optimization framework
to identify the ground-truth label and optimize the multi-class margin
alternately [17].

Those solutions cannot process incomplete data. As is known, with
the limitation of manpower and some other objective factors including
equipment errors, data maybe miss some information about features
and labels. We take Fig. 2 as an example. In this figure, an image
instance with three animals is given and this image can be described
with four views and labeled with three class labels. While with some
objective factors, some information about features and labels is lost
and we mark them with question marks. For such incomplete data,
some learning methods are developed. For example, Qu et al. propose
an incomplete MVML active learning approach to reduce the cost of
querying MVML data with the learning of shared/individual represen-
tations of instances across/within incomplete views by an indicator
matrix to indicate the missing instance of respective view [18]; Qian
et al. develop a semi-supervised dimension reduction for multi-label
and multi-view learning which performs optimization for dimension
reduction and label inference in semi-supervised setting and address
high dimensional with multiple (but possibly incomplete) labelings and
views [19].

Indeed, for a MVML data set, besides the different representa-
tions, some correlations exist in the data set and also have influ-
ence on the performance of a MVML learning machine. For example,
instance–instance correlation, feature–feature correlation, label–label
correlation, and feature–label correlation. These correlations reflect the
similarity information among instances (including features and labels)
2

Fig. 2. Representation of a MVML data with incomplete information.

and they have not been considered in the above mentioned refer-
ences. Even though some scholars develop solutions with correlations
introduced [20–22], but how to process incomplete case with multiple
representations and correlations is an open problem. Thus, in this arti-
cle, we develop a within- cross- consensus-view representation-based
multi-view multi-label learning with incomplete data (WCC-MVML-
ID) by using multiple correlations including instance–instance one,
feature–feature one, label–label one, and feature–label one.

Being different from the traditional MVML learning machines, the
contributions of WCC-MVML-ID include:

(1) It has an ability to process incomplete case with the exploitation
of hidden useful information from available instances by considering
some correlations including instance–instance one, feature–feature one,
label–label one, and feature–label one;

(2) It takes the feature-oriented information, label-oriented infor-
mation, and associated information between features and labels from
multiple representations in consideration which brings a better perfor-
mance for a MVML learning machine.

The article is organized as follows: Section 2 demonstrates the work-
ing mechanism, optimization procedure, and covers time complexity of
the WCC-MVML-ID. In Section 3, we report experiments to evaluate the
proposed approach. Section 4 concludes this article and shows future
studies.
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2. Methodology

As we said in the previous section, besides being unable to handle
incomplete case, useful information from multiple representations and
hidden in available instances are also less considered in traditional
MVML learning. In this context, we exploit useful information with the
usage of multiple correlations in diverse representations and propose a
novel multi-view multi-label learning named WCC-MVML-ID.

2.1. Framework of WCC-MVML-ID

For any incomplete MVML data set 𝐷 = [𝑋, 𝑌 ] with 𝑛 instances and
𝑉 views, if in a view, an instance has complete features and labels,
we treat this instance be information-complete, otherwise, the instance
is information-incomplete. Then we let 𝑋𝑣 ∈ R𝑑𝑣×𝑛 and 𝑌 𝑣 ∈ R𝑐𝑣×𝑛

e the set of instances (including the information-complete instances
nd information-incomplete ones) and the corresponding labels from
th view where 𝑑𝑣 and 𝑐𝑣 are feature dimension and number of labels
or 𝑣th view respectively. Here, 𝑗, 𝑚 ∈ [1, 𝑛], 𝑖𝑣, 𝑟𝑣 ∈ [1, 𝑑𝑣], 𝑘𝑣, 𝑠𝑣 ∈
[1, 𝑐𝑣] are indexes which indicate 𝑗th (or 𝑚th) instance, 𝑖𝑣th (or 𝑟𝑣th)
feature, and 𝑘𝑣th (or 𝑠𝑣) label. In addition, we let 𝑋𝐴𝑣 ∈ R𝑑𝐴𝑣×𝑛𝑣

and 𝑌 𝐴𝑣 ∈ R𝑐𝐴𝑣×𝑛𝑣 be the set of information-complete instances and
the corresponding labels from 𝑣th view, where 𝑛𝑣 is the number of
information-complete instances and 𝑑𝐴𝑣, 𝑐𝐴𝑣 are the corresponding
feature dimension, number of labels, respectively. Compared with 𝑋𝐴𝑣

and 𝑌 𝐴𝑣, the incomplete parts in 𝑋𝑣 and 𝑌 𝑣 are set as 0.
Then according to 𝑋𝐴𝑣 and 𝑌 𝐴𝑣, we let (1) 𝑆𝑣 ∈ R𝑛𝑣×𝑛𝑣 , 𝑃 𝑣 ∈

R𝑑𝐴𝑣×𝑑𝐴𝑣 , 𝑄̄𝑣 ∈ R𝑐𝐴𝑣×𝑐𝐴𝑣 , 𝑊 𝑣 ∈ R𝑐𝐴𝑣×𝑑𝐴𝑣 denote the four matrices
pre-constructed from the information-complete instances of 𝑣th view,
where all elements of them are non-negative; (2) each element in
𝑆𝑣, 𝑃 𝑣, 𝑄̄𝑣, 𝑊 𝑣 represents the instance–instance correlation, feature–
feature correlation, label–label correlation, feature–label correlation
between two information-complete instances, respectively.

Due to the data missing, every 𝑆𝑣, 𝑃 𝑣, 𝑄̄𝑣, 𝑊 𝑣 cannot reveal the
comprehensive relationships of all instances. Indeed, if we can get the
comprehensive relationships, the missing information about features
and labels can be inferred and the incomplete MVML data set 𝐷 can
be recovered.

For this purpose, we take the matrices pre-constructed as basis
to explore complementary information of different views, analyze the
shortcomings of the existing work, and summarize that a feasible model
to solve an incomplete MVML data set should compose of feature-
oriented part, label-oriented part, and associated part in within-view
representations, cross-view representations, and consensus-view repre-
sentations at least. The parts related with within-view representations
are mainly used to preserve the available information and recover the
view-specific data, the parts related with cross-view representations
are used to infer missing data with different views, and the parts
related with consensus-view representations aim to learn the consensus
representation of different views.

As a summary, WCC-MVML-ID is mainly composed of the follow-
ing components: within-view preservation and recovering, cross-view
inferring, and consensus representation learning.

2.1.1. Within-view preservation
As we said before, a main objective of WCC-MVML-ID is to reveal

the comprehensive relationships of all instances, thus we let 𝑆𝑣 ∈ R𝑛×𝑛,
𝑃 𝑣 ∈ R𝑑𝑣×𝑑𝑣 , 𝑄𝑣 ∈ R𝑐𝑣×𝑐𝑣 , 𝑊 𝑣 ∈ R𝑐𝑣×𝑑𝑣 be the four referred (completed,
comprehensive) matrices of the 𝑣th view, each element in 𝑆𝑣, 𝑃 𝑣,
𝑄𝑣, 𝑊 𝑣 represents the instance–instance correlation, feature–feature
correlation, label–label correlation, feature–label correlation between
two instances, respectively. Due to these four referred matrices store
comprehensive relationships of all instances ultimately, thus for 𝑣th
view, the correlation information of the information-complete in-
stances in 𝑆𝑣, 𝑃 𝑣, 𝑄̄𝑣, 𝑊 𝑣 should be preserved in the referred matrices
𝑣 𝑣 𝑣 𝑣
3

𝑆 , 𝑃 , 𝑄 , 𝑊 , respectively . Thus, to this end, we design the following
four within-view preservation sub-models where ‖⋆‖2𝐹 represents the
Frobenius norm.

min
𝑆𝑣

𝑉
∑

𝑣=1

‖

‖

(𝑆𝑣)𝐴 − 𝑆𝑣‖
‖

2
𝐹 (1)

min
𝑃 𝑣

𝑉
∑

𝑣=1

‖

‖

(𝑃 𝑣)𝐴 − 𝑃 𝑣‖
‖

2
𝐹 (2)

min
𝑄𝑣

𝑉
∑

𝑣=1

‖

‖

(𝑄𝑣)𝐴 − 𝑄̄𝑣‖
‖

2
𝐹 (3)

min
𝑊 𝑣

𝑉
∑

𝑣=1

‖

‖

(𝑊 𝑣)𝐴 −𝑊 𝑣‖
‖

2
𝐹 (4)

where (𝑆𝑣)𝐴 ∈ R𝑛𝑣×𝑛𝑣 , (𝑃 𝑣)𝐴 ∈ R𝑑𝐴𝑣×𝑑𝐴𝑣 , (𝑄𝑣)𝐴 ∈ R𝑐𝐴𝑣×𝑐𝐴𝑣 , (𝑊 𝑣)𝐴 ∈
R𝑐𝐴𝑣×𝑑𝐴𝑣 denote the sub-matrices of 𝑆𝑣, 𝑃 𝑣, 𝑄𝑣, 𝑊 𝑣, respectively. Each
element of (𝑆𝑣)𝐴, (𝑃 𝑣)𝐴, (𝑄𝑣)𝐴, (𝑊 𝑣)𝐴 denotes the correlation of the
orresponding two information-complete instances as that in 𝑆𝑣, 𝑃 𝑣,
̄𝑣, 𝑊 𝑣, respectively.

Then in order to incorporate the detailed situation of missing in-
ormation into the previous four within-view preservation sub-models,
e let 𝐸𝑣 ∈ R𝑑𝑣×𝑛 be the feature missing-index matrix and 𝐹 𝑣 ∈ R𝑐𝑣×𝑛

be the label missing-index matrix for 𝑣th view, respectively. In these
two matrices, the element 𝐸𝑣

𝑖𝑣 ,𝑗
(or 𝐹 𝑣

𝑘𝑣 ,𝑗
) in 𝐸𝑣 (or 𝐹 𝑣) is set be 1

if 𝑖𝑣th feature (or 𝑘𝑣th label) of 𝑗th instance in 𝑣th view is available
(or information-complete), and be 0, otherwise. Based on 𝐸𝑣 and 𝐹 𝑣,
the Eqs. (2)∼(4) can be transformed as below where ⊙ indicates the
element-wise based multiplication operation.

min
𝑃 𝑣

𝑉
∑

𝑣=1

‖

‖

‖

(𝑃 𝑣 − 𝑃 𝑣)⊙ (𝐸𝑣𝐸𝑣𝑇 )‖‖
‖

2

𝐹
(5)

min
𝑄𝑣

𝑉
∑

𝑣=1

‖

‖

‖

(𝑄𝑣 −𝑄𝑣)⊙ (𝐹 𝑣𝐹 𝑣𝑇 )‖‖
‖

2

𝐹
(6)

min
𝑊 𝑣

𝑉
∑

𝑣=1

‖

‖

‖

(𝑊 𝑣 −𝑊 𝑣)⊙ (𝐹 𝑣𝐸𝑣𝑇 )‖‖
‖

2

𝐹
(7)

Then since elements in 𝑆𝑣 are related with instances, thus Eq. (1) can
be transformed with the below two equations which related with 𝐸𝑣

and 𝐹 𝑣, respectively.

min
𝑆𝑣

𝑉
∑

𝑣=1

‖

‖

‖

(𝑆𝑣 − 𝑆𝑣)⊙ (𝐸𝑣𝑇𝐸𝑣)‖‖
‖

2

𝐹
(8)

min
𝑆𝑣

𝑉
∑

𝑣=1

‖

‖

‖

(𝑆𝑣 − 𝑆𝑣)⊙ (𝐹 𝑣𝑇𝐹 𝑣)‖‖
‖

2

𝐹
(9)

In these transformed equations, if we define 𝑀𝑣1 = 𝐸𝑣𝐸𝑣𝑇 ∈ R𝑑𝑣×𝑑𝑣 ,
𝑀𝑣2 = 𝐹 𝑣𝐹 𝑣𝑇 ∈ R𝑐𝑣×𝑐𝑣 , 𝑀𝑣3 = 𝐹 𝑣𝐸𝑣𝑇 ∈ R𝑐𝑣×𝑑𝑣 , 𝑀𝑣4 = 𝐸𝑣𝑇𝐸𝑣 ∈ R𝑛×𝑛,
𝑀𝑣5 = 𝐹 𝑣𝑇𝐹 𝑣 ∈ R𝑛×𝑛, then element 𝑀𝑣1

𝑖𝑣 ,𝑟𝑣
of 𝑀𝑣1 means that how

many instances are information-complete on both 𝑖𝑣th feature and 𝑟𝑣th
feature, element 𝑀𝑣2

𝑘𝑣 ,𝑠𝑣
of 𝑀𝑣2 means that how many instances are

information-complete on both 𝑘𝑣th label and 𝑠𝑣th label, element 𝑀𝑣3
𝑘𝑣 ,𝑖𝑣

of 𝑀𝑣3 means that how many instances are information-complete on
both 𝑘𝑣th label and 𝑖𝑣th feature, element 𝑀𝑣4

𝑗,𝑚 of 𝑀𝑣4 means that how
many features are information-complete simultaneously for both 𝑗th
instance and 𝑚th instance, element 𝑀𝑣5

𝑗,𝑚 of 𝑀𝑣5 means that how many
labels are information-complete simultaneously for both 𝑗th instance
and 𝑚th instance.

Moreover, 𝑆𝑣 ∈ R𝑛×𝑛, 𝑃 𝑣 ∈ R𝑑𝑣×𝑑𝑣 , 𝑄𝑣 ∈ R𝑐𝑣×𝑐𝑣 , 𝑊 𝑣 ∈ R𝑐𝑣×𝑑𝑣

in these transformed equations are four extended matrices which are
filled by 𝑆𝑣, 𝑃 𝑣, 𝑄̄𝑣, 𝑊 𝑣, respectively. In these extended matrices, the
elements related to the missing instances are set as 0. Through mathe-
matical calculations, it can be inferred that there are some connections
between extended matrices and pre-constructed matrices, i.e.,

𝑣̃ 𝑣 ̄𝑣 𝑣𝑇
𝑆 = 𝛤𝑆𝑆 𝛤𝑆 (10)
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𝑃 𝑣 = 𝛤 𝑣
𝑃𝑃 𝑣𝛤 𝑣

𝑃
𝑇 (11)

𝑄𝑣 = 𝛤 𝑣
𝑄𝑄̄𝑣𝛤 𝑣

𝑄
𝑇 (12)

𝑊 𝑣 = 𝛤 𝑣
𝑄𝑊 𝑣𝛤 𝑣

𝑃
𝑇 (13)

where 𝛤 𝑣
𝑆 ∈ R𝑛×𝑛𝑣 , 𝛤 𝑣

𝑃 ∈ R𝑑𝑣×𝑑𝐴𝑣 , 𝛤 𝑣
𝑄 ∈ R𝑐𝑣×𝑐𝐴𝑣 are three missing-index

matrices. The definitions of them are given as below.
In the 𝑣th view, the 𝑗th row and 𝑏th (𝑏 ∈ [1, 𝑛𝑣]) column element

in 𝛤 𝑣
𝑆 is 1 if the index of 𝑏th information-complete instance in all

instances is 𝑗, and 0, otherwise. Similarly, the 𝑖𝑣th row and 𝑐th (𝑐 ∈
[1, 𝑑𝐴𝑣]) column element in 𝛤 𝑣

𝑃 is 1 if the index of 𝑐th information-
complete feature in all features is 𝑖𝑣, and 0, otherwise; the 𝑘𝑣th row
and 𝑑th (𝑑 ∈ [1, 𝑐𝐴𝑣]) column element in 𝛤 𝑣

𝑄 is 1 if the index of 𝑑th
information-complete label in all labels is 𝑘𝑣, and 0, otherwise.

2.1.2. Within-view recovering
According to Section 2.1.1, the four referred (completed, compre-

hensive) matrices of the 𝑣th view, namely, 𝑆𝑣, 𝑃 𝑣, 𝑄𝑣, 𝑊 𝑣, can store
comprehensive relationships of all instances ultimately, thus we try to
recover the view-specific data 𝑋𝑣 and 𝑌 𝑣 with them.

In simple speaking, the 𝑋𝑣𝑆𝑣, 𝑃 𝑣𝑋𝑣 and 𝑌 𝑣𝑆𝑣, 𝑄𝑣𝑌 𝑣 can be re-
garded as the recovered versions of 𝑋𝑣 and 𝑌 𝑣, respectively. In addi-
tion, for most data sets, there exist a mapping relationship between
𝑋𝑣 and 𝑌 𝑣 and with this relationship, the 𝑋𝑣 can be mapped into 𝑌 𝑣.
Thus, according to the definition of 𝑊 𝑣, we can also treat the 𝑊 𝑣𝑇 𝑌 𝑣

and 𝑊 𝑣𝑋𝑣 as another recovered versions of 𝑋𝑣 and 𝑌 𝑣, respectively.
oreover, the difference between the recovered versions and the
orresponding view-specific data should be small enough so that the
vailable information can be preserved in the recovered versions as
ar as possible.

To this end, we design the following six within-view recovering
ub-models.

min
𝑆𝑣

𝑉
∑

𝑣=1
‖𝑋𝑣 −𝑋𝑣𝑆𝑣

‖

2
𝐹 (14)

min
𝑃 𝑣

𝑉
∑

𝑣=1
‖𝑋𝑣 − 𝑃 𝑣𝑋𝑣

‖

2
𝐹 (15)

min
𝑆𝑣

𝑉
∑

𝑣=1
‖𝑌 𝑣 − 𝑌 𝑣𝑆𝑣

‖

2
𝐹 (16)

min
𝑄𝑣

𝑉
∑

𝑣=1
‖𝑌 𝑣 −𝑄𝑣𝑌 𝑣

‖

2
𝐹 (17)

min
𝑊 𝑣

𝑉
∑

𝑣=1

‖

‖

‖

𝑋𝑣 −𝑊 𝑣𝑇 𝑌 𝑣‖
‖

‖

2

𝐹
(18)

min
𝑊 𝑣

𝑉
∑

𝑣=1
‖𝑌 𝑣 −𝑊 𝑣𝑋𝑣

‖

2
𝐹 (19)

2.1.3. Cross-view inferring
For the incomplete MVML data, it is hard to obtain the complete

information about data by only exploring the within-view information
since the lack of similarity information (namely, correlations) of the
information-incomplete instances and information-complete instances.
Fortunately, since many MVML data contain some complementary
information among views and there exist some connected relationships
among instances in at least one view for incomplete MVML data,
thus it is possible to infer the missing data by accommodating the
similarity information (namely, correlations) from other views [23].
Take 𝑆𝑣 as an example, if we regard the 𝐵𝑆 ∈ R𝑉 ×𝑉 as a similarity
matrix or self-representation matrix for 𝑉 views and its 𝑢th row
and 𝑣th column element 𝐵𝑆

𝑢,𝑣 is the similarity between 𝑢th view and
𝑣th view. Then ∑𝑉 𝑆𝑢𝐵𝑆 can be treated as the total cross-view
4

𝑢=1,𝑢≠𝑣 𝑢,𝑣 w
similarity information for 𝑣th view. In order to adaptively select the
most reliable information about other views for matrix completion
such that more feasible correlation-based matrices can be achieved,
we let the difference between 𝑆𝑣 and ∑𝑉

𝑢=1,𝑢≠𝑣 𝑆
𝑢𝐵𝑆

𝑢,𝑣 be minimize. This
can be used for optimizing 𝑆𝑣 and inferring the incomplete MVML
data with 𝑋𝑣𝑆𝑣 and 𝑌 𝑣𝑆𝑣.

Thus, we design the following four cross-view inferring sub-models
to recover the information-incomplete instances and these sub-models
are also sparse representation based.

min
𝑆𝑣 ,𝐵𝑆

𝑉
∑

𝑣=1

‖

‖

‖

‖

‖

‖

𝑆𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑆𝑢𝐵𝑆

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

(20)

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝑆𝑣 ≤ 1, 𝑆𝑣𝑇 𝐼𝑆𝑣 = 𝐼𝑆𝑣 , 𝑆𝑣
𝑗,𝑗 = 0

0 ≤ 𝐵𝑆
𝑢,𝑣 ≤ 1,

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑆
𝑢,𝑣 = 1, 𝐵𝑆

𝑣,𝑣 = 0

min
𝑃 𝑣 ,𝐵𝑃

𝑉
∑

𝑣=1

‖

‖

‖

‖

‖

‖

𝑃 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑃 𝑢𝐵𝑃

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

(21)

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝑃 𝑣 ≤ 1, 𝑃 𝑣𝑇 𝐼𝑃𝑣 = 𝐼𝑃𝑣 , 𝑃 𝑣
𝑖𝑣 ,𝑖𝑣

= 0

0 ≤ 𝐵𝑃
𝑢,𝑣 ≤ 1,

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑃
𝑢,𝑣 = 1, 𝐵𝑃

𝑣,𝑣 = 0

min
𝑄𝑣 ,𝐵𝑄

𝑉
∑

𝑣=1

‖

‖

‖

‖

‖

‖

𝑄𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑄𝑢𝐵𝑄

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

(22)

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝑄𝑣 ≤ 1, 𝑄𝑣𝑇 𝐼𝑄𝑣 = 𝐼𝑄𝑣 , 𝑄𝑣
𝑘𝑣 ,𝑘𝑣

= 0

0 ≤ 𝐵𝑄
𝑢,𝑣 ≤ 1,

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑄
𝑢,𝑣 = 1, 𝐵𝑄

𝑣,𝑣 = 0

min
𝑊 𝑣 ,𝐵𝑊

𝑉
∑

𝑣=1

‖

‖

‖

‖

‖

‖

𝑊 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑊 𝑢𝐵𝑊

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

(23)

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝑊 𝑣 ≤ 1,𝑊 𝑣𝑇 𝐼𝑊 1
𝑣 = 𝐼𝑊 2

𝑣 ,𝑊 𝑣𝐼𝑊 2
𝑣 = 𝐼𝑊 1

𝑣 ,𝑊 𝑣
𝑘𝑣 ,𝑖𝑣

= 0

0 ≤ 𝐵𝑊
𝑢,𝑣 ≤ 1,

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑊
𝑢,𝑣 = 1, 𝐵𝑊

𝑣,𝑣 = 0

where 𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄, 𝐵𝑊 are four 𝑉 ×𝑉 self-representation matrices and
𝐼𝑆𝑣 ∈ R𝑛×1, 𝐼𝑃𝑣 ∈ R𝑑𝑣×1, 𝐼𝑄𝑣 ∈ R𝑐𝑣×1, 𝐼𝑊 1

𝑣 ∈ R𝑐𝑣×1, 𝐼𝑊 2
𝑣 ∈ R𝑑𝑣×1 are five

column vectors with all elements as one.

2.1.4. Consensus representation learning
As we mentioned, for the incomplete MVML data, consensus-view

representation contains the consensus information and information
source of all different views and all views always share a same con-
sensus representation. If we can learn the consensus representation, the
incomplete parts of 𝑋𝑣 and 𝑌 𝑣 can also be inferred. Concretely speak-
ing, we let 𝑋𝑐 ∈ R𝑑×𝑛 and 𝑌 𝑐 ∈ R𝑙×𝑛 be the consensus representation of
𝑋𝑣 and 𝑌 𝑣, respectively. 𝑑 and 𝑙 are the numbers of features and labels
for the consensus-view representation. In addition, 𝑥𝑐𝑗 (or 𝑥𝑐𝑚) and 𝑦𝑐𝑗
(or 𝑦𝑐𝑚) are the consensus representations of 𝑗th (or 𝑚th) instance and
its corresponding label.

Then, we refer to many related work including [24] and suppose
that if the similarity information (namely, correlation) between 𝑗th
instance and 𝑚th instance is larger, their corresponding consensus
representations are more similar. In order to make the optimiza-
tion of similarity information be adaptive, we design the following
consensus-view sub-models.

min
𝑋𝑐 ,𝑆𝑣

1
2

𝑛
∑

𝑗=1

𝑛
∑

𝑚=1

‖

‖

‖

𝑥𝑐𝑗 − 𝑥𝑐𝑚
‖

‖

‖

2

2
𝑠𝑗𝑚 (24)

min
𝑌 𝑐 ,𝑆𝑣

1
2

𝑛
∑

𝑗=1

𝑛
∑

𝑚=1

‖

‖

‖

𝑦𝑐𝑗 − 𝑦𝑐𝑚
‖

‖

‖

2

2
𝑠𝑗𝑚 (25)

If we can optimize 𝑆𝑣 with the solution of these two consensus-view
ub-models, then the incomplete parts of 𝑋𝑣 and 𝑌 𝑣 can also be inferred
ith 𝑋𝑣𝑆𝑣 and 𝑌 𝑣𝑆𝑣.
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Moreover, suppose the affinity matrix for 𝑆𝑣 is 𝑊𝑆𝑣 = (𝑆𝑣+𝑆𝑣𝑇 )
2 and

ts Laplacian matrix is 𝐿𝑆𝑣 where 𝐿𝑆𝑣 = 𝐷𝑆𝑣 − 𝑊𝑆𝑣 and 𝐷𝑆𝑣 is the
diagonal degree matrix whose elements are column (or row, since 𝑊𝑆𝑣

s symmetric) sums of 𝑊𝑆𝑣 [5]. Then, the above consensus-view sub-
odels can be transformed as the following ones where 𝑡𝑟 is the trace

f a matrix, 𝑋𝑐𝑇𝑋𝑐 = 𝐼𝑛 and 𝑌 𝑐𝑇 𝑌 𝑐 = 𝐼𝑛 are two constraints, and
𝑛 ∈ R𝑛×𝑛 is an identity matrix.

in
𝑋𝑐

𝑉
∑

𝑣=1
𝑡𝑟(𝑋𝑐𝐿𝑆𝑣𝑋𝑐𝑇 ) (26)

.𝑡.𝑋𝑐𝑇𝑋𝑐 = 𝐼𝑛

in
𝑌 𝑐

𝑉
∑

𝑣=1
𝑡𝑟(𝑌 𝑐𝐿𝑆𝑣𝑌 𝑐𝑇 ) (27)

.𝑡.𝑌 𝑐𝑇 𝑌 𝑐 = 𝐼𝑛

.2. The optimization problem

According to Section 2.1, we combine the Eqs. (5)∼(9), (14)∼(23),
26)∼(27) in together. In addition, we refer to [24] and also consider
hat different views may contain different degrees of useful infor-
ation, so we also introduce adaptively weighted learning and the

ptimization problem of WCC-MVML-ID is given as below where 𝐵 ∈
𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄, 𝐵𝑊 }, 𝛼𝑣 is the weight of 𝑣th view which denotes the
mportance of the view, 𝑟 > 1 is the smoothing parameter to control
he distribution of weights for different views, 𝜆s are the penalty
arameters to balance the importance of the corresponding constraints.

min
𝑆𝑣,𝑃𝑣,𝑄𝑣,𝑊 𝑣
𝐵,𝑋𝑐 ,𝑌 𝑐 ,𝛼𝑣

 =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆1

‖

‖

‖

(𝑆𝑣 − 𝑆𝑣)⊙ (𝐸𝑣𝑇𝐸𝑣)‖‖
‖

2

𝐹
+ (28)

𝜆2
‖

‖

‖

(𝑆𝑣 − 𝑆𝑣)⊙ (𝐹 𝑣𝑇𝐹 𝑣)‖‖
‖

2

𝐹
+ 𝜆3

‖

‖

‖

(𝑃 𝑣 − 𝑃 𝑣)⊙ (𝐸𝑣𝐸𝑣𝑇 )‖‖
‖

2

𝐹
+

𝜆4
‖

‖

‖

(𝑄𝑣 −𝑄𝑣)⊙ (𝐹 𝑣𝐹 𝑣𝑇 )‖‖
‖

2

𝐹
+ 𝜆5

‖

‖

‖

(𝑊 𝑣 −𝑊 𝑣)⊙ (𝐹 𝑣𝐸𝑣𝑇 )‖‖
‖

2

𝐹
+

𝜆6 ‖𝑋
𝑣 −𝑋𝑣𝑆𝑣

‖

2
𝐹 + 𝜆7 ‖𝑋

𝑣 − 𝑃 𝑣𝑋𝑣
‖

2
𝐹 + 𝜆8 ‖𝑌

𝑣 − 𝑌 𝑣𝑆𝑣
‖

2
𝐹 +

𝜆9 ‖𝑌
𝑣 −𝑄𝑣𝑌 𝑣

‖

2
𝐹 + 𝜆10

‖

‖

‖

𝑋𝑣 −𝑊 𝑣𝑇 𝑌 𝑣‖
‖

‖

2

𝐹
+ 𝜆11 ‖𝑌

𝑣 −𝑊 𝑣𝑋𝑣
‖

2
𝐹 +

𝜆12
‖

‖

‖

‖

‖

‖

𝑆𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑆𝑢𝐵𝑆

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

+ 𝜆13
‖

‖

‖

‖

‖

‖

𝑃 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑃 𝑢𝐵𝑃

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

+

𝜆14
‖

‖

‖

‖

‖

‖

𝑄𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑄𝑢𝐵𝑄

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

+ 𝜆15
‖

‖

‖

‖

‖

‖

𝑊 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑊 𝑢𝐵𝑊

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

+

𝜆16𝑡𝑟(𝑋𝑐𝐿𝑆𝑣𝑋𝑐𝑇 ) + 𝜆17𝑡𝑟(𝑌 𝑐𝐿𝑆𝑣𝑌 𝑐𝑇 )]

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 ≤ 𝑆𝑣, 𝑃 𝑣, 𝑄𝑣,𝑊 𝑣, 𝐵𝑆
𝑢,𝑣, 𝐵

𝑃
𝑢,𝑣, 𝐵

𝑄
𝑢,𝑣, 𝐵

𝑊
𝑢,𝑣 ≤ 1

𝑆𝑣𝑇 𝐼𝑆𝑣 = 𝐼𝑆𝑣 , 𝑃
𝑣𝑇 𝐼𝑃𝑣 = 𝐼𝑃𝑣 , 𝑄

𝑣𝑇 𝐼𝑄𝑣 = 𝐼𝑄𝑣 ,

𝑊 𝑣𝑇 𝐼𝑊 1
𝑣 = 𝐼𝑊 2

𝑣 ,𝑊 𝑣𝐼𝑊 2
𝑣 = 𝐼𝑊 1

𝑣

𝑆𝑣
𝑗,𝑗 = 𝑃 𝑣

𝑖𝑣 ,𝑖𝑣
= 𝑄𝑣

𝑘𝑣 ,𝑘𝑣
= 𝑊 𝑣

𝑘𝑣 ,𝑖𝑣
= 𝐵𝑆

𝑣,𝑣 = 𝐵𝑃
𝑣,𝑣 = 𝐵𝑄

𝑣,𝑣 = 𝐵𝑊
𝑣,𝑣 = 0

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑆
𝑢,𝑣 =

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑃
𝑢,𝑣 =

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑄
𝑢,𝑣 =

𝑉
∑

𝑢=1,𝑢≠𝑣
𝐵𝑊
𝑢,𝑣 = 1

𝑋𝑐𝑇𝑋𝑐 = 𝐼𝑛, 𝑌
𝑐𝑇 𝑌 𝑐 = 𝐼𝑛

2.3. Optimization

It is hard for us to optimize Eq. (28) since there are 5𝑉 +61 variables
to optimize. But refer to [24–29], we find that the alternative iterative
optimization approach they adopted is a relatively reasonable method
to find the local optimal solution and in this article, we adopt the same
method. Detailed optimization steps are given as follows:

1 5 V corresponds to 𝑆𝑣, 𝑃 𝑣, 𝑄𝑣,𝑊 𝑣, 𝛼𝑣, 6 corresponds to 𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄, 𝐵𝑊 ,
𝑋𝑐 , 𝑌 𝑐 .
5

We let 𝐴 ∈ {𝑆𝑣, 𝑃 𝑣, 𝑄𝑣,𝑊 𝑣, 𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄, 𝐵𝑊 , 𝑋𝑐 , 𝑌 𝑐 , 𝛼𝑣} firstly and
fix other variables when to optimize an variable in 𝐴 so as to ob-
tain the corresponding optimization problem of Eq. (28) w.r.t. 𝐴 (see
Eqs. (29)∼(39)). Here, in Eq. (39), 𝑒𝑣 indicates the remaining part of
Eq. (28) except for ∑𝑉

𝑣=1(𝛼
𝑣)𝑟.

min
0≤𝑆𝑣≤1

𝑆𝑣𝑇 𝐼𝑆𝑣 =𝐼𝑆𝑣
𝑆𝑣𝑗,𝑗=0

(𝑆𝑣) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆1

‖

‖

‖

(𝑆𝑣 − 𝑆𝑣)⊙ (𝐸𝑣𝑇𝐸𝑣)‖‖
‖

2

𝐹
+ (29)

𝜆2
‖

‖

‖

(𝑆𝑣 − 𝑆𝑣)⊙ (𝐹 𝑣𝑇𝐹 𝑣)‖‖
‖

2

𝐹
+ 𝜆6 ‖𝑋

𝑣 −𝑋𝑣𝑆𝑣
‖

2
𝐹 + 𝜆8 ‖𝑌

𝑣 − 𝑌 𝑣𝑆𝑣
‖

2
𝐹 +

𝜆12
‖

‖

‖

‖

‖

‖

𝑆𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑆𝑢𝐵𝑆

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

+ 𝜆16𝑡𝑟(𝑋𝑐𝐿𝑆𝑣𝑋𝑐𝑇 ) + 𝜆17𝑡𝑟(𝑌 𝑐𝐿𝑆𝑣𝑌 𝑐𝑇 )]

min
0≤𝑃𝑣≤1

𝑃𝑣𝑇 𝐼𝑃𝑣 =𝐼𝑃𝑣
𝑃𝑣𝑖𝑣,𝑖𝑣

=0

(𝑃 𝑣) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆3

‖

‖

‖

(𝑃 𝑣 − 𝑃 𝑣)⊙ (𝐸𝑣𝐸𝑣𝑇 )‖‖
‖

2

𝐹
+ (30)

𝜆7 ‖𝑋
𝑣 − 𝑃 𝑣𝑋𝑣

‖

2
𝐹 + 𝜆13

‖

‖

‖

‖

‖

‖

𝑃 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑃 𝑢𝐵𝑃

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

]

min
0≤𝑄𝑣≤1

𝑄𝑣𝑇 𝐼𝑄𝑣 =𝐼𝑄𝑣
𝑄𝑣
𝑘𝑣,𝑘𝑣

=0

(𝑄𝑣) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆4

‖

‖

‖

(𝑄𝑣 −𝑄𝑣)⊙ (𝐹 𝑣𝐹 𝑣𝑇 )‖‖
‖

2

𝐹
+ (31)

𝜆9 ‖𝑌
𝑣 −𝑄𝑣𝑌 𝑣

‖

2
𝐹 + 𝜆14

‖

‖

‖

‖

‖

‖

𝑄𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑄𝑢𝐵𝑄

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

]

min
0≤𝑊 𝑣≤1

𝑊 𝑣𝑇 𝐼𝑊 1
𝑣 =𝐼𝑊 2

𝑣
𝑊 𝑣𝐼𝑊 2

𝑣 =𝐼𝑊 1
𝑣

𝑊 𝑣
𝑘𝑣,𝑖𝑣

=0

(𝑊 𝑣) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆5

‖

‖

‖

(𝑊 𝑣 −𝑊 𝑣)⊙ (𝐹 𝑣𝐸𝑣𝑇 )‖‖
‖

2

𝐹
+ (32)

𝜆10
‖

‖

‖

𝑋𝑣 −𝑊 𝑣𝑇 𝑌 𝑣‖
‖

‖

2

𝐹
+ 𝜆11 ‖𝑌

𝑣 −𝑊 𝑣𝑋𝑣
‖

2
𝐹 +

𝜆15
‖

‖

‖

‖

‖

‖

𝑊 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑊 𝑢𝐵𝑊

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

]

min
0≤𝐵𝑆𝑢,𝑣≤1,𝐵

𝑆
𝑣,𝑣=0

∑𝑉
𝑢=1,𝑢≠𝑣 𝐵𝑆𝑢,𝑣=1

(𝐵𝑆 ) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆12

‖

‖

‖

‖

‖

‖

𝑆𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑆𝑢𝐵𝑆

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

] (33)

min
0≤𝐵𝑃𝑢,𝑣≤1,𝐵

𝑃
𝑣,𝑣=0

∑𝑉
𝑢=1,𝑢≠𝑣 𝐵𝑃𝑢,𝑣=1

(𝐵𝑃 ) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆13

‖

‖

‖

‖

‖

‖

𝑃 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑃 𝑢𝐵𝑃

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

] (34)

min
0≤𝐵𝑄𝑢,𝑣≤1,𝐵

𝑄
𝑣,𝑣=0

∑𝑉
𝑢=1,𝑢≠𝑣 𝐵𝑄𝑢,𝑣=1

(𝐵𝑄) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆14

‖

‖

‖

‖

‖

‖

𝑄𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑄𝑢𝐵𝑄

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

] (35)

min
0≤𝐵𝑊𝑢,𝑣≤1,𝐵

𝑊
𝑣,𝑣=0

∑𝑉
𝑢=1,𝑢≠𝑣 𝐵𝑊𝑢,𝑣=1

(𝐵𝑊 ) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆15

‖

‖

‖

‖

‖

‖

𝑊 𝑣 −
𝑉
∑

𝑢=1,𝑢≠𝑣
𝑊 𝑢𝐵𝑊

𝑢,𝑣

‖

‖

‖

‖

‖

‖

2

𝐹

] (36)

min
𝑋𝑐 𝑇𝑋𝑐=𝐼𝑛

(𝑋𝑐 ) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆16𝑡𝑟(𝑋𝑐𝐿𝑆𝑣𝑋𝑐𝑇 )] (37)

min
𝑌 𝑐 𝑇 𝑌 𝑐=𝐼𝑛

(𝑌 𝑐 ) =
𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝜆17𝑡𝑟(𝑌 𝑐𝐿𝑆𝑣𝑌 𝑐𝑇 )] (38)

min
0≤𝛼𝑣≤1,

∑𝑉
𝑣=1 𝛼

𝑣=1
(𝛼𝑣) =

𝑉
∑

𝑣=1
(𝛼𝑣)𝑟[𝑒𝑣] (39)

Then the optimization of Eqs. (29)∼(36) accounts for iteration
over these variables in the form below where 𝑡 indicates the iteration
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Table 1
Algorithm: WCC-MVML-ID.
Input: an incomplete MVML data set
Output: 𝐴 ∈ {𝑆𝑣 , 𝑃 𝑣 , 𝑄𝑣 ,𝑊 𝑣 , 𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄 , 𝐵𝑊 , 𝑋𝑐 , 𝑌 𝑐 , 𝛼𝑣}
where 𝑣 = 1, 2,… , 𝑉

1. initialize variables in 𝐴, penalty parameters 𝜆s, and smoothing parameter 𝑟;
2. repeat
3. update each variable in {𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄 , 𝐵𝑊 , 𝑋𝑐 , 𝑌 𝑐} according to Section 2.3

when other variables are fixed;
4. for 𝑣 = 1, 2,… , 𝑉
5. update each variable in {𝑆𝑣 , 𝑃 𝑣 , 𝑄𝑣 ,𝑊 𝑣 , 𝛼𝑣} according to Section 2.3

when other variables are fixed;
6. end for
7. until normalized value of  is small than 0.01.

number.2

𝐴(𝑡 + 1) = 𝐴(𝑡) −
𝜕(𝐴)
𝜕𝐴

(40)

The optimization of Eqs. (37) and (38) turns out to be a typical
eigenvalue decomposition problem. Thus, suppose 𝑥𝑐1, 𝑥

𝑐
2,… , 𝑥𝑐𝑑 are the

eigenvectors corresponding to the first 𝑑 minimum eigenvalues of ma-
trix ∑𝑉

𝑣=1(𝛼
𝑣)𝑟𝐿𝑆𝑣 and then the optimal solution to problem Eq. (37) is

expressed as 𝑋𝑐 = [𝑥𝑐1; 𝑥
𝑐
2; ...; 𝑥

𝑐
𝑑 ] ∈ 𝑑 × 𝑛. Similarly, the optimal solution

to problem Eq. (38) is expressed as 𝑌 𝑐 = [𝑦𝑐1; 𝑦
𝑐
2; ...; 𝑦

𝑐
𝑙 ] ∈ 𝑙 × 𝑛 where

𝑦𝑐1; 𝑦
𝑐
2; ...; 𝑦

𝑐
𝑙 are the eigenvectors corresponding to the first 𝑙 minimum

eigenvalues of matrix ∑𝑉
𝑣=1(𝛼

𝑣)𝑟𝐿𝑆𝑣 .
The optimization of Eq. (39) can be referred to [24] and its optimal

solution is given below.

𝛼𝑣 = (𝑒𝑣∕
𝑉
∑

𝑣=1
𝑒𝑣)1∕(𝑟−1) (41)

According to the above contents, the Eq. (28) can be optimized step
by step until the changes about the normalized value of  is small than
0.01. In addition, the procedure of WCC-MVML-ID can be summarized
in the Table 1.

2.4. Computational complexity analysis

Refer to [24–29] and after careful calculation, the computational
complexity of WCC-MVML-ID should consist of three parts. For 𝑆𝑣, 𝑃 𝑣,
𝑄𝑣,𝑊 𝑣, 𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄, 𝐵𝑊 , their total computational overhead is (4𝑉 +
2)𝑂(𝑛3). For the 𝑋𝑐 and 𝑌 𝑐 , the most computational overhead comes
by the eigenvalue decomposition. In this article, we adopt ‘eigs’ func-
tions [30] to speed up the computational efficiency and the overheads
are 𝑂(𝐶𝑛2) for both 𝑋𝑐 and 𝑌 𝑐 where 𝐶 is a constant. For 𝛼𝑣, it is
easy to get the optimal results via numerical division operation and its
computational complexity can be ignored. Thus, according to the above
analysis, the computational complexity of the optimization problem for
Eq. (28) is about 𝑂((4𝑉 + 2)𝑡𝑛3).

3. Experiments

3.1. Experimental setup

Data setting: we refer to [31] and use 5 MVML data sets for exper-
iments (see Table 2). All data sets belong to the image domain [32].
Here, Corel5k was first used in [33] and since then, it has become an
important benchmark for keyword based image retrieval and image
annotation. Espgame was obtained from an online game where two
players, that cannot communicate outside the game, gain points by
agreeing on words describing the image [34]. IAPRTC12 was initially
published for cross-lingual retrieval and it can be transformed into

2 Limited by the length of this article, details of 𝜕 (𝐴)
𝜕𝐴

are not given here,
ut their computations can refer to various algebra books.
6

Table 2
Detailed information of used data sets.

Data sets No. instances No. labels Avg. label per instance

Corel5k 4999 260 3.396
Espgame 20 770 268 4.686
IAPRTC12 19 627 291 5.719
Mirflickr 25 000 38 4.716
Pascal07 9963 20 1.465

a format comparable to the other sets by extracting common nouns
using natural language processing techniques [35]. Mirflickr comprises
25 000 images from the Flickr website which are redistributable for
research purposes and represent a real community of users both in
the image content and image tags [36]. Pascal07 consists of annotated
consumer photographs collected from the Flickr photo-sharing web-
site [37]. The detailed information and setting of these data sets
can be found in [31,38], and website ‘http://lear.inrialpes.fr/people/
guillaumin/data.php’. Each data set involves six views which can be
found in many other Refs. [39–42]: HUE (the color portion of the
model, expressed as a number from 0 to 360 degrees), SIFT (scale
invariant feature transform), GIST (an abstract representation of the
scene that spontaneously activates memory representations of scene
categories), HSV (hue, saturation, value), RGB (red, green, blue), and
LAB (lightness, red/green value, blue/yellow value).

Baseline learning machines: to study the performance of WCC-
MVML-ID, we compare it with 4 state-of-the-art MVML learning ma-
chines including MVMLP [13], SSDR-MML [43], LSA-MML [44], ICM2L
[45].

Parameter setting: optimal parameter values of compared learning
machines are selected from the set as suggested in the original papers.
For WCC-MVML-ID, variables 𝐴 ∈ {𝑆𝑣, 𝑃 𝑣, 𝑄𝑣,𝑊 𝑣, 𝐵𝑆 , 𝐵𝑃 , 𝐵𝑄, 𝐵𝑊 , 𝑋𝑐 ,
𝑌 𝑐 , 𝛼𝑣} are initialized with an average way, namely, elements are
initialized in equipartition and they have been updated according to
Section 2.3. For penalty parameters 𝜆s, the optimal parameter values
can be selected from the set {0.1, 0.2,… , 0.8, 0.9} and the smoothing
parameter 𝑟 is selected from the set {2, 3,… , 19, 20}. For the incomplete
setting, the missing rates of features and labels can be selected from the
set {10%, 20%,… , 80%, 90%}.

Evaluation: for the comparison about the used learning machines
on the experimental data sets, we adopt AUC as the main metric for
performance comparisons. AUC is the abbreviation of ‘the area under
the ROC (receiver operating characteristic) curve’. As we know, ROC
curve is used to select the optimal threshold and AUC is a standard
used to measure the quality of the classification model [46]. Indeed,
there are some other metrics including precision, recall, etc., but with
the limitation of the article’s length, we only focus on the performances
on AUC. On the base of AUC, some experimental results including the
different influence of missing rates for features and labels are given.
Moreover, the convergence of WCC-MVML-ID is also given.

Selection of optimal parameters: there are some tuning parameters
in WCC-MVML-ID. In order to select the optimal parameter values,
avoid over-fitting in model selection, and ensure the authenticity of
experimental results, we should ensure that a data set 𝐷 consists of the
independent test set 𝐷𝑡𝑒 and the set 𝐷𝑡𝑟_𝑣𝑎 which is used for training
and validating a final learning machine. Thus, for each data set, we
select 70% instances for training and validation and the rest for testing.
Then the optimal parameter values can be selected with the algorithm
in Table 3 and the corresponding performances of learning machines
are obtained. In simple speaking, we evenly divide 𝐷𝑡𝑟_𝑣𝑎 into ten
parts firstly and ten-fold cross-validation is adopted on the same
partitions so as to search optimal parameter values. After that,
the optimal parameter values are used to test the performances
of learning machines on the test set. In addition, the above opera-
tions are repeated for five times independently and we report average
performances and the corresponding standard deviations of learning

machines on the used data sets.

http://lear.inrialpes.fr/people/guillaumin/data.php
http://lear.inrialpes.fr/people/guillaumin/data.php
http://lear.inrialpes.fr/people/guillaumin/data.php
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Table 3
Algorithm: selection of optimal parameter values and the acquirement of performances for learning machines.
Input: a MVML data set 𝐷 = {𝐷𝑡𝑒 , 𝐷𝑡𝑟_𝑣𝑎} and all combinations of parameters for a learning
machine 𝑃 (𝑞) where 𝑞 ∈ [1, 𝑄] and 𝑄 is the total number of combinations;
Output: optimal parameter values 𝑃 ⋆ and corresponding performances 𝑇 (𝑃 ⋆) including AUC and
convergence for learning machines;

1. split 𝐷𝑡𝑟_𝑣𝑎 into 10 non-overlapping parts in average, i.e., 𝐷𝑡𝑟_𝑣𝑎 = {𝐷𝑡𝑟_𝑣𝑎1,…,𝐷𝑡𝑟_𝑣𝑎10
};

2. for 𝑞 = 1,… , 𝑄
3. select one combination of parameters, i.e., 𝑃 (𝑞);
4. for 𝑘 = 1,… , 10
5. choose 𝐷𝑡𝑟_𝑣𝑎𝑘 as the validation set and the rest 9 parts as the training set;
6. adopt the training set to train a temporary learning machine 𝐿𝑀(𝑘);
7. adopt 𝐷𝑡𝑟_𝑣𝑎𝑘 to validate the effectiveness of 𝐿𝑀(𝑘) and get AUC on 𝐷𝑡𝑟_𝑣𝑎𝑘, i.e., 𝐴(𝑃 (𝑞) − 𝑘);
8. end for

9. get the average AUC on 𝐷𝑡𝑟_𝑣𝑎 with 𝑃 (𝑞), i.e., 𝐴(𝑃 (𝑞)) =
10
∑

𝑟=1
𝐴(𝑃 (𝑞) − 𝑟)∕10;

10. end for
11. get the optimal parameter values 𝑃 ⋆ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐴(𝑃 (𝑞))) and the corresponding optimal learning machine

𝐿𝑀(𝑃 ⋆) is also gotten;
12. test 𝐷𝑡𝑒 with 𝐿𝑀(𝑃 ⋆) and get 𝑇 (𝑃 ⋆).
Fig. 3. AUC comparisons for different learning machines on the used data sets with different missing rates of features (M-F) and missing rates of labels (M-L).
Experimental environment: all computations are performed on a
node of compute cluster with 12 CPUs (Intel Core i7-12700) running
RedHat Linux Enterprise 9.0. The coding environment is MATLAB
2020a.

3.2. Performances comparison with different missing rates of features and
labels

As we said before, with the limitation of manpower and some other
objective factors, a MVML data maybe miss some information about
features and labels. Thus, we discuss the influence of different missing
rates of features and labels on AUC. In this article, the selection set of
missing rates of features and labels is {10%, 20%,… , 80%, 90%}. Fig. 3
shows the influence of different values of missing rates for features and
labels on AUC and Fig. 4 gives the corresponding standard deviations
(std.). Furthermore, in order to validate the effectiveness of WCC-
MVML-ID statistically, we adopt the 𝑝-value for comparison (see Fig. 5)
and in Fig. 5, each sub-figure represents the 𝑝-value of WCC-MVML-
ID compared with a compared learning machine on a data set with
different missing rates of features and labels.

According to these figures, it is found that (1) with the missing
rates of features and labels being larger, the AUCs of these learning
machines on different data sets have downward trends; (2) even under
7

the case of the same missing rate of features and labels, WCC-MVML-
ID still outperforms other compared learning machines on these data
sets; (3) the standard deviations of WCC-MVML-ID are smaller than
others which indicates the performances of WCC-MVML-ID are more
stable; (4) under most cases, the p-values of WCC-MVML-ID compared
with other learning machines are smaller than 0.05 which validates the
effectiveness of WCC-MVML-ID in generally.

3.3. Influence of 𝜆s

In WCC-MVML-ID, there are 17 𝜆s should be tuned and different val-
ues of them will bring diverse performances. We discuss the influence
of different values of 𝜆s and the results are given in Fig. 6. In this figure,
each datum represents the best AUC of a 𝜆 under a given value on an
used data set. According to this figure, it is found that (1) for 𝜆12, 𝜆13,
𝜆14, 𝜆15 which correspond to the cross-view expressions, the best AUC
achieves when the values of these 𝜆s are set to be 0.9; (2) for other 𝜆s,
the AUC achieves best when the values of these 𝜆s be 0.4, 0.5, or 0.6;
(3) according to the former conclusions, we can see that compared with
other parts, the cross-view information plays a more important role and
this indicates that information between different views is more useful
for the processing problem about incomplete data; (4) for other parts
including the within-view information and consensus-view information,
their roles to the process of incomplete MVML data are similar.
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Fig. 4. The std. of AUC comparisons for different learning machines on the used data sets with different missing rates of features (M-F) and missing rates of labels (M-L).
Fig. 5. p-value of AUC comparisons for different learning machines on the used data sets with different missing rates of features (M-F) and missing rates of labels (M-L).
3.4. Influence of 𝑟

𝑟 in WCC-MVML-ID is a smoothing parameter to control the distri-
bution of weights for different views and its values can be selected in
{2, 3,… , 19, 20}. Here, we also show the influence of 𝑟 on the perfor-
mances of WCC-MVML-ID with Fig. 7. According to this figure, it is
found that the developed WCC-MVML-ID is insensitive to the values of
parameter 𝑟 on data sets Corel5k, Espgame, Pascal07 to some extent
(the performance change about AUC is about 2%) and it can achieve a
relative good AUC on IAPRTC12 and Mirflickr when 𝑟 is selected from
the set of [2, 9]. According to the experimental results in Fig. 7, we can
simply select parameter 𝑟 from the range [2, 9].

3.5. Convergence of WCC-MVML-ID

In this subsection, we show the convergence of WCC-MVML-ID with
Fig. 8. In this figure, under any missing rate of features and labels, the
8

iteration numbers are given and according to this figure, it is found
that (1) on each used data set, WCC-MVML-ID can converge within
45 iterations; (2) with the missing rates being larger, WCC-MVML-ID
should converge with higher iteration numbers.

4. Conclusions and future studies

Incomplete multi-view multi-label (MVML) data sets are ubiquitous
in current real-world applications and they are hard to be solved
by traditional MVML learning machines. To this end, we develop a
within- cross- consensus-view representation-based multi-view multi-
label learning with incomplete data (WCC-MVML-ID) to process in-
complete MVML data sets better. Different from traditional solutions,
WCC-MVML-ID takes feature-oriented information, label-oriented infor-
mation, and associated information between features and labels from
within-view representations, cross-view representations, and consensus
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Fig. 6. Influence of different values for different 𝜆s on AUC of WCC-MVML-ID.
Fig. 7. Influence of different values for 𝑟 on AUC of WCC-MVML-ID.

view representations in consideration. In addition, the correlations
mong instances, features, and labels are also considered to exploit
he hidden useful information from available instances. On the base
f these considerations, WCC-MVML-ID is mainly composed of three
omponents, i.e., within-view preservation and recovering, cross-view
nferring, and consensus representation learning and it has a better
bility to process incomplete MVML data sets with the optimization of
orrelations and inferring of information-incomplete parts.

Experiments on several benchmark data sets demonstrate the superi-
rity of the proposed WCC-MVML-ID over related competitive learning
achines. In simple speaking, (1) for MVML data sets, with the miss-

ng rates of features and labels being larger, the performances of
ompetitive MVML learning machines have downward trends while
CC-MVML-ID still outperforms other compared ones and its perfor-
ances are more stable; (2) compared with within-view information

nd consensus-view information, cross-view information plays a more
mportant role to process incomplete MVML data; (3) WCC-MVML-ID
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can converge within 45 iterations on used data sets and it always costs
higher iteration numbers with the missing rates being larger.

Although WCC-MVML-ID has some advantages to process incom-
plete MVML data sets, some further studies also attract our attentions
and can be considered in the future. First, in current applications, more
and more data sets arrive in real-time and this phenomenon will affect
the performances of WCC-MVML-ID. Second, affected by some labor
costs, some data sets arrive without any priori knowledge and this leads
to the useless of current many MVML learning machines. To this end,
how to solve real-time MVML data sets and how to carry out zero-shot
learning are two open problems in the future.
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