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Abstract— In recent years, person Re-IDentification (ReID)
has rapidly progressed with wide real-world applications but
is also susceptible to various forms of attack, including proven
vulnerability to adversarial attacks. In this paper, we focus on
the backdoor attack on deep ReID models. Existing backdoor
attack methods follow an all-to-one or all-to-all attack scenario,
where all the target classes in the test set have already been
seen in the training set. However, ReID is a much more complex
fine-grained open-set recognition problem, where the identities in
the test set are not contained in the training set. Thus, previous
backdoor attack methods for classification are not applicable to
ReID. To ameliorate this issue, we propose a novel backdoor
attack on deep ReID under a new all-to-unknown scenario,
called Dynamic Triggers Invisible Backdoor Attack (DT-IBA).
Instead of learning fixed triggers for the target classes from the
training set, DT-IBA can dynamically generate new triggers for
any unknown identities. Specifically, an identity hashing network
is proposed to first extract target identity information from a
reference image, which is then injected into the benign images
by image steganography. We extensively validate the effectiveness
and stealthiness of the proposed attack on benchmark datasets
and evaluate the effectiveness of several defense methods against
our attack.

Index Terms— Backdoor attacks, targeted attack, person
re-identification, all-to-unknown, stealthiness.

I. INTRODUCTION

RECENTLY, deep learning has progressed rapidly and has
been widely utilized in a variety of image classification

and recognition tasks. The success of deep learning models
is highly dependent on the scale of datasets [1]. However,

Manuscript received 13 April 2023; revised 9 August 2023 and
29 September 2023; accepted 29 September 2023. Date of publication
13 October 2023; date of current version 20 November 2023. This work
was supported in part by the National Natural Science Fund of China under
Grant 62076184, Grant 61976158, Grant 61976160, Grant 62076182, and
Grant 62276190; in part by the Fundamental Research Funds for the Central
Universities and the State Key Laboratory of Integrated Services Networks,
Xidian University; in part by the Shanghai Innovation Action Project of
Science and Technology under Grant 20511100700; and in part by the
Shanghai Natural Science Foundation under Grant 22ZR1466700. An earlier
version of this work is available in arXiv:2211.10933. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Paolo Gasti. (Corresponding author: Cairong Zhao.)

Wenli Sun, Shuguang Dou, Duoqian Miao, and Cairong Zhao are with
the Department of Computer Science and Technology, Tongji University,
Shanghai 201804, China (e-mail: 2233055@tongji.edu.cn; dousg@tongji.
edu.cn; dqmiao@tongji.edu.cn; zhaocairong@tongji.edu.cn).

Xinyang Jiang and Dongsheng Li are with Microsoft Research
Asia, Shanghai 200232, China (e-mail: xinyangjiang@microsoft.com;
dongshengli@fudan.edu.cn).

Cheng Deng is with the School of Electronic Engineering, Xidian Univer-
sity, Xi’an 710071, China (e-mail: chdeng.xd@gmail.com).

Digital Object Identifier 10.1109/TIFS.2023.3322659

datasets for deep model training are time and money-intensive
to construct, resulting in a large portion of the algorithm
developers opting for third-party datasets, which brings huge
security risks of backdoor attacks [2], [3], [4], [5], [6].

Backdoor attacks occur when samples poisoned with back-
door triggers have their labels changed to target labels and
added to the training set, causing the model to mis-classify the
target labels during the inference stage. As shown in Fig. 1,
current backdoor attack scenarios for classification tasks can
be classified into two categories: all-to-one and all-to-all [2],
[4], [7], [8], [9]. In the all-to-one scenario, a single target label
is pre-defined and the poisoned images from any category will
be classified as this fixed label. On the other hand, for the
all-to-all scenario, the target label can be any of the classes that
appear in the training set, and images can be manipulated to be
classified into any chosen classes. For both scenarios, the target
labels usually need to be pre-determined before poisoning the
training set, and the backdoor triggers are kept fixed during
the attack.

In this paper, we shift our focus from classification to
another important vision task: Person Re-IDentification (ReID)
[10], [11], [12], [13]. ReID is a task of matching person
images from several camera viewpoints. It has wide appli-
cations in surveillance, tracking, smart retail, etc., but also
faces the threat of backdoor attacks. While classification
models based on deep learning have been proven to be
vulnerable to backdoor attacks [2], [14], [15], [16], [17], [18],
the backdoor attack risk on ReID has not been thoroughly
studied. Existing backdoor attacks on classification cannot
be used directly for recognition tasks due to the following
challenges. Firstly, ReID is a more challenging fine-grained
recognition task with significantly more classes (i.e. person
identities) compared to conventional classification. This means
that there are only a dozen images per class, and traditional
attacks significantly alter the data distribution, which is very
detrimental to stealthiness. More importantly, conventional
backdoor attack methods generate fixed triggers correspond-
ing to the pre-determined target labels in the training set.
However, ReID is an open-set recognition problem where
training and test sets have distinct identities. In the inference
stage, the target ID does not exist in the training set, so a
new trigger needs to be generated dynamically according to
the target ID. It is noteworthy that the current attacks use
the same setting to deal with face recognition and classifi-
cation tasks, which does not match the open-set recognition
scenario [19], [20].
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Fig. 1. Backdoor attack scenarios for image classification and person ReID.
All-to-one and all-to-all are attack scenarios in image classification tasks that
require the target labels to be consistent in the training and testing stages. Our
proposed all-to-unknown is applicable to the scenario where the target class
does not appear in the training set.

To tackle the challenges in backdoor attacks on ReID
models, we propose a novel all-to-unknown attack scenario,
where the target class can be any of the classes in the test
set, even if it does not appear in the training set. In contrast
to the conventional attack scenario, new backdoor triggers
can be dynamically produced for any novel target identity
outside the training set, as shown in Fig. 1. By address-
ing the limitations of traditional attack settings that rely
on predefined target labels, the all-to-unknown setting offers
a versatile and robust framework for conducting backdoor
attacks in a real-world scenario of ReID tasks, contributing
to a more comprehensive understanding of potential secu-
rity risks and defenses in open-set recognition applications
like face recognition. Specifically, to realize this scenario,
given a benign image, the goal is to generate a backdoor
trigger containing an unknown target identity specified by a
reference image. As a result, the attacked ReID model will
recognize the poisoned image as the identity of the reference
image.

To dynamically generate the backdoor trigger, we propose
an identity hashing network to first encode the target iden-
tity information in the reference image as an embedding
in hamming space and then inject the embedding into the
benign images in the form of pixel perturbation by image
steganography. As a result, two images of different identities
with the same invisible trigger will be recognized as the same
person, and vice versa. While conventional backdoor attack
methods only achieve non-targeted attacks by degrading the
backdoored model’s performance, our approach allows for
targeted attacks, in which the target person appears within

the top-10 retrieval results. In summary, our contributions are
three-fold as follows:

• We raise a new and rarely studied backdoor attack risk
on the ReID task, which is quantified by our proposed
new all-to-unknown attack scenario.

• The new all-to-unknown attack scenario and a novel
corresponding method are proposed to realize adversary
mismatch and target person impersonation by dynamic
triggers, which are able to dynamically alter the poisoned
image’s identity to any target identity outside the training
set.

• The experiments show the effectiveness of the proposed
backdoor attack method and are robust to several existing
representative backdoor defense strategies.

II. RELATED WORK

In this section, we review current backdoor attacks sug-
gested for image classification tasks, backdoor defense
techniques, and ReID models.

A. Backdoor Attack

The backdoor attack is a severe concern to DNNs since
they cause the poisoned model to function normally on clean
samples but classify samples with triggers as target class [9],
[21], [22]. The majority of existing backdoor attacks are based
on the assumption that the target labels are known and fixed,
which is only appropriate for classification tasks. Specifically,
the adversary needs to design a trigger pattern t , and select a
target label yt . The adversary adds triggers to benign samples
x ∈ D to generate the poisoned samples x p, then changes
the label of x p to the target label yt and puts(x p, yt ) in the
training set Dtrain . During the training stage, the backdoored
model will associate triggers with target labels, resulting in the
classification of any sample containing a trigger as yt during
the inference stage.

Currently, backdoor attack on classification models is a
well-established research field [5], [23], [24], [25], [26],
[27], [28]. Recently, few works have shifted their focus to
models other than image classification. Zhai et al. designed a
clustering-based attack methodology for speaker verification
in which poisoned samples from different clusters include
different triggers [23]. All triggers are concatenated with
the test samples during the inference stage to achieve the
adversary aim. However, because this approach registers only
one individual at a time, it is incompatible with recognition
tasks requiring a retrieval range greater than one, such as
person Re-IDentification. Zhao et al. proposed a backdoor
attack strategy for video recognition models in which the
adversary doesn’t have to change the label, but is aware
of the target class during the training process [25]. Few-
shot backdoor attack (FSBA) is not a label-targeted attack;
instead, it embeds triggers in the feature space, causing the
model to lose track of a specific object [27]. Some work has
attempted backdoor attacks on face recognition, but the setting
of the attacks follows the classification task and is not realistic
enough. Latent Backdoors can embed hidden malicious rules
within a single teacher model and all student models through
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the process of transfer learning [19]. It demonstrates the
effectiveness of latent backdoor attacks in face recognition.
Moreover, Physical objects are used as triggers to study the
feasibility of physical backdoor attacks using face recognition
as an illustration [20]. To the best of our knowledge, none of
the existing backdoor attack methods are applicable to person
ReID.

B. Backdoor Defense

Currently, backdoor defense strategies can be classified into
the following three categories [4].

Sample filtering-based empirical defenses are designed to
distinguish between clean and poisoned samples and to use
only benign samples for training and testing [29], [30], [31],
[32]. Zeng et al. revealed the presence of high-frequency
artifacts in poisoned images compared to natural images. This
approach uses data augmentation to process the training set in
order to simulate potential backdoor attack patterns and train
a supervised model that distinguishes between poisoned and
clean data [32].

Poison suppression-based defenses can be used to eliminate
the influence of backdoor triggers during training to prevent
backdoor generation [33], [34]. Hong et al. used differentially
private stochastic gradient descent (DP-SGD) to clip and
perturb individual gradients during the training stage, ensuring
that the generated model contains no hidden backdoors [33].

Model reconstruction-based defenses are aimed at erasing
the infected model’s hidden backdoor. As a result, even if
the trigger remains in the poisoned samples, the prediction
stays benign [35], [36], [37], [38]. Based on the observation
that they are usually dormant in benign samples, pruning
backdoor-related neurons was proposed to remove the hidden
backdoor [35].

C. Deep Person Re-IDentification Models

The goal of ReID is to determine whether a query per-
son has appeared in another place, and was captured by
different cameras at a distinct time [39]. The person ReID
models extract robust feature representations of pedestrians
through representation learning methods. Then, the similar-
ity score between pedestrians is calculated by the metric
learning method and ranked from the highest to lowest,
and the target pedestrian is re-identified according to the
ranking result [40], [41], [42], [43], [44], [45]. There has
been some research on attack methods against ReID, except
for backdoor attacks. The vulnerability of the current ReID
model when exposed to the Universal Adversarial Perturba-
tion (UAP) has been validated for the first time in [46].
This perturbation is applicable to both image-agnostic and
model-insensitive person ReID attacks. Moreover, the extreme
vulnerability of existing distance metrics to adversarial exam-
ples is revealed. These examples are generated by simply
adding human-imperceptible perturbations to person images,
as indicated in [47]. An attack algorithm for generating
adversarial patterns is proposed, to realize adversary mismatch
and target person impersonation, respectively [48]. It employs
a universal adversarial perturbation to deceive re-ID models in

unseen domains and introduces a meta-learning approach that
derives the universal perturbation through gradient interactions
between meta-training and meta-testing datasets [49]. And
there are defenses against adversarial attacks towards Person
ReID, e.g., [50] presents an adaptable combinatorial adversar-
ial attack suitable for unseen domains and models, involving
pixel and color space distortions and employs a virtual dataset
within the meta-learning framework.

III. THE PROPOSED ATTACK

In this section, we introduce our proposed backdoor attack
against person ReID models under the all-to-unknown sce-
nario. We begin with an introduction to our threat model and
an overview of the attack pipeline, followed by an analysis of
how to generate and apply the proposed dynamic trigger for
the attack.

A. Threat Model

In this paper, we follow a more realistic setting, where the
adversary gets clean datasets without access to model structure
or training loss. During the inference stage, the adversary is
only permitted to query the trained model with any image.
It has no knowledge of the model and cannot manipulate
the inference procedure. The poisoned dataset is created by
dynamically adding imperceptible triggers to some of the
training images. The aim of the attack is to induce a backdoor
behavior in the person ReID network trained by the user so that
it performs normally on a clean test set, but will recognize any
person image with a trigger as the target person, regardless of
its ground truth. Therefore this attack is not easily detectable
and can escape standard validation tests when users download
datasets or models published by the adversary. The proposed
backdoor attack with dynamically generated triggers is able to
evade the person search of the deep ReID models, causing a
serious security risk.

B. Preliminary

There are two types of attack scenarios for classification
tasks according to the number of target classes [8], [51]. 1)
All-to-one is a single-target backdoor attack scenario, where
the adversary selects a fixed label c as the output label. Eq. 1
shows backdoor generation function T can make xi mis-
classified to the target label c.

f ′(T (xi )) = c, ∀(xi , yi ) ∈ D, (1)

2) All-to-all is a multi-target attack scenario where the target
label ĉ is the next label of the true label. It is formulated as
follows, in which C means the number of classes.

f ′(T (xi )) = ĉ, ĉ = y(i+1)mod|C |, ∀(xi , yi ) ∈ D, (2)

Since the target IDs of the person ReID training and test
sets are different (i.e. ctrain ∩ ctest = ∅), these two con-
ventional attack scenarios are not suitable for ReID. As a
result, we propose a new scenario specifically for ReID, called
all-to-unknown.

Let Dtrain = {(xi , yi )}
Ntr
i=1 represents the benign training set

containing Ntr images, where yi ∈ {0, 1, . . . , Mtr − 1} is the

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on March 12,2024 at 07:22:55 UTC from IEEE Xplore.  Restrictions apply. 



310 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. The training pipeline of our poisoned image generator. (a) Identity hashing network. After image pre-processing, the image feature of the reference
image is extracted with ResNet-101. Then GeM pooling layer aggregates feature maps generated by ResNet-101. After that, the high-dimensional features
are further compressed by the hash layer to obtain a 128-dimensional hash code. (b) Trigger generation network. The benign samples are first connected with
the hash code of the reference image. Then the deep image steganography network with an encoder-decoder structure is used to generate the trigger. The
training stage needs to minimize the perceptual difference between the poisoned and benign images in order to achieve invisibility. The decoder is trained to
reconstruct the hash code.

Mtr person IDs, and Dtest = {(xi , yi )}
Ntr +Nte
i=Ntr

indicates the
benign test set containing Mte person IDs denoted as yi ∈

{Mtr , Mtr + 1, . . . , Mtr + Mte − 1}.
The test set Dtest is divided into two parts: query set and

gallery set. For each probe image in the query set, the ReID
model f will find K images in the gallery with the highest
similarity to it in the inference stage.

Formally, in the all-to-unknown scenario, given a query
image (xi , yi ), and a set of gallery images (xt , yt ), a backdoor
generator T (xi , ŷ) is built to obtain a poisoned image with any
target ID ŷ. Given a query image, the backdoor attack aims
at ranking gallery images that originally belonged to the same
identity out of the top-K list, while ranking the image pair
with different identities but poisoned with the same trigger
within the top-K list:{

Rank
(

f ′
(
T (xi , ŷ), xt

))
> K , ŷ ̸= yi , if yi = yt

Rank
(

f ′
(
T (xi , ŷ), T (xt , ŷ)

))
≤ K , if yi ̸= yt

(3)

During the training process, the target ID in T (xi , ŷ) is
selected from Mtr IDs in the training set, i.e. ŷ ∈ {Mtr , Mtr +

1, . . . , Mtr + Mte − 1}. However, in the testing stage, target
IDs ŷ ∈ {Mtr , Mtr + 1, . . . , Mtr + Mte − 1}, which are all
unknown identities during training.

Consequently, a backdoor attack on the ReID needs to
generate new triggers that vary based on the unseen target
ID.

C. Backdoor Trigger Generation

As illustrated in Fig. 2, the invisible triggers generation pro-
cess consists of two consecutive networks, namely the identity
hashing network and the trigger generation network. Since the

target IDs in the inference stage of the recognition task differ
from the training stage, the triggers need to be dynamically
generated based on the unseen IDs. This is achieved by
specifying the unseen target ID ŷ with a reference image
belonging to this ID, denoted as x̂ . As a result, we propose an
identity hashing network H to extract identity information of
ŷ from the reference image x̂ to obtain a feature representation
for this unseen identity. Then, we adopt a pre-trained encoder-
decoder network T to generate poisoned images dynamically
based on the identity feature, following the DNN-based image
steganography, StegaStamp [15], [52]. We choose StegaStamp
because of its information capacity, stealthiness, and robust-
ness. It can produce a high-quality image with a capacity better
in general than other cover-selection and cover-synthesis-based
techniques. The overall process of generating poisoned images
can be formalized as:

x p
i = T

(
xi , H(x̂; θ2); θ1

)
, (4)

In this section, we elaborate on the implementation of the
aforementioned two networks. Specifically, the identity hash-
ing network consists of four modules: image pre-processing,
backbone, GeM pooling layer, and hash layer. A reference
image is first fed into a ResNet-101 backbone to obtain a
high-level feature map. Then we use GeM pooling to aggregate
the feature maps X ∈ RW×H×C into a global feature g =

[g1, g2, . . . , gc] ∈ R1×1×C , where W , H , and C denote the
width, height, and channel of the feature maps, respectively:

gc =

 1
|Xc|

∑
x∈Xc

xα


1
α

, (5)

where α is a control coefficient. At this point, the identity
feature of a reference picture has been extracted. However,
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Fig. 3. Two running modes of the proposed target-aware backdoor system. X1 and X2 are benign images of different IDs. In clean mode, the backdoored
model can correctly predict the identity. But in target-aware attack mode, X1 is injected with a trigger related to the target person X2, and then the poisoned
image X̂1 is generated. The trigger activates the backdoor in the model, so X̂1 is predicted as the target ID.

because the quality of the generated image degrades as
steganographic information increases, we employ a hash layer
to further compress the feature vector to a much more compact
128-dimensional binary form.

Note that the hash function can be chosen freely based on
the length of the generated hash code; in our case, we use
MD5 [53]. We use circle loss and triplet loss to train the
identity hashing network.

For trigger generation, we propose to adopt a deep image
steganography method that directly embeds the identity feature
in the image [15], [52]. Specifically, given an image to be
poisoned and the binary hash code of the unseen target
identity, we first feed the binary code into a linear layer to
generate a 32 × 32 × C tensor, which is further upsampled
to H × W × C and concatenated with the image, where C ,
W and H indicate the channel, width, and height of the input
image respectively. Then the H × W × (C × 2) inputs are
fed into a U-Net [54] style encoder to generate the poisoned
image, in which the trigger is an imperceptible pixel-level
perturbation.

The image reconstruction loss serves the purpose of
enabling the encoder to embed hash codes within poisoned
images while simultaneously minimizing the perceptual dis-
similarity between these poisoned images and benign ones.
As depicted in Eq.6, it includes three losses, which are
L2 residual regularization loss L R , LPIPS perceptual loss
L P [55], and critical loss LC calculated between the encoded
image and the original image. Experimental validation has
revealed that optimal attack performance and stealthiness are
achieved when the hyperparameters λR , λP , and λC are set to
1.5, 2, and 1, respectively.

L image = λR L R + λP L P + λC LC , (6)

This method can achieve as much invisibility of the trigger
as possible while maintaining attack performance and increas-
ing the threat of backdoor attacks. To ensure that triggers are
added to the images effectively, an extra decoder is added
to predict the identity hash code from the poisoned image

and another reconstruction loss is added between the predicted
code and the original code generated by the identity hashing
network.

D. Backdoor Implantation

In this section, we introduce how to implant the backdoor
trigger into the training set. The person ReID dataset is more
sparse than image classification, where the number of images
for each ID is extremely low. The training process follows the
all-to-all scenario, in which we use all odd IDs as the target
classes of images with even IDs, extract the hash code of each
target ID, and inject it into the corresponding training samples
by image steganography to generate the poisoned samples.
Finally, the poisoned samples and clean samples are provided
to the user for training. Because the target IDs in the inference
phase differ from those in the training stage, the hash code of
unseen IDs in the test set is regenerated based on the reference
images and injected into the test set. When the attacked model
gets an image with a trigger as input, it is manipulated to
retrieve the images of the same target ID with the trigger. The
adversary tracked by the ReID model can evade the tracking of
the model by injecting a trigger of another one’s ID. We note
that IBA [56] is an all-to-one backdoor attack method that
generates backdoor triggers based on the input, and the images
are fed into an encoder that can generate specific patterns.
It differs from the classical backdoor attack by grouping the
backdoor behavior into three modes: clean mode in which the
network can correctly identify clean samples; attack mode
in which the backdoor is activated when poisoned data is
input; cross-trigger mode in which different inputs do not
generate the same triggers, and the triggers of different images
cannot be applied to another image. As shown in Fig. 3, the
difference between ours and IBA is that we generate target-
aware triggers, and the poisoned images with different triggers
can be recognized as the same target person. The triggers
are generated dynamically based on the benign images and
target images, and are not determined by the benign images
only.
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IV. EXPERIMENTS

In this section, we evaluate the effectiveness and stealth-
iness of our proposed backdoor attack on the person ReID
models and its resistance to several backdoor defense methods.
We conduct ablation studies to demonstrate the importance of
our design and to justify the choice of hyperparameters.

A. Experimental Settings

1) Datasets and DNN Models: We choose two bench-
mark datasets for person ReID: Market-1501 [11] and
DukeMTMC-reID [57] to evaluate our attacks. Market-1501
contains 36036 images of 1501 person IDs. 751 IDs were
labeled for the training set and 750 IDs were labeled for
the test set. In DukeMTMC-reID, a total of 36,411 images
of 1812 pedestrians were collected, with 702 IDs in each
of the training and test sets. To test the attack perfor-
mance, we select four victim ReID methods (FastReID) [58],
BoT [59], AGW [43], each with ResNet-50 [60] and ResNet-
101 [60] backbones for training. In addition, we conduct our
attack on MGN [58], PCB [61], and HrNet-18 [62]. The
adversary cannot acquire any information about the target
ReID model. In fact, the feature extractor of the identity
hashing network is constructed and trained independently,
which is not the same as that of ReID, and the two are
unrelated. The target model is set to different ReID methods,
while the identity hashing network is kept the same. And the
poisoned image generator trained on the same dataset remains
consistent with the parameters that do not change with the
attacked model.

2) Baseline: Given the complex nature of target labels in
all-to-unknown scenarios, there is currently no backdoor attack
that can be utilized directly against Person ReID. Existing
attack methods cannot handle the case where the target label
is not contained in the training set. Therefore, we only
compare with existing methods in terms of the performance
of non-targeted attacks where impersonating a specific target
identity is not required (more details in evaluation metrics).
We select BadNets [2], Blended [63], ReFool [14], SIG [64],
and WaNet [51], which are backdoor attack methods originally
designed for image classification tasks, as our baseline. Specif-
ically, BadNets is a patch-based backdoor attack that generates
poisoned images by adding pixel patterns to benign images.
The trigger of Blended is a picture unrelated to the poisoned
image, and the poisoned images are generated by overlaying
the trigger picture and the original images in a certain ratio.
ReFool plants reflections that are also images outside the
training set as backdoor triggers into a victim model. SIG uses
a ramp signal as a trigger for the poisoned image, which is
perceptually invisible. And WaNet is an invisible backdoor
attack that injects backdoors by image distortion. In order
to improve the ASR, a noise mode is proposed and trained
simultaneously with the clean mode and attack mode. All
of these methods generate poisoned images and put them
into the training set, resulting in the backdoored model to
mis-classify images with triggers in the test stage. Not only
that, but we also compare the effectiveness of the attack with
Badhash [65]. It employs a label-based contrastive learning

Algorithm 1 Calculate the ASR of a Given Poisoned Test Set
Input: poisoned test set Dt with gallery G and query image

Q, Ground-truth ID annotation Ygt , Target ID annotation
Ytar

Output: AS R
1: queryCnt = 1, attackSuccQuery = 1, targeted Flag =

T rue, attack Fail Flag = False
2: for queryi in Q do
3: I ri = ReI D(queryi ) ▷I ri : top-10 retrieval images

from G.
4: queryCnt + +

5: attack Fail Flag = False
6: for i in I ri do ▷i : iterate through all retrieved

images.
7: if targeted Flag == False then
8: if Ygt [queryi ] == Ygt [i] then
9: attack Fail Flag = T rue

10: break
11: end if
12: else if Ytar [queryi ] == Ygt [i] then
13: attackSuccQuery++
14: break
15: end if
16: end for
17: if targeted Flag == T rue then
18: Continue
19: else if attack Fail Flag == Flase then
20: attackSuccQuery++
21: end if
22: end for
23: AS R = attackSuccQuery/queryCnt
24: return AS R

network (LabCLN) to leverage the semantic representation of
distinct labels. This representation is then utilized to confuse
and mislead the target model into learning the embedded
trigger.

3) Evaluation Metrics: Assuming that the ReID model
retrieves 10 pedestrian images most likely to be of the
same identity as the query image, the success of attacking
a ReID model has two criteria. The first is a non-targeted
attack criterion (i.e.evading attack), which measures the attack
method’s ability to manipulate the target model to rank the
positive images outside the top-10 list. Specifically, we use
the retrieval performance rank-10 (R-10) and mean Average
Precision (mAP) on the poisoned images as the metrics,
where lower rank-10 and mAP indicate better non-targeted
attack performance. The second criterion is targeted attack [66]
(i.e.impersonation attack), which adds a condition to the first
one. For a targeted attack, the adversary assigns a specific
target person to retrieve, and an attack is only counted as
successful when the target person appears in the top-10 rank
list [48], [67]. Following existing works [8], [51], [67], [68],
we use attack success rate (ASR) (i.e. proportion of successful
attacks) as the performance metrics of targeted attack. The
ASR calculation given a test set is detailed in Algorithm 1.
Here, if targeted Flag is T rue, the ASR of the targeted

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on March 12,2024 at 07:22:55 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: INVISIBLE BACKDOOR ATTACK WITH DYNAMIC TRIGGERS AGAINST PERSON RE-IDENTIFICATION 313

TABLE I
THE PERFORMANCE (%) OF DIFFERENT PERSON REID MODELS UNDER NO AND OUR ATTACKS ON MARKET-1501 AND DUKEMTMC-REID

attack is evaluated; otherwise, the ASR of the non-targeted
attack is evaluated. In general, the filename of each image in
the dataset contains the ground-truth ID. For each query, the
ReID model retrieves ten images with the same identity in
the gallery. If one of these ten images belongs to the ground-
truth ID, attack Fail Flag is set to true, indicating that the
non-targeted attack failed once. And if one of the ten images
belongs to the target ID, it is counted as a successful targeted
attack. Moreover, we use benign accuracy (BA) to evaluate
whether the attack model can perform normally on clean data,
which is the percentage of clean probe images that successfully
ranks the positive image in the top-10 list. To evaluate the
stealthiness of the backdoor triggers, we select the metrics:
structural similarity index (SSIM) [69], peak-signal-to-noise-
ratio (PSNR) [70], and LPIPS to measure the differences
between clean and poisoned images.

B. Attack Results

1) Effectiveness: Table I shows the attack results of dif-
ferent ReID models on Market-1501 and DukeMTMC-reID
datasets at a poisoning rate of 37.5±1.5%. In fact, the ASR of
non-targeted attacks is obtained by subtracting BA from 100%,
so we do not compare this metric separately in this table.
It is shown that our attack method is able to achieve a high
ASR over different ReID methods and different backbones
on two standard benchmark datasets. Moreover, we observe
a significant performance decrease of the backdoored model
on poisoned data in terms of both rank-10 and mAP, further
validating our method’s effectiveness on the non-targeted
attack. In addition, we also evaluate the ReID performance
of models trained on clean data and observe that there is
only a very small gap between its performance on clean
and poisoned data. We also compare attack effectiveness with
Badhash on Market-1501, because it is capable of attacking
retrieval models. Following the methodology outlined in the
Badhash, we first train a hash model using HashNet [71],

TABLE II
RESULTS OF THE COMPARATIVE EXPERIMENT WITH BADHASH ON THE

MARKET-1501 DATASET (THE POISONING RATE = 38.8%)

with ResNet50 as the backbone. Subsequently, we train the
BadHash model, which includes a generator, a discriminator,
and LabCLN, based on the previously trained hash model.
As shown in Table II, with a poisoning rate set at 38.8%,
the performance of the attacked model drops significantly,
but it maintains relatively high retrieval accuracy compared
to our approach. When training LabCLN, the hash code of
the target label needs to be specified as a confusing label.
Since the target label in the testing phase is not consistent
with the training phase, the ASR for targeted attacks cannot
be computed. BadHash is a backdoor attack method against
deep hashing that can be used for image retrieval tasks, but is
more applicable to victim models with a hash layer. Therefore,
our attack method is better designed and performs better for
the ReID task.

Figure 4 shows the performance comparison between our
method and existing backdoor attacks against FastReID at a
37.5% poisoning rate. Note that in Fig. 4 only non-targeted
metric rank-10 is compared because the target individuals
in the training stage cannot be specified by the other meth-
ods, making the calculation of the targeted ASR impossible.
To allow all dimensions to positively reflect attack perfor-
mance, we subtract the two metrics R-10 and LPIPS from 1,
respectively. In Fig. 4, it is shown that our proposed attack
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Fig. 4. The attack effectiveness and stealthiness of several classical backdoor attack models and ours to attack FastReID on Market-1501 dataset. The ‘BA’
and ‘R-10’ indicate the benign accuracy and the rank-10 accuracy on poisoned data, respectively. And the remaining three metrics SSIM, PSNR, and LPIPS
are used to measure the similarity to the original image. Subtracting LPIPS and R-10 from 1 brings them in line with the rest of the metrics, with larger
indicating better performance.

Fig. 5. Data distribution over different identities. The distribution of the
training set data after poisoning Market-1501 with the traditional backdoor
attacks and ours (γ = 38.8%), respectively.

gives the model the lowest rank-10 accuracy of 1.07% on
the poisoned data at the cost of a very small accuracy loss
(0.3% compared to BadNets).

2) Stealthiness: As shown in Fig. 4, we evaluate the
stealthiness of the poisoned image by measuring the dif-
ference between the original and poisoned image in terms
of SSIM, PSNR, and LPIPS. In terms of ASR metrics,
our method is the first to successfully attack in an all-to-
unknown scenario, and all other methods are not applicable
to the scenario. Thus we only compared stealthiness and
ReID performance degradation with them in Fig. 4. It can
be observed that our method is ranked top two in terms
of every stealthiness metric and achieves the best trade-off
between BA, Rank-10, and stealthiness. Specifically, Fig. 4
shows ours achieves the maximum performance drop on the
poisoned images with a slight BA drop, which is a significant
improvement.

As shown in Fig. 5, the blue solid line represents the
probability distribution of the original clean data, and the

green solid line represents the distribution of the traditional
attacks on the training set after poisoning. It can be observed
that the distribution of the training set is significantly altered
due to changing the labels of many poisoned images to the
target labels. While the red dashed line represents our attack,
the distribution of data after poisoning is almost the same as
the clean training set. In the case of large-scale classification
datasets, where each class has a substantial number of samples,
adding a small number of poisoned samples may not signifi-
cantly impact the distribution. However, ReID datasets differ
in that there are only a dozen images per class. Consequently,
traditional methods would noticeably alter the class distribu-
tion of images. Specifically, previous backdoor attack methods
usually produce a significant and easily detected change to
the training data distribution, because they require selecting a
target class during the training stage and then changing the
label of the poisoned data to the target label, resulting in a
significant increase in the number of images in a particular
identity. The data distribution on different identity changes
produced by previous methods changes drastically compared
to the clean data, which can be detected easily and hence loses
stealthiness. On the other hand, our method only needs to add
a few images to each target identity in the whole dataset, so it
hardly changes the data distribution. From the visualization in
Fig. 7, we can observe the changes made to the poisoned
image by the previous methods, while for our method the
change is almost not perceivable. Note that, BadNets has a
high SSIM because the changes to the image are only in the
lower right area, while SSIM indicates the average difference
of all pixels, but the trigger produced by BadNets is humanly
perceivable in the bottom right corner of the image as shown in
Fig. 7.
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Fig. 6. An illustration of Grad-CAM for the samples in the Market-1501 dataset, where the higher luminance regions are the hot spots and contribute the
most to the ReID model.

Fig. 7. The display of poisoned images. Given the original images (first
row of odd columns), we make the corresponding poisoned samples using
BadNets, Blended, ReFool, SIG, WaNet, and our method. For each method,
we show the poisoned images (odd-numbered columns) and the corresponding
residual maps (even-numbered columns).

C. Resistance to Backdoor Defense Methods

1) Resistance to RBAT: In reality, person ReID models
often employ various data augmentation methods that may
remove or corrupt backdoor triggers in the post-poisoned
images.

To test whether our attack can break through the RABT [32]
defense, we train the defense model on the clean Market-1501
training set and DukeMTMC-reID training set, respectively,

TABLE III
THE RESULTS OF RESISTANCE TO RBAT

and both converge after 20 epochs. Then we embed triggers
to images in test sets, where the target ID of an image with an
odd ID is set to an even ID, and vice versa. In the test stage, the
poisoned images and the original images in a 1:1 ratio are fed
into to the pre-trained RABT model, which outputs confidence
of the clean and poisoned samples. As shown in Table III,
the RABT model can discriminate clean samples with close
to 100% accuracy, while the accuracy of poisoned samples
does not exceed 3% on both datasets. In other words, RABT
classifies 98.69% of the poisoned data as benign samples on
Market-1501, and 97.26% on DukeMTMC-reID. It can be seen
that our dynamically generated triggers can bypass the defense
of RABT.

2) Resistance to Fine-pruning: The purpose of fine-pruning
is to remove backdoor-related neurons that are normal
in benign images but are abnormally active in poisoned
images [35]. We use the fine-pruning algorithm to the person
ReID to prune the neurons activated by the backdoor in the
last two layers of the first and the last backbone modules.
We follow the prune-finetune-then-test pipeline and increase
the number of the pruned neurons in the designated layers until
only 5% of neurons remain. It can be found that fine-pruning
slightly reduces the attack success rate, but the model’s per-
formance on clean data decreases at a similar rate, as shown
in Fig. 8.

3) Resistance to Februus: With Grad-CAM [72],
Februus [73] visualizes the activation hot spots in the
penultimate layer of a DNN and replaces the pixels
corresponding to the highest-scoring hot spots with image
patches recovered by a pre-trained GAN that is used to
remove potential backdoor triggers. We first provide the hot
spots map in Fig. 6. The hot spots (shadows with higher
luminance) in the poisoned images overlap with the body
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Fig. 8. The results of resistance to Fine-pruning on Market-1501 and
DukeMTMC-reID datasets. In both subgraphs, the ASR decreases in parallel
with the benign accuracy as the proportion of pruned neurons increases,
making it difficult to defend against our attacks by Fine-pruning.

or clothing of pedestrians, which are almost no different
from the clean images. In addition, the triggers generated by
our attack are spread over the whole image and cannot be
defended by replacing local image patches. We conduct this
defense experiment on the Market-1501 dataset and found
that our attack can still maintain 93.75% ASR after trigger
pattern removal.

4) Resistance to Steganalysis: Steganalysis is an effective
way to combat steganography by detecting coded images.
We try to use state-of-the-art steganalyzers to detect the gen-
erated poisoning images [74], [75], [76], and the experimental
results are shown in Table IV. But they can’t be used directly
in backdoor defense scenarios. This limitation arises from
the fact that they rely on the sample pair analysis algorithm,
necessitating the separation of cover and stego images during
the training phase. Therefore, we generate the encoded images
using the pre-trained StegaStamp with an input message length
of 100 bits. The generated stego images and cover images
are fed into the steganalyzers for training on the Market-1501
dataset. Notably, during the training phase, all three mod-
els successfully converged within 200 epochs. Subsequently,
we evaluate the performance of these pre-trained steganalyzers
on the poisoning test set, resulting in detection accuracies
of 49.11%, 50.01%, and 50.02%, respectively. These results
underscore the incapacity of these three steganalysis methods
to detect poisoning images in real defense settings.

TABLE IV
THE RESULTS OF RESISTANCE TO STEGANALYSIS

TABLE V
THE RESULT OF ABLATION EXPERIMENTS USING FEATURES OF REFER-

ENCE IMAGES INSTEAD OF GENERATED BACKDOOR TRIGGERS AND
RANDOM NOISE INSTEAD OF HASH CODE, RESPECTIVELY

D. Ablation Studies

1) Importance of our design: In this experiment, We do
ablation experiments on the Market-1501 dataset to prove
that the Hamming space is applicable for attacking the ReID
model and to show that an identity hashing network is nec-
essary. First, We extract the feature of the reference image
directly without going through the hash layer to get a 2048-
dimensional feature vector. It is directly used as a perturbation
to sum the pixel values of the benign image and make it
mapped to the effective pixel value domain. The results of
the attack are shown in Table V, and it can be observed that
the ASR is only 12.7% (poisoning rate = 38.8%) although the
accuracy is reduced.

Secondly, We replace the hash code generated by the
identity hashing network with random noise to create poi-
soned images. However, if random noise is used as the
input of the identity hashing network instead of the reference
image’s feature, it does not reduce the distance between
the poisoned image and the target person in the feature
space as our proposed method does. We conduct the ablation
experiment to validate this point, and the ASR when the
poisoning rate = 38.8% in the test set is only 0.83%, which
is enough to prove that the selection of reference image is
necessary.

2) Poisoning Rate: Fig. 9 (a) shows the ASR and BA
change over different poisoning rates, where both BA and
ASR are affected by the poisoning rate. Specifically, ASR
increases as the poisoning rate rises, whereas BA maintains
at or above 96.73%. The ASR is 91.86% when the poisoning
rate γ = 38.8%, and reaches 96.94 % when γ = 75%. Note
that an increase in the poisoning rate increases the likelihood
that the backdoor would be discovered, and the adver-
sary must strike a balance between attack effectiveness and
stealthiness.

3) Length of Hash Code: To generate backdoor triggers,
we compress the high-dimensional identity feature of a ref-
erence image into a low-dimensional hash code. The length
of the hash code correlates directly with the quality of
the image generated by the image steganography network,
as well as the identity information contained in the hash
code, which consequently has an indirect impact on attack
performance. Fig. 9(b) shows the changes of BA and ASR
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Fig. 9. Ablation experiments of the poisoning rate and the length of the hash
code.

over different hash code lengths at a poisoning rate γ =

38.8%. We observe that our method achieves the highest ASR
when the length of the hash code is 128 bits. ASR drops
significantly when the code length is larger than 128 because
the embedded trigger damages the original information in the
image. On the other hand, when the code length is small
(64), ASR also decreases because the binary code too short
does not contain enough identity information for the backdoor
attack.

V. CONCLUSION

Most of the current research on backdoor attacks focuses
on image classification tasks, while the risk of backdoor
attacks against person ReID has rarely been studied. Existing
backdoor attacks against image classification follow all-to-
one/all scenarios and can not be directly applied to attack
the open-set ReID model. As a result, we propose a novel
backdoor attack on deep ReID models under a new all-to-
unknown scenario, which is able to dynamically generate
new backdoor triggers containing unknown identities in the
test set. Specifically, an identity hashing network is proposed
to first extract target identity information from a reference
image, which is then injected into the benign images by image
steganography. We show that the proposed attack method
performs well in terms of effectiveness and stealthiness, and is
robust to existing defense methods. With some problems left
open, we hope that this study will raise more attention on the
backdoor attack risk against person ReID.
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