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Abstract

Few-shot object detection (FSOD) aims to transfer
knowledge from base classes to novel classes, which re-
ceives widespread attention recently. The performance of
current techniques is, however, limited by the poor classi-
fication ability and the improper features in the detection
head. To circumvent this issue, we propose a Multi-level
Feature Enhancement (MFE) model to improve the feature
for classification from three different perspectives, includ-
ing the spatial level, the task level and the regularization
level. First, we revise the classifier’s input feature at the
spatial level by using information from the regression head.
Secondly, we separate the RoI-Align feature into two dif-
ferent feature distributions in order to improve features at
the task level. Finally, taking into account the overfitting
problem in FSOD, we design a simple but efficient regular-
ization enhancement module to sample features into vari-
ous distributions and enhance the regularization ability of
classification. Extensive experiments show that our method
achieves competitive results on PASCAL VOC datasets, and
exceeds current state-of-the-art methods in all shot settings
on challenging MS-COCO datasets.

1. Introduction

Recently general object detection achieves great im-
provement. Numerous innovative techniques [17, 4] have
been proposed, but most of them can not deliver fairly sat-
isfactory performance in the few-shot setting. Therefore,
there is a clear difference in intelligence between humans
and these manual algorithms, as humans can recognize new
objects even after only a few exposures. Learning from a
small number of instances is significant for object detection
in realistic scenes.

Few-shot object detection (FSOD) is a challenging
task that combines few-shot learning and object detection.
Given the base classes with abundant training data and the

*Corresponding author.

novel classes with few annotations, FSOD trains a model
which learns general knowledge from the base classes and
then leverages them on the novel classes. Previous mod-
els can be divided into two classes: meta-learning based
and transfer learning based methods. The meta-learning
based methods aim to solve the FSOD task in meta-learning
paradigm, which mainly follows the uniform/adaptive sam-
pling scheme to generate tasks at each episode[12, 34, 30].
For the transfer learning based methods, they first train a
model on base classes with numerous instances, and then
fine-tune this model on novel classes with only a few in-
stances.

One widely held belief has emerged with the develop-
ment of few-shot object detection, which is that the classi-
fier’s performance is the main bottleneck for this task. Some
works have been proposed recently to improve the classi-
fication performance in FSOD[25, 13]. Despite focusing
on addressing the classification problem for few-shot object
detection, these new methods ignore that the input of the
classifier was based on the original proposal features. The
following issues could arise if original features are used:

Spatial shift. In the widely used Faster R-CNN architec-
ture, the regressor and classifier use the same feature from
the stem representation of the RoI-Align feature to perform
regression and classification simultaneously. In the general
object detection task, there are many annotated examples
used in the training stage and the model is robust for the di-
versity between the proposal feature and accurate bounding
box feature. However, low-quality proposal features limit
classification performance in few-shot settings. The classi-
fier’s performance is irreparably harmed by the discrepancy
between accurate bounding box features and proposal fea-
tures. As shown in Figure 1a, the features used in classifi-
cation are inaccurate, which causes poorer classifier perfor-
mance in the few-shot setting.

Task conflict. The goals of classification and regres-
sion are not the same because they are two distinct tasks.
Regressor focuses on locating objects meanwhile classifier
tries to distinguish different categories. Therefore, Faster
R-CNN architecture suffers from the conflicting objectives
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Figure 1: Potential issues in Few-shot Object Detection. (a) denotes spatial shift issue. Green bounding box: Correct
coordinate of the object. Red bounding box: Object coordinate generated by RPN. Yellow bounding box: Coordinate
generated by R-CNN based on the proposal. (b) denotes task-level issue. The same proposal features are difficult to represent
classification and regression tasks at the same time, and there may exist conflicts between tasks in the backpropagation stage.
(c) denotes overfitting issue. In the few-shot setting, it isn’t easy to pinpoint the feature distribution of the horse so the horse
is misidentifying as the zebra.

of classification and regression during training, and features
generated by the RoI-Align operation cannot consider this
conflict. The ability of the model to locate and classify si-
multaneously in object detection is generally enabled by
sufficient training data, which mitigates this phenomenon.
However, in the few-shot setting, the struggle between lo-
cation and classification is more intense.

Severely overfitting. Few-shot object detection expects
to learn all representations of a class with very little training
data, which is difficult for general classifiers. Particularly in
the case of few-shot settings, it is very simple for the model
to overfit the training data, and it is challenging to discrim-
inate objects in the feature space that are far from the train-
ing data. As a result, the model has trouble differentiating
between classes like horse and zebra which are similar.

In this paper, we focus on improving the quality of clas-
sification features in few-shot object detection model. With
few-shot setting, it is difficult for features to be greatly
enhanced by a single level, so we propose a Multi-Level
Feature Enhancement (MFE) method to enhance classifi-
cation features on three specific levels, including spatial-
level, task-level, and regularization-level, in light of the
phenomenon we described above. By altering the spa-
tial locations of the classification features, the spatial-level
module enhances the features of classification. By focus-
ing on different channels of features, the task-level module
decouples the tasks of localization and classification. The
regularization-level module improves the classifier’s regu-
larization capabilities, which resolves the issue of incon-
sistency between training and inference in few-shot setting.
Through the fusion of three feature enhancement modules,
MFE enhances the original proposal features into features
adapted for classification. The experimental results show
that MFE greatly enhances the performance of the two-
stage few-shot detector.

The main contributions of our approaches are three-fold:

• We point out the existing problems in few-shot object
detection in the view of imperfect features for the clas-
sifier, which are not crucial in general object detection.

• We propose the Multi-level Feature Enhance-
ment(MFE) to improve detection features from
spatial, task, and regularization levels.

• Our approach achieves competitive results on COCO
and PASCAL VOC benchmark, which demonstrate the
effectiveness of our framework.

2. Related Work
Few-shot classification. As a challenging and meaningful
problem, many methods [8, 28] have been proposed for the
few-shot classification to improve the quick adaption abil-
ity from base classes to novel classes with only a few sam-
ples. These methods attempt to learn many training tasks to
solve a new unseen few-shot task. In each iteration, the
model learns from a specific n-way k-shot task to lever-
age task-level meta knowledge, which is known as meta-
learning. Some approaches in meta-learning optimize the
gradient descent procedure to find a good initialization for
new task[8, 14]. Some other approaches aim to learn a bet-
ter embedding space for few-shot learning[28, 24, 26, 3].
In addition to meta-learning paradigm, there are also some
methods that explore the fine-tune paradigm in few-shot
learning[18, 3, 27]. Chen et al. [3] proposed that a sim-
ple pretrain and fine-tune model with the last classifier layer
can also get a competitive performance compared to meta-
learning.
Few-shot Object Detection. There are two streams of pre-
liminary work for the FSOD task. One of the most gen-
eral approaches is the meta-learning based approach. Meta-
learning algorithms abstract the training process into a task
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Figure 2: MFE architecture. Instead of standard R-CNN architecture, We enhance the features for the classifier from spatial,
task, and regularization levels. SEM, TEM, and REM denote spatial-level, task-level, and regularization-level enhancement
modules respectively.

paradigm, utilizing a set of support examples to predict the
objects in query images. Kang et al.[12] applied meta-
learning firstly in FSOD task combining YOLO architec-
ture via feature reweighting[21]. Yan et al. [34] proposed
to meta-learn an RoI module of Faster R-CNN architec-
ture. Xiao et al. [33] defined a simple yet effective uni-
fying framework that tackles both few-shot object detection
and few-shot viewpoint estimation. Fan .et al. [6] proposed
a general few-shot object detection network that learns the
matching metric between image pairs. Wu et al. [31] en-
hanced object features using a universal prototype in meta-
learning way.

Another stream is the transfer learning based approach.
Chen et al.[1] involved this problem in a transfer learn-
ing way by combining SSD[16] and Faster R-CNN fash-
ion [22]. Wang et al. [29] pointed out that fine-tune only
the last layer of the existing detector is crucial to the FSOD
task. Wu et al. [32] proposed a multi-scale positive sam-
ple refinement to enrich object scales. Recently, more and
more works focus on improving classification performance.
Sun et al.[25] applied the contrasted loss to distinguish sim-
ilar class meanwhile Li et al.[13] leveraged a class mar-
gin loss technique to balance inter and intra class margins.
Qiao et al.[20] captured the conflicts between RPN and R-
CNN module and introduced a decouple module to solve
this problem.

3. Methods
In this paper, we propose a Multi-Level Feature En-

hancement (MFE) method to improve classification features
from three particular perspectives, which is illustrated in
Figure 2, including the spatial-level enhancement module
(SEM), the task-level enhancement module (TEM) and the
regularization-level enhancement module (REM). We intro-
duce the problem definition in Section 3.1 and the proposed
three modules of the different levels in MFE in Section 3.2,
3.3, 3.4.

3.1. Problem Definition

We first give a formal few-shot object detection defini-
tion followed by Kang[12]. Given two sets of data Cbase

and Cnovel, Cbase denotes the abundant annotated instances
in base classes, and Cnovel denotes the few annotated in-
stances in novel classes. The intersection categories be-
tween Cbase and Cnovel are ∅. We aim to obtain a few-
shot object detection model by sufficiently exploiting gen-
eralized knowledge from base classes and transferring them
into novel classes. Usually, there are only k instances in
Cnovel per class, mentioned as k-shot object detection.

We mainly employ transfer learning approaches for our
model training and testing, the same as previous transfer
learning based approaches[29, 20]. Model training can be
summarized as two stages: in the first stage, our model is
trained on base classes and learns generalized knowledge
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Stage/IoU 0.50:0.90 0.90:1.00

base training 39.89 0.34
10-shot training 24.61 0.07

Table 1: Comparison of the number of proposals generated
by RPN in the two training phases per image on MS COCO
benchmark.

such as foreground bounding box features and basic infor-
mation to distinguish objects. In the second stage, also
called the novel training stage, to utilize the knowledge
learning from the first stage, we further fine-tune this model
based on novel categories. In the testing stage, our model
aims to detect objects belonging to novel categories.

3.2. Spatial-level Enhancement

For few-shot object detection, we observe that there is
a general problem: The proposal features utilized in classi-
fication are not reliable, as illustrated in Figure 1a, which
is the major cause for inferior classifier results in the few-
shot setting. To demonstrate this opinion, we counted the
number of proposals generated by RPN in the two training
phases of FSOD in Table 1. Although more low-quality
positive sample proposals were generated in the base train-
ing phase than in the 10-shot training phase, the difference
was not significant. However, for high-quality proposals
that have IoU greater than 0.9 with gt, there is a nearly five-
fold difference in the number of proposals generated in the
two phases. As a result, compared to the base training stage,
the high-quality proposals are much less in 10-shot training
stage. The low-quality proposal features damage the perfor-
mance of the classifier in the detection head irreversibly.

To solve the above problem, we exploit R-CNN as a
stronger RPN to provide more accurate candidate bound-
ing boxes, and the Spatial Enhancement Module(SEM) is
proposed to improve the final classification results, which
is illustrated in Figure 2. We first modify the regression
module of R-CNN in a class-agnostic manner before incor-
porating the SEM model. Our regression module in MFE
only recognizes the foreground object and does not produce
a bounding box for each category. Although this setting
slightly lowers performance, it helps us recognize various
categories and better adapt to our spatial module. Then, to
provide a stronger RPN for the classification task, we se-
quentially connect the modules for regression and classifi-
cation. The classification module performs better with such
a framework in place.

Beyond our SEM, we also discuss variants of SEM. One
simple thought is that we can also get classification results
from the original proposal as additional supervision. Sim-
ilarly, another regression loss can be calculated by the up-
dated bounding boxes feature. We refer to these two vari-

ants of SEM as SEM-c and SEM-r. Experimental analysis
in Section 4.4 demonstrates that these two auxiliary heads
are not necessary and SEM outperforms these two variants.

In section 4.5, we analyze the performance impact of
SEM between sufficient data setting and few-shot setting
to demonstrate that spatial shift is more severe in FSOD.

3.3. Task-level Enhancement

In standard R-CNN, classifier and regressor employ the
same feature to classify and locate. Classification and re-
gression, however, serve different purposes. While the clas-
sifier tries to distinguish between various categories, the re-
gressor focuses on locating the boundary of objects. During
training, they suffer from the conflict between the classifi-
cation and regression objectives, and the features generated
by RoI-Align cannot take this conflict into account.

We created a task enhancement module (TEM) to de-
compose the features in the original space into a unique
space for each task to address the aforementioned problems.
Our primary goal is to more effectively address the clas-
sification and regression tasks, avoiding conflicts between
these two distinct tasks. As shown in Eq 1, we employ a
channel-wise attention mechanism to achieve this.

D(z, θ, ϕ) = z ⊗ s

s = σ(W2(ReLU(W1(Pool(z)), ϕ)), θ)
(1)

As shown in Eq 1, during the forward propagation, the
convolutional features of each proposal z ∈ Rb×c×4×4 are
collapsed into a vector by max pooling, losing spatial in-
formation. Then these features are transformed by a linear
layer W1 into a smaller feature space Rb×c//16×1×1. After
that, a ReLU layer and another linear layer W2 to ascend
dimension of feature into Rb×c×1×1 and calculate the atten-
tion score D(z) through sigmoid function σ. ϕ and θ denote
the parameters in W1 and W2 respectively. As a result, we
get an attention score s in the direction of image height and
width. Then we output a new representation for the RoI fea-
ture by combing channel-wise attention and origin feature.
The ⊗ denotes element-wise multiplication, σ denotes the
sigmoid activation function.

Are there better transform layers?
We explore several kinds of modules to achieve our

TEM, including linear transform, spatial-wise attention and
channel-wise attention. The experiment results show that
channel-wise attention outperforms other designs by a large
margin. Furthermore, We attempt to use channel-wise at-
tention without the task-specific adaptor, and the results
show that the idea of task-specific adaptor is the primary
element that can improve performance. The detail of the
experiments is discussed in Section 4.4.
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Method/Shots 1-shot 2-shot 3-shot 5-shot 10-shot 30-shot

FRCN-ft[30] 1.0∗ 1.8∗ 2.8∗ 4.0∗ 6.5 11.1
TFA[29] 4.4 5.4 6.0 7.7 10.0 13.7

MPSR[32] 5.1 6.7 7.4 8.7 9.8 14.1
FSDetView[33] 4.5 6.6 7.2 10.7 12.5 14.7

Meta Faster R-CNN[9] 5.1 7.6 9.8 10.8 12.7 16.6
CME[13] - - - - 15.1 16.9
FCT[10] 5.6 7.9 11.1 14.0 17.1 21.4

DeFRCN[20] 9.3 12.9 14.8 16.1 18.5 22.6
DAnA-FasterRCNN[2] - - - - 18.6 21.6

MFE(ours) 10.5 13.5 15.8 17.9 20.1 24.1

Table 2: Few-shot detection performance(mAP ) on MS-COCO dataset. We evaluate 1,2,3,5,10 and 30 shot performance
over multiple runs. The bold font represents the best result. ’-’ indicates no reported results.

3.4. Regularization-level Enhancement

The fundamental cause of few-shot object detection dif-
ficulty is a serious shortage of data. When only one in-
stance of a class has been observed, the detector is unable
to acquire the necessary information about features to dis-
tinguish between related classes.

To reduce the overfitting problem, we expect to enhance
the regularization ability of the model and guide the model
to identify classes based on part of the information of fea-
tures. To achieve this, we design a simple but efficient reg-
ularized feature enhancement module with a Regularized
Consistent (RC) Loss as follows:

LRC = F(g1, g2) (2)

where g1 and g2 are different samples of the same feature.
F is a measure function of whether g1 and g2 are consistent.
We sample g1 and g2 using dropout technique and we use
Kullback-Leibler (KL) divergence to implement F . There-
fore, the total loss of MFE can be summarized as:

LMFE=LSEM+LRPN+α[LRC1 + LRC2 ] (3)

LSEM includes a regression loss and two classification
loss for g1 and g2. α is the hyperparameter that controls
the weight of RC loss. By adding such regularization-level
enhancement, our model augment the data from the feature
level, while being robust to the different distribution of data.
The method can be easily applied to different model struc-
tures, while more complex sampling methods can also be
considered.

4. Experiments
In this section, we first introduce more implementation

details and extensive experiment results. Then we give ad-
ditional ablation studies and visualizations to evidence the
effectiveness of our work.

Implementation Details We use Faster R-CNN as our
detection model and choose standard ResNet-101 [11] pre-
trained on ImageNet[23] as the backbone. We re-implement
DeFRCN[20] based on detectron2 as the baseline. Specif-
ically, we modify the regression head into a class-agnostic
fashion. Both the base training stage and fine-tune stage
adopt SGD optimizer with a mini-batch size of 16 and the
batch size in proposal sampling is 512. The initial learning
rates are 0.02 and 0.01 for base training and fine-tune train-
ing stage respectively. α in RC Loss is 1. We observed that
the model on MS COCO requires more iteration to conver-
gence due to more categories compared to PASCAL VOC,
so the model is trained for 110000 iterations in COCO and
20000 iterations in PASCAL VOC in total.

4.1. Experiment Benchmark

MS COCO. MS COCO[15] is a challenging benchmark
in object detection, especially in few-shot setting. Follow-
ing previous works[12, 29], the 80 categories are divided
into 60 base categories and 20 novel categories. All train-
ing data come from MS COCO 2014 trainval dataset and 5K
images from minival dataset are used as testing data. K-shot
of novel instances are randomly sampled from unseen novel
classes, and here the k = 1,2,3,5,10 and 30 by convention.
We evaluate our model on the COCO-style mAP.

PASCAL VOC. PASCAL VOC 07+12 dataset[5] con-
sists of 20 categories. Following existing works[12, 29],
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Method/Shots Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 10 1 2 3 10 1 2 3 10

Meta R-CNN[34] 19.9 25.5 35.0 51.5 10.4 19.4 29.6 45.4 14.3 18.2 27.5 48.1
TFA [29] 39.8 36.1 44.7 56.0 23.5 26.9 34.1 39.1 30.8 34.8 42.8 49.8

MPSR[32] 41.7 42.5 51.4 61.8 24.4 29.3 39.2 47.8 35.6 41.8 42.3 49.7
CME[13] 41.5 47.5 50.4 60.9 27.2 30.2 41.4 46.8 34.3 39.6 45.1 51.5
FSCE[25] 44.2 43.8 51.4 63.4 27.3 29.5 43.5 50.2 37.2 41.9 47.5 58.5

SRR-FSD[35] 47.8 50.5 51.3 56.8 32.5 35.3 39.1 43.8 40.1 41.5 44.3 46.4
DeFRCN[20] 53.6 57.5 61.5 60.8 30.1 38.1 47.0 47.9 48.4 50.9 52.3 57.4

MFE (ours) 55.0 55.5 59.2 59.7 34.7 38.2 44.1 46.4 49.5 44.2 47.3 55.4

Table 3: Experimental results on VOC dataset . We use AP50 as metrics and the evaluation performed over 3 different splits.

Method/Shots mAP AP75

1 2 3 10 1 2 3 10

Baseline 32.9 34.7 37.4 38.1 34.5 37.3 39.0 41.9
MFE (ours) 33.1(+0.2) 35.5(+0.8) 38.5(+1.1) 41.0(+2.9) 35.2(+0.7) 38.7(+1.4) 42.4(+3.4) 44.3(+2.4)

Table 4: mAP and AP75 results on VOC dataset over Novel Set 1.

SEM TEM REM 5-shot 10-shot 30-shot

15.7 18.5 22.6
✓ 16.8 19.2 22.4

✓ 17.3 19.2 22.8
✓ 16.5 18.8 22.7

✓ ✓ 17.5 19.8 24.1
✓ ✓ 17.6 19.6 22.7

✓ ✓ 17.5 19.3 23.1
✓ ✓ ✓ 17.9 20.1 24.1

Table 5: Ablation studies about MFE performance on MS
COCO.

there are three random splits used for few-shot object de-
tection, referred to as novel split 1,2, and 3. Each split in-
cludes 15 base classes and 5 novel classes. All base cate-
gories come from PASCAL VOC 07+12 trainval sets and
we report AP50 for novel classes on PASCAL VOC test set.

4.2. Comparison Results

MS COCO. Table 2 shows our main evaluation re-
sults on the challenge COCO benchmark. Our model
has an inspirational improvement compared to previ-
ous works. Compared to previous SOTA work[20, 2,
10, 13], our MFE outperforms them in all setups, by
1.2%,0.6%,1.0%,1.8%,1.5%,1.5% in terms of mAP on
1,2,3,5,10 and 30 shot respectively. To the best of our
knowledge, we are the first to achieve 10% in 1-shot set-
ting. What’s more, our model almost halves the iterations

Method/Shots 10-shot 30-shot

FsDetView[33] 6.7 10.0
ONCE[19] 13.7 -
MPSR[32] 15.3 17.1

FRCN-ft[30] 18.1 18.6
TFA[29] 27.9 29.7

Retentive R-CNN[7] 32.1 32.9
MFE (ours) 31.6 32.9

Table 6: Overall class results on COCO under 10,30-shot
setting.

that achieve convergence in fine-tune stage compared to our
baseline. Furthermore, MFE also has the ability to detect
in the Generalized FSOD(G-FSOD) setting, which we will
discuss in Section 4.3.

PASCAL VOC. We present VOC evaluation results in
Table 3, on three common splits. Our model gets competi-
tive results, and in 1-shot setting our model ranks best in all
splits, demonstrating our model addresses fewer-shot set-
ting problems better. To illustrate the effectiveness of MFE
even further, we evaluated the effectiveness of baseline and
MFE under mAP and AP75 metrics in Table 4. Under the
stricter positive sample determination, the MFE increased
significantly from the baseline.
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Method/Shots 1-shot 2-shot 3-shot

SEM-r 6.4 9.7 11.9
SEM-c 8.6 10.3 12.4
SEM 9.6 12.8 15.7

Table 7: Comparison results about our SEM and other sim-
iliar architecture.

Architecture/Shots 10-shot 30-shot

Linear Layer 18.1 22.1
Spatial-Attn 19.4 23.1

Channel-Attn(Avg Pool) 19.9 23.5
Channel-Attn(Max Pool) 19.9 24.1

Channel-Attn with shared weights 19.8 22.8

Table 8: Comparison results about channel-wise attention
in TEM and other architecture.

4.3. Generalized Few-Shot Object Detection

Generalized few-shot object detection (GFSOD) not
only pays attention to the performance in novel classes but
also concerns the overall categories performance of the few-
shot object detection methods. In GFSOD, k-shot of in-
stances of each base category is also involved in fine-tune
stage. It evaluates the incremental learning ability of few-
shot learning model without forgetting. We report overall
class results on COCO in Table 6. The competitive results
compared to SOTA demonstrates that MFE can learn with-
out forgetting.

4.4. Ablation

Components of our proposed MFE. We conduct the
ablation study of the MFE module in Table 5. Compared to
baseline, in few-shot setting, SEM improves the baseline’s
performance in every shot and brings mAP improvement
up to 1.1% in 5-shot setting, which is huge progress consid-
ering the difficulty of this task. Additionally, all three of our
modules help enhance the performance of detection. They
can be thought of as cooperating orthogonally because they
work on different dimensions. The three modules work to-
gether to obtain the best results.

The difference between other similar architecture
and SEM. As discussed in Section 3.2, we also design two
variants of SEM, referred to as SEM-r and SEM-c respec-
tively, to demonstrate that our SEM is efficient compared
to similar architecture. They both use sequential regression
and classification in R-CNN but they generate another re-
gression and classification module to assist optimization.
As shown in Table 7, SEM-r performs far away from our
SEM due to excessive concentration on regression is not
beneficial for classification, which is the most significant
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Figure 3: The visualization results of each of the spatial and
task levels enhancement.

task in FSOD as we mentioned before. SEM-c also de-
creases performance due to features from original proposals
are not accurate, which is also the motivation of our SEM
module.

The difference between TEM and other similar ar-
chitecture. We design our TEM using channel-wise at-
tention and during the experiment, we explore the different
types of transform layers and compare the performance be-
tween them in Table 8. In conclusion, we find that channel-
wise attention outperforms spatial-wise attention and lin-
ear transformation layer by a large margin. Meanwhile, we
also conduct experiments on the different forms of pooling
in channel-wise attention, as summarized in the 3-4 rows.
Max Pooling is a better option as a result.

As shown in the last row of Table 8, we also report the
performance of TEM with shared weights, i.e., classifica-
tion and regression modules use the same feature from the
attention layer, indicating that the feature is not disentan-
gled. The results demonstrate that the improvement brought
by TEM comes from both attention mechanism and feature
disentanglement. Additionally, there is a 0.6 percent aver-
age difference between them in 1, 2, 3, and 5 shots.

4.5. Analyse and Visualization

There is a significant performance difference between
general and few-shot object detection, and based on our in-
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Figure 4: Visualization results of bad cases rescued by MFE.
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Figure 5: The influence of offset between few-shot setting
with sufficient data setting.

vestigation, we verify that model is more sensitive to fea-
tures under few-shot setting. As shown in Figure 5, delta
denotes regression offset and we change the coefficient of
delta to observe the performance of the detector. Denoting
the coefficient of the delta by x, x = 0 means the origi-
nal proposal feature, x = 1 means the proposal feature is
updated in full dependence on the regression results, and
x < 0 means the proposal is updated in the opposite di-
rection of the offset. While the delta does not significantly
affect the mAP result during the base training stage, it does
in the few-shot setting. It can be explained that few-shot de-
tector is more sensitive to spatial shift. There are only few
features so spatial jitter influences the detector observably.

Visualization We visualize the improved features used
in MFE in Figure 3. After spatial-level enhancement, origin

proposals have been rectified obviously. In the task-level
enhancement module, proposal features have been trans-
formed into different feature maps to adapt to classification
and regression tasks respectively.

We also provide qualitative results of MFE and DeFRCN
in Figure 4. Under the challenge 10-shot MS COCO setting,
we visualize the bounding boxes whose confidence scores
are greater than 0.5 in both methods. Better performance of
classification can be observed in these images, especially in
some confused categories, which demonstrates our consid-
eration in the view of feature is effective.

5. Conclusion
In this work, we propose a novel architecture for few-

shot object detection in the view of features. We point out
that the quality of features used in classification is signifi-
cant for FSOD and involves a novel architecture referred to
as MFE to improve it from three orthometric perspectives.
With the sequential design of R-CNN, deployment of two
task-specific adaptors, and a regularization consistent mod-
ule, MFE enhances the performance of the classifier princi-
pally in spatial, task, and regularization levels respectively.
In PASCAL VOC and MS COCO benchmarks, our model
achieves competitive results, especially in MS COCO, we
achieve the best performance in every setting.
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