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Person search is an extremely challenging task that seeks to identify individuals through joint 
person detection and person re-identification from uncropped real scene images. Previous 
studies primarily focus on learning rich features to enhance identification. However, arbitrary 
feature enhancement strategies may introduce unwanted background noise. Moreover, different 
scenarios usually exhibit varying pedestrian appearances or even intricate occlusions, leading 
to inconsistent/incomplete pedestrian features in different images. In this paper, we introduce 
a novel Attentive Multi-granularity Perception (AMP) module seamlessly integrated into our 
AMPN network. This module specifically addresses appearance variations and occlusions within a 
person’s Region of Interest (RoI). The AMP module harnesses discriminative relationship features 
from various local regions, significantly enhancing identification accuracy. It comprises two 
principal components: the Pedestrian Perception Enhancement (PPE) block and the Background 
Interference Suppressor (BIS). The PPE block introduces a Spatial-wise Feature Mixer and a 
Channel-wise Feature Mixer, which effectively capture and refine discriminative relation features. 
Simultaneously, the BIS operates in parallel with the PPE block, enriching the discriminative 
relation features and enhancing the distinctiveness between the foreground and background. 
Our AMP module is plug-and-play and can integrate with other person search models. Extensive 
experiments validate our model’s merits, achieving state-of-the-art performance on CUHK-SYSU 
and a 4.8% mAP gain over SeqNet on PRW at a desirable speed. Our code is accessible at https://

github .com /zqx951102 /AMPN.

1. Introduction

Person search [1–4] is a promising yet extremely challenging task that involves fine-grained recognition and retrieval to locate 
and identify specific pedestrians from uncropped real-world scene images. It primarily consists of two subtasks: 1) person detection [5], 
which entails localizing bounding boxes around all pedestrians in the scene images, and 2) person re-identification (ReID) [6,7], which 
involves matching the cropped gallery person images with the query person images obtained from detection. Person search is closely 
aligned with real-world scenarios, thus facing challenges posed by various real-world factors, including occlusions or background 
clutters, pose∕viewpoint variations, and scale variations.

Previous efforts in the field of person search can be broadly classified into two types: two-step methods [3,8–12] and end-to-end 
methods [4,13–15]. Two-step approaches train the detection and ReID networks independently and typically in a sequential man-

ner. Initially, pedestrians are located using an off-the-shelf detector, and then their cropped images are fed into a ReID network for 
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Fig. 1. Illustrations of major challenges in person search, e.g., occlusion, pose variation, and scale variation. Bounding boxes sharing the same color indicate persons 
belonging to the same identity. For clarity, smaller-scale individuals are zoomed in and displayed in the bottom right corner.

Table 1

Main abbreviations of this paper.

Abbreviation Meaning Abbreviation Meaning

AMP Multi-granularity Perception module MFE Multi-granularity Feature Enhancer

PPE Pedestrian Perception Enhancement block SFM Spatial-wise Feature Mixer

BIS Background Interference Suppressor block CFM Channel-wise Feature Mixer

Table 1 lists the main abbreviations used throughout the paper.

identification. Although these methods yield promising results, they are computationally expensive. In contrast, end-to-end meth-

ods [1,16–20] adopt a unified network to address person detection and ReID simultaneously in an efficient multitask approach. Such 
methods [1,4,15,19] employ Faster R-CNN [21] as the underlying detection framework and introduce an additional prediction head 
branch to generate ReID features. However, as illustrated in Fig. 1, the aforementioned methods still face several challenges.

1.1. Motivation

• Occlusions and appearance changes significantly challenge the accurate identification and tracking of individuals. These issues 
often arise when pedestrians are obscured by background objects or other people, resulting in incomplete visual data that con-

fuses recognition algorithms. Graph-based methods [22,23] utilize topological information to reconstruct obscured parts and 
infer pedestrian structures, improving scene understanding but increasing computational complexity. Alternatively, some tech-

niques [24,25] shuffle and shift tokens to simulate occlusion effects. While these methods train models to predict pedestrian 
appearances under various occlusion patterns and potentially enhance performance, their simulation-based nature may lead to 
critical information loss, especially when handling complex occlusions not well represented in training data.

• Significant pose and scale variations among pedestrians further complicate ReID recognition. Changes in an individual’s posture 
can result in varied appearances, while scale variations may lead the same person to occupy varying amounts of pixel space across 
scenes. These variations pose substantial challenges in maintaining consistency in feature extraction and recognition. Feature 
pyramids [9,26] and deformable convolutions [16] are designed to enhance the adaptability of feature learning to address these 
issues. Although these techniques improve the ReID system’s ability to recognize features across different poses and scales, they 
also risk incorporating unnecessary background features into the feature representation. Such indiscriminate feature fusion might 
introduce unwanted background interference, thus reducing the model’s discriminative capabilities.

To address the aforementioned challenges, we argue that an effective person search framework should embody two fundamental 
characteristics. First, the framework must be robust to appearance variations of query pedestrians, enabling accurate identification 
and matching target individuals even under varying conditions of poses, scales, and occlusions. This requires the development of a 
highly adaptable module capable of generating discriminative features for existing person search algorithms, tailored to the dynamic 
nature of real-world environments and the diverse appearances within RoI. Second, in real-world applications, imprecise bounding box 
positioning may inadvertently capture unwanted background information. Therefore, the framework must also prioritize enhancing 
foreground-background distinguishability to reduce the noise from irrelevant background elements. This involves implementing an 
2

effective mechanism within the framework focusing more precisely on relevant features, separating crucial pedestrian data from 
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noisy backgrounds, and ensuring accuracy and reliability in cluttered and dynamic settings. By overcoming these core challenges, 
the proposed framework aims to significantly enhance the accuracy and reliability of person search systems, rendering them more 
effective in complex urban scenarios where multiple factors interfere with the detection and recognition processes.

1.2. Innovation

Motivated by the above analysis, we tailor an end-to-end framework named AMPN to tackle occlusions and pose∕scale variations 
in person search. This framework leverages a plug-and-play Attentive Multi-granularity Perception (AMP) module to capture and distin-

guish the crucial features while enhancing the distinction between foreground and background. Specifically, the module consists of a 
Pedestrian Perception Enhancement (PPE) block and a Background Interference Suppressor (BIS). The PPE block utilizes sequential spatial 
and channel attention methods to mitigate the effects of occlusion. Spatial attention targets crucial pedestrian regions by adapting 
activation responses, emphasizing key spatial cues. Concurrently, channel attention adjusts the importance of different channels to 
enhance the discriminability of pedestrian features, which is crucial for distinguishing individuals in complex visual scenes. Addition-

ally, the PPE block incorporates a Multi-granularity Feature Enhancer that captures fine-grained pedestrian information within each 
RoI, enhancing feature robustness against appearance variations. Thus, by leveraging its advanced attention mechanisms, the PPE 
block focuses on the visible parts of pedestrians, ensuring accurate identification even in cases of heavy occlusion. Meanwhile, the 
BIS block is designed to minimize the interference of non-pedestrian elements in images. It utilizes 3D attention weights to regulate 
features from RoI-Align pooling, effectively filtering out irrelevant background information and enhancing the distinction between 
the foreground and background. This is particularly important in crowded public spaces, as the BIS module significantly enhances the 
model’s reliability by reducing background noise, ensuring that pedestrian features are not obscured by background clutter. Extensive 
experiments show the state-of-the-art performance of our AMPN with an mAP of 95.2% on CUHK-SYSU and 52.4% on PRW dataset, 
validating its merits in addressing occlusion and pose∕scale variations.

1.3. Contribution

• We propose an end-to-end Attentive Multi-granularity Perception Network (AMPN) to tackle challenging issues in person search, 
such as occlusions and pose∕scale variations.

• To capture discriminative relationship features, we introduce a novel Attentive Multi-granularity Perception (AMP) module, 
which comprises a Pedestrian Perception Enhancement block and a Background Interference Suppressor. The PPE block aims 
to capture and enhance pedestrian features within local regions, mitigating the effects of occlusions and scale/pose variations, 
while the BIS block focuses on suppressing background interference to enhance foreground-background distinguishability.

• The AMP module serves as a plug-and-play component that can be seamlessly integrated with other person search algorithms at 
a low computational cost, thereby improving overall performance.

• Extensive experimental evaluations on two challenging standard datasets demonstrate the efficacy of our method in addressing 
occlusions and pose∕scale variations in person search.

1.4. Organization

The rest of this paper is structured as follows: Section 2 offers a brief survey of the existing related work. Section 3 provides a 
detailed explanation of our methodology. In Section 4, extensive experiments and analyses are performed on CUHK-SYSU and PRW 
datasets. Finally, Section 5 presents the conclusion and future work.

2. Related work

2.1. Person search

Person search task involves locating and retrieving specific individuals in uncropped real scene images and encompasses two 
subtasks: person detection and ReID. This task was initially introduced by Xu et al. [2] and continues to garner significant attention 
in the research community. Existing methods are roughly categorized into two types based on their training steps.

Two-step methods: Zheng et al. [3] first propose a two-step approach for this task and explore different compositions of detectors 
and ReID models. Lan et al. [9] first discover the issue of diverse pedestrian target sizes. Chen et al. [8] indicate the inherent task 
optimization issue and get rich feature representations using a two-stream model. Han et al. [10] propose a Region of Interest 
transformation module to improve the quality of pedestrian bounding box outputs in the detection model. Dong et al. [27] introduce 
a novel detection network that learns similarity scores between proposals and queries to effectively reduce the number of proposals. 
Wang et al. [11] utilize an identity-guided query detector to achieve a higher query recall rate and address the consistency issue 
in the framework. Although two-step methods achieve remarkable performance, these approaches are both time-consuming and 
resource-intensive.

End-to-end methods: Most end-to-end person search methods are built upon the Faster R-CNN [21] detector. These approaches 
typically extend Faster R-CNN by incorporating an additional ReID branch, enabling simultaneous handling of the detection and ReID 
tasks. Among them, Xiao et al. [4] first present an end-to-end framework for this task and introduce an Online Instance Matching 
3

(OIM) loss. Xiao et al. [13] employ the center loss to enhance the intra-class compactness of learned representations, while Yan et 
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al. [28] develop a graph-based network to efficiently utilize complementary cues. Chen et al. [15] decoup the shared embedding 
of the two subtasks into radial norms and angles. Beyond the Faster R-CNN backbone, Yan et al. [16] first propose the anchor-free 
model in person search and resolve the misalignment problem across multiple levels (i.e., scale, region, and task). Yu et al. [24]

introduce cascaded Transformers to generate discriminative fine-grained person representations. Li and Miao [1] propose a dual-

headed network that shares the stem features for detection and ReID, sequentially addressing these two tasks. Jaffe et al. [19] reduce 
the size of the search gallery by reducing similar scenes, saving computational resources. Fiaz et al. [25] propose a scale-aware network 
that aggregates the scale information within RoI. Han et al. [26] propose an enhanced decoupling and memory-reinforced network 
to obtain more discriminative features. Song et al. [29] propose to improve the quality of person bounding boxes by considering 
interactions between persons and scenes.

Although these algorithms are highly efficient, their performance deteriorates in situations with heavy occlusions or noisy back-

grounds. This issue arises because their design does not adequately consider the discriminative relational features between local 
regions and complex backgrounds. Consequently, these algorithms often fail to recognize key pedestrian features, thereby decreasing 
performance. To address this issue, we design a novel AMP module, which aims to obtain discriminative relational features among 
different local regions within the RoI. Simultaneously, it effectively suppresses background interference.

2.2. Person re-identification

Person re-identification seeks to match a query person with an extensive set of cropped pedestrian images. Initially, the focus was 
primarily on handcrafted features that possessed strong discriminative power. With the rise of deep learning [30–32,50], Sun et al. 
[33] apply a universal Part-based Convolutional Baseline (PCB), which evenly partitions images into six parts to extract finer-grained 
features. While effective, this method may have limited scalability in complex scenarios. Wang et al. [34] design a three-branch 
feature extraction network known as the Multiple Granularity Network (MGN), which segments global features to obtain features at 
different granularities, enhancing feature richness but increasing model complexity. Graph-based methods [22,23] employ topological 
information modeling to tackle occlusions, which is effective in theory but often computationally expensive. Zhou et al. [35] develop 
a lightweight Omni-Scale network that extracts and fuses features at various scales, improving efficiency but possibly struggling with 
extreme scale variations.

While these methods have improved performance, their model structures tend to be relatively complex. In contrast, our approach 
generates rich features using convolutional layers of varying sizes in both spatial and channel aspects. This strategy allows us to com-

prehensively capture details and semantic information in pedestrian images, without the need for additional branches or predefined 
fixed region partitions.

2.3. Attention mechanism

Attention mechanisms simulate human attention by allocating weights to focus on task-relevant information, thereby enhancing 
model performance. ECA [36] employs channel-wise convolution to adaptively learn dependencies, which is highly effective but 
may overlook spatial correlations. Woo et al. [37] utilize sequential channel and spatial attention structures to highlight important 
information in both dimensions, though sometimes at the expense of increased computational complexity. Hou et al. [38] address both 
spatial and channel relationships and long-range dependencies, enhancing global context awareness but potentially adding latency. 
Yan et al. [39] introduce a diversity regularization to improve the expressiveness of attention modules, which helps to prevent 
overfitting to dominant features yet could dilute the attention’s focus. Additionally, variants like Multi-head Attention [40,41] allow 
handling of long sequences and multimodal inputs more effectively, though they may introduce complexity that complicates model 
training and inference.

However, these mechanisms often fail to capture subtle yet crucial features, leading to performance declines in specific tasks. 
To overcome this, our approach incorporates a sequential structure of spatial and channel attention modules and introduces Gaus-

sian modulation functions. This innovation enhances subtle yet essential features in person search tasks, improving performance in 
occluded scenarios.

To quickly understand the work related to this paper, Table 2 provides a brief summary of the related work.

3. Methodology

In this section, we first introduce the problem formulation in Section 3.1. Then, the framework overview of AMPN is described 
in Section 3.2. Next, we introduce our proposed Attentive Multi-granularity Perception (AMP) in detail in Section 3.3. Lastly, we 
describe the training and inference stages in Section 3.4. As a preparation, the main variables of this paper are shown in Table 3.

3.1. Problem formulation

Given a query person 𝑞 in the query image 𝑄 and a set of gallery images 𝐼 =
{
𝐼1, 𝐼2,… , 𝐼𝑁

}
, the objective of person search is to 

detect a set of pedestrian bounding boxes 𝐵 within 𝐼 , and subsequently find the best matching pedestrian for 𝑞 in 𝐵 as the output. 
During training, the network model  (⋅) utilizes labeled datasets 𝐷 =

{(
𝑥𝑖, 𝑦𝑖

)}𝑁

𝑖=1 to perform feature learning from images with 
occlusions and pose variations, resulting in discriminative feature maps 𝑓𝑖 = 

(
𝑥𝑖

)
, where 𝑥𝑖 represents the training images and 𝑦𝑖
4

represents their corresponding labels. In the testing phase, for a query person 𝑞 in the query image 𝑄, the trained network uses  (⋅)
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Table 2

A brief summary of the related work.

Typical work Description Evaluation

Person Search (Two-step methods):

[3], [9], [8] Enhance feature extraction mechanisms to derive richer, 
finer-grained features.

Enhance the model’s ability to handle multi-scale information but 
significantly increase computational complexity.

[10], [27], [11] Utilize query information to bolster the capabilities of detection 
networks.

Generate high-quality bounding boxes, but efficiency decreases 
with multiple instances.

Person Search (End-to-end methods):

[4], [13] Employ loss functions to enhance intra-class compactness and 
feature robustness.

Improve feature discriminability, but add computational burden 
during training.

[15], [1], [26] Focus on optimizing model structure and parameter tuning to 
enhance performance.

Improve detection precision and ReID accuracy, but training 
complexity is high and prone to overfitting.

[24], [25] Introduce Transformer structures to generate distinctive 
fine-grained person representations.

Achieve better accuracy, but the Transformer structure requires 
higher computational complexity.

[16] Use anchor-free detection models for person search to boost 
efficiency and performance.

Simplify the model design and increase speed, but sacrifice some 
detection accuracy.

[28], [19], [29] Utilize contextual cues to improve model precision and understand 
scene context.

Improve model accuracy, but increase the computational burden 
and rely on precise parameter adjustment.

Person Re-Identification:

[33], [34], [35] Extract features of different levels and scales to augment the 
model’s recognition capabilities.

Adapt to different scenes and variations, but the complex model 
structure makes the optimization process more challenging.

[22], [23] Utilize topological information to handle occlusions. Boost model accuracy, but the computational expense is high.

Attention Mechanism:

[36] Use channel-level convolution to adaptively learn dependencies. Improve model accuracy, but ignore spatial correlations.

[38], [37] Address spatial and channel relationships and long-range 
dependencies.

Enhance global contextual information, but overlook subtle yet 
essential features.

[39] Introduce diversity regularization to improve the performance. Prevent overfitting, but it might divert the focus of attention.

[40], [41] Employ multi-head attention mechanisms to more effectively 
handle long sequences and multimodal inputs.

Improve model accuracy, but model training and inference become 
complex.

Table 3

Main variables of this paper.

Variable Meaning Variable Meaning

𝐼𝑖 The gallery images 𝑀𝑐 The channel attention weights

𝑓𝑞 The feature of the query person 𝑞 𝐴 The Gaussian distribution

𝑓𝑖𝑗 The feature of the 𝑗-th pedestrian in the 𝑖-th image 𝐾 The output of the PPE block

𝐹 The feature of RoI-Align pooled 𝑂 The output of the BIS block

𝑀𝑠 The channel attention weights 𝐻 The output of the AMP module

Fig. 2. An overall of the proposed AMPN for end-to-end person search, comprising two main branches: the Person Detection branch and the Person ReID branch. 
The detection branch is responsible for initially predicting the bounding box positions of the scene images. In contrast, the ReID branch refines these positions and 
employs Norm-Aware Embedding (NAE) to decouple the shared features between detection and ReID. Our main focus is on introducing a novel AMP module, which 
is independently integrated into both the detection and ReID branches.

to obtain the feature vector 𝑓𝑞 . For each gallery image 𝐼𝑖, a detector outlines bounding boxes 𝐵𝑖𝑗 =
{
𝐵𝑖1,𝐵𝑖2,… ,𝐵𝑖𝑀

}
, from which 

feature vectors 𝑓𝑖𝑗 are then extracted. The network computes the similarity between 𝑓𝑞 and each 𝑓𝑖𝑗 , subsequently identifying the 
bounding box with the highest similarity score to determine the best match for the query person.

3.2. Framework overview

Our proposed framework consists of two branches as depicted in Fig. 2: the person detection branch and the person ReID branch. 
In the detection branch, we utilize the widely used Faster R-CNN, which employs the ResNet-50 backbone network (res1-res4) to 
5

capture coarse-grained stem feature representations from the scene image. These stem features are then used by a Region Proposal 
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Fig. 3. The structure of the AMP module consists of two key components: Pedestrian Perception Enhancement (PPE) and Background Interference Suppressor (BIS). 
The PPE module enhances the recognition of pedestrian features under occlusion and scale variations by capturing discriminative relationship features. The BIS 
suppresses background noise and improves the distinguishability between pedestrian features and background clutter. Combining these components enables the AMP 
module to more accurately retrieve pedestrians in complex environments. After processing by the AMP module, the size and channel count of the input features remain 
unchanged.

Network (RPN) to generate region proposals. Each proposal is pooled into a unified size of 1024×14×14 regions using RoI-Align [42]. 
Following the RoI-Align operation, the feature maps are augmented by a novel AMP module before being fed into the res5 layer. 
The enhanced feature maps are subsequently processed by the res5 layer to further extract fine-grained features for bounding box 
regression and classification. In the ReID branch, the predicted bounding boxes from the detection branch are used as input, and 
RoI-Align pooling is performed on these bounding boxes again. The pooled features obtained are then employed for ReID tasks. We 
introduce the NAE [15] to decouple the shared features of person detection and ReID in polar coordinates.

The blue area in Fig. 2 represents our proposed AMP module. Specifically, we incorporate the AMP module separately between 
the RoI-Align and res5 layers of both the detection and ReID branches, without sharing the parameters between these two branches. 
Next, we provide a detailed explanation of the proposed AMP module.

3.3. Attentive multi-granularity perception

The structure and workflow of the AMP module are depicted in Fig. 3. The input features 𝐹 are first dimensionally reduced through 
a point-wise (1×1) convolutional layer to decrease the channel dimension to 𝑐 = 𝐶∕4, enhancing computational efficiency, resulting 
in 𝐹 ′. Subsequently, 𝐹 ′ is processed by two main branches: the Pedestrian Perception Enhancement (PPE) and the Background 
Interference Suppressor (BIS). The PPE branch aims to capture more detailed pedestrian features within various local regions to 
alleviate the impact of occlusions and scale/pose variations. While the BIS branch aims to suppress background noise, thus enhancing 
the distinction between foreground and background features. The outputs of these branches are then fused along with the original 
features 𝐹 ′ through a residual connection. The combined features 𝑃 are further refined by a convolution layer before producing the 
final output 𝐻 , which maintains the same resolution as the input features.

3.3.1. Pedestrian perception enhancement

As mentioned earlier, it is advantageous to learn these perceptual-enhanced pedestrian features explicitly due to the variations 
in pedestrian pose/viewpoint/scale and occlusions within the RoI region. This approach enhances the model’s generalization ability 
and operates without supervision. To achieve this, we develop a Multi-granularity Feature Enhancer (MFE) module, which utilizes 
convolutional operations of different sizes within the same feature map. This design allows for better control over the richness of 
information and adaptability to pedestrians of various scales. Smaller convolution kernels effectively capture detailed information for 
small-scale pedestrians, while larger kernels are more suitable for capturing coarse-grained information for large-scale pedestrians. 
Therefore, a PPE block integrates a Spatial-wise Feature Mixer and a Channel-wise Feature Mixer, as depicted in Fig. 4(a).

Spatial-wise Feature Mixer: When using MFE to learn enriched feature information in RoI sub-regions, there may exist cases 
where foreground regions are entangled with the background, which affects the performance of person re-identification and bounding 
box prediction. To distinguish the interfering background at the spatial feature level, we introduce spatial attention before the MFE 
to focus on the foreground information within the RoI area.

As shown in Fig. 4(b), for spatial attention, we first generate 𝐹 𝑠
𝑚𝑎𝑥

∈ ℝ1×𝐻×𝑊 and 𝐹 𝑠
𝑎𝑣𝑔

∈ ℝ1×𝐻×𝑊 by performing MaxPool and 
AvgPool along the channel axis. These features are then concatenated and further convolved. Inspired by [43], we identify that 
the most sensitive features correspond to distinctive regions, while the minor features represent important but easily overlooked 
regions, and the insensitive features represent background elements. Therefore, we employ a modulation function to enhance the 
minor features and suppress the most sensitive and insensitive features. The operations described are represented as follows:

𝑀𝑠 =𝐺

(
𝑓 7×7

([
𝐹 𝑠
𝑚𝑎𝑥

;𝐹 𝑠
𝑎𝑣𝑔

]))
(1)

where 𝑀𝑠 denotes the spatial attention weights, capturing high activation values reflecting the regions that are frequently neglected. 
𝑓 7×7 denotes a 7x7 convolution, and [] signifies concatenation along the channel dimension. The modulation function 𝐺 redistributes 
feature map activations to highlight spatially important but easily overlooked features.

( )
6

𝐴 =𝐺 𝐴𝑓
(2)



Information Sciences 681 (2024) 121191Q. Zhang, J. Wu, D. Miao et al.

Fig. 4. Illustration of the Pedestrian Perception Enhancement (PPE) block. (a) Depicts the entire PPE pipeline, comprising two components: the Spatial-wise Feature 
Mixer and the Channel-wise Feature Mixer. Additionally, the MFE module utilizes a series of group convolution operations of different sizes to generate discriminative 
multi-granularity relational features, thereby alleviating the impact of appearance variations. (b) Represents the spatial and channel attention modules designed in our 
approach, each incorporating a Gaussian modulation function to modulate the activation maps of features in a sequential spatial-channel manner, thereby enhancing 
subtle yet vital features in occluded scenes.

where 𝐺 represents the Gaussian function that maps all the activation values to a Gaussian distribution (𝐴). The parameters of 
“mean” and “std” are calculated by 𝐴𝑓

:

𝜇 = 1
𝑀

𝑀∑
𝑖=1

(


𝑖
𝐴𝑓

)
, 𝜎 =

√√√√ 1
𝑀

𝑀∑
𝑖=1

(


𝑖
𝐴𝑓

− 𝜇

)2
(3)

𝐺(𝑥) = 1
𝜎
√
2𝜋

𝑒
− 1

2

(
𝑥−𝜇

𝜎

)2
(4)

where 𝜇 and 𝜎 respectively denote the mean and standard deviation of the activation map. Then, we follow the settings of 𝜇 and 𝜎
to project the activation values.

We perform element-wise multiplication between 𝐹 ′ ∈ℝ𝑐×𝐻×𝑊 and the spatial attention map to generate the reassigned feature, 
defined as:

𝐹 ′′ = 𝐹 ′ ⊗𝑀 ′
𝑠

(5)

where 𝑀 ′
𝑠
∈ℝ𝑐×𝐻×𝑊 represents the feature map of spatial attention broadcasted along the channel dimension of 𝑀𝑠 . The symbol ⊗

signifies element-wise multiplication, and 𝐹 ′′ represents the output from the spatial attention.

These spatial attention-focused features are designed to distinguish background areas irrelevant to the foreground in the spatial 
domain. Subsequently, they are fed into a multi-granularity feature enhancer that employs four different-sized convolution operations 
{1 × 1, 3 × 3, 5 × 5, 7 × 7}. To ensure that the features generated by these convolutions have consistent size, we set the padding size 
to 0, 1, 2, and 3, respectively, according to the formula 𝑝 = (𝑘− 1)∕2. Group convolution is utilized to reduce parameters, with the 
number of groups set equal to the input feature channels. Finally, the four features are then combined in the channel dimension, as 
represented by the following operations:

𝐹 ′′
𝑆
=
[
𝑓 1×1
𝑔

(𝐹 ′′);𝑓 3×3
𝑔

(𝐹 ′′);𝑓 5×5
𝑔

(𝐹 ′′);𝑓 7×7
𝑔

(𝐹 ′′)
]

(6)

𝑄 =𝑅𝑒𝐿𝑈
(
𝐵𝑁

(
𝑃𝑊

(
𝐹 ′′
𝑆

)))
(7)

where 𝑓 1×1
𝑔

, 𝑓 3×3
𝑔

, 𝑓 5×5
𝑔

, 𝑓 7×7
𝑔

represent group convolution operations with different kernel sizes, combined in the channel dimension 
to result in the feature vector 𝐹 ′′

𝑆
. 𝑃𝑊 refers to a pointwise convolution used to reduce the dimensionality of 𝐹 ′′

𝑆
to 𝑐.
7

Overall, our Spatial-wise Feature Mixer block is designed to achieve precise and rich spatial feature fusion, generating feature 𝑄.
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Channel-wise Feature Mixer: As shown in Fig. 4 (b), to further prioritize channel features relevant to person detection and 
ReID, a channel attention layer is incorporated before the channel feature mixer. Specifically, channel-wise MaxPool and AvgPool are 
performed on the feature map 𝑄, generating two feature descriptors: 𝐹 𝑐

𝑚𝑎𝑥
∈ℝ𝑐×1×1 and 𝐹 𝑐

𝑎𝑣𝑔
∈ℝ𝑐×1×1. Each descriptor is separately 

passed through a 𝑀𝐿𝑃 . Subsequently, we use the Gaussian function 𝐺 to reassign feature distributions, emphasizing important but 
easily overlooked features in the channel dimension. The above operations are represented as follows:

𝑀𝑐 =𝐺

(
𝑊1

(
𝑊0

(
𝐹 𝑐
𝑚𝑎𝑥

))
+𝑊1

(
𝑊0

(
𝐹 𝑐
𝑎𝑣𝑔

)))
(8)

where 𝑀𝑐 represents the channel attention weights, 𝑊0 and 𝑊1 are the weights of the 𝑀𝐿𝑃 , and 𝐺 is the Gaussian function as 
mentioned earlier.

Element-wise multiplication between the input feature 𝑄 and the channel attention map results in the reweighted feature, defined 
as:

𝑄′ =𝑄 ⊗𝑀 ′
𝑐

(9)

where 𝑀𝑐
′ ∈ ℝ𝑐×𝐻×𝑊 represents the channel attention map broadcasted along the spatial dimensions of 𝑀𝑐 , and 𝑄′ denotes the 

resultant of the channel attention layer.

These channel attention-focused features aim to emphasize the relevant channels required before channel feature mixing. Our 
channel feature mixer utilizes another shared MFE for the global mixing of channel information. The implementation process is 
described as follows:

𝑄′
𝐶
=
[
𝑓 1×1
𝑔

(𝑄′);𝑓 3×3
𝑔

(𝑄′);𝑓 5×5
𝑔

(𝑄′);𝑓 7×7
𝑔

(𝑄′)
]

(10)

𝐾 =𝑅𝑒𝐿𝑈
(
𝐵𝑁

(
𝑃𝑊

(
𝑄′

𝐶

)))
(11)

where 𝑄′
𝐶

is the feature vector obtained after concatenating along the channel dimension. 𝐵𝑁 stands for Batch Normalization, and 
𝑅𝑒𝐿𝑈 represents a non-linear activation function. 𝐾 ∈ℝ𝑐×𝐻×𝑊 represents the final output of the PPE module (as shown in Fig. 4(a)).

3.3.2. Background interference suppressor

To further enhance the performance of the pooled features in foreground∕background discrimination, we apply a Background 
Interference Suppressor in the AMP module to simultaneously handle features in both spatial and channel aspects. Unlike traditional 
attention mechanisms, which treat spatial and channel attention separately, our approach considers them jointly, reflecting the 
interdependent nature of these mechanisms in human visual processing. Inspired by [44], we use an energy function to enhance the 
3D RoI-Align pooled features. The implementation of our Background Interference Suppressor is defined as:

𝑂 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

( 1
𝐸

)
⊗𝐹 ′ (12)

where 𝐸 represents the obtained minimum energy function and 𝑂 represents the output of the BIS.

As illustrated in Fig. 3, the features after the BIS are combined with the output of the PPE module, generating rich features 𝑃 for 
person search tasks. The feature 𝑃 is subsequently convolved and projected back to 𝐶 dimensions (𝐻 ∈ℝ𝐶×𝐻×𝑊 ) before being fed 
as input for the res5 layer.

3.4. Training and inference

During the training phase, we conduct end-to-end training for our AMPN model, addressing both person detection and person 
ReID tasks. For each branch, a threshold of 0.5 is used to select positive and negative samples for training. The model is supervised 
using five different loss functions combined linearly:

Regression loss (𝐿𝑟𝑒𝑔1 and 𝐿𝑟𝑒𝑔2): We use the Smooth-L1 loss function for bounding box regression, following the Faster R-CNN 
framework.

𝐿𝑟𝑒𝑔 =
1
𝑁𝑝

𝑁𝑝∑
𝑖=1

𝐿𝑠𝑚𝑜𝑜𝑡ℎ−𝐿1
(
𝑡𝑖, 𝑡

∗
𝑖

)
(13)

where 𝑁𝑝 represents the count of positive samples, 𝑡𝑖 represents the computed regression for the i-th positive sample, 𝑡∗
𝑖

signifies the 
ground-truth regression, and 𝐿𝑠𝑚𝑜𝑜𝑡ℎ−𝐿1 represents the Smooth L1 loss.

Classification loss (𝐿𝑐𝑙𝑠1 and 𝐿𝑐𝑙𝑠2): We utilize a binary cross-entropy loss to evaluate the ability of bounding box classification.

𝐿𝑐𝑙𝑠1 =
1
𝑁

𝑁∑
𝑖=1

𝐿𝐶𝐸

(
𝑝𝑖, 𝑝

∗
𝑖

)
(14)

where 𝑁 represents the sample count, 𝑝𝑖 represents the estimated classification probability for the i-th sample, 𝑝∗
𝑖

represents the 
ground truth label, and 𝐿𝐶𝐸 represents the cross-entropy loss function.

( )
8

𝑓𝑛𝑎𝑒 =𝑁𝐴𝐸 𝑓𝑟𝑒𝑖𝑑 (15)
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𝐿𝑐𝑙𝑠2 =
1
𝑁

𝑁∑
𝑖=1

𝑝∗
𝑖
𝐿𝐶𝐸

(
𝑓nae, 𝑝

∗
𝑖

)
(16)

where 𝑓𝑟𝑒𝑖𝑑 represents the extracted 256-dim ReID feature and 𝑓𝑛𝑎𝑒 represents the feature after NAE [15] decoupling.

ReID loss: 𝐿𝑟𝑒𝑖𝑑 . Similar to conventional person search models, we use the classical non-parametric OIM [4] loss as the ReID loss. 
It maintains a lookup table 𝑉 ∈ℝ𝐷×𝐿 =

{
𝑣1,… , 𝑣𝐿

}
and a circular queue 𝑈 ∈ℝ𝐷×𝑄 =

{
𝑢1,… , 𝑢𝐿

}
to retain the features of recent 

mini-batches of labeled and unlabeled identities. We can rapidly calculate the cosine similarity between the mini-batch samples and 
the LUT∕CQ to facilitate feature learning.

𝐿𝑟𝑒𝑖𝑑 =𝑂𝐼𝑀
(
𝑓𝑛𝑎𝑒

)
(17)

The overall loss function 𝐿sum is defined as follows, with 𝜆1 set to 10 and others to 1 following [1].

𝐿sum = 𝜆1𝐿reg1 + 𝜆2𝐿cls1 + 𝜆3𝐿reg2 + 𝜆4𝐿cls2 + 𝜆5𝐿reid (18)

For clarity, we show the detailed training process of the proposed AMPN in Algorithm 1.

Algorithm 1 Training process of AMPN.

Input: Training set 𝐼 , total epochs 𝑒𝑝𝑜𝑐ℎ𝑠, batch size 𝑏
Output: Trained Model weight 𝕎
1: Initialize the model weight 𝕎
2: for 𝑒 = 1 to 𝑒𝑝𝑜𝑐ℎ𝑠 do

3: for each batch 𝑏 sampled from 𝐼 do

4: Extract pedestrian features 𝐹 through Backbone (res1-res4) and RoI-Align from 𝑏
5: Generate region proposals from a Region Proposal Network (RPN)

6: for 𝑖 = 1, 2 do

7: Input 𝐹𝑖 into AMP (get 𝐹 ′
𝑖
)

8: Scale 𝐹 ′
𝑖

and implement PPE according to Eqs. (1)-(11) (get 𝐾𝑖)

9: Scale 𝐹 ′
𝑖

and implement BIS according to Eq. (12) (get 𝑂𝑖)

10: Concatenate 𝐾𝑖 , 𝑂𝑖 , and 𝐹 ′
𝑖

along the channel dimension to form 𝑃𝑖 and then scale to 𝐻𝑖

11: Compute the regression loss 𝐿𝑟𝑒𝑔𝑖
and classification loss 𝐿𝑐𝑙𝑠𝑖

according to Eqs. (13)-(16)

12: end for

13: Compute ReID loss 𝐿𝑟𝑒𝑖𝑑 according to Eq. (17)

14: Calculate the total loss 𝐿𝑠𝑢𝑚 to supervise the training process according to Eq. (18)

15: Back propagate to update 𝕎
16: end for

17: end for

18: return trained model weight 𝕎

During the inference phase, we initially use the provided bounding box to obtain the ReID features for a specific query person. 
Subsequently, we process the gallery images through our AMPN model to extract the predicted bounding boxes and their correspond-

ing ReID features from the ReID branch. Finally, we use the cosine similarity between the ReID features to match the query person 
with any detected individuals in the gallery. It is worth noting that the ReID branch only utilizes the top 128 predicted bounding 
boxes retained by the detection branch through Non-Maximum Suppression (NMS).

4. Experiments

4.1. Datasets and evaluation protocols

CUHK-SYSU [4]: CUHK-SYSU is a large-scale person search dataset that includes 18,184 scene images and 96,143 annotated 
bounding boxes. The images are collected from two sources, real street∕city scenes, and movie∕TV snapshots. The training set includes 
55,272 pedestrians, 11,206 frames, and 5,532 identities, while the testing set contains 40,871 pedestrians, 6,978 frames, and 2,900 
identities. During the testing phase, we evaluate the search performance across a range of predefined gallery sizes from 50 to 4,000. 
Unless specified otherwise, our reported results are based on a gallery size of 100.

PRW [3]: PRW presents a more challenging person search dataset, comprising 11,816 video frames captured by six cameras placed 
at various locations in Tsinghua University. It contains 932 labeled pedestrians and 34,304 manually annotated bounding boxes. The 
annotations are categorized into labeled and unlabeled identities. The training set consists of 5,704 frames and 482 identities, while 
the testing set includes 2,057 query persons across 6,112 frames.

Evaluation protocol: We adhere to standard evaluation metrics to evaluate performance. For person detection, we use Recall 
and Average Precision (AP). For person ReID, we use the mean Average Precision (mAP) and top-1 score (top-1). Higher values of 
these metrics indicate superior model performance.

4.2. Implementation details

We adopt the SeqNet [1] as the baseline for our proposed method, which includes a ResNet-50 backbone, a Faster R-CNN detection 
9

head, and an OIM ReID head. For optimization, we use stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay 
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Table 4

Main hyper-parameters and computational environment of this paper.

Main hyper-parameters Software and hardware

Epochs (𝑒) 15 Software Platform PyTorch 1.7

Learning Rate (𝑙𝑟) 0.003 Python Version 3.8

NMS Threshold (𝑢) 0.4 Hardware NVIDIA Tesla V100 GPU

Batch Size (𝑏) 3 Memory 32 GB

Table 5

Comparison with the state-of-the-art methods on CUHK-SYSU and PRW datasets. Our models are presented in italics. The 
bold entities denote the best performance achieved by two-stage and end-to-end methods, respectively.

Method Ref Backbone CUHK-SYSU PRW

mAP top-1 mAP top-1

T
w

o
-s

te
p

DPM [3] CVPR17 ResNet50 - - 20.5 48.3

MGTS [8] ECCV18 VGG16 83.0 83.7 32.6 72.1

CLSA [9] ECCV18 ResNet50 87.2 88.5 38.7 65.0

RDLR [10] ICCV19 ResNet50 93.0 94.2 42.9 70.2

IGPN [27] CVPR20 ResNet50 90.3 91.4 47.2 87.0

TCTS [11] CVPR20 ResNet50 93.9 95.1 46.8 87.5

OR [12] TIP21 ResNet50 92.3 93.8 52.3 71.5

E
n
d
-t

o
-e

n
d

OIM [4] CVPR17 ResNet50 75.5 78.7 21.3 49.4

RCAA [46] ECCV18 ResNet50 79.3 81.3 - -

IAN [13] PR19 ResNet50 76.3 80.1 23.0 61.9

CTXG [28] CVPR19 ResNet50 84.1 86.5 33.4 73.6

HOIM [47] AAAI20 ResNet50 89.7 90.8 39.8 80.4

NAE [15] CVPR20 ResNet50 91.5 92.4 43.3 80.9

AlignPS+ [16] CVPR21 ResNet50 94.0 94.5 46.1 82.1

AGWF [17] ICCV21 ResNet50 93.3 94.2 53.3 87.1

CANR [18] TCSVT22 ResNet50 92.4 93.2 43.4 83.8

PSTR [45] CVPR22 ResNet50 93.5 95.0 49.5 87.8

COAT [24] CVPR22 ResNet50 94.8 95.2 54.0 89.1

GLCNet [20] ICASSP23 ResNet50 94.3 94.9 45.7 87.7

DMRNet++ [26] TPAMI23 ResNet50 94.4 95.5 51.0 86.8

SPG [29] TII24 ResNet50 95.0 95.9 48.4 89.8

SAT [25] WACV23 ResNet50 95.3 96.0 55.0 89.2

SeqNeXt+GFN [19] WACV23 ResNet50 94.7 95.3 51.3 90.6

SeqNet [1] AAAI21 ResNet50 94.8 95.7 47.6 87.6

AMPN(ours) - ResNet50 95.2 95.9 52.4 88.2

AMPN(ours) - SE-ResNet50 95.8 96.1 53.6 88.2

AMPN(ours) - Swin-S 96.1 96.5 56.7 89.5

NAE+AMP(ours) - ResNet50 93.6(↑2.1) 94.0(↑1.6) 46.4(↑3.1) 81.7(↑0.8)

SeqNet+AMP(ours) - ResNet50 95.2(↑0.4) 95.9(↑0.2) 52.4(↑4.8) 88.2(↑0.6)

COAT+AMP(ours) - ResNet50 95.3(↑0.5) 96.1(↑0.9) 55.2(↑1.2) 89.7(↑0.6)

GLCNet+AMP(ours) - ResNet50 95.1(↑0.8) 95.9(↑1.0) 50.6(↑4.9) 88.7(↑1.0)

of 5 ×10−4. We train for 15 epochs on both datasets. During training, we apply data augmentation with only RandomHorizontalFlip at 
a probability of 0.5. The batch size is set to 3, and the input size is resized to 900 × 1500. We initialize the learning rate at 3 × 10−3, 
with a warm-up period during the first epoch, followed by a reduction to 3 × 10−4 at the 8th epoch. During the inference phase, we 
utilize NMS with a threshold of 0.4 to eliminate overlapping bounding boxes. Our implementation is based on PyTorch 1.7, and runs 
under Python 3.8. All experiments are conducted on a single NVIDIA Tesla V100 GPU with 32 GB of memory. A summary of the main 
hyper-parameters and computational environment is shown in Table 4.

4.3. Comparison with state-of-the-art methods

4.3.1. Results on CUHK-SYSU

The left column of Table 5 presents the comparison results of our method with other methods on CUHK-SYSU. Compared to 
the best-performing two-stage model, TCTS [11], our AMPN outperforms it by 1.3% in mAP. Among the end-to-end methods, 
AlignPS+ [16] adopts a multi-granularity anchor-free representation, COAT [24] uses a three-stage cascaded transformer, and SeqNet 
employs a two-stage refinement. Our AMPN with a ResNet50 surpasses these methods by 1.2%, 0.4%, and 0.4% in mAP, respectively. 
Notably, CUHK-SYSU, compared to PRW, provides fewer images per scene, and the proportion of complex scenes is not as high as in 
PRW. Consequently, the limited diversity in the data restricts AMPN’s ability to enhance performance in complex scenarios.

4.3.2. Results on PRW

The performance of our method on PRW is detailed in the right column of Table 5. Compared to the existing two-step approaches, 
our method surpasses the best-performing OR [12] and TCTS [11] and achieves a 52.4% mAP and an 88.2% top-1 score. In terms 
of end-to-end methods, AlignPS+ and SeqNet, achieve mAP scores of 46.1% and 47.6%, respectively. Although AlignPS+ utilizes a 
10

stronger object detector, FCOS, compared to Faster R-CNN, it still exhibits poor performance. In comparison, our AMPN outperforms 
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Fig. 5. Comparison with the existing two-step (a) and end-to-end approaches (b) on CUHK-SYSU with varying gallery sizes. The results are represented using dashed 
lines for our method and solid lines for the other methods.

SeqNet by 4.8% in mAP and 0.6% in the top-1 score. Additionally, other end-to-end methods such as COAT [24], PSTR [45], and 
SeqNeXt [19] demonstrate excellent performance, with mAP scores exceeding 50% and top-1 scores above 86%.

4.3.3. Performance with different backbone

When we adopt a more powerful backbone (SE-ResNet50, Swin-S), the performance is further improved. On the PRW dataset, 
AMPN with Swin-S backbone achieves an mAP of 56.7% and an 89.5% top-1 score, surpassing SeqNet by 9% in mAP. Although its 
top-1 score is slightly below that of SeqNext+GFN [19] (90.6%), it is important to note that SeqNext requires more complex GFN 
operations to filter scene images, potentially impacting its effectiveness. In addition, our AMPN outperforms all other methods on 
CUHK-SYSU, achieving an mAP of 96.1% and a top-1 score of 96.5%. This establishes a new benchmark for the person search task.

4.3.4. Generic of the AMP module

We further explore the compatibility and potential impact of our AMP method with other end-to-end frameworks. As shown 
in Table 5, our approach significantly improves the capability of NAE, COAT, GLCNet, and SeqNet. Notably, SeqNet and GLCNet 
demonstrate significant improvements on the PRW dataset, with respective mAP increases of 4.8% and 4.9%. These results confirm 
that our AMP module is not only versatile but also effective in enhancing the performance of various person search models.

4.3.5. Evaluation under different gallery sizes

We additionally assess the scalability of our method on CUHK-SYSU dataset with varying gallery sizes ranging from 50 to 4000. As 
depicted in Fig. 5, the mAP of all algorithms gradually declines as the gallery size increases, indicating that it becomes more difficult 
to find the individual under a larger search scope. However, our AMPN exhibits minimal performance degradation and outperforms 
existing models, achieving significant advantages across different gallery sizes. This indicates that our method demonstrates scalability 
and robustness, making it suitable for datasets with larger search scenarios.

4.3.6. Complexity analysis

Analyzing the complexity of our AMP module is crucial. The module incorporates multi-scale convolutions from MFE and a 
sequential structure of spatial and channel attention modules. Theoretically, the complexity of AMP is 𝑂(𝑏 × ((173𝐶 + 100) ×𝐻 ×
𝑊 + 8𝐶2 ×𝐻 ×𝑊 + 2 × 𝐶2

𝑟
)). Here, 𝐶 represents the input channel size (i.e., 256 dimensions), 𝑏 denotes the batch size, 𝑟 is the 

downsampling rate, and 𝐻 and 𝑊 represent the width and height of the feature map, respectively. In our approach, the feature map 
size is 14×14, 𝑏 is 3, and 𝑟 is 16. Additional details about our actual computational complexity (MACs) and inference time (ms) are 
presented in Table 14.

4.4. Ablation study

4.4.1. Effectiveness of core components

We conduct a series of tests on the PRW dataset to assess the impact of each component in the designed AMP. Using SeqNet as our 
baseline, the results are displayed in Table 6. Data from rows 2 and 3 indicate that enabling the BIS alone improves ReID performance 
by 0.5%, confirming its effectiveness in reducing background noise. Furthermore, utilizing the PPE block, which includes the SFM and 
CFM, boosts ReID performance by 4.1%. This underscores the PPE module’s efficiency in integrating multi-granularity information 
across spatial and channel domains, significantly improving the extraction of discriminative features.

Subsequently, we conduct a detailed ablation study on the PPE module. Data from rows 4 to 7 show that using SA, CA, and 
MFE independently enhances performance. Specifically, CA significantly boosts ReID performance, SA notably improves detection 
capabilities, and MFE proves crucial in the CFM. Data from rows 8 and 9 reveal that introducing the SFM and CFM separately 
11

positively impacts ReID performance, with both modules contributing similarly. The results in the final row show that when all core 
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Table 6

Comparison of the effects of different components in our method. In the table, “BIS” de-

notes the Background Interference Suppressor, “SFM” denotes the Spatial-wise Feature 
Mixer, “CFM” denotes the Channel-wise Feature Mixer, “SA” denotes the Spatial Attention, 
“CA” denotes the Channel Attention, and “MFE” denotes the Multi-granularity Feature En-

hancer.

Baseline BIS SFM CFM ReID Detection

SA MFE CA MFE mAP top-1 Recall AP

� � � � � � 47.6 87.6 96.3 93.1

� � � � � � 48.1 86.2 95.2 93.1

� � � � � � 51.7 87.9 96.5 93.8

� � � � � � 49.1 86.8 95.7 93.5

� � � � � � 50.2 87.2 95.9 93.4

� � � � � � 49.5 86.7 95.3 93.3

� � � � � � 50.6 87.4 95.6 93.4

� � � � � � 51.1 87.8 96.5 93.8

� � � � � � 51.3 87.6 96.4 93.7

� � � � � � 52.4 88.2 96.7 93.9

Table 7

Effect of different combination strategies on model performance.

Baseline BIS Gauss Method ReID

mAP top-1

� � � CFM+SFM 51.7 87.3

� � � SFM+CFM 51.8 87.9

� � � SFM&CFM in parallel 51.2 86.9

� � � CFM+SFM 51.8 87.8

� � � SFM+CFM 52.4 88.2

� � � SFM&CFM in parallel 51.4 87.6

Fig. 6. Illustration of modulation function. The values on the axis represent the distribution range of activations. (a) represents the original activation distribution. 
(b) represents the activation distribution after Gaussian modulation.

components are used simultaneously, the model achieves optimal performance. This emphasizes the effectiveness of the synergistic 
interplay among these core components.

4.4.2. Comparison of different combining methods

We further investigate the impact of the CFM and SFM under different combination methods. Analysis of Table 7 shows that the 
sequential structure (SFM+CFM) is the most effective combination strategy. This means that spatial features are first reweighted and 
mixed through the SFM operation, followed by further enhancement of channel features through the CFM operation. This sequential 
order may help preserve important spatial details and perform finer adjustments at the channel level. From the data in the third

and sixth rows of Table 7, we notice that although the parallel structure performs slightly lower than the sequential structure, it 
still brings some performance improvements. This could be attributed to the sequential structure’s superior utilization of parameter 
learning capabilities.

4.4.3. Effectiveness of Gaussian function

Analysis of the last three rows of Table 7 shows that replacing the activation function for spatial attention in the SFM and 
channel attention in the CFM from the original sigmoid function to the Gaussian function has improved ReID performance. To further 
investigate the reasons behind this improvement, we visualize the activation value distributions before and after modulation in Fig. 6. 
12

We discover that the Gaussian function suppresses the highest and lowest activation values while highlighting the minor activation 
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Table 8

Comparison of other feature augmentation methods over PRW 
dataset. “Tokens” means token-level attention enhancement, and 
“Feats” means feature-level enhancement.

Method Tokens Feats ReID

mAP top-1

MLP-Mixer [48] � � 49.1 86.8

ViT Transformer [40] � � 48.9 85.8

PCB [33] � � 48.6 86.8

RFB [49] � � 49.4 87.1

OSNet [35] � � 50.7 86.7

MFE(Ours) � � 52.4 88.2

Table 9

Investigating the impact of different convolution scales on per-

formance. “Granularity” represents the sizes of the used convo-

lution kernels.

Granularity ReID

1 × 1 3 × 3 5 × 5 7 × 7 9 × 9 mAP top-1

� � � � � 50.9 87.3

� � � � � 52.4 88.2

� � � � � 51.9 87.7

� � � � � 51.5 87.3

� � � � � 50.6 87.2

Table 10

Results of different attention mechanisms over PRW 
dataset.

Method PRW

mAP top-1

AMPN w/o Attention(baseline) 50.8 87.2

baseline+CBAM [37] 51.0 87.5

baseline+ECA [36] 51.3 87.5

baseline+CA [38] 51.2 87.6

AMPN w/Attention 52.4 88.2

values, thereby directly extracting important but easily overlooked details. This is very important for our intricate person search 
challenges.

4.4.4. Analysis of feature augmentation

Table 8 shows the comparison of our designed MFE with other methods. MLP-Mixer [48] and ViT Transformer [40] employ token-

level attention enhancement. However, experimental results indicate poor performance on such small 14 × 14 basic feature maps. 
This limitation likely arises from the reduced feature size, which hampers the accurate capture of crucial feature information. On the 
contrary, the PCB [33] block may potentially disrupt the holistic information of pedestrians, while the OSNet [35] block is complex 
and requires more computational resources. In contrast, the RFB [49] block employs varying dilation rates to achieve lightweight 
feature representations. Despite these methods incorporating feature-level enhancement, their performance falls short of our MFE, 
which excels at capturing multi-granularity details in images, particularly on small-sized feature maps.

4.4.5. Effect of multiple granularities

We further explore the impact of multi-granularity convolutions within the MFE. Table 9 shows that increasing the granularity 
of convolutions gradually, from bottom to top, significantly improves performance. However, the performance decreases noticeably 
when adding a {9 ×9} convolution. This suggests that the larger convolution size may cause information loss, indicating that excessive 
granularity can negatively impact performance. Additionally, combining 5 × 5 and 7 × 7 convolutions results in a 0.9% improvement 
in mAP over using a 7 × 7 convolution alone, highlighting the critical role of the 5 × 5 convolution in enhancing performance. These 
findings reinforce the rationale behind employing four levels of granularity in our approach.

4.4.6. Comparison of different attention mechanisms

We compare the performance of our attention module with other attention mechanisms in Table 10. To establish a baseline, we 
start with a configuration lacking any attention mechanism (achieved by removing spatial and channel attention, as shown in Fig. 4). 
Subsequently, we individually introduce CBAM, ECA, and CA attention to the baseline. Although these attention mechanisms yield 
performance gains, they are not as effective as our method.

In Fig. 7, the visualization of activation maps highlights the effectiveness of our attention mechanism. Our model more accurately 
13

focuses on pedestrian areas and effectively suppresses background noise, a capability that becomes particularly salient in scenarios 
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Fig. 7. Visualization of activation maps of different attention mechanisms in occluded scenes. From these images, we can see that CBAM tends to focus on the prominent 
areas within an image, yet these are not always our intended pedestrian targets. Both ECA and CA attention, being more spatially oriented, often only locate non-critical 
areas of the target pedestrian. In contrast, our method better focuses on pedestrian areas and effectively suppresses occlusion interference.

Fig. 8. Person search and person detection results on PRW with and without providing ground-truth detection boxes. The * denotes the ideal results using the ground-

truth boxes.

with occlusions. A key factor contributing to this efficacy is the Gaussian activation function characteristic of our attention mechanism. 
This function assists in modulating activation values, diminishing the most extreme and least significant ones. Consequently, it 
accentuates the subtle activation signals, which often contain essential but overlooked details of pedestrian forms. Thus, this selective 
emphasis on important features leads to the extraction of more nuanced feature representations, significantly aiding the model in 
accurately identifying.

4.4.7. Relation between person detection and ReID

Improved detection results typically lead to enhanced performance in person search tasks. We conduct a comparison between our 
method and two Faster R-CNN based approaches, namely NAE and SeqNet. As shown in Fig. 8, when focusing solely on person ReID 
instead of person search, specifically when providing local ground-truth boxes, our AMPN outperforms other competitors, achieving 
a 6% improvement in mAP and a 5% increase in top-1 score. Furthermore, our detection AP values are comparable to SeqNet. 
These results indicate that the proposed method gains more advantages from the improved ReID features, rather than more accurate 
detection.

4.4.8. Analysis of hyper-parameters

We analyze the impact of various hyper-parameters on model performance, including the learning rate 𝑙𝑟, NMS threshold 𝑢, and 
batch size 𝑏. As depicted in Fig. 9, concerning the learning rate, a value that is too high may cause instability during training, while 
one that is too low may slow down the training process. The model reaches optimal performance when the learning rate is set to 
0.003. Regarding the NMS threshold, a higher threshold may result in filtering out too many overlapping bounding boxes, thereby 
14

weakening the model’s ability to detect pedestrians. When the threshold is set to 0.4, the model achieves its best performance. As for 
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Fig. 9. Analysis the impact of hyper-parameters on model performance.

Table 11

Evaluate the proposed method in a cross-dataset scenario.“CUHK-SYSU →
PRW” means that the model is trained on CUHK-SYSU dataset while tested 
on PRW.

Method CUHK-SYSU → PRW PRW → CUHK-SYSU

mAP top-1 mAP top-1

OIM [4] 20.4 42.2 49.2 54.8

SeqNet [1] 25.6 71.8 50.6 55.6

AMPN(Ours) 27.6 76.8 52.5 57.3

the batch size, as it increases, the performance gradually improves and eventually stabilizes. However, considering that a batch size 
of 5 requires 30 GB of computational resources, we chose a batch size of 3 after a trade-off between performance and resources.

4.4.9. Generalizability on cross-dataset scenario

To validate the generalization ability of our model, we perform cross-dataset comparisons. Specifically, we directly use the model 
trained on the source dataset (e.g., CUHK-SYSU) to evaluate its performance on a different target dataset (e.g., PRW). We compare 
our AMPN model with the SeqNet baseline and OIM, and the results are presented in Table 11. It can be observed from the table that 
although the mAP decreases in both cross-dataset scenarios, the model trained on CUHK-SYSU outperforms the one on PRW. Since 
the CUHK-SYSU dataset contains a more diverse range of scenes, it demonstrates better transferability.

4.5. Qualitative results

In Fig. 10, we present visualized quantitative results comparing the AMPN method with SeqNet [1] and SAT [25]. Our method 
exhibits a distinct advantage in challenging scenarios, effectively eliminating interference from surrounding individuals in crowded 
scenes and accurately matching the target person. In contrast, SeqNet and SAT yield inaccurate retrieval results in complex scenarios 
with pose variations due to appearance deformations. In contrast, our approach utilizes the PPE block to consider the discriminative 
relationships and rich features within the RoI region, achieving correct matching results and obtaining more compact boxes. Even 
in the presence of scale variations and extreme lighting conditions, our method successfully retrieves the target. This is attributed to 
our MFE module’s ability to capture detailed features of a person at different scales.

We also present some failure cases in Fig. 11. The first case illustrates a situation where the query person is heavily occluded, and 
the second case shows that the query person and the retrieval result have similar appearances. The analysis suggests two main reasons 
for these failures. Firstly, the training data include only a limited number of occlusion instances, potentially impeding the model’s 
ability to develop effective strategies for handling occlusions. Secondly, our model lacks adequate comprehension and discriminative 
capabilities in complex scenarios.

4.6. Performance in various challenging scenes

4.6.1. Performance in the pose∕viewpoint variations

We further assess performance on PRW’s cross-camera gallery, as shown in Table 12. Our approach surpasses the performance 
of HOIM†, NAE+†, SeqNet†, and AGWF†. This superior performance is attributed to our AMP module, which produces more distin-

guishable ReID features, especially notable in cross-camera scenarios with pose∕viewpoint variations. The remarkable cross-camera 
results underscore the potential of our method to be applicable in diverse locations, enabling accurate matching and recognition of 
pedestrians across different cameras, rather than being limited to similar scenes with the same camera ID.

4.6.2. Performance in the occlusions or scale variations

We analyze our AMPN method on these specific subsets of the CUHK-SYSU dataset, which include 187 and 290 representative 
15

sample queries for the occluded gallery and scale variations gallery, respectively. The outcomes are illustrated in Table 13, aware 
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Fig. 10. Qualitative results on CUHK-SYSU dataset. Yellow boxes denote queries, green boxes denote correct top-1 matches and red boxes denote other detected 
persons. Compared with SeqNet and SAT, our AMPN is more robust to occlusion crowding (a, b), pose variation (c), and scale variation (d). Zoom in for better 
viewing.

Fig. 11. Failure cases on the PRW dataset. We illustrate failure cases to show the potential limitations of our method in cases of heavy occlusions and similar 
appearances.

Table 12

Performance on PRW test dataset 
for query person in scenarios with 
pose∕viewpoint variations. † indi-

cates the result tested on the cross-

camera gallery.

Method Cross-Cam ID

mAP top-1

HOIM† [47] 36.5 65.0

NAE+† [15] 40.0 67.5

SeqNet† [1] 44.3 70.6

AGWF† [17] 48.0 73.2

AMPN†(Ours) 49.3 74.6

Table 13

Performance on two subsets of CUHK-SYSU using occluded 
(left) or scale variations (right) gallery to query person.

Method Occluded Scale Variations

mAP top-1 mAP top-1

SeqNet 88.25 89.29 85.06 85.81
16

SeqNet+AMP 89.09 89.69 85.79 86.24
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Fig. 12. Qualitative comparison between SeqNet and our method in three challenging scenes: (a) Occlusion, (b) Pose Variation, and (c) Scale Variation. Our approach 
consistently delivers the correct top-1 match in all instances.
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Fig. 13. Accuracy (AP) vs Time (ms) comparison with other end-to-end approaches on PRW dataset. We present accuracy as mAP (left) and top-1 score (right). These 
methods all use ResNet50 as the backbone and run on a single Tesla V100.

that the size of the search gallery is 100 in both cases. By addressing the challenges posed by occlusions and scale variations images, 
the AMP module significantly improves the accuracy and robustness of person search. Our approach enhances feature representation, 
mitigates the impact of occlusions, and captures key pedestrian information within the RoI, demonstrating outstanding performance 
compared to SeqNet. Moreover, we present the visualization results for these two galleries in Fig. 12. These visualizations further 
validate our method’s capability to address common real-world person search tasks.

4.7. Efficiency comparison

We assess the efficiency of AMPN in comparison to other typical end-to-end networks using the same scale test image and hardware 
condition. The findings are presented in Table 14, comparing the Number of Parameters (M), Multiply-Accumulate Operations (MACs), 
and Inference Time (ms). Our method exhibits lower computational complexity and achieves a 4.8% mAP gain over SeqNet while 
maintaining a desirable speed. In Fig. 13, we visualize the forward inference time of our method. It can be observed that our AMPN 
17

method takes 92 ms to process a single image, which is even faster than NAE+.
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Table 14

Comparison of person search efficiency.

Method GPU(TFLOPs) Params(M) MACs(G) Time(ms) mAP top-1

NAE [15] V100(14.1) 33.43 414.16 83 43.3 80.9

NAE+ [15] V100(14.1) 36.52 430.46 98 44.0 81.8

AlignPS [16] V100(14.1) 42.18 316.76 61 45.9 81.9

DMRN [26] V100(14.1) - - 66 46.9 87.6

SeqNet [1] V100(14.1) 48.41 401.89 86 47.6 87.6

AMPN(Ours) V100(14.1) 50.88 404.27 92 52.4 88.2

5. Conclusion

In this work, we present AMPN, an end-to-end framework specifically designed to address the challenges of occlusions and 
pose∕scale variations in person search. Central to our framework is the novel AMP module, which effectively captures discriminative 
relation features within the ROI and exhibits robust performance against occlusions. This module includes a Pedestrian Perception 
Enhancement block, employing both Spatial-wise Feature Mixer and Channel-wise Feature Mixers to capture discriminative relation 
features. Additionally, a Background Interference Suppressor is introduced to enhance foreground∕background discriminability in the 
joint space. The AMP can be seamlessly integrated with other person search models, and extensive experiments validate the merits 
of our AMPN, confirming its state-of-the-art performance.

Although our proposed AMPN achieves satisfactory results, there remains room for improvement in certain areas. (i) AMPN 
primarily analyzes the foreground (i.e., pedestrians) while neglecting the background (i.e., scene) information. However, scene in-

formation often provides valuable cues for person search. Therefore, introducing advanced scene-aware technologies such as Graph 
Convolutional Networks (GCN) can enhance performance by more deeply analyzing the potential relationships between scenes and 
pedestrians. (ii) While AMPN is designed to address occlusions and pose/scale variations, the overall network architecture has not 
been optimized, resulting in slightly slower inference speeds compared to some current methods. Employing heuristic/evolution-

ary search optimization intelligent algorithms, which continuously search and optimize model parameters, represents a promising 
direction for future research to improve inference speed and accuracy.
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