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Abstract—Knowledge discovery of heterogeneous data is an
active topic in knowledge engineering. Feature selection for
heterogeneous data is an important part of effective data analysis.
Although there have been many attempts to study the feature
selection for heterogeneous data, there are still some challenges,
such as the unbalanced problem between the stability and validity
of the designed model. Hence, this paper focuses on how to design
an effective and robust heterogeneous feature selection method,
namely a zentropy-based uncertainty measure for heterogeneous
feature selection(Ze-HFS). Different from other entropy-based
uncertainty measures, the proposed method does not consider
single-level information measures but systematically analyzes and
integrates the information between different granular levels,
which has an obvious advantage in the study of heteroge-
neous data knowledge discovery. Specifically, a heterogeneous
distance metric is first introduced to construct heterogeneous
neighborhood granules and heterogeneous neighborhood rough
sets(HNRS). Then, the zentropy-based uncertainty measure is
developed by analyzing the granular level structure in the
HNRS model. Finally, two significant measures based on the
above research are designed for heterogeneous feature selection.
Compared with other state-of-the-art methods, the experimental
results on 18 public datasets demonstrate the robustness and
effectiveness of the proposed method.

Index Terms—Data mining, feature selection, granular com-
puting, rough set, uncertainty measure.

I. INTRODUCTION

B IG data, encompassing high dimensionality, heterogene-
ity, and incompleteness, is progressively pervasive in

diverse fields, presenting abundant valuable information for
data mining and knowledge discovery [1]–[4]. However, this
abundance of data also brings forth challenges such as the
curse of dimensionality, high storage costs, and increased com-
putational complexity [5]–[7]. To address these challenges,
feature selection has emerged as a vital processing technique
that aims to reduce the dimensionality of data and enhance
the interpretability of models [8]–[11]. By selecting the most
relevant and informative subset of features, feature selection
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techniques enable us to extract valuable information from
complex data, improving the efficiency and accuracy of data
analysis. In practical applications, data are usually heteroge-
neous [12] that include categorical and numerical attributes.
How to extract proper features from these heterogeneous data
is of great importance in clustering and classification tasks.

Granular Computing (GrC), as a new paradigm in intelli-
gence information processing, is useful to simulate the cogni-
tive mechanism of humans dealing with complex problems
and has been successfully applied to knowledge discovery
[13], decision-making [14] and feature selection [15]. Many
GrC models have been proposed to process various complex
issues, such as fuzzy sets [16], rough sets [17], [18], three-
way decisions [19]–[21], formal concept analysis [22], and
concept-cognitive learning [23], [24]. In particular, rough set
(RS) proposed by Pawlak [25] provides a formal framework
to handle the incomplete and imprecise knowledge in infor-
mation systems, which has been widely employed to target
approximation and feature selection. Note that the classical
rough set based on an equivalence relation is only suitable for
the discrete data, and the numerical data needs discretization
before processing [26], [27]. To avoid the information loss
induced by discretization, the neighborhood rough set (NRS)
model based on similarity relation was proposed for decision
information systems (DIS) in [28]. This NRS model improves
the tolerance of differences among objects by introducing
a neighborhood parameter to distance metrics, enabling it
to handle heterogeneous data simultaneously. Some distance
metrics [28]–[30], such as heterogeneous Euclidean-overlap
metric function (HEOM), heterogeneous value difference met-
ric (HVDM), and interpolated value difference metric (IVDM),
are designed to measure the differences in heterogeneous
data. However, these metrics mainly focus on the maximum
difference among objects and easily strengthen the importance
of categorical features while ignoring the influence of other
features in the neighborhood rough set. Therefore, developing
a reasonable distance metric for heterogeneous data is one of
the motivations of this paper.

How to extract useful information and knowledge from het-
erogeneous information systems is vital for human decision-
making [31]. Considering the heterogeneity induced by various
features, many uncertainty measures based on rough set theory
are studied to characterize uncertain knowledge and success-
fully applied in feature selection [32]. Hu et al. [28] designed
dependency degree for heterogeneous data to feature selection.
As for fuzzy data, Wang et al. [33] proposed a rough set model
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combining neighborhood granules and designed a feature
selection algorithm based on variable precision dependency.
Qian et al. [34] developed a local reduction method based on
approximation accuracy to improve computational efficiency.
In addition, to better describe the classification error, Wang
et al. [35] proposed an inner product dependency based on
dependency degree. Moreover, the entropy theory is introduced
to a rough set to construct uncertainty measures for character-
izing the specific information of feature subsets. Zhang et al.
[36] designed an incremental selection using a fuzzy-rough-
set-based information entropy. Sang et al. [37] developed two
incremental approaches using a conditional entropy for mono-
tonic classification in a dynamic order information system.
Moreover, Xu et al. [38] considered the decision distribution
to define a composite entropy for feature evaluation. The
above-referred uncertainty measures are primarily based on a
single granule level, i.e., the approximation space or object
granules, while ignoring the interaction between different
information granule levels. This incomprehensive description
of uncertainty could lead to poor performance of learning
models. Therefore, developing a novel uncertainty measure is
necessary to characterize uncertain knowledge.

Zentropy is a systematic thought that characterizes system
chaos from multiple scales [39]. The larger scale provides a
whole reflection of lower scales, and the lower scale is the
refinement of large scales. In zentropy theory, system entropy
is a whole reflection of current scales and all lower scales,
where "z" derived from the German zusstandssumme express-
es the summation of different scales. Consequently, it can
accurately characterize entropy changes with system changes
combining different scales, which have been successfully
applied in negative thermal expansion of Ce and Fe3Pt with
temperature [39], [40]. This systematic thought is consistent
with granular level structure in rough approximation. Inspired
by the above analysis, this paper applies this naive zentropy
thought to investigate a novel uncertainty measure with the
granular level structure of heterogeneous data processing. The
main contributions of this paper are as follows.

1) It proposes a robust and effective heterogeneous feature
selection based on the zentropy measure and heteroge-
neous neighborhood model. Plenty of experiment results
illustrate the effectiveness of the proposed method.

2) It designs an effective heterogeneous distance metric
group (HDMG) to evaluate the difference between objects
in heterogeneous decision information systems (HDIS).

3) It defines a robust heterogeneous neighborhood rough set
model based on the designed HDMG measure, which
could avoid the deviation induced by a single maximum
distance in heterogeneous target approximation.

4) It provides a novel zentropy-based uncertainty measure
for feature selection by analyzing the finer-coarse granu-
lar level in the approximation process. The experimental
results on eighteen public datasets illustrate its good
performance compared to others.

The paper is organized as follows. Section II reviews some
basic concepts. A novel heterogeneous distance metric is
proposed to construct heterogeneous neighborhood rough set

in Section III. Moreover, Section IV presents a zentropy-
based uncertainty measure and designs a corresponding feature
selection algorithm based on it. The experiment analysis is
shown in Section V. Finally, Section VI concludes this paper.

II. PRELIMINARIES

This section formally reviews the basic notions about neigh-
borhood rough set (NRS) [28] and information measures [34],
[37] in DIS and analysis the limitations of this model.
A. Neighborhood Rough Set

A quaternion DIS =< Ω, A, V,M > is known as a decision
information system, where Ω and A are the universe and
feature set, such that.
• Ω = {x1, x2, . . . , xn} is a non-empty finite set.
• A = C ∪D is a feature set including conditional feature

C and decision feature D.
• V =

⋃
a∈A Va is the value domain of all objects on A.

•M : Ω×A −→ V is a mapping function, where M(xi, a)
represents the value of object xi ∈ Ω in terms of feature a.

For any x, y, z ∈ Ω and B ⊆ C, a distance denoted as ∆B

is used to measure the difference between these objects, which
satisfies the following conditions.

1) Nonnegative: ∆B(x, y) ≥ 0,∆B(x, x) = 0;
2) Symmetry: ∆B(x, y) = ∆B(y, x);
3) Triangle Inequality: ∆B(x, z) ≤ ∆B(x, y) + ∆B(y, z).
Given B ⊆ C, the Euclidean distance dB is usually adopt-

ed to evaluate the difference between objects and construct
neighborhood granules in a DIS, which is defined as follows.

dB(x, y) =

√∑
b∈B

|M(x, b)−M(y, b)|2. (1)

Then the neighborhood granule NB(x) of object x ∈ Ω
induced by B is represented by:

Nδ
B(x) = {y ∈ Ω|dB(x, y) ≤ δ}, (2)

where δ is the neighborhood radius.

Definition 1. [34] Given a DIS =< Ω, A, V,M >, where
Ω/D = {D1, D2, . . . , Ds}. For Di ∈ Ω/D, B ⊆ C and δ,
the lower and upper approximations of Di with respect to B
are defined as follows.

N δ
B(Di) = {x ∈ Ω|Nδ

B(x) ⊆ Di},

N δ
B(Di) = {x ∈ Ω|Nδ

B(x) ∩Di 6= ∅}.
(3)

Then, the pair < N δ
B(Di),N δ

B(Di) > is called neighborhood
rough set. The positive, negative and boundary regions of
Di are PosB(Di) = N δ

B(Di), NegB(Di) = U − N δ
B(Di)

and BonB(Di) = N δ
B(Di) − N δ

B(Di). For convenience,
approximation sets are referred to as the lower and upper
approximations in this paper.

In order to characterize the precision of NRS, the accuracy
measure of Di on B is proposed as follows.

ΥB(Di) =
|N δ
B(Di)|
|Di|

, (4)

where | • | denotes the cardinality, and the accurate measure

of D on B is ΥB(D) =
∑s
i=1 |N

δ
B(Di)|

|U | .
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B. Entropy-based Uncertainty Measures

Information entropy as an important tool for processing un-
certain knowledge has been widely applied to many scenarios.
To describe the information amount induced by neighborhood
granules, paper [28] defined neighborhood entropy as follows.

Definition 2. [28] Given a DIS =< Ω, A, V,M >. For B ⊆
C and δ, neighborhood entropy NE(B) is denoted as follows.

NE(B) = − 1

|Ω|

|Ω|∑
i=1

log2
|Nδ

B(xi)|
|Ω|

. (5)

Similarly, neighborhood conditional entropy is also pro-
posed based on the neighborhood conditional probability [28].
Moreover, Roffo et al. combined the mutual information be-
tween features and class to design normalized feature indicator.

Definition 3. [41] Given a DIS =< Ω, A, V,M >. For B ⊆
C and decision D, the normalized mutual information between
B and D is defined as follows.

MB =
∑
y∈D

∑
x∈B

p(x, y)log(
p(x, y)

p(x)p(y)
), (6)

where p(·, ·) is the joint probability.

To effectively process heterogeneous information, Zhang et
al. proposed a neighborhood combination entropy [30].

Definition 4. [30] Given a DIS =< Ω, A, V,M >. For
B ⊆ C and δ, neighborhood combination entropy NCE(B)
is denoted as follows.

NCE(B) =
1

n

n∑
i=1

C2
n − C2

|NδB(xi)|

C2
n

. (7)

Many entropy-based measures have been investigated and
applied to uncertain information processing since Shannon
entropy was proposed. Compared with the accuracy measure
and roughness degree based on approximation space, these
measures depict the average uncertainty from specific feature
values, providing a finer method to analyze uncertainty.

C. Discussion

As an emerging computing paradigm, granular computing is
used to address complex problems by simulating human think-
ing and recognition processes. It focuses on structuring multi-
granularity representations for solved issues based on data
granulation. Coarser granularity offers a general description,
while finer granularity provides details. For instance, animals
can be classified into seven main grades, including boundary,
phylum, class, order, family, genus, and species, forming a
progressively refined multi-granularity structure. GrC thought
efficiently enables problem recognition and resolution by
integrating information at multiple granular levels.

The rough set is an important GrC model that has been
widely used for processing imprecise and uncertain knowl-
edge. In RS, data granulation and granularity information
processing are two important issues. As for heterogeneous data
granulation, most existing heterogeneous methods evaluate
objects from the same space while ignoring the essential

differences induced by feature types. Some heterogeneous
distance functions, such as heterogeneous distance [30] and
heterogeneous Euclidean-overlap metric [28], mainly focus on
the maximum distance among objects or set all the distances in
the same computing space, ignoring the overall differences in
heterogeneous features. These measures impact the precision
of data granulation and further influence the accuracy of
uncertainty evaluation. Hence, an appropriate distance metric
to measure object difference is imperative for information
processing in heterogeneous decision information systems.

Note that the approximation process is a multi-granularity
structure in the RS theory. It includes target concepts, approx-
imation sets, similarity classes, and further specific objects.
The existing measure shown in equation (4) is used to evaluate
models based on the lower approximation, which is an overall
description of the approximation space. The most entropy-
based uncertainty measures characterize systems’ uncertainty
from object granules, a relatively finer method but ignores the
distribution of target decisions. They are all single granular
level methods for uncertainty measure. The approximation
process is multilevel from object to object granule and further
to approximation space and target decision. Therefore, a sys-
tematic method combining granular levels is indispensable for
the comprehensive characterization of uncertain knowledge.

III. NEIGHBORHOOD ROUGH SET IN HDIS
To flexible handle heterogeneous information, this sec-

tion proposes a novel heterogeneous distance metric group
(HDMG) to evaluate the difference among objects and then
define a neighborhood rough set for HDIS. Compared with
an Euclidean distance for numerical data or overlap metric
for categorical data, this HDMG could produce a sound
comparative analysis and comparison.

A. Heterogeneous Distance Metric

Given a DIS =< Ω, C∪D,V,M >, if C = Cnu∪Cca (Cnu

and Cca are the numerical and categorical feature sets), then
the HDIS =< Ω, C∪D,V,M > is defined as a heterogeneous
decision information system. Then, the HDMG function is
defined for comparing the difference of objects in HDIS.

Definition 5. Given a HDIS =< Ω, C ∪ D,V,M >, where
C = Cnu ∪ Cca. For B1 ⊆ Cnu, B2 ⊆ Cca, and
B = B1 ∪ B2 ⊆ C, the heterogeneous distance metric group
HDMGB(x, y) of x, y ∈ Ω is defined as follows.

HDMGB(x, y) = (NEB1
(x, y), COB2

(x, y)), (8)

where

NEB1
(x, y) =

√∑
b∈B1

|M(x, b)−M(y, b)|2,

COB2
(x, y) =

∑
b∈B2

overlap{b}(x, y)/|B2|,
(9)

The overlap degree is used to evaluate the difference between
categorical features, which is

overlap{b}(x, y) =

{
1, M(x, b) 6= M(y, b),

0, M(x, b) = M(y, b).
(10)
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In the categorical features without real numerical signif-
icance, the overlap degree focuses on the common or dif-
ferences of categories rather than their specific values, thus
helping mitigate the impact of outliers or errors in datasets. It
transforms the class differences to specific distance values and
can flexibly handle categorical data to construct neighborhood
rough modeling by introducing neighborhood parameters. This
HDMG, a mapping function from Ω×Ω to R×R, is a 2-tuple
used to evaluate the difference among objects in numerical and
categorical data, providing an overall evaluation approach to
construct heterogeneous neighborhood granules.

B. Heterogeneous Neighborhood Granule

According to Def. 5, the heterogeneous neighborhood gran-
ule of x ∈ Ω can be defined using the HDMG function and
two neighborhood parameters. Initially, it is essential to note
that the (u, v) ≤ (α, β) holds if and only if u ≤ α and v ≤ β.

Definition 6. Given a HDIS =< Ω, C ∪ D,V,M >. For
B ⊆ C, parameters α and β. The heterogeneous neighbor-
hood granule HNB(x) of x ∈ Ω is defined as follows.

HNα,β
B (x) = {y ∈ Ω|HDMGB(x, y) ≤ (α, β)}. (11)

Since (u, v) ≤ (α, β), the heterogeneous neighborhood
granule can be decomposed into the neighborhood granules
of x with respect to numerical and categorical features.

HNα,β
B (x) = {y ∈ Ω|HDMGB(x, y) ≤ (α, β)}

= {y ∈ Ω|NEB1
(x, y) ≤ α ∧ COB2

(x, y) ≤ β}
= NB1

(x) ∩NB2
(x).

(12)

The heterogeneous neighborhood granule structure in-
duced by feature subset B is represented as HNα,β

B =

{HNα,β
B (x1), HNα,β

B (x2), . . . ,HNα,β
B (xn))}. In addition,

for B ⊆ Q ⊆ C, the HNα,β
Q (x) ⊆ HNα,β

B (x) is easily
obtained according to the Eq. 11.

C. Heterogeneous Neighborhood Rough Set

According to the heterogeneous neighborhood granule, the
lower and upper approximations of HDIS can be obtained
from the relationship between HNB and target decisions.

Definition 7. Given a HDIS =< Ω, C ∪ D,V,M >. For
B ⊆ C, Di ∈ U/D, parameters α and β, then the lower and
upper approximations of Di under B are represented by:

HNα,β
B (Di) = {x ∈ Ω|HNα,β

B (x) ⊆ Di},

HNα,β
B (Di) = {x ∈ Ω|HNα,β

B (x) ∩Di 6= ∅}.
(13)

Then, the pair < HNα,β
B (Di),HNα,β

B (Di) > is a neighbor-
hood rough set in HDIS, which is also called a heterogeneous
neighborhood rough set (HNRS). Obviously, the lower and
upper approximations are affected by parameters α and β.
Some properties can be easily obtained as follows.

Property 1. Given a HDIS =< Ω, C ∪ D,V,M >. For
B ⊆ C, α and β, HNα,β

B (Di) and HNα,β
B (Di) are the

approximations of Di ∈ U/D, the following properties hold.

1) ∅ ⊆ HNα,β
B (Di) ⊆ Di ⊆ HNα,β

B (Di) ⊆ Ω;

2) For P ⊆ B, HNα,β
P (Di) ⊆ HNα,β

B (Di), HNα,β
B (Di) ⊆

HNα,β
P (Di);

3) For X ⊆ Di, HNα,β
B (X) ⊆ HNα,β

B (Di), HNα,β
B (X) ⊆

HNα,β
B (Di);

4) For (µ, ν) ≤ (α, β), HNα,β
B (Di) ⊆ HN µ,ν

B (Di),

HN µ,ν
B (Di) ⊆ HNα,β

B (Di).

Proof:
1) It is obviously obtained from Def. 7.
2) From Def. 6, for any x ∈ Ω, the heterogeneous

neighborhood granules HNα,β
B (x) ⊆ HNα,β

P (x), then
HNα,β

P (Di) ⊆ HNα,β
B (Di) and HNα,β

B (Di) ⊆
HNα,β

P (Di) hold according to Def. 7.
3) For X ⊆ Di and x ∈ HNα,β

B (X), HNα,β
B (x) ⊆ X ⊆

Di holds, then x ∈ HNα,β
B (Di). Similarly, HNα,β

B (x)∩
X 6= ∅ ⇒ HNα,β

B (x) ∩ Di 6= ∅, thus HNα,β
B (X) ⊆

HNα,β
B (Di).

4) According to Def. 6, the HNµ,ν
B (x) ⊆ HNα,β

B (x) holds
when (µ, ν) ≤ (α, β). Similar to 3), the HNα,β

B (Di) ⊆
HN µ,ν

B (Di), HN µ,ν
B (Di) ⊆ HNα,β

B (Di) hold.
In the HDIS, the lower and upper approximations of D

under B can also be represented by:

HNα,β
B (D) = {HNα,β

B (D1),HNα,β
B (D2), . . . ,HNα,β

B (Ds)},

HNα,β
B (D) = {HNα,β

B (D1),HNα,β
B (D2), . . . ,HNα,β

B (Ds)}.
(14)

The positive, negative, and boundary regions of D under
B in HDIS are PosB(D) = ∪si=1HN

α,β
B (Di), NegB(D) =

∪si=1(U−HNα,β
B (Di)) and BonB(D) = ∪si=1(HNα,β

B (Di)−
HNα,β

B (Di)).
Compared with the classical neighborhood rough set, the

proposed HNRS considers the difference in feature types,
which is relatively comprehensive in describing the relation-
ship between neighborhood granules and target decisions.
Thereby, this model settles on the limitations of issue 1 in
subsection II-C, and the robustness of this model relative to
parameters is verified in the experiments section.

IV. ZENTROPY-BASED UNCERTAINTY MEASURE FOR
HETEROGENEOUS DATA

As for the incomplete uncertainty description, this section
investigates the granular structure in approximation process
and proposes a novel zentropy-based uncertainty measure for
information processing in heterogeneous data.

A. Granular Level Analysis to Approximation Process

The problem formulation and its solution is usually set in a
specific conceptual framework composed of some generic and
conceptually meaningful entities (i.e., information granules)
[13]. The coarser granules are also decomposed into finer
granules. Therefore, the final cognition is a systematic and
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Fig. 1. Granular level structure in HNRS. It shows the granular computing thought in heterogeneous neighborhood rough set models. In the approximation
process, there are four granular levels, including target decision, approximation space, neighborhood granules, and specific objects, which form a finer-coarser
granular level structure. Each granular level reflects the information from different granules, and the finer level is the refinement of the coarser level.

comprehensive representation from multiple granule levels. As
a universal phenomenon in massive data, uncertainty directly
influences the learning models’ performance. Comprehensive-
ly and accurately evaluating uncertainty becomes essential for
information processing and knowledge discovery.

Neighborhood rough set as an effective granulation method
is widely applied to the uncertainty measure in real-valued
data, especially in heterogeneous data. In the approximation
process of NRS, the data uncertainty is reflected from a
universe to specific objects and quantized by the relation-
ship between neighborhood granule and target concept. This
approximation process can be described in Fig.1. Accuracy
measure, roughness degree, and positive region are important
measures based on approximation space to describe uncer-
tainty from model precision, which can be reflected in the
approximation space level (Level-2 in Fig.1). Neighborhood
entropy and neighborhood conditional entropy depict the av-
erage uncertainty from neighborhood granules level, reflected
in neighborhood granules level (Level-3 in Fig.1). These mea-
sures provide visions for uncertainty measures from different
levels but ignore the interaction between granular levels.

It can be seen from Fig.1 that the approximation process
is a finer-coarser granular level structure from the specific
object to the whole universe. Each granular level reflects the
uncertainty from different granules, and the coarser level is
influenced by the finer level. The uncertainty measure on any
single granular level is incomplete. Hence, to comprehensively
depict the uncertainty in massive complex data, the uncertainty
on different granular levels should all be considered and in-
tegrated to design an uncertainty measure. This granular level
structure is consistent with the zentropy systematic thought.
Therefore, developing a novel uncertainty measure combining
zentropy thought and granular level is reasonable in HNRS.

B. Zentropy-Based Uncertainty Measure

According to the above analysis, this subsection proposes
a novel zentropy-based uncertainty measure to systematically
and comprehensively characterize the uncertainty in HDIS.

Definition 8. Given a HDIS =< Ω, C ∪ D,V,M >. For
B ⊆ C, the zentropy-based uncertainty measure under B can
be defined by:

ZB(D) = −
s∑

k=1

PklogPk +

s∑
k=1

PkZk, (15)

where Pk = |Dk|/|Ω| is the probability of k − th decision
granule in the universe, Zk is the internal entropy of k − th
decision granule and can be further decomposed into granules
in the finer levels with the same formula as Eq.15.

Specifically, the internal entropy Zk in level − 1 can be
decomposed to the finer approximation layer as follows.

Zk = −
2∑
j=1

Pkj logPkj +

2∑
j=1

PkjZkj , (16)

where Pk1 =
HNα,βB (Dk)

|Dk| , Pk2 =
Dk−HNα,βB (Dk)

|Dk| , and Zkj is
the internal entropy of j−th approximation granule in level−
2, which can be investigated by the neighborhood granules in
level − 3.

Zkj = −
|Gkj |∑
w=1

PkjwlogPkjw +

|Gkj |∑
j=1

PkjwZkjw, (17)

where Gk1 = HNα,β
B (Dk), Gk2 = Dk − HNα,β

B (Dk), and
Pkjw = 1/|Gkj |. The Zkjw reflects the uncertainty of the
neighborhood granule, which can be described as follows.

Zkjw = −
2∑
q=1

PkjwqlogPkjwq, (18)

where Pkjw1 =
|HNα,βB (w)∩Dk|
|HNα,βB (w)|

, Pkjw2 =
|HNα,βB (w)∩Dck|
|HNα,βB (w)|

, and
Dc
k is the complement set of Dk in Ω.
According to the above definition, this zentropy-based un-

certainty measure has the following properties.

Property 2. Given a HDIS =< Ω, C ∪D,V,M >. For B ⊆
C, ZB(D) is the zentropy-based uncertainty measure of B
with D, then the following properties hold.
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Fig. 2. Framework of the proposed Ze-HFS algorithm.

1) ZB(D) ≥ 0;
2) For Dk ∈ Ω/D, Zk1 =

∑|Gk1|
w=1 Pk1wlogPk1w;

3) If HNα,β
B (Dk) = Dk, Zk = Zk1;

4) If HNα,β
B (Dk) = ∅, Zk = Zk2;

5) For P ⊆ B, ZP (D) and ZB(D) are indistinguishable.

Proof:

1) From the Defs. 6 and 7, all the probability at each
granular level are non-negative, then the function about
−PlogP ≥ 0, thus ZB(D) ≥ 0 for any B ⊆ C.

2) According to the Def. 7, for Dk ∈ Ω/D and w ∈
HNα,β

B (Dk), the neighborhood granule HNα,β
B (w) ⊆

Dk, thus Pkjw1 = 1 and Zkjw = 0. Therefore, Zk1 =∑|Gk1|
w=1 Pk1wlogPk1w holds for any Dk ∈ Ω/D.

3) From equation (16), Pk1 =
HNα,βB (Dk)

|Dk| = 1 and Pk2 =

1−Pk1 = 0. Thus, Zk = Zk1 when HNα,β
B (Dk) = Dk.

4) Similarly to 3), Zk = Zk2 holds when HNα,β
B (Dk) = ∅.

5) To prove this property, the size of ZP (D) − ZB(D)
should be calculated. Take the entropy of fouth granular
level, for P ⊆ B and w ∈ Ω, the neighborhood
granule HNα,β

B (w) ⊆ HNα,β
P (w) but the size between

|HNα,βP (w)∩Dk|
|HNα,βP (w)|

and |HN
α,β
B (w)∩Dk|
|HNα,βB (w)|

is indistinguishable,
thus ZP (D) and ZB(D) are indistinguishable.

C. Zentropy Measure to Feature Evaluation

In this subsection, two feature importance measures combin-
ing the proposed zentropy-based measure are developed and
employed to design a heterogeneous feature selection in HDIS.

Given a HDIS =< Ω, C ∪ D,V,M >. For ∀c ∈ C, the
inner importance of c relative C is defined as follows.

SIGinner(c, C,D) = ZC−c(D)− ZC(D). (19)

This inner importance of features selects the essen-
tial features relative to the original feature set C. When
SIGinner(c, C,D) > 0, the reducing of c increases the zen-
tropy values(i.e., increases the system uncertainty), indicating
the feature c is essential in HDIS. Then, the outer importance
of features is designed to select the other features.

Given a HDIS =< Ω, C ∪ D,V,M >. For B ⊆ C, the
outer importance of c ∈ C −B is defined as follows.

SIGouter(c,B,D) = ZB(D)− ZB∪{c}(D). (20)

In each cycle, the feature with the maximum value of
SIGouter(c,B,D) is selected in feature selection process.

Algorithm 1 Zentropy-based uncertainty measure for hetero-
geneous feature selection (Ze-HFS).
Input: HDIS =< Ω, C ∪D,V,M >, α, β.
Output: The feature reduction R.
1: Initialize R← ∅, start = 1;
2: Compute ZC(D) according to Def. 8;
3: for c ∈ C do /* Select the inner important features */
4: Calculate SIGinner(c, C,D) from Eq. 19;
5: if SIGinner(c, C,D) > 0 then R0 ← c;
6: end if
7: end for
8: if R0 6= ∅ then
9: Compute ZR0

(D) according to Def. 8;
10: if ZR0 (D) ≤ ZC(D) then start = 0;
11: end if
12: end if
13: R = R0;
14: while start = 1 do
15: for c ∈ C −R do
16: Calculate SIGouter(c,R, D) according to Eq. 20;
17: end for
18: Obtain c0 = argmaxc∈C−RSIGouter(c,R, D);
19: R← c0; /* Select the outer important features */
20: Compute the zentropy-based measure ZR(D);
21: if ZR(D) > ZC(D) then start = 1;
22: else start = 0;
23: end if
24: end while
25: for r ∈ R do /* Delete the redundant features */
26: Compute ZR−r(D);
27: if ZR−r(D) < ZR(D) then R← R− r;
28: end if
29: end for
30: return R.

Definition 9. Given a HDIS =< Ω, C ∪D,V,M >, the R is
a feature reduct of C when the following properties satisfy:

1) ZR(D) ≤ ZB(D);
2) For any r ∈ R, ZR−r(D) ≥ ZR(D).

According to the important measures, a feature selection
algorithm considering granular level structure is designed in
algorithm 1. In this algorithm, step 2 computes ZC(D) with
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time complexity O(mn2) due to the computation between n
objects under m features. Steps 3-7 are used to select the inner
important features and obtain the origin reduct set R0, whose
time complexity is O(m(m − 1)n2). When R0 6= ∅, steps
8-12 needs to compute ZR0

(D), whose time complexity is
O(|R0|n2). Similarly, if there are l selected features in steps
13-22, the time complexity is O(

∑l
i=1(|C−R0|−i−1)(|R0|+

i)n2). Finally, the redundant features are removed in steps 23-
27 with the time complexity O(|R0|(|R0|−1)n2). Hence, the
whole complexity of this algorithm is O(m2n2). The detailed
process is shown in Fig. 2.

V. EXPERIMENTAL ANALYSIS

In this section, a series of experiments are carried out to
demonstrate the robustness and effectiveness of the proposed
method. All the experiments are run on a computer with OS:
Microsoft WIN10; Processor: Intel(R) Core(TM) i7-6800K
CPU @ 3.4GHz×12; Memory: 62.7 GB; Programming lan-
guage: MATLAB R2020b.

A. Experimental Design

Eighteen datasets from UCI Machine Learning Repository
1, ASU feature selection datasets2, and SEER Program3 are
selected for experiments, where the detailed information is
shown in Table I. All the numerical features are first trans-
formed to interval [0, 1] by the Max-min normalization.

TABLE I
DATASET DESCRIPTION

No.s Datasets Objects Features Classes Types
D1 Heart disease 270 14 2 Mixed
D2 Seer breast cancer 4024 15 2 Mixed
D3 Segmentation 2310 20 7 Numerical
D4 South german credit 1000 21 2 Numerical
D5 Soybean large 250 36 13 Categorical
D6 Spectf heart 267 45 2 Categorical
D7 Thyroid 7200 22 3 Mixed
D8 Arrhythmia 450 250 3 Mixed
D9 Colon 62 2001 2 Numerical
D10 Glioma 50 4435 4 Numerical
D11 Leukemia 72 7071 2 Numerical
D12 Lung 203 3312 5 Numerical
D13 Lymphography 96 4027 9 Categorical
D14 Warppie10p 210 2421 10 Numerical
D15 German 1000 21 2 Mixed
D16 Nci9 60 9173 9 Categorical
D17 Sports 1000 60 2 Categorical
D18 Warpar10p 130 2400 10 Numerical

In the experimental evaluation, the robustness of the pro-
posed heterogeneous distance metric group (HDMG) is il-
lustrated by comparing it with the classical heterogeneous
distance (CHD) [30] and heterogeneous Euclidean-overlap
metric function (HEOM) [29] in approximation accuracy under
different parameters. In addition, to illustrate the superiority of
proposed Ze-HFS, twelve other representative feature selection
algorithms, including feature selection with Gaussian kernel-
ized fuzzy rough sets (FGR) [42], fuzzy rough algorithm with

1http://archive.ics.uci.edu/ml/datasets.php
2http://featureselection.asu.edu/datasets.php
3https://seer.cancer.gov/data-software/

minimum misclassification rate (FRMR) [35], rough set based
online streaming feature selection (ROFS) [43], rough set
based on the relative stability of local redundancy (RLR) [44],
mutual infinite latent feature selection (MI) [45], Laplacian
score for feature selection (LS) [46], feature selection with
neighborhood combination entropy (FCE) [30], wrapper set-
based integer-coded fuzzy granular evolutionary (WSFE) al-
gorithm [47], infinite feature selection (IFS) [41] with filtering
framework, evolutionary-filter approach neighborhood com-
ponent analysis (ENCA) [48], principal component analysis
(PCA) [49], and sparse feature selection via fast embedding
spectral analysis (SFSE) [50] are compared.

Four classifiers, including K-nearest neighbor (KNN, K=3),
naive Bayesian (NB, kernel function), decision tree (DT, Gini
index), and feedforward neural network (FNN, Tanh function,
and ten neurons) are adopted to evaluate the classification
performance of different methods. The 10-fold cross-validation
method is employed to make comparisons of classification
performance in different feature selection algorithms. All the
average results and standard deviation are abbreviated as Ave
and St, and the best results are in bold.

It is clear that α and β are two critical parameters that di-
rectly influence the selected features of Ze-HFS by influencing
neighborhood granules. To investigate the influence of these
parameters on selected features, the parameters α and β are
set from 0 to 0.25 with a step of 0.025 to find the optimal
feature subset. The parameters of other compared algorithms
are set consistent with their corresponding references.

TABLE II
ACCURACY MEASURE COMPARISON UNDER DIFFERENT PARAMETERS

No.s Metric 0.05 0.15 0.25 0.35 0.45 0.55 Ave±St

D2
HDM 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00

HEOM 0.94 0.62 0.44 0.03 0.00 0.00 0.34±0.39
HDMG 1.00 1.00 0.98 0.97 0.56 0.43 0.82±0.26

D3
HDM 0.98 0.65 0.35 0.22 0.05 0.00 0.37±0.38

HEOM 0.76 0.25 0.01 0.00 0.00 0.00 0.17±0.30
HDMG 1.00 0.88 0.68 0.41 0.35 0.32 0.61±0.29

D4
HDM 1.00 1.00 1.00 0.76 0.72 0.34 0.80±0.26

HEOM 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00
HDMG 1.00 1.00 1.00 0.99 0.98 0.93 0.98±0.03

D6
HDM 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00

HEOM 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00
HDMG 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00

D8
HDM 1.00 1.00 1.00 0.87 0.72 0.63 0.87±0.16

HEOM 1.00 0.19 0.01 0.00 0.00 0.00 0.20±0.40
HDMG 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00

D9
HDM 0.97 0.32 0.02 0.02 0.02 0.02 0.22±0.38

HEOM 0.02 0.02 0.02 0.02 0.02 0.02 0.02±0.00
HDMG 1.00 0.84 0.30 0.06 0.02 0.02 0.37±0.44

D13
HDM 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00

HEOM 1.00 1.00 1.00 0.99 0.81 0.13 0.82±0.35
HDMG 1.00 0.99 0.41 0.05 0.01 0.00 0.41±0.48

D14
HDM 1.00 1.00 1.00 1.00 0.98 0.86 0.97±0.06

HEOM 1.00 0.46 0.00 0.00 0.00 0.00 0.24±0.41
HDMG 1.00 1.00 1.00 1.00 1.00 1.00 1.00±0.00

B. Robustness Evaluation of HNRS Model

This subsection illustrates the robustness of the proposed
heterogeneous distance metric by analyzing the fluctuation
of accurate measures with parameter variation. Note that the
accurate measure is calculated by equation (4). The parameters
of compared heterogeneous distance metric are all set from
0.05 to 0.55 with a step of 0.1.
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Under different parameters, the accurate measure values of
three compared distance metrics on eight randomly selected
datasets are recorded in Table II. The last column displays the
average values, and the large values denote a higher accuracy
of corresponding models. From this table, the accurate mea-
sures for HDM, HEOM, and HDMG decline as the parameters
increase. That is because the radius increase will enlarge the
neighborhood particles, causing the inclusion relation to not
hold. The HDMG achieves five maximum values and four min-
imum standard errors in eight datasets, indicating the excellent
approximation accuracy and robustness of the proposed metric
related to parameters. The detailed comparison of four datasets
is shown in Fig.3.

(a) D4 (b) D8

(c) D9 (d) D14

Fig. 3. Accurate measure values of different heterogeneous functions under
various neighborhood parameters.

C. Classification Performance Evaluation

This subsection mainly evaluates the proposed Ze-HFS
method by comparing it with twelve other representative
feature selection methods in classification performance. All
the experimental results of eighteen public datasets are ana-
lyzed from three aspects: running time and feature number,
classification accuracy, and statistical test.

1) Running time and feature number : This part compares
the running time and selected feature number of different
methods on 18 public datasets. Notably, MI and LS are feature
ranking methods, thus ensuring consistency in the selected
feature number with Ze-HFS for equitable comparison. The
running time of different methods is recorded in Table III,
where the unit is second (s). From this table, the RLR, MIFS,
LS, IFS, ENCA, and PCA achieve the minimum running time
on 4, 1, 9, 3, 1, and 1 datasets. For the average times, the
Ze-HFS can be better than the FGR, ROFS, FCE, WSFE,
ENCA, and SFSE methods. Moreover, for selected feature
numbers, Ze-HFS achieves minimum numbers three times on
KNN and NB classifiers, and two times on DT and FNN clas-
sifiers from Tables IV and V. In comparison, ENCA obtains
the minimum number seven times on four classifiers while

TABLE III
RUNNING TIME OF DIFFERENT METHODS (S)

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our
D1 2.6 2.0 6.7 0.4 1.8 15.3 1.8 14.2 1.0 2.4 17.2 19.1 1.1
D2 523 28.7 1741 9.7 4.0 63.6 4.0 8.6 2.5 2.7 63.3 103 377
D3 1056 84.2 287 7.7 22.2 195 12.8 94.7 17.4 7.9 259 220 62.9
D4 65.5 3.9 44.1 1.6 6.0 52.3 1.9 10.8 1.5 0.9 36.5 46.3 64.1
D5 26.9 8.7 18.1 2.6 2.2 60.1 2.0 131 5.4 7.3 160 318 4.8
D6 9.2 2.7 21.3 0.7 10.6 96.0 8.6 9.6 2.2 1.9 27.9 103 15.8
D7 2165 202 8017 29.8 0.8 675 0.8 99.2 5.1 17.0 603 508 1616
D8 349 261 719 335 26.6 1384 9.3 3420 10.0 20.0 204 12588 241
D9 107 1.1 276 9.7 1.7 78.7 1.3 41.0 28.0 685 1.0 129 24.9
D10 39.0 7.0 494 21.0 1.2 166 1.1 5298 168 1086 57.0 147 52.8
D11 70.2 15.1 969 35.8 1.0 536 0.8 157 311 2099 143 248 94.7
D12 525 257 1026 50.9 1.7 566 1.3 19481 156 862 1218 3169 217
D13 1.7 3.0 4.5 0.4 1.2 23.2 1.1 14.0 2.0 1.0 31.0 35.0 1.5
D14 761 83.7 1216 128 5.7 4413 5.1 7408 145 738 46.0 5582 608
D15 71.0 16.9 30.3 1.9 12.9 715 7.6 15.0 1.0 2.0 30.0 36.0 126
D16 368 99.2 284 909 9.3 152 7.5 8778 2448 23957 355 449 520
D17 605 42.2 80.1 21.3 2.8 5568 3.6 12.0 2.0 3.0 40.0 252 123
D18 221 70.9 176 247 9.0 45.1 8.5 6222 136 984 119 2306 158
Ave 387.0 66.1 856.1 100.7 6.7 822.4 4.4 2845.2 191.2 1693.2 189.5 1458.8 239.4

selecting many features on other high-dimensional datasets,
such as D8, D9, and D11. This method is inefficient for
selecting the appropriate feature subset in feature selection,
which significantly influences the classification performance.
Similarly, it can be seen from the FCE method. On different
classifiers, the proposed method obtains the minimum average
number and rank compared with other methods.

2) Classification accuracy: This part evaluates the classifi-
cation accuracy of different methods on public datasets. From
Tables VI-IX, the proposed Ze-HFS method achieves better
classification accuracy in most datasets on different classifiers.

Specifically, Ze-HFS obtains the best accuracy in 13, 13,
13, and 14 datasets on KNN, NB, DT, and FNN classi-
fiers, respectively. Moreover, it could obtain the following
conclusions by analyzing different data types. On the KNN
classifier, Ze-HFS achieves maximum accuracy in five mixed,
five categorical, and eight numerical datasets, with 2, 5, and 6
datasets, respectively. On the NB classifier, Ze-HFS performs
better in 5, 3, and 5 datasets within the respective categories.
When compared with DT classifier, Ze-HFS achieves the
maximum accuracy 2, 4, and 7 times, and 4, 4, and 6
times in selected mixed, categorical, and numerical datasets
on FNN classifier. Additionally, it exhibits superior average
classification accuracy and ranking across all tested classifiers,
as shown in Fig. 4.

(a) Accuracy (b) Rank

Fig. 4. The average accuracy and rank of different algorithms on 18 datasets.

According to the above analysis, the proposed Ze-HFS
could achieve better classification accuracy with fewer fea-
tures, illustrating its superiority in feature selection.
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TABLE IV
THE NUMBER OF SELECTED FEATURES BY THIRTEEN COMPARED METHODS ON KNN AND NB CLASSIFIERS

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our

KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB KNN NB
D1 7 7 13 13 1 1 4 4 6 5 12 11 6 5 3 3 2 2 1 1 8 2 10 1 6 5
D2 11 11 11 11 2 2 11 11 6 5 1 1 6 5 1 1 2 2 1 1 8 1 10 3 6 5
D3 11 11 17 17 9 9 9 9 13 14 14 15 13 14 5 5 4 4 1 1 9 9 2 2 13 14
D4 10 10 20 20 2 2 6 6 6 7 7 3 6 7 1 3 3 3 1 1 12 10 4 1 6 7
D5 11 11 11 11 1 1 23 23 28 20 15 14 28 20 16 10 7 7 9 9 14 18 5 1 28 20
D6 8 8 31 31 3 3 4 4 3 1 5 3 3 1 1 1 8 8 4 4 5 5 34 1 3 1
D7 20 20 18 18 10 10 20 20 3 3 16 20 3 3 3 4 3 3 1 1 17 4 3 3 3 3
D8 8 8 107 107 31 31 28 28 6 9 38 66 6 9 139 127 27 27 49 49 27 6 206 1 6 9
D9 24 24 1 1 15 15 7 7 2 16 1 1 2 16 2 3 218 218 675 675 1 1 62 28 2 16

D10 3 3 9 9 13 13 1 1 2 3 1 1 2 3 77 9 732 732 1755 1755 27 9 17 44 2 3
D11 3 3 20 20 10 10 11 11 2 2 1 1 2 2 34 37 36 36 36 36 56 5 34 72 2 2
D12 4 4 58 58 59 59 1 1 7 7 1 1 7 7 368 355 407 407 126 126 41 14 136 202 7 7
D13 6 6 16 16 4 4 9 9 12 13 10 15 12 13 5 3 3 3 1 1 4 12 2 1 12 13
D14 5 5 12 12 62 62 4 4 19 20 128 192 19 20 176 213 388 388 107 107 10 11 43 209 19 20
D15 10 10 20 20 5 5 11 11 9 2 6 7 9 2 3 2 2 2 1 1 14 10 4 2 9 2
D16 10 10 6 6 1 1 12 12 8 1 1 1 8 1 151 157 1506 1506 4475 4475 15 5 4 3 8 1
D17 21 21 38 1 1 1 5 5 1 1 35 9 1 1 3 2 6 6 6 6 16 3 16 1 1 1
D18 5 5 6 6 15 15 6 6 5 8 162 191 5 8 137 166 386 386 138 138 13 15 15 129 5 8
Ave 9.83 9.83 23.00 20.94 13.56 13.56 9.56 9.56 7.67 7.61 25.22 30.67 7.67 7.61 62.50 61.17 207.78 207.78 410.39 410.39 16.50 7.78 33.72 39.11 7.67 7.61

Rank 7.39 7.44 9.17 8.72 5.11 5.61 6.61 7.00 4.72 4.89 6.89 6.94 4.72 4.89 6.50 6.78 7.33 7.72 6.39 6.50 7.89 6.28 7.33 5.11 4.72 4.89

TABLE V
THE NUMBER OF SELECTED FEATURES BY THIRTEEN COMPARED METHODS ON DT AND FNN CLASSIFIERS

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our

DT FNN DT FNN DT FNN DT FNN DT FNN DT FNN DT FNN DT FNN DT FNN DT FNN DT FNNN DT FNN DT FNN
D1 7 7 13 13 1 1 4 4 3 10 12 11 3 10 3 3 2 2 1 1 5 8 11 2 3 10
D2 11 11 11 11 2 2 11 11 3 6 1 1 3 6 1 1 2 2 1 1 9 9 5 8 3 6
D3 11 11 17 17 9 9 9 9 11 13 15 14 11 13 5 5 4 4 1 1 8 8 10 16 11 13
D4 10 10 20 20 2 2 6 6 13 8 10 18 13 8 3 2 3 3 1 1 6 10 5 17 13 8
D5 11 11 11 11 1 1 23 23 28 30 15 15 28 30 17 16 7 7 9 9 6 18 32 13 28 30
D6 8 8 1 31 3 3 4 4 1 3 1 41 1 3 1 1 8 8 4 4 2 5 2 36 1 3
D7 20 20 1 18 10 10 20 20 20 19 20 19 20 19 4 4 3 3 1 1 17 16 3 3 20 19
D8 8 8 107 107 31 31 28 28 1 1 80 68 1 1 13 129 27 27 49 49 11 9 10 5 1 1
D9 24 24 1 1 15 15 7 7 3 1 1 1 3 1 21 8 218 218 675 675 1 1 56 2 3 1

D10 3 3 9 1 13 13 1 1 2 2 1 1 2 2 241 170 732 732 1755 1755 12 9 48 5 2 2
D11 3 3 20 1 10 10 11 11 2 2 1 1 2 2 34 1 36 36 36 36 33 56 70 2 2 2
D12 4 4 58 58 59 59 1 1 3 4 1 1 3 4 164 360 407 407 126 126 32 9 203 203 3 4
D13 6 6 16 1 4 4 9 9 8 6 12 8 8 6 5 5 3 3 1 1 8 3 7 14 8 6
D14 5 5 12 12 62 62 4 4 20 19 49 139 20 19 223 127 388 388 107 107 11 10 210 209 20 19
D15 10 10 1 20 5 5 11 11 3 6 10 10 3 6 3 3 2 2 1 1 11 13 5 18 3 6
D16 10 10 6 6 1 1 12 12 10 8 1 1 10 8 182 222 1506 1506 4475 4475 21 13 57 3 10 8
D17 21 21 1 38 1 1 5 5 2 2 40 33 2 2 3 3 6 6 6 6 7 12 8 9 2 2
D18 5 5 6 6 15 15 6 6 7 7 146 145 7 7 207 189 386 386 138 138 23 19 130 127 7 7
Ave 9.83 9.83 17.28 20.67 13.56 13.56 9.56 9.56 7.78 8.17 23.11 29.28 7.78 8.17 62.78 69.39 207.78 207.78 410.39 410.39 12.39 12.67 48.44 38.44 7.78 8.17

Rank 7.06 7.22 6.56 7.33 5.50 5.17 6.83 6.83 4.83 5.06 6.67 7.39 4.83 5.06 6.78 6.50 7.61 7.28 6.67 6.22 6.94 7.50 8.94 8.17 4.83 5.06

TABLE VI
CLASSIFICATION ACCURACY OF THIRTEEN COMPARED METHODS WITH KNN CLASSIFIER(%)

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our
D1 69.26±0.07 78.15±0.06 57.78±0.11 65.56±0.07 76.30±0.11 80.37±0.09 72.96±0.06 78.15±0.10 65.19±0.14 67.41±0.08 81.48±0.10 48.89±0.12 83.33±0.07

D2 87.48±0.01 87.18±0.01 89.04±0.02 87.37±0.02 87.82±0.02 88.37±0.02 46.47±0.10 87.85±0.02 19.93±0.02 87.67±0.02 84.37±0.03 71.15±0.29 88.07±0.02

D3 96.49±0.01 95.97±0.01 96.28±0.01 89.74±0.02 96.15±0.01 96.32±0.02 90.95±0.02 95.02±0.01 63.03±0.04 49.65±0.02 88.74±0.02 14.42±0.02 96.84±0.01

D4 71.20±0.05 72.00±0.05 69.00±0.05 73.50±0.06 69.30±0.06 74.60±0.03 71.70±0.04 70.00±0.05 69.80±0.05 70.00±0.05 73.40±0.05 70.20±0.04 75.50±0.05

D5 66.40±0.08 60.00±0.07 28.00±0.07 80.00±0.06 84.80±0.11 60.40±0.07 81.20±0.08 86.00±0.05 47.20±0.11 85.20±0.07 82.00±0.10 16.80±0.07 86.00±0.07

D6 75.98±0.12 74.89±0.09 75.97±0.05 73.75±0.09 73.03±0.09 76.93±0.06 74.54±0.10 69.69±0.08 76.15±0.09 75.36±0.07 76.47±0.10 71.14±0.10 77.79±0.09

D7 93.79±0.01 92.86±0.01 98.00±0.01 94.00±0.01 96.78±0.01 95.40±0.01 92.58±0.01 98.03±0.01 92.58±0.01 95.56±0.01 97.51±0.01 92.58±0.01 96.88±0.01

D8 53.11±0.08 56.67±0.07 58.00±0.07 57.11±0.06 20.67±0.24 59.56±0.08 51.11±0.08 59.11±0.07 53.11±0.06 61.56±0.09 61.11±0.07 54.22±0.09 59.78±0.05

D9 59.52±0.24 50.24±0.18 80.71±0.15 54.76±0.20 54.29±0.26 59.76±0.13 59.05±0.23 66.19±0.21 57.62±0.18 52.38±0.21 53.57±0.20 65.71±0.18 90.24±0.12

D10 58.00±0.26 62.00±0.24 72.00±0.17 28.00±0.23 60.00±0.25 48.00±0.17 44.00±0.25 84.00±0.13 64.00±0.23 74.00±0.14 76.00±0.18 36.00±0.23 86.00±0.14

D11 96.75±0.04 86.07±0.15 80.89±0.13 72.14±0.17 65.18±0.15 65.89±0.24 65.18±0.18 93.04±0.07 83.39±0.11 87.50±0.12 91.43±0.12 61.43±0.15 97.32±0.06

D12 80.79±0.06 94.07±0.06 95.67±0.06 64.43±0.12 78.29±0.09 64.50±0.12 79.24±0.12 95.52±0.06 92.67±0.07 95.60±0.03 86.10±0.03 68.50±0.11 89.76±0.09

D13 75.05±0.11 76.29±0.11 79.14±0.11 75.71±0.06 72.95±0.17 79.76±0.11 78.43±0.16 77.81±0.12 54.57±0.09 67.57±0.10 79.05±0.10 47.24±0.16 82.48±0.09

D14 87.14±0.05 80.00±0.10 95.24±0.04 29.23±0.09 83.81±0.09 99.05±0.02 63.33±0.08 92.38±0.05 95.19±0.06 93.81±0.08 51.90±0.12 19.52±0.08 95.24±0.05

D15 71.40±0.05 72.90±0.06 70.90±0.06 71.40±0.04 69.90±0.03 76.00±0.05 67.80±0.04 67.80±0.06 54.60±0.07 64.80±0.11 71.70±0.03 30.70±0.05 73.50±0.05

D16 46.67±0.22 21.67±0.16 13.33±0.15 18.33±0.12 15.00±0.12 15.00±0.12 11.67±0.11 43.33±0.26 53.33±0.26 43.33±0.18 43.33±0.21 21.67±0.16 55.00±0.21

D17 79.30±0.03 78.80±0.02 64.20±0.06 79.90±0.05 63.50±0.03 81.10±0.04 66.70±0.03 78.20±0.04 62.50±0.05 79.20±0.04 71.80±0.02 63.60±0.05 74.00±0.02

D18 60.77±0.12 40.77±0.15 69.23±0.14 26.92±0.09 40.00±0.14 27.69±0.16 27.69±0.09 61.54±0.08 43.08±0.14 52.31±0.07 37.69±0.11 23.85±0.12 69.58±0.09

Ave±St 73.84±0.09 71.14±0.09 71.85±0.08 63.44±0.09 67.10±0.11 68.59±0.09 63.59±0.10 77.98±0.08 63.77±0.10 72.38±0.08 72.65±0.09 48.76±0.11 82.07±0.07

Rank 6.17 7.00 6.00 8.50 8.67 5.72 9.17 4.89 8.72 6.39 5.72 11.11 2.00
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TABLE VII
CLASSIFICATION ACCURACY OF THIRTEEN COMPARED METHODS WITH NB CLASSIFIER(%)

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our
D1 72.96±0.07 79.63±0.07 60.37±0.11 66.30±0.10 82.22±0.08 80.00±0.07 77.41±0.11 78.52±0.10 65.19±0.14 67.41±0.09 81.11±0.05 48.52±0.11 82.22±0.06

D2 88.30±0.02 88.32±0.02 89.69±0.02 87.85±0.02 88.74±0.01 89.31±0.02 84.86±0.03 89.31±0.02 84.69±0.01 89.36±0.01 85.31±0.01 23.39±0.23 89.69±0.02

D3 92.12±0.01 90.65±0.02 90.65±0.01 86.62±0.02 92.42±0.01 91.82±0.02 72.94±0.03 92.55±0.01 64.20±0.03 50.26±0.03 82.90±0.02 15.32±0.04 92.38±0.01

D4 70.90±0.03 70.50±0.05 70.00±0.05 71.40±0.03 69.60±0.06 73.00±0.04 70.00±0.06 72.20±0.05 69.20±0.05 70.00±0.05 71.40±0.05 69.90±0.07 72.50±0.05

D5 43.60±0.10 40.00±0.11 10.80±0.04 40.80±0.07 42.80±0.07 39.60±0.12 39.20±0.06 46.80±0.13 33.60±0.11 36.40±0.07 43.60±0.06 16.80±0.11 54.40±0.08

D6 77.55±0.07 69.62±0.08 79.67±0.08 78.97±0.07 79.36±0.12 79.54±0.11 79.39±0.10 79.44±0.11 71.44±0.09 77.54±0.09 72.54±0.05 79.44±0.06 79.44±0.09

D7 94.03±0.01 92.56±0.02 94.07±0.01 94.04±0.01 96.67±0.01 94.10±0.01 92.58±0.01 95.44±0.01 92.58±0.01 95.79±0.01 94.47±0.01 92.58±0.01 97.44±0.01

D8 59.11±0.09 61.33±0.06 61.11±0.06 59.33±0.09 54.22±0.06 62.67±0.07 56.00±0.05 62.00±0.08 59.56±0.06 62.33±0.07 56.44±0.08 33.78±0.07 62.67±0.06

D9 64.29±0.22 65.00±0.26 54.52±0.31 30.00±0.26 58.81±0.15 65.71±0.22 40.95±0.26 65.48±0.22 31.43±0.17 36.90±0.22 62.62±0.22 63.33±0.14 66.90±0.19

D10 66.00±0.23 58.00±0.15 70.00±0.24 34.00±0.19 58.00±0.20 50.00±0.22 48.00±0.23 72.00±0.23 24.00±0.23 36.00±0.31 76.00±0.23 52.00±0.32 84.00±0.16

D11 92.86±0.18 65.54±0.17 76.96±0.17 68.04±0.12 59.46±0.21 65.89±0.24 63.75±0.14 91.79±0.10 77.86±0.17 73.75±0.17 88.75±0.13 70.18±0.22 94.64±0.09

D12 82.79±0.10 84.26±0.09 90.21±0.06 68.29±0.14 79.26±0.09 68.45±0.11 72.93±0.15 86.71±0.07 87.21±0.04 78.43±0.14 91.12±0.06 78.83±0.06 91.19±0.05

D13 75.71±0.10 79.10±0.13 72.57±0.14 76.33±0.10 75.48±0.15 80.29±0.12 78.24±0.15 71.10±0.11 69.86±0.12 55.38±0.11 75.52±0.13 43.24±0.07 80.52±0.10

D14 78.57±0.09 67.14±0.14 90.95±0.09 21.54±0.10 56.19±0.11 90.95±0.07 24.29±0.11 92.86±0.03 88.57±0.07 94.29±0.06 74.76±0.03 78.10±0.07 80.95±0.10

D15 71.40±0.04 70.80±0.06 69.90±0.05 71.20±0.05 70.00±0.04 72.10±0.04 69.20±0.04 72.00±0.04 69.80±0.04 70.00±0.05 70.90±0.03 65.00±0.15 72.20±0.06

D16 20.00±0.17 21.67±0.18 10.00±0.14 16.67±0.16 6.67±0.09 5.00±0.08 11.67±0.16 45.00±0.18 51.67±0.27 41.67±0.23 35.00±0.22 25.00±0.12 23.33±0.14

D17 74.90±0.04 74.30±0.03 63.80±0.08 75.20±0.04 63.50±0.04 74.30±0.05 75.70±0.05 71.20±0.04 62.90±0.05 74.70±0.04 65.80±0.02 63.50±0.03 75.90±0.03

D18 55.38±0.07 50.00±0.09 70.77±0.13 20.77±0.10 37.69±0.15 24.62±0.16 15.38±0.09 69.23±0.15 52.31±0.09 58.46±0.15 69.23±0.16 40.00±0.13 70.79±0.16

Ave±St 71.14±0.09 68.24±0.10 68.11±0.10 59.30±0.09 65.06±0.09 67.08±0.10 59.58±0.10 75.20±0.09 64.23±0.10 64.93±0.10 72.08±0.09 53.27±0.11 76.18±0.08

Rank 6.11 7.28 6.72 8.61 7.89 5.67 9.33 3.83 9.39 7.28 6.00 9.89 1.83

TABLE VIII
CLASSIFICATION ACCURACY OF THIRTEEN COMPARED METHODS WITH DT CLASSIFIER(%)

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our
D1 64.07±0.10 74.44±0.09 67.78±0.06 66.67±0.09 77.41±0.09 79.63±0.07 75.19±0.10 84.81±0.08 64.81±0.14 74.07±0.07 78.52±0.09 55.56±0.07 86.30±0.06

D2 86.31±0.01 86.43±0.02 89.16±0.01 85.56±0.02 87.55±0.02 88.19±0.02 84.67±0.03 89.14±0.01 84.69±0.01 88.56±0.01 82.41±0.02 84.69±0.02 88.67±0.01

D3 95.80±0.01 95.45±0.01 95.80±0.01 90.17±0.01 13.38±0.02 96.06±0.01 68.87±0.02 96.23±0.01 67.88±0.04 51.08±0.03 88.14±0.01 12.16±0.01 96.32±0.01

D4 70.70±0.06 69.10±0.05 65.70±0.06 65.90±0.03 70.80±0.03 73.10±0.05 67.50±0.04 73.10±0.05 68.80±0.05 71.70±0.03 70.60±0.04 70.30±0.05 73.40±0.04

D5 76.80±0.10 66.00±0.05 21.60±0.09 82.80±0.09 82.80±0.08 54.80±0.13 78.40±0.08 86.40±0.05 54.40±0.14 86.40±0.08 81.20±0.08 14.40±0.04 86.00±0.08

D6 74.22±0.08 75.24±0.07 75.66±0.08 71.51±0.07 75.56±0.11 77.37±0.06 70.67±0.13 77.45±0.09 75.33±0.07 73.02±0.07 73.03±0.06 74.57±0.08 77.48±0.07

D7 99.64±0.00 92.58±0.01 99.17±0.00 99.32±0.00 97.31±0.01 97.61±0.00 92.58±0.01 98.28±0.01 92.58±0.01 96.03±0.01 96.79±0.01 92.58±0.01 98.07±0.00

D8 53.56±0.07 56.00±0.06 62.67±0.05 58.22±0.06 53.33±0.03 64.22±0.09 45.78±0.08 48.89±0.06 49.33±0.06 58.44±0.06 55.11±0.05 47.11±0.06 50.67±0.05

D9 70.24±0.19 60.24±0.08 82.38±0.19 64.29±0.26 60.48±0.15 65.00±0.16 61.67±0.24 84.76±0.14 78.10±0.19 71.43±0.17 52.38±0.18 65.24±0.16 90.71±0.13

D10 50.00±0.25 64.00±0.26 50.00±0.24 32.00±0.22 50.00±0.25 50.00±0.14 44.00±0.21 60.00±0.13 48.00±0.17 64.00±0.21 68.00±0.19 56.00±0.21 78.00±0.1

D11 97.14±0.06 91.43±0.07 83.21±0.13 76.43±0.18 65.18±0.19 61.61±0.21 57.14±0.16 100.00±0.00 93.04±0.07 94.46±0.10 90.54±0.11 77.68±0.10 100.00±0.00

D12 78.88±0.06 86.21±0.09 83.19±0.10 61.67±0.13 77.29±0.11 58.17±0.14 76.71±0.09 90.69±0.08 87.74±0.09 87.19±0.10 88.74±0.08 85.67±0.10 91.12±0.05

D13 72.19±0.16 74.24±0.12 79.71±0.11 78.52±0.11 78.29±0.10 82.48±0.05 72.90±0.09 80.38±0.09 73.86±0.10 74.38±0.09 76.33±0.10 54.90±0.16 83.86±0.10

D14 72.38±0.14 50.00±0.08 60.95±0.12 36.67±0.10 73.33±0.10 84.76±0.11 39.52±0.10 78.57±0.05 80.48±0.08 71.90±0.12 76.52±0.10 86.67±0.09 80.48±0.07

D15 67.50±0.07 70.00±0.05 70.2±0.05 67.70±0.06 69.8±0.04 73.40±0.05 68.90±0.03 72.20±0.04 68.00±0.05 70.90±0.04 70.00±0.02 70.10±0.05 73.70±0.03

D16 60.00±0.20 28.33±0.16 5.00±0.11 20.00±0.13 6.67±0.12 18.33±0.12 13.33±0.07 48.33±0.27 20.00±0.13 25.00±0.16 55.00±0.16 38.33±0.27 61.67±0.18

D17 72.90±0.04 75.60±0.03 64.10±0.08 72.90±0.06 63.50±0.02 79.20±0.02 77.10±0.05 78.90±0.04 64.10±0.06 73.30±0.05 77.40±0.06 63.50±0.05 79.20±0.03

D18 50.77±0.10 43.08±0.15 51.54±0.19 26.92±0.10 37.69±0.18 26.15±0.08 20.00±0.15 67.69±0.09 53.08±0.15 58.46±0.15 66.15±0.17 55.38±0.17 67.69±0.11

Ave±St 72.95±0.09 69.91±0.08 67.10±0.09 64.29±0.10 63.35±0.09 68.34±0.08 61.94±0.09 78.66±0.07 68.01±0.09 71.69±0.09 74.83±0.08 61.38±0.09 81.30±0.07

Rank 7.28 7.50 6.83 8.94 8.17 5.67 10.50 3.06 8.39 5.94 6.50 8.78 2.00

(a) KNN (b) NB (c) DT (d) FNN

Fig. 5. Nemenyi test of Ze-HFS and twelve other methods. (a)-(c) show the test results of classification accuracy on KNN, NB, DT, and FNN classifiers.

3) Statistical test: To test whether Ze-HFS is significantly
different from other compared methods, the Friedman test [51]
with significance P = 0.1 is first performed on 18 datasets.
The null hypothesis of Friedman test is that all the compared
methods are equivalent, and it is rejected when the test p-value
is smaller than significance level P . The testing p-values of
Friedman test on four classifiers are 1.68×10−11, 3.75×10−11,
5.52 × 10−12 and 1.43 × 10−10 that all far less than 0.1, in-
dicating there exist statistical differences among all compared
methods. To further evaluate the difference between any two
methods, Nemenyi’s post hoc test [51] is conducted. The null
hypothesis is that the compared methods are the same, which

can be rejected when the rank difference is greater than the
CD critical value, computed as follows.

CD = qα

√
k(k + 1)

6N
, (21)

where qα=0.1 = 1.9076 when k = 18, and N = 13.
The results of Nemenyi’s post hoc are shown in Fig.

5. The classification accuracy of Ze-HFS ranks first and is
significantly different from other 9, 10, 9, and 9 methods on
KNN, NB, DT, and FNN classifiers. All results show the best
performance of the proposed feature selection in classification.
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TABLE IX
CLASSIFICATION ACCURACY OF THIRTEEN COMPARED METHODS WITH FNN CLASSIFIER(%)

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our
D1 71.85±0.06 77.41±0.10 68.15±0.07 67.78±0.09 79.26±0.09 81.85±0.10 78.89±0.06 81.11±0.09 65.93±0.14 74.07±0.07 83.33±0.08 55.19±0.12 83.70±0.04

D2 89.81±0.02 89.89±0.01 89.69±0.01 89.39±0.02 88.99±0.02 89.81±0.02 85.19±0.02 89.84±0.02 84.57±0.01 89.89±0.01 89.14±0.02 84.69±0.02 90.43±0.02

D3 90.35±0.06 85.84±0.09 94.94±0.02 87.79±0.02 77.06±0.07 95.45±0.01 88.05±0.03 94.11±0.02 61.04±0.04 50.13±0.03 85.41±0.02 14.33±0.02 95.84±0.01

D4 8.80±0.03 8.10±0.02 1.30±0.02 7.90±0.04 4.00±0.02 10.50±0.04 7.60±0.03 9.30±0.04 9.00±0.03 2.80±0.02 9.30±0.04 0.80±0.01 11.10±0.07

D5 70.40±0.08 56.40±0.09 25.20±0.08 72.80±0.11 76.80±0.04 46.80±0.12 75.20±0.10 80.4±0.07 49.60±0.09 80.00±0.07 78.80±0.11 17.60±0.07 85.20±0.07

D6 2.96±0.06 5.63±0.05 4.91±0.06 2.98±0.06 0.38±0.01 10.90±0.09 4.15±0.08 2.25±0.03 4.97±0.08 2.98±0.04 5.24±0.06 5.57±0.08 6.01±0.08

D7 93.53±0.01 92.94±0.01 93.21±0.01 94.25±0.01 95.44±0.01 96.81±0.01 92.58±0.01 95.40±0.02 92.58±0.01 94.64±0.01 96.49±0.01 92.58±0.01 96.85±0.01

D8 59.78±0.08 60.89±0.11 67.78±0.07 57.11±0.08 55.78±0.05 64.89±0.07 56.67±0.08 52.22±0.20 56.22±0.03 68.67±0.06 62.89±0.05 54.22±0.09 55.78±0.09

D9 19.29±0.13 35.48±0.15 34.05±0.23 29.05±0.23 31.90±0.11 35.00±0.16 34.52±0.20 34.29±0.31 30.00±0.17 25.24±0.15 34.52±0.24 52.62±0.17 56.67±0.06

D10 46.00±0.28 52.00±0.17 64.00±0.23 36.00±0.08 42.00±0.18 50.00±0.22 34.00±0.16 74.00±0.21 52.00±0.22 70.00±0.25 80.00±0.25 38.00±0.15 86.00±0.16

D11 1.43±0.05 27.86±0.10 18.04±0.13 16.79±0.19 33.39±0.20 31.96±0.15 30.36±0.18 58.04±0.25 69.46±0.21 59.82±0.22 61.00±0.00 71.43±0.21 63.57±0.14

D12 81.74±0.10 80.36±0.07 89.11±0.07 69.05±0.07 76.93±0.09 67.07±0.11 79.33±0.07 84.50±0.25 82.78±0.22 89.06±0.06 84.62±0.05 77.33±0.06 89.12±0.10

D13 79.10±0.09 70.95±0.08 79.76±0.10 71.57±0.11 75.67±0.10 80.43±0.08 77.00±0.10 74.48±0.12 73.19±0.10 74.38±0.09 81.05±0.14 54.19±0.09 82.48±0.12

D14 74.29±0.08 79.05±0.09 81.90±0.07 46.67±0.09 84.76±0.07 100.00±0.00 87.62±0.08 100.00±0.00 98.57±0.02 99.52±0.02 99.52±0.02 28.10±0.12 94.76±0.04

D15 71.70±0.05 71.90±0.05 72.70±0.05 73.00±0.04 70.90±0.04 70.30±0.05 73.00±0.04 73.20±0.04 68.30±0.05 71.70±0.06 71.10±0.03 70.10±0.03 75.30±0.05

D16 51.67±0.27 20.00±0.11 15.00±0.12 16.67±0.18 8.33±0.12 20.00±0.15 11.67±0.11 46.67±0.17 40.00±0.31 40.00±0.21 41.67±0.16 16.67±0.16 55.00±0.08

D17 77.20±0.05 76.10±0.08 64.70±0.06 73.10±0.20 63.50±0.05 73.50±0.05 77.10±0.04 75.70±0.16 65.10±0.06 71.30±0.15 71.30±0.16 63.60±0.04 77.20±0.04

D18 50.77±0.13 39.23±0.13 53.08±0.27 16.92±0.08 33.08±0.15 22.31±0.06 19.23±0.09 60.08±0.21 60.15±0.10 58.46±0.17 56.15±0.18 16.92±0.08 60.77±0.21

Ave±St 57.81±0.09 57.22±0.08 56.53±0.09 51.60±0.09 55.45±0.08 58.20±0.08 56.23±0.08 65.87±0.12 59.08±0.10 62.37±0.09 66.20±0.09 45.22±0.09 70.32±0.08

Rank 7.44 6.94 7.44 9.17 9.11 5.56 7.94 5.00 8.11 6.28 4.72 10.33 1.94

TABLE X
AVERAGE NUMBER OF SELECTED FEATURES BY THIRTEEN COMPARED METHODS UNDER SIX NOISE LEVELS ON NB AND FNN CLASSIFIERS

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our

NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN NB FNN
D1 7.0 7.0 9.0 7.0 6.8 6.8 4.8 4.8 6.8 6.2 9.3 12.2 6.8 6.2 3.8 4.5 2.3 2.3 1.0 1.0 7.7 4.5 8.2 4.0 6.8 6.2
D2 11.5 11.5 3.2 11.8 6.0 6.0 11.3 11.3 2.0 5.0 1.0 9.7 2.0 5.0 1.2 1.2 2.2 2.2 1.0 1.0 7.0 8.0 6.5 6.8 2.0 5.0
D3 10.8 10.8 16.0 16.0 7.7 7.7 8.2 8.2 11.2 12.0 15.7 17.8 11.2 12.0 5.5 5.5 1.7 1.7 1.0 1.0 11.7 12.7 8.0 10.0 11.2 12.0
D4 9.7 9.7 1.0 20.0 1.5 1.5 6.3 6.3 3.0 8.0 4.7 16.3 3.0 8.0 1.3 1.5 2.8 2.8 2.3 2.3 8.3 11.8 7.3 7.5 3.0 8.0
D5 8.2 8.2 10.0 10.0 1.5 1.5 16.2 16.2 11.0 9.7 11.2 7.8 11.0 9.7 12.0 11.3 5.8 5.8 11.2 11.2 16.2 15.2 22.2 18.7 11.0 9.7
D6 7.0 7.0 1.0 40.7 9.2 9.2 3.5 3.5 1.3 2.8 8.8 27.2 1.3 2.8 1.2 2.3 6.2 6.2 6.0 6.0 15.2 17.3 19.0 33.8 1.3 2.8
D7 20.0 20.0 17.7 17.7 5.0 5.0 13.2 13.2 16.8 8.8 19.7 14.7 16.8 8.8 3.0 2.5 2.5 2.5 1.2 1.2 13.2 13.2 7.3 4.8 16.8 8.8
D8 8.5 8.5 17.0 18.3 15.2 15.2 38.0 38.0 1.2 2.8 30.7 20.5 1.2 2.8 15.3 9.8 30.2 30.2 78.0 78.0 21.7 8.8 37.5 5.5 1.2 2.8
D9 22.0 22.0 2.2 1.0 7.8 7.8 4.3 4.3 82.0 140.3 2.7 1.2 82.0 140.3 17.5 78.3 312.0 312.0 888.2 888.2 12.7 8.3 41.7 7.8 22.0 14.3
D10 3.0 3.0 4.7 4.7 6.8 6.8 2.7 2.7 3.0 3.5 1.0 1.0 3.0 3.5 448.3 372.0 640.3 640.3 1830.8 1830.8 8.8 15.8 29.8 28.0 3.0 3.5
D11 3.0 3.0 12.0 3.5 13.8 13.8 3.3 3.3 2.5 2.2 1.0 1.0 2.5 2.2 465.2 1.2 48.3 48.3 40.5 40.5 8.2 37.0 60.8 7.3 2.5 2.2
D12 4.7 4.7 35.8 35.0 14.8 14.8 3.2 3.2 4.8 4.8 1.0 1.0 4.8 4.8 32.0 20.8 321.7 321.7 137.3 137.3 17.5 6.7 194.8 38.3 4.8 4.8
D13 6.2 6.2 16.7 14.0 4.5 4.5 9.3 9.3 3.0 3.3 8.0 9.5 3.0 3.3 3.8 3.5 2.5 2.5 1.0 1.0 7.5 6.8 7.2 7.5 3.0 3.3
D14 5.8 5.8 10.5 9.2 19.7 19.7 4.7 4.7 8.7 9.7 80.8 97.3 8.7 9.7 214.0 279.0 336.2 336.2 180.0 180.0 56.0 36.5 187.8 196.0 8.7 9.7
D15 10.5 10.5 4.2 10.5 7.3 7.3 8.0 8.0 1.5 7.3 5.5 10.2 1.5 7.3 1.5 1.3 2.5 2.5 1.7 1.7 9.0 10.5 10.7 13.8 1.5 7.3
D16 6.5 6.5 5.5 4.7 1.8 8.8 21.5 21.5 6.8 7.2 1.0 1.0 6.8 7.2 150.8 231.8 1430.8 1430.8 4492.8 4492.8 32.2 23.5 48.0 48.5 6.8 7.2
D17 17.0 17.0 30.7 36.0 1.0 5.0 13.2 13.2 3.3 4.0 14.5 20.3 3.3 4.0 2.8 3.0 7.7 7.7 18.5 18.5 27.5 8.8 20.8 37.5 3.3 4.0
D18 5.0 5.0 6.0 5.2 3.3 6.3 3.7 3.7 7.7 7.5 1.8 1.8 7.7 7.5 275.3 301.3 351.5 351.5 126.2 126.2 30.5 43.2 115.8 107.3 7.7 7.5

Average 9.24 9.24 11.28 14.73 7.44 8.21 9.74 9.74 9.81 13.62 12.13 15.03 9.81 13.62 91.92 73.94 194.85 194.85 434.37 434.37 17.26 16.03 46.30 32.40 6.48 6.62

D. Parameter Analysis

This section investigates the sensitivity of Ze-HFS to pa-
rameters α, β by observing the variation of classification
performance under different parameters. When dealing with
heterogeneous data, the α, β are set from 0 to 0.25 in steps of
0.025. The β is set to 0 when the data is numerical, and the
α is set to 0 when the data is categorical.

Fig. 6 describes the selected feature number and classifica-
tion accuracy with parameter variation on D3, D5, D9, and
D13 datasets. From this figure, the selected feature number
increases with parameters increase, and the accuracy becomes
higher and then decreases after reaching the highest. In
addition, the classification results of heterogeneous datasets
D2 and D15 are shown in Fig. 7, where the first and last
two subfigures describe the feature number and accuracy with
parameters, respectively. From this figure, the selected features
and accuracy fluctuate violently with different parameters, and
the optimal parameters differ on various datasets.

From the above analysis, the parameter directly influences
the neighborhood modeling and feature selection process.
Therefore, the neighborhood parameters can be adjusted to

(a) D3 (b) D5

(c) D9 (d) D13

Fig. 6. The classification performance of Ze-HFS under different parameters.
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TABLE XI
AVERAGE CLASSIFICATION ACCURACY OF THIRTEEN COMPARED METHODS UNDER DIFFERENT NOISE LEVELS WITH NB CLASSIFIER(%)

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our
D1 64.88±0.08 66.60±0.09 63.52±0.09 61.17±0.12 52.22±0.07 70.00±0.10 49.26±0.09 65.12±0.10 57.65±0.12 60.74±0.12 71.06±0.09 53.77±0.09 71.42±0.09

D2 83.75±0.04 85.34±0.02 85.15±0.02 81.95±0.04 82.98±0.02 85.74±0.02 81.98±0.04 81.40±0.07 75.31±0.11 85.48±0.02 84.68±0.02 83.49±0.05 85.88±0.02

D3 63.48±0.03 62.42±0.04 60.81±0.03 57.54±0.04 41.34±0.02 63.93±0.03 21.77±0.04 63.52±0.03 16.95±0.02 36.72±0.03 61.13±0.03 15.21±0.02 63.82±0.03

D4 65.90±0.06 68.82±0.06 69.45±0.03 68.10±0.06 70.00±0.03 70.98±0.04 67.00±0.09 70.00±0.04 66.32±0.08 69.77±0.04 70.87±0.04 69.80±0.05 71.52±0.04

D5 24.27±0.08 21.53±0.08 13.20±0.07 23.67±0.07 15.60±0.07 26.20±0.08 11.20±0.05 27.80±0.10 21.73±0.08 25.47±0.10 33.8±0.09 10.87±0.06 24.00±0.09

D6 72.24±0.08 79.41±0.09 74.41±0.09 77.73±0.07 79.39±0.04 79.47±0.08 79.43±0.06 79.41±0.08 72.95±0.09 74.63±0.07 79.27±0.08 78.91±0.09 79.81±0.09

D7 92.31±0.01 92.58±0.01 92.61±0.01 92.11±0.01 91.47±0.01 92.60±0.01 92.58±0.01 93.34±0.01 92.58±0.01 92.59±0.01 92.56±0.01 79.55±0.05 93.46±0.01

D8 47.96±0.08 53.70±0.06 37.56±0.09 39.22±0.09 54.22±0.07 55.22±0.07 46.44±0.08 53.26±0.07 13.48±0.06 26.00±0.09 53.89±0.08 41.19±0.08 54.78±0.08

D9 63.45±0.20 66.59±0.15 59.52±0.19 60.28±0.20 64.52±0.27 67.14±0.16 52.38±0.13 72.42±0.15 63.65±0.19 64.01±0.22 63.25±0.20 64.68±0.22 74.88±0.18

D10 50.67±0.23 44.67±0.24 51.33±0.22 27.67±0.16 48.00±0.22 37.33±0.21 22.00±0.18 57.00±0.23 21.00±0.18 26.00±0.22 56.33±0.20 37.33±0.23 60.33±0.24

D11 79.26±0.17 75.98±0.15 73.01±0.16 79.29±0.14 60.89±0.21 65.77±0.17 64.11±0.17 79.61±0.16 67.74±0.16 71.40±0.17 84.58±0.15 68.18±0.15 89.49±0.11

D12 73.56±0.08 72.13±0.08 74.87±0.09 65.06±0.11 62.10±0.08 68.73±0.10 31.76±0.19 77.92±0.09 64.62±0.13 75.23±0.11 74.90±0.08 71.10±0.10 78.75±0.08

D13 65.24±0.12 63.27±0.14 58.88±0.11 56.67±0.15 49.05±0.19 67.79±0.11 49.29±0.13 61.25±0.12 55.21±0.16 60.98±0.11 63.06±0.09 53.36±0.12 70.13±0.11

D14 41.98±0.10 35.16±0.09 42.78±0.08 30.63±0.08 27.62±0.10 57.62±0.09 22.38±0.07 53.25±0.10 55.00±0.13 62.22±0.10 44.76±0.10 41.11±0.09 44.92±0.10

D15 67.65±0.07 70.13±0.05 68.05±0.06 66.97±0.06 46.90±0.15 70.85±0.04 52.70±0.18 69.98±0.04 67.57±0.07 68.18±0.07 70.72±0.05 69.72±0.05 71.13±0.04

D16 11.39±0.13 12.22±0.14 11.39±0.14 14.17±0.13 13.33±0.13 7.22±0.10 8.33±0.12 15.00±0.15 16.94±0.16 14.72±0.14 32.22±0.16 22.22±0.16 21.67±0.15

D17 71.02±0.05 68.20±0.04 56.35±0.05 58.18±0.07 69.30±0.05 71.01±0.04 57.6±0.06 68.53±0.04 54.23±0.06 68.75±0.04 70.17±0.05 63.92±0.04 71.02±0.04

D18 30.64±0.12 20.64±0.14 17.05±0.09 19.62±0.12 19.23±0.09 15.38±0.09 7.69±0.07 50.90±0.14 11.67±0.09 12.95±0.08 48.90±0.14 20.90±0.11 33.59±0.14

Ave±St 59.42±0.09 58.86±0.09 56.11±0.09 54.45±0.09 52.68±0.10 59.61±0.09 45.44±0.1 63.32±0.10 49.70±0.10 55.32±0.10 64.23±0.09 52.52±0.10 64.48±0.09

Rank 6.94 6.22 9.11 8.06 4.50 8.94 10.94 4.17 7.06 10.00 4.33 8.50 1.83

TABLE XII
AVERAGE CLASSIFICATION ACCURACY OF THIRTEEN COMPARED METHODS UNDER DIFFERENT NOISE LEVELS WITH FNN CLASSIFIER(%)

No.s FGR FRMR ROFS RLR MI FCE LS WSFE IFS ENCA PCA SFSE Our
D1 68.09±0.08 70.12±0.07 67.59±0.08 67.72±0.09 61.48±0.09 71.85±0.09 62.22±0.10 74.20±0.07 61.42±0.09 68.83±0.08 71.93±0.08 56.36±0.08 74.89±0.08

D2 85.94±0.02 85.57±0.02 85.84±0.02 85.82±0.02 85.01±0.01 86.00±0.02 84.69±0.01 85.80±0.02 84.63±0.02 85.51±0.02 80.55±0.02 84.69±0.02 86.51±0.02

D3 64.35±0.03 65.17±0.04 62.40±0.03 61.09±0.03 42.99±0.04 66.45±0.03 37.36±0.02 62.45±0.04 16.76±0.03 37.97±0.04 63.53±0.04 14.87±0.02 67.65±0.03

D4 7.02±0.04 6.72±0.04 1.07±0.01 5.72±0.04 5.90±0.05 8.92±0.04 3.6±0.03 3.37±0.02 5.03±0.03 2.62±0.02 7.45±0.05 0.75±0.01 9.40±0.05

D5 41.20±0.09 32.73±0.09 19.80±0.08 40.80±0.08 16.80±0.10 30.47±0.10 24.00±0.11 47.20±0.10 30.27±0.09 45.87±0.09 47.53±0.10 18.47±0.08 50.67±0.10

D6 4.56±0.06 7.56±0.08 3.54±0.05 3.13±0.04 2.24±0.05 13.45±0.11 3.79±0.06 2.12±0.02 6.36±0.07 3.07±0.04 6.81±0.09 4.13±0.04 6.36±0.07

D7 93.47±0.01 93.3±0.01 94.25±0.01 93.57±0.01 92.58±0.01 94.18±0.01 92.58±0.01 94.40±0.01 92.58±0.01 93.18±0.01 93.62±0.01 92.58±0.01 94.32±0.01

D8 52.37±0.07 53.56±0.07 53.89±0.08 50.81±0.06 54.00±0.06 54.63±0.07 54.00±0.11 55.63±0.08 51.67±0.06 51.11±0.08 55.93±0.07 54.11±0.06 57.48±0.08

D9 22.94±0.19 32.78±0.23 31.19±0.19 29.72±0.19 22.86±0.14 35.12±0.20 33.33±0.24 33.45±0.22 22.94±0.19 25.91±0.20 34.44±0.19 34.37±0.20 36.09±0.20

D10 45.00±0.22 48.00±0.22 43.00±0.20 41.67±0.20 32.00±0.23 43.67±0.24 18.00±0.11 64.00±0.26 44.00±0.21 41.67±0.22 56.00±0.22 38.00±0.21 61.33±0.22

D11 8.57±0.10 25.45±0.18 13.66±0.13 6.82±0.11 33.39±0.19 33.15±0.17 22.50±0.17 20.54±0.18 14.02±0.15 10.30±0.12 19.79±0.18 34.70±0.16 12.38±0.13

D12 69.12±0.09 72.71±0.10 71.83±0.09 68.48±0.08 67.07±0.08 68.16±0.07 68.07±0.10 75.98±0.10 72.77±0.09 75.92±0.10 77.84±0.08 69.78±0.11 76.97±0.08

D13 61.42±0.16 64.65±0.10 63.87±0.13 63.02±0.13 53.33±0.09 70.12±0.11 50.67±0.13 68.54±0.12 59.17±0.14 64.07±0.12 73.99±0.11 55.57±0.13 70.25±0.12

D14 36.90±0.11 31.83±0.12 41.11±0.10 27.38±0.10 25.71±0.10 63.02±0.09 13.81±0.05 32.29±0.11 67.86±0.09 69.60±0.08 40.62±0.10 16.75±0.08 39.84±0.11

D15 69.03±0.04 70.35±0.04 69.77±0.05 68.43±0.05 68.80±0.04 71.05±0.04 68.60±0.05 69.92±0.05 69.33±0.05 69.48±0.04 71.35±0.04 70.13±0.04 71.85±0.04

D16 19.17±0.17 16.67±0.15 13.06±0.14 32.50±0.17 15.00±0.12 19.72±0.16 6.67±0.09 19.44±0.16 24.44±0.18 20.00±0.16 35.28±0.20 18.61±0.13 35.28±0.19

D17 70.17±0.04 70.03±0.06 67.22±0.05 67.65±0.06 66.00±0.05 74.28±0.04 61.90±0.06 72.25±0.04 63.33±0.05 69.15±0.04 73.75±0.05 63.90±0.05 74.33±0.04

D18 22.56±0.12 19.49±0.11 18.33±0.09 20.77±0.09 14.62±0.08 16.79±0.10 5.38±0.06 36.28±0.13 46.79±0.12 53.72±0.13 41.67±0.14 13.21±0.08 31.41±0.12

Ave±St 46.77±0.09 48.15±0.10 45.63±0.09 46.39±0.09 42.21±0.09 51.17±0.09 39.51±0.08 50.99±0.10 46.30±0.09 49.33±0.09 52.89±0.10 41.17±0.08 53.17±0.09

Rank 7.11 6.06 8.50 7.94 4.28 10.11 10.39 5.11 7.39 8.22 3.67 9.28 2.39

select an optimal feature subset.

E. Robustness Evaluation of Ze-HFS Method

This subsection evaluates the robustness of Ze-HFS in noise
environments. For each dataset, 10%, 20%, 30%, 40%, 50%,
and 60% samples are randomly added with Gaussian noise.
Then, the selected features and accuracy of compared methods
are obtained at different noise levels. To streamline presenta-
tion, NB and FNN classifiers are adopted for evaluation.

The average number of selected features for each method
under six noise levels is represented in Table X. From this
table, Ze-HFS has the minimum average feature number 3 and
2 times, and also has the minimum average values 6.48 and
6.62 on NB and FNN classifiers, respectively. Furthermore, the
average classification accuracy of thirteen methods under six
noise levels is shown in Tables XI-XII. Compared with other
methods, Ze-HFS outperforms other methods on 13 datasets
for both employed classifiers. Moreover, its average accuracy
across 18 datasets surpasses that of its counterparts, indicating
the superior robustness of Ze-HFS in noisy environments.

(a) D2 (b) D15

(c) D2 (d) D15

Fig. 7. The classification performance of Ze-HFS under different parameters
on D2 and D15 dataset. (a)-(b) and (c)-(d) show the average feature number
and classification accuracy with parameter varies.
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VI. CONCLUSIONS

This paper proposes a novel feature selection method for
heterogeneous data combining the granular level structure.
First, a heterogeneous distance metric is defined to construct
the neighborhood granules and approximation space, which is
adequate for handling high-dimensional data by considering
the differences among multiple features. Then, the granular
level structure in the approximation process is analyzed, and
a novel zentropy-based uncertainty measure is proposed to
describe uncertain knowledge. Finally, two importance mea-
sures based on zentropy are designed to evaluate features, and
a feature selection algorithm is further designed. Extensive
experiments on public datasets illustrate that the proposed
method is robust with parameter changes and good in clas-
sification performance. Notably, the computational complex-
ity of zentropy-based metrics within heterogeneous datasets
is high owing to the complex computation of information
across various levels, especially in dynamic environments.
Consequently, a more efficient computational framework com-
bining the approximation process needs further investigation.
Meanwhile, parameters α and β are two important parameters
that significantly influence the algorithm’s complexity and
performance. An adaptive mechanism for neighborhood mod-
els combining data characteristics plays an important role in
improving algorithm efficiency. Furthermore, the exploration
of zentropy thought for uncertain information processing in
diverse application domains also deserves to be explored.
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