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Neighborhood rough sets-based methods have been widely used for feature selection. However, 
the existing methods have some problems in neighborhood construction, such as the application 
of the same neighborhood radius for all samples. Thus, this paper proposed a novel adaptive 
neighborhood rough set model based on Sparrow Search Algorithm (SSA) to tackle the above 
problems, and applied the model to feature selection. First, we reconsidered the problems 
mentioned above from the viewpoint of optimization where the neighborhood radius of the target 
sample is considered as the solution to the optimization, and the maximum percentage of the 
label of the neighborhood formed is considered as the target to the optimization. Second, SSA is 
introduced to design the adaptive neighborhood construction to tackle the optimization problem 
where all candidate neighborhood radii of the target sample are considered as sparrows, the 
maximum and minimum distances between the target sample and other samples are considered 
as the search range, and the maximum label rate defined in this paper is considered as the search 
target. Then, a novel adaptive neighborhood rough set model is proposed by using the adaptive 
neighborhood construction. Third, we proposed a feature selection algorithm based on the 
adaptive neighborhood rough set model. Finally, the experimental results on seventeen datasets 
demonstrate the effectiveness of our algorithm. The running time of the proposed algorithm is at 
least one time less than classical algorithms under the condition that the classification performance 
is better, the accuracy increases 3% and the balanced accuracy increases 4%.

1. Introduction

In the past decades, due to the digitalization of life, the proliferation of various data created by people has rapidly increased the 
data dimension [1–3]. There are usually redundant or irrelevant features in such high-dimensional data, which may lead to several 
problems such as high time cost and low model prediction performance [4,5]. Therefore, feature selection has received much attention 
in recent years as a practical approach for handling high-dimensional data [6–8].

It is generally accepted that the neighborhood rough set model plays a crucial role in feature selection [9–11]. Along with data 
sources becoming increasingly complex, scholars have investigated various rough set models to enhance the robustness of the the-

ory [12–14]. Hu et al. [15] studied a heterogeneous feature subset selection method by optimizing the distance measure in the 
𝜂-neighborhood rough set model. Yuan et al. [16] proposed a feature selection method by exploiting the granular level structure in 
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knowledge space and designing a zentropy-based uncertainty measure. Xu et al. [17] designed the 𝑘-nearest neighborhood rough 
set model by considering heterogeneous data and feature interaction, and proposed a feature selection algorithm using information 
entropy. Ibrahim et al. [2] proposed a new metaheuristic algorithm called the runner-root algorithm by combining rough sets and 
neighborhood rough sets. Then, the algorithm was applied to feature selection and performs better than the state-of-the-art meta-

heuristic algorithms. Yuan et al. [18] proposed a feature selection using the variable precision composite measure and the local 
forward search approach. All experiments showed that their local method is efficient. Wang et al. [19] proposed a feature selection 
to handle heterogeneous data by combining the 𝜂-neighborhood rough set model and the k-nearest neighbor rough set model.

Although the existing methods have achieved great success, three problems limit their applications [20–22]: (1) the recognition of 
discrete attributes in heterogeneous data; (2) the approach of iteration to select the neighborhood radius with the best performance; 
(3) the application of the same neighborhood radius for all samples. Fortunately, some attempts to focus on the problems have 
been reported. Zhang et al. [20] proposed a feature selection approach by inducing the conditional neighborhood combination 
entropy using the neighborhood rough set model as a framework to handle heterogeneous data. The experimental results showed 
the effectiveness and superiority of the proposed algorithm. Chen et al. [23] introduced a feature selection approach by composing 
classical rough set and fuzzy rough set models to perform attribute reduction for heterogeneous data. Yuan et al. [24] studied a 
feature selection approach based on fuzzy mutual information, which aims to effectively select relevant features from heterogeneous 
data without decision. Alshami et al. [25] presented a kind of subset neighborhood rough set model by using the inclusion relations 
between neighborhoods under an arbitrary binary relation. Zhang et al. [26] proposed two attribute reduction methods based on 
variable radius neighborhood rough set and 𝛼-covering neighborhood rough set models to customize the neighborhood radius for 
each object by considering the different environment of each object and label distribution. Qu et al. [27] proposed a feature selection 
method by the adaptive neighborhood rough set model considering the label of the nearest sample and using the rough mutual 
information. The experimental results demonstrated the efficiency of the proposed algorithm.

Even though these approaches have addressed the problems to some extent, improvements remain needed. For instance, their 
capacity for adaptation may not always be enough to handle more complex data distribution. The introduction of a more powerful 
search strategy may be helpful to the issues. As is well known, swarm intelligence algorithms have been widely used in parameter 
optimization due to their excellent performance. Thus far, an increasing number of introductions of swarm intelligence algorithms to 
rough set theory have been recorded to enhance the performance [28]. Liu et al. [29] presented an attribute reduction algorithm based 
on the adaptive genetic algorithm that adjusts the crossover probability and mutation probability of each individual according to 
individual fitness value. Sadiq et al. [30] presented a hybrid approach for solving null value problems by hybridizing rough set theory 
with the intelligent swarm algorithm. Chen et al. [31] proposed a feature selection method by combining the rough set model and the 
Fish Swarm Algorithm. The results demonstrate that the algorithm can provide an efficient tool for finding a minimal subset of the 
features without information loss. Maini et al. [32] proposed a feature selection method by employing the rough dependency measure 
as the fitness function in Particle Swarm Optimization and Intelligent Dynamic Swarm. The results of the experiments show that with 
the help of the proposed initialization, the two algorithms are able to select the best set of features with less execution time. Sun et 
al. [33] proposed a two-stage feature selection by fusing the fuzzy multi-neighborhood rough set with binary whale optimization. 
Experiments show their algorithm is efficient and can achieve excellent classification efficiency for binary and multiclass imbalanced 
data. Chen et al. [34] proposed an artificial hummingbird algorithm-based three-way K-means clustering algorithm. The experimental 
results demonstrate that AHA-3WKM performs well, and enhances the stability and accuracy of clustering results. Therefore, how to 
introduce the swarm intelligence algorithm to the neighborhood rough set model to tackle the problems above is worth discussion 
and research.

In this paper, we first introduce the concept of label rate, which is defined via the percentage of the label of 𝑥 in the neighborhood 
of 𝑥, where 𝑥 is the target sample. Second, we apply SSA to the search of the adaptive neighborhood radius of 𝑥 by using the following 
settings: the neighborhood radius is regarded as a sparrow, the maximum and minimum distances between 𝑥 and other samples are 
considered as the search range, and the maximum label rate is regarded as the search target. These settings can solve problems (1)-(3) 
mentioned above, where the solution to problem (1) is detailed in Example 2, and the solutions to problems (2) and (3) are detailed in 
Example 1. Third, we construct an SSA-based adaptive neighborhood rough set model by conducting the neighborhood granulation of 
samples via the adaptive neighborhood radius. Fourth, we propose a feature selection algorithm based on the adaptive neighborhood 
rough set model. The proposed algorithm is compared with five neighborhood rough set-based feature selection algorithms regarding 
running time and the attribute group selected. The attribute group returned is verified via the KNN and Decision tree classifiers. 
Finally, the experimental results show that our algorithm has lower running time, and the attribute group selected by our algorithm 
has higher accuracy and balanced accuracy.

The main contributions of this paper are given as follows.

(1) We transform the problems into a parameter optimization problem and propose the concept of label rate according to the 
percentage of the target sample’s label in the target sample’s neighborhood.

(2) We apply SSA to the search of the adaptive neighborhood radius of the target sample by using the following settings: the 
candidate neighborhood radii are regarded as sparrows, the maximum and minimum distances between the target sample, and other 
samples are regarded as the search range, and the maximum label rate is considered as the search target.

(3) We apply the adaptive neighborhood radius to the neighborhood granulation of samples and construct SSA-based adaptive 
neighborhood rough set model.

(4) We propose a novel feature selection algorithm based on the adaptive neighborhood rough set model. By comparing our 
algorithm with other algorithms, we demonstrate its effectiveness. That is, it has a lower running time and more robust adaptability 
2

to complex environments, and the attribute group selected by it has higher accuracy and balanced accuracy.
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The remaining part of this paper is organized as follows. Section 2 reviews the basic concepts of the neighborhood rough sets and 
SSA. In Section 3, the concept of label rate is defined. SSA is applied to calculate the adaptive neighborhood radius, and SSA-based 
adaptive neighborhood rough set model is constructed. Moreover, a novel feature selection algorithm based on the model is proposed. 
In Section 4, the experiments are conducted to prove the effectiveness of our algorithm. Finally, conclusions and future work are given 
in Section 5.

2. Preliminaries

In this section, the 𝜂-neighborhood rough set model and the Sparrow Search Algorithm are reviewed.

2.1. 𝜂-Neighborhood rough sets

The neighborhood rough set model is an extension of the classical rough set model, which can effectively handle numerical and 
heterogeneous data [15].

In rough sets, an information table is a 2-tuple ⟨𝑈,𝐴⟩, where 𝑈 = {𝑠𝑝1, 𝑠𝑝2, …, 𝑠𝑝𝑛} is a set containing all samples, denoted as the 
universe, 𝐴 is an attribute set to describe the characteristics of the samples. If 𝐴 = 𝐶 ∪𝐷, where 𝐶 is an attribute subset to describe 
the condition characteristics and 𝐷 is an attribute subset to describe the decision characteristics, then the information table ⟨𝑈,𝐴⟩
is also called a decision table.

For any two samples 𝑠𝑝𝑖, 𝑠𝑝𝑗 ∈ 𝑈 and any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 , let 𝜂 be the neighborhood radius, 𝑀𝑖𝑛𝐷𝑠𝑢𝑏𝐶
(
𝑠𝑝𝑖, 𝑠𝑝𝑗

)
represent the Euclidean distance between sample 𝑠𝑝𝑖 and sample 𝑠𝑝𝑗 under attribute subset 𝑠𝑢𝑏𝐶 . The 𝜂-neighborhood of sample 𝑠𝑝𝑖
under 𝑠𝑢𝑏𝐶 is defined as follows:

𝜂𝑠𝑢𝑏𝐶
(
𝑠𝑝𝑖

)
=
{
𝑠𝑝𝑗 ∈𝑈 |||𝑀𝑖𝑛𝐷𝑠𝑢𝑏𝐶

(
𝑠𝑝𝑖, 𝑠𝑝𝑗

)
< 𝜂

}
. (1)

In neighborhood rough sets, a neighborhood approximation space is a 2-tuple ⟨𝑈,𝑁𝑒𝑖⟩, where 𝑈 = {𝑠𝑝1, 𝑠𝑝2, …, 𝑠𝑝𝑛} is the 
universe and 𝑁𝑒𝑖 is the neighborhood relation.

Let ⟨𝑈,𝑁𝑒𝑖⟩ be a neighborhood approximation space, for any target set 𝑋 ⊆𝑈 and any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 , the lower and 
upper approximations of 𝑋 under 𝑠𝑢𝑏𝐶 are defined as follows:

𝑁𝑒𝑖𝑠𝑢𝑏𝐶𝑋 =
{
𝑠𝑝𝑖 ∈𝑈 |||𝜂𝑠𝑢𝑏𝐶 (

𝑠𝑝𝑖
)
⊆𝑋

}
; (2)

𝑁𝑒𝑖
𝑠𝑢𝑏𝐶

𝑋 =
{
𝑠𝑝𝑖 ∈𝑈 |||𝜂𝑠𝑢𝑏𝐶 (

𝑠𝑝𝑖
)
∩𝑋 ≠ ∅

}
, (3)

where the lower approximation of target set 𝑋 under 𝑠𝑢𝑏𝐶 is also called the positive region of 𝑋 under 𝑠𝑢𝑏𝐶 , denoted as 𝑃𝑂𝑆𝑠𝑢𝑏𝐶 (𝑋).

2.2. Sparrow search algorithm

SI-MA et al. [35] evaluated 123 swarm intelligence algorithms to find the appropriate algorithm for diverse issues. Based on the 
results, they claimed that SSA is one of the algorithms suitable for optimization in problems with low and medium dimensions. SSA, 
proposed by Xue et al. [36], is one of the novel and robust swarm intelligence algorithms for handling optimization problems. The 
evaluation of SSA is performed with 19 known mathematical functions. This algorithm has shown a remarkable power in addressing 
complex calculations and solutions [37,38]. SSA [36] is a nature-inspired algorithm inspired by the sparrow population’s foraging 
and anti-predator behaviors. SSA provides an excellent global search capability. The sparrows, in SSA, are divided into producers, 
scroungers, and warners to simulate the procedure of search optimization, where the percentage of producers and scroungers in 
sparrows is constant, and the warners account for 20% to 30%. As a particle in the search space, each sparrow represents a feasible 
solution to the current problem. The behaviors of sparrows are idealized and formulated by the following rules.

(1) The producers have high energy reserves and provide food and guide the direction of food for scroungers. The levels of energy 
reserves rely on fitness values.

(2) If the sparrows detect the predator, the individuals begin to warn. All sparrows must fly to safe areas once the warning value 
exceeds the safety threshold set.

(3) The roles of producers and scroungers are sometimes different. Searching for better food sources can make the sparrow become 
a producer.

(4) Scroungers can find better food sources through producers.

Hence, the mathematical model of SSA can be defined as follows.

In SSA, the position of a producer at the 𝑡+1𝑡ℎ iteration can be defined as follows [36].

𝑥𝑡+1
𝑖,𝑗

=

{
𝑥𝑡
𝑖,𝑗

× exp
(

−𝑖
𝛼∗𝑖𝑡𝑒𝑚𝑚𝑎𝑥

)
, if 𝑅2 < 𝑆𝑇 ;

𝑥𝑡
𝑖,𝑗

+𝑄 ×𝐿, if 𝑅2 ≥ 𝑆𝑇 .
(4)

where 𝑥𝑡
𝑖,𝑗

represents the value of the 𝑗𝑡ℎ dimension of the 𝑖𝑡ℎ producer at the 𝑡𝑡ℎ iteration, 𝛼 ∈ (0, 1) is a random value, 𝑖𝑡𝑒𝑚𝑚𝑎𝑥
3

represents the maximum number of iterations, 𝑄 represents a random value following the normal distribution, 𝐿 represents a matrix 



Information Sciences 679 (2024) 121099C. Liu, B. Lin and D. Miao

of 1 × 𝑑 in which all elements are 1. 𝑅2 represents the warning value (𝑅2 is a random value uniformly distributed between [0, 1]), 
and 𝑆𝑇 ∈ [0.5, 1] represents the safety threshold.

In Equation (5), 𝑅2 < 𝑆𝑇 indicates that the group is in a safe environment, and the producers enter a global search. On the 
contrary, 𝑅2 ≥ 𝑆𝑇 indicates that some sparrows have discovered the danger, and all sparrows need to quickly fly to the safe area.

In SSA, the scroungers frequently monitor the producers, and as soon as the producers find good food, they immediately go to 
appropriate locations to compete. If they win, they will obtain the food; otherwise, they will continue to monitor. The position of a 
scrounger at the 𝑡+1𝑡ℎ iteration can be defined as follows [36].

𝑥𝑡+1
𝑖,𝑗

=
⎧⎪⎨⎪⎩

𝑄 × exp
(
𝑥𝑡
𝑤𝑜𝑟𝑠𝑡

−𝑥𝑡
𝑖,𝑗

𝑖2

)
, if 𝑖 >

𝑛

2 ;

𝑥𝑡+1
𝑝

+ |||𝑥𝑡𝑖,𝑗 − 𝑥𝑡+1𝑝 ||| ×𝐴+ ×𝐿, otherwise,

(5)

where 𝑥𝑡
𝑤𝑜𝑟𝑠𝑡

represents the global worst position at the 𝑡𝑡ℎ iteration, 𝑥𝑡+1
𝑝

represents the local best position at the 𝑡+1𝑡ℎ iteration, and 
𝐴+ is a matrix of 𝑑 × 1 obtained by the operation 𝐴𝑇 (𝐴𝐴𝑇 )(−1) on a matrix 𝐴 of 1 × 𝑑 (each element in 𝐴 is randomly assigned a 
value of 1 or −1).

In Equation (6), 𝑖 > 𝑛∕2 indicates that the 𝑖𝑡ℎ scrounger with a poor fitness value may become hungry, and it will fly elsewhere to 
find food.

In SSA, the warners warn of danger to other sparrows so that the producers can lead the sparrows to more secure locations. The 
warners generally account for 20% to 30% of the entire sparrows. The position of a warner at the 𝑡+1𝑡ℎ iteration can be defined as 
follows [36].

𝑥𝑡+1
𝑖,𝑗

=
⎧⎪⎨⎪⎩
𝑥𝑡
𝑏𝑒𝑠𝑡

+ 𝛽 × |||𝑥𝑡𝑖,𝑗 − 𝑥𝑡𝑏𝑒𝑠𝑡||| , 𝑖𝑓 𝑓𝑖 > 𝑓𝑔 ;

𝑥𝑡
𝑖,𝑗

+ 𝑘 ×
|||𝑥𝑡𝑖,𝑗−𝑥𝑡𝑤𝑜𝑟𝑠𝑡|||(
𝑓𝑖−𝑓𝑤

)
+𝜀 , 𝑖𝑓 𝑓𝑖 = 𝑓𝑔,

(6)

where 𝑥𝑡
𝑏𝑒𝑠𝑡

represents the global best location (the center of the sparrow group with a secure location) at the 𝑡𝑡ℎ iteration, 𝛽 ∼𝑁(0, 1)
is a random value used to control the step of iteration, 𝑘 ∈ [−1, 1] is a random value, 𝑓𝑖 represents the fitness value of the current 
sparrow, 𝑓𝑔 and 𝑓𝑤 represent the global best and worst fitness values respectively, and 𝜂 is a very small constant that prevents the 
denominator from being zero.

In Equation (7), 𝑓𝑖 > 𝑓𝑔 indicates that the current sparrow is at the edge of the group. Moreover, 𝑓𝑖 = 𝑓𝑔 indicates that the current 
sparrow is aware of the danger and needs to get closer to other sparrows.

3. SSA-based adaptive neighborhood rough sets and feature selection

In this section, the problems mentioned above are reconsidered from the optimization viewpoint. SSA is introduced to the neigh-

borhood rough set model to compute the best neighborhood radius of each sample in a given dataset. A novel adaptive neighborhood 
construction method is designed. Moreover, an adaptive neighborhood rough set model is constructed by the best neighborhood 
radius and is applied to feature selection.

3.1. The transformation to an optimization problem

It is known that the neighborhood radius of samples is set empirically in classical neighborhood rough sets [1,39]. However, 
this kind of setting does not consider the actual situation around the sample during the neighborhood construction. As a result, the 
performance of a single neighborhood radius may need improvement. To solve this problem, the strategy of iteration [40,15], also 
known as the step-by-step approach, is adopted, where an initial value and a terminal value are given to iterate the neighborhood 
radius in a certain step. Unfortunately, it is clear that the strategy is affected seriously by the empirical settings, i.e., the initial 
value, the terminal value, and the step, which may induce the model’s performance to be suboptimal rather than optimal in some 
complicated situations. Therefore, it is necessary to transform a classical neighborhood construction into an adaptive one to avoid 
the influence caused by the empirical settings. In this subsection, we shall use Example 1 to show how to transform the problems 
mentioned above into an optimization problem and how to solve it.

Example 1. Four samples 𝐴, 𝐵, 𝐶 and 𝐷 are given as Fig. 1(a), where 𝐴 and 𝐵 belong to Class 1 (blue dot), and 𝐶 and 𝐷 belong 
to Class 2 (red triangle). To show the procedure of a classical neighborhood construction, in the step-by-step approach, we set the 
initial value as 1, the terminal value as 3 and the step as one step. Therefore, for sample 𝐴, neighborhood 1 is constructed via the 
initial value 1 of the neighborhood radius in the first round. Then the neighborhood radius is turned into 2 by the step value 1 in the 
next round, and the neighborhood 2 is constructed via the value 2 of the neighborhood radius. Similarly, the neighborhood radius 
is turned into 3 in the last round, and the neighborhood 3 is constructed. The three neighborhoods of sample 𝐷 can be gotten in a 
similar way. As a result, the three neighborhoods of sample 𝐴 and sample 𝐷 are formed in three rounds of iterations.

According to the attribute selection approach in classical neighborhood rough sets, we know that the attribute with the largest 
attribute dependency is preferred. On this basis, the attribute with the largest positive region is preferred. Meanwhile, the size of 
4

the positive region is determined by whether the label of the samples in the neighborhood of the target sample x is the same as 
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Fig. 1. Example 1.

that of x. Hence, when the labels in the neighborhood formed are uniform, the neighborhood radius is biased towards the selected 
neighborhood radius. Since the application of neighborhood radius is the same for each sample, the feature selection algorithm 
outputs the neighborhood radius that makes the labels in the neighborhood formed of all samples as unique as possible.

For sample 𝐴, from Fig. 1(a), it can be seen that neighborhood 2 is the preferred neighborhood, but some problems still exist. For 
example, neighborhood 1 only contains sample 𝐴 itself. This situation should be avoided as much as possible since the information 
obtained is very limited. Neighborhood 2 contains sample 𝐴 and 𝐵, which is an ideal neighborhood. For the sample 𝐷, it can be 
seen that neighborhood 3 is the preferred neighborhood, and neighborhood 1 and neighborhood 2 are the situations that should be 
avoided.

However, when we consider the two samples at the same time, it is apparent that there exist some inevitable situations: (1) 
when the algorithm outputs neighborhood 1, the information of sample 𝐴 and sample 𝐷 can not be mined simultaneously, since 
the neighborhood of sample 𝐴 and sample 𝐷 only contains itself, respectively; (2) when the algorithm outputs neighborhood 2, the 
information of sample 𝐴 can be mined, i.e., sample 𝐴 belongs to the positive region, but the information of sample 𝐷 can not be 
mined, because the neighborhood of sample 𝐷 only contains itself; (3) when the algorithm outputs neighborhood 3, the information 
of sample 𝐴 and sample 𝐷 can be mined, i.e., sample 𝐷 belongs to the positive region, but sample 𝐴 does not belong to the positive 
region. These inevitable situations are caused by two reasons: (1) The empirical setting of neighborhood radius can not make sure 
5

that the neighborhood formed contains at least two samples in each round so that the information of certain samples can not be 
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mined surely; (2) In the step-by-step approach, the calculation of the neighborhood in each round is independent to each other, i.e., 
it can not guarantee that each sample belongs to the same positive region.

Therefore, for sample 𝐴 and sample 𝐷, there is no chance to obtain the neighborhood preferred concurrently, because the neigh-

borhood calculation in each step is independent of each other, and the empirical setting to neighborhood radius does not take into 
account the actual situation around each sample. Based on the above analysis, it can be seen that the step-by-step approach should 
be improved.

In summary, we need a novel method that satisfies the following conditions: (1) the neighborhood contains at least two samples; 
(2) only one iteration is required; (3) the labels of the neighborhood formed should be as uniform as possible. If we turn to the 
optimization perspective, the solution will be clearer. We may use condition (3) as the optimization target. However, it is necessary 
to quantify it. This paper defines the label rate to quantify the optimization target. Moreover, we may use conditions (1) and (2) as 
the constraints. In terms of condition (1), we consider the maximum and minimum distances between the target sample and other 
samples as the value range and select the neighborhood radius as the parameter. SSA is introduced to solve the optimization problem. 
The search approach of adaptive neighborhood radius is shown in Fig. 1(b).

In Fig. 1(b), for sample A, the search range of SSA is the difference between AB and AD, shown as the red dashed line. The 
available range, the neighborhood making the label rate 1, is the difference between AB and AC, shown as the blue dashed line, 
owing to sample C being the closest sample with diverse labels. Hence, for sample A, the algorithm would regard the sparrows as the 
neighborhood radius and search for the radii that make the label rate 1 in the search range. Subsequently, the algorithm would find 
that the radii in the available range meet the search target, i.e., the maximum label rate is 1. Consequently, the algorithm outputs 
the maximum label rate of sample A, which is 1.

3.2. SSA-based adaptive neighborhood rough sets

The application of SSA in searching for the adaptive neighborhood radius of each sample in a given dataset is divided into three 
parts, i.e., the number of sparrows, the search range of sparrows, and the value of fitness. To avoid the adaptive neighborhood radius 
of each sample searched by SSA being too small to involve any other sample in the neighborhood formed, in this paper, the search 
range is set to the maximum and minimum distances between the current sample and other samples. Since the number of sparrows 
is related to the search range, the more extensive the search range of sparrows, the larger the number. Since the search range is not 
large enough to utilize too many sparrows, in this paper, the number of sparrows is set to 30 empirically (the number of sparrows 
can be adjusted to other values according to actual situations). Moreover, to ensure the labels of the elements in the neighborhood 
of the target sample are the same as the sample possible, the maximum label rate is set to the fitness.

Due to the addition of decision attribute, the neighborhood information table can be represented as a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩.
Definition 1. Given a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩, for any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 and any sample 𝑠𝑝𝑖 ∈ 𝑈 , let 
𝜂𝑠𝑢𝑏𝐶
𝑠𝑝𝑖

=
{
𝜂𝑠𝑢𝑏𝐶(1,𝑠𝑝𝑖), 𝜂

𝑠𝑢𝑏𝐶

(2,𝑠𝑝𝑖),⋯ , 𝜂𝑠𝑢𝑏𝐶(𝑡,𝑠𝑝𝑖)

}
be the set of all candidate neighborhood radii of 𝑠𝑝𝑖 searched by SSA under 𝑠𝑢𝑏𝐶 during iteration, 

where 𝜂𝑠𝑢𝑏𝐶(𝑤,𝑠𝑝𝑖) ∈ 𝜂
𝑠𝑢𝑏𝐶

𝑠𝑝𝑖
represents the 𝑤𝑡ℎ (1 ≤𝑤 ≤ 𝑡) candidate neighborhood radius of 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶 during iteration. The label rate 

of sample 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶 with 𝜂𝑠𝑢𝑏𝐶(𝑤,𝑠𝑝𝑖) as the neighborhood radius can be defined as follows.

𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒𝑠𝑢𝑏𝐶
(
𝑠𝑝𝑖, 𝜂𝑠𝑢𝑏𝐶(

𝑤,𝑠𝑝𝑖
)) =

𝑆𝑎𝑚𝑒𝑙𝑎𝑏𝑒𝑙(𝜂𝑠𝑢𝑏𝐶(
𝑤,𝑠𝑝𝑖

) (𝑠𝑝𝑖))|||𝜂𝑠𝑢𝑏𝐶(𝑤,𝑠𝑝𝑖)

(
𝑠𝑝𝑖

)||| , (7)

where |𝑥| represents the cardinality of set 𝑥, 𝜂𝑠𝑢𝑏𝐶(
𝑤,𝑠𝑝𝑖

) (𝑠𝑝𝑖) represents the neighborhood of sample 𝑠𝑝𝑖 with 𝜂𝑠𝑢𝑏𝐶(
𝑤,𝑠𝑝𝑖

) as the neighborhood 

radius, 𝑆𝑎𝑚𝑒𝑙𝑎𝑏𝑒𝑙(𝜂𝑠𝑢𝑏𝐶(
𝑤,𝑠𝑝𝑖

) (𝑠𝑝𝑖)) represents the number of occurrences of the label of 𝑠𝑝𝑖 in the neighborhood of 𝑠𝑝𝑖.

From Definition 1, we can clearly see that the maximum value of label rate is 1 and the minimum value of label rate is larger than 

0. Hence, the value range of label rate is 1 ⩾ 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒𝑠𝑢𝑏𝐶
(
𝑠𝑝𝑖, 𝜂𝑠𝑢𝑏𝐶(

𝑤,𝑠𝑝𝑖
))> 0.

For any sample 𝑠𝑝𝑖 ∈𝑈 , if the label of the sample 𝑠𝑝𝑖 itself in the neighborhood of 𝑠𝑝𝑖 is uniform, then the label rate of 𝑠𝑝𝑖 takes 
the maximum value 1. In this case, the neighborhood of 𝑠𝑝𝑖 is the best case, without any adjustment. If the number of the label of the 
sample 𝑠𝑝𝑖 itself in the neighborhood of 𝑠𝑝𝑖 is only 1, then in this case, the neighborhood of 𝑠𝑝𝑖 is the worst case. The neighborhood 
radius will be adjusted by SSA, in order to maximize the label rate of 𝑠𝑝𝑖, i.e., the label of 𝑠𝑝𝑖 in the neighborhood of 𝑠𝑝𝑖 takes the 
maximum value.

To maximize the attribute dependency of the final attribute group, during the process of neighborhood granulation, the label of 
the neighborhood of each sample should be the same as the sample itself as possible. On this basis, we propose the concept of label 
rate to calculate the percentage of the label of the sample 𝑠𝑝𝑖 in its neighborhood. The larger the label rate, the more elements with 
the same label as sample 𝑠𝑝𝑖 in its neighborhood, and the better the neighborhood radius. Therefore, the label rate is an excellent 
6

measure to evaluate the neighborhood radius.
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Fig. 2. Example 2.

Example 2. To compare our approach with the approach proposed in [26], two figures in [26] (that is, Fig. 2(a) and Fig. 2(b)) are used 
to illustrate the situations that Zhang’s approach can and cannot solve, respectively. Moreover, Fig. 2(c) is used to demonstrate the 
approach proposed in this paper. In Fig. 2, the solid black line denotes the initialized neighborhood, and the dashed black line denotes 
the neighborhood obtained by Zhang’s approach. In Fig. 2(a), the label rate of the initialized neighborhood of sample 𝑥1 is equal to 
0.875, and it is clear from the figure that a reduced neighborhood can increase the label rate. Therefore, Zhang’s approach generates 
a novel neighborhood, which increases the label rate to 1. In this case, the novel neighborhood of sample 𝑥1 is the best. However, in 
Fig. 2(b), the label rate of the initialized neighborhood of sample 𝑦1 is equal to 0.75, and it is clear from the figure that a reduced 
neighborhood can increase the label rate. Therefore, Zhang’s approach generates another novel neighborhood, which increases the 
label rate to 0.8333. In this case, the novel neighborhood of sample 𝑦1 is not the best. However, it is clear that continuously reducing 
the neighborhood can solve the above problem, as shown by the red line in Fig. 2(c). In this paper, the process of continuously 
reducing the neighborhood is achieved by SSA with the maximum value of label rate as the termination condition.

Definition 2. Given a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩, for any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 and any sample 𝑠𝑝𝑖 ∈ 𝑈 , let 
𝜂𝑠𝑢𝑏𝐶
𝑠𝑝𝑖

=
{
𝜂𝑠𝑢𝑏𝐶(1,𝑠𝑝𝑖), 𝜂

𝑠𝑢𝑏𝐶

(2,𝑠𝑝𝑖),⋯ , 𝜂𝑠𝑢𝑏𝐶(𝑡,𝑠𝑝𝑖)

}
be the set of all candidate neighborhood radii of 𝑠𝑝𝑖 searched by SSA under 𝑠𝑢𝑏𝐶 during iteration, 

where 𝜂𝑠𝑢𝑏𝐶(𝑤,𝑠𝑝𝑖) ∈ 𝜂
𝑠𝑢𝑏𝐶

𝑠𝑝𝑖
represents the 𝑤𝑡ℎ (1 ≤ 𝑤 ≤ 𝑡) candidate neighborhood radius of 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶 during iteration. Assume 

that 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒𝑠𝑢𝑏𝐶
(
𝑠𝑝𝑖, 𝜂𝑠𝑢𝑏𝐶(

𝑤,𝑠𝑝𝑖
)) represents the label rate of 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶 with 𝜂𝑠𝑢𝑏𝐶(𝑤,𝑠𝑝𝑖) as the neighborhood radius, the adaptive 

neighborhood radius of 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶 can be defined as follows.

𝜂𝑠𝑢𝑏𝐶(𝑎𝑑𝑎𝑝,𝑠𝑝𝑖) = 𝑎𝑟𝑔𝜂𝑠𝑢𝑏𝐶(𝑤,𝑠𝑝𝑖)
∈𝜂𝑠𝑢𝑏𝐶
𝑠𝑝𝑖

𝑚𝑎𝑥 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒𝑠𝑢𝑏𝐶
(
𝑠𝑝𝑖, 𝜂𝑠𝑢𝑏𝐶(𝑤,𝑠𝑝𝑖)

)
. (8)

The selection of the adaptive neighborhood radius is the process of searching the neighborhood radius with the maximum label 
rate achieved by SSA. During the iteration, the neighborhood radius with the maximum label rate is selected via SSA until the global 
optimal neighborhood radius is selected.

Definition 3. Given a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩, for any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 and any two samples 𝑠𝑝𝑖, 𝑠𝑝𝑗 ∈
𝑈 , let 𝜂𝑠𝑢𝑏𝐶(𝑎𝑑𝑎𝑝,𝑠𝑝𝑖) be the adaptive neighborhood radius of 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶 during iteration, and let 𝑀𝑖𝑛𝐷𝑠𝑢𝑏𝐶

(
𝑠𝑝𝑖, 𝑠𝑝𝑗

)
represent the 

Euclidean distance between sample 𝑠𝑝𝑖 and sample 𝑠𝑝𝑗 under attribute subset 𝑠𝑢𝑏𝐶 . The adaptive neighborhood of 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶
is defined as follows.

𝜂𝑠𝑢𝑏𝐶(𝑎𝑑𝑎𝑝,𝑠𝑝𝑖)

(
𝑠𝑝𝑖

)
=
{
𝑠𝑝𝑗 ∈𝑈 |||𝑀𝑖𝑛𝐷𝑠𝑢𝑏𝐶

(
𝑠𝑝𝑖, 𝑠𝑝𝑗

)
< 𝜂𝑠𝑢𝑏𝐶(𝑎𝑑𝑎𝑝,𝑠𝑝𝑖)

}
. (9)

Definition 4. Given a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩, for any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 and any sample 𝑠𝑝𝑖 ∈ 𝑈 , let 
𝜂𝑠𝑢𝑏𝐶(𝑎𝑑𝑎𝑝,𝑠𝑝𝑖) be the adaptive neighborhood radius of 𝑠𝑝𝑖 under 𝑠𝑢𝑏𝐶 during iteration, the lower approximation of 𝐷 with respect to 𝑠𝑢𝑏𝐶
is defined as follows.

𝐴𝑑𝑎𝑝𝑁𝑠𝑢𝑏𝐶𝐷 = {𝑠𝑝𝑖 ∈𝑈
||||𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒𝑠𝑢𝑏𝐶 (

𝑠𝑝𝑖, 𝜂𝑠𝑢𝑏𝐶(𝑎𝑑𝑎𝑝,𝑠𝑝𝑖)

)
= 1}. (10)

𝐴𝑑𝑎𝑝𝑁𝑠𝑢𝑏𝐶𝐷 is also called the positive region of 𝐷 with respect to 𝑠𝑢𝑏𝐶 , denoted as 𝑃𝑂𝑆𝑠𝑢𝑏𝐶 (𝐷).

Example 3. Table 1 is used to illustrate the solution for discrete attributes. Table 1 shows the four most common cases in datasets. 
First of all, all attributes are normalized into the interval [0,1], including discrete attributes. The results are shown in Table 1. 
7

Sample 𝑥1 is used as an example. In case 1, no matter how the neighborhood radius is searched, the label rate of the formed 
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Table 1

The four most common cases in datasets (Example 3).

case1 case2 case3 case4

sample attribute label attribute label attribute label attribute label

𝑥1 0 1 0 0 0 0 0 0

𝑥2 0 1 0 0 0 0 0 0

𝑥3 0 1 0 0 0 0 0 1

𝑥4 0.5 1 0.5 1 0.5 0 0.5 1

𝑥5 0.5 1 0.5 1 0.5 1 0.5 1

𝑥6 0.5 1 0.5 1 0.5 1 0.5 1

neighborhood is always 1. In case 2, if the neighborhood radius 𝜂 is equal to 0, then 𝜂(𝑥1) = {𝑥1, 𝑥2, 𝑥3}, and 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒(𝑥1, 𝜂) = 1. 
If the neighborhood radius 𝜂 is equal to 0.5, then 𝜂(𝑥1) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}, and 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒(𝑥1, 𝜂) = 0.5. Therefore, in this case, 
the neighborhood radius 𝜂 is set to 0 by SSA. In case 3, if the neighborhood radius 𝜂 is equal to 0, then 𝜂(𝑥1) = {𝑥1, 𝑥2, 𝑥3}, and 
𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒(𝑥1, 𝜂) = 1. If the neighborhood radius 𝜂 is equal to 0.5, then 𝜂(𝑥1) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}, and 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒(𝑥1, 𝜂) = 0.6667. 
Therefore, in this case, the neighborhood radius 𝜂 is set to 0 by SSA. In case 4, if the neighborhood radius 𝜂 is equal to 0, then 
𝜂(𝑥1) = {𝑥1, 𝑥2, 𝑥3}, and 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒(𝑥1, 𝜂) = 0.6667. If the neighborhood radius 𝜂 is equal to 0.5, then 𝜂(𝑥1) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}, 
and 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒(𝑥1, 𝜂) = 0.3334. So, in this case, the neighborhood radius 𝜂 is set to 0 by SSA. Therefore, there exist no possibility to 
include the elements from other classes into the neighborhood by SSA. Because the distance between any two samples in the same 
class is equal to 0, if a certain element in another class is included in the neighborhood, the whole class is also included. In most 
cases, the label rate is worse than before. Therefore, SSA aims at the maximum of label rate to handle discrete attributes without 
additional settings.

Given a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩, for any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 , the classical definition of the lower 
approximation of 𝐷 with respect to 𝑠𝑢𝑏𝐶 is based on the inclusion relation, i.e., the neighborhood of the sample should be completely 
included in a certain decision class. In this paper, the definition of the lower approximation of 𝐷 with respect to 𝑠𝑢𝑏𝐶 is based on the 
label rate. If the maximum value of the label rate is 1, then the neighborhood of the sample must be included in a certain decision 
class.

Definition 5. Given a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩, for any attribute subset 𝑠𝑢𝑏𝐶 ⊆ 𝐶 , the attribute dependency of 
𝐷 on 𝑠𝑢𝑏𝐶 is defined as follows.

𝛾 (𝐷,𝑠𝑢𝑏𝐶) =
||𝑃𝑂𝑆𝑠𝑢𝑏𝐶 (𝐷)|||𝑈 | . (11)

Definition 6. Given a neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩, let 𝑠𝑢𝑏𝐶 ⊂ 𝐶 be an attribute subset of 𝐶 , for any 𝑐 ∈ 𝐶 − 𝑠𝑢𝑏𝐶 , 
the significance of attribute 𝑐 with respect to 𝑠𝑢𝑏𝐶 and 𝐷 is defined as follows.

𝑆𝑖𝑔 (𝑐, 𝑠𝑢𝑏𝐶,𝐷) = 𝛾 (𝐷,𝑠𝑢𝑏𝐶 ∪ {𝑐}) − 𝛾 (𝐷,𝑠𝑢𝑏𝐶) . (12)

It is easy to verify that 0 ⩽ 𝑆𝑖𝑔(𝑐, 𝑠𝑢𝑏𝐶, 𝐷) ⩽ 1. If 𝑆𝑖𝑔(𝑐, 𝑠𝑢𝑏𝐶, 𝐷) = 0, then the attribute 𝑐 is meaningless to 𝑠𝑢𝑏𝐶 , and if 
𝑆𝑖𝑔(𝑐, 𝑠𝑢𝑏𝐶, 𝐷) > 0, then the attribute 𝑐 is meaningful to 𝑠𝑢𝑏𝐶 . If 𝑆𝑖𝑔(𝑐, 𝑠𝑢𝑏𝐶, 𝐷) > 𝑆𝑖𝑔(𝑐′, 𝑠𝑢𝑏𝐶, 𝐷), then for 𝑠𝑢𝑏𝐶 , the attribute 
𝑐 is more important than the attribute 𝑐′ .

3.3. Algorithm design

In this subsection, we propose a greedy feature selection algorithm using SSA-based adaptive neighborhood rough set model given 
in Section 3.1.

The time complexity of Algorithm 1 is given as follows. In the worst case, the time complexity of Step 6 is 𝑂(|𝐶| × |𝑈 |2), and the 
time complexity of Step 9 is 𝑂(𝑟 × |𝐶| × |𝑈 |2), where 𝑟 is the iterations in SSA. As for the step 15, its time complexity depends on 
the iterations of the whole algorithm. In the worst case, the algorithm selects all features, which indicates that the time complexity 
of step 15 is 𝑂( (1+|𝐶|)×|𝐶|2 ). Therefore, in the worst case, the time complexity of Algorithm 1 is 𝑂(𝑟 × |𝐶| × |𝑈 |2). For comparison, we 
show that the time complexity of the classical neighborhood rough set model is 𝑂(|𝐶|2 × |𝑈 |𝑙𝑜𝑔|𝑈 |).
4. Experimental analysis

In this section, the effectiveness of the algorithm proposed in this paper is verified by experiments.

4.1. The settings of experiments

In this subsection, the settings of experiments are introduced. We conducted the comparative experiments on seventeen datasets, 
8

where the datasets were taken from the UCI Machine Learning Repository (https://archive .ics .uci .edu /ml /index .php) and (https://

https://archive.ics.uci.edu/ml/index.php
https://csse.szu.edu.cn/staff/zhuzx/datasets.html
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Algorithm 1 Feature selection algorithm using the adaptive neighborhood rough set model.

Input: A neighborhood decision table ⟨𝑈,𝐶 ∪𝐷,𝑁𝑒𝑖⟩
Output: A reduct 𝑠𝑢𝑏𝐶

1. 𝑠𝑢𝑏𝐶 ← ∅, 𝑉 ←𝑈,𝐴← 𝐶 ;

2. For 𝑘 = 1 ∶ |𝐴| do

3. 𝑃𝑂𝑆(𝐷)← ∅, 𝑠𝑢𝑏𝐶 ′ ← 𝑠𝑢𝑏𝐶 ∪ {𝑎𝑘};

4. For 𝑖 = 1 ∶ |𝑉 | do

5. For 𝑗 = 1 ∶ |𝑈 | do

6. Compute the distance between sample 𝑠𝑝𝑖 and sample 𝑠𝑝𝑗 ;

7. Record the maximum and minimum distances [𝑚𝑖𝑛(𝑠𝑝𝑖),𝑚𝑎𝑥(𝑠𝑝𝑖)];
8. End For

9. Use SSA to compute the adaptive neighborhood radius of sample 𝑠𝑝𝑖;

10. Compute the adaptive neighborhood of sample 𝑠𝑝𝑖;

11. If 𝑚𝑎𝑥 𝐿𝑎𝑏𝑒𝑙𝑟𝑎𝑡𝑒𝑠𝑢𝑏𝐶
′
(
𝑠𝑝𝑖, 𝜂𝑠𝑢𝑏𝐶

′

(𝑤,𝑠𝑝𝑖)

)
= 1 do

12. 𝑃𝑂𝑆(𝐷)← 𝑃𝑂𝑆(𝐷) ∪ {𝑠𝑝𝑖};

13. End if

14. End for

15. Compute 𝑆𝑖𝑔
(
𝑠𝑢𝑏𝐶 ′ , 𝑠𝑢𝑏𝐶,𝐷

)
= 𝛾

(
𝐷,𝑠𝑢𝑏𝐶 ′)− 𝛾 (𝐷,𝑠𝑢𝑏𝐶);

16. End for

17. Select 𝑎′ = 𝑎𝑟𝑔
𝑎∈𝐴−𝑠𝑢𝑏𝐶

max𝑆𝑖𝑔 (𝑎, 𝑠𝑢𝑏𝐶,𝐷);

18. If 𝑆𝑖𝑔 (𝑎, 𝑠𝑢𝑏𝐶,𝐷) ⩽ 0 do

19. Return 𝑠𝑢𝑏𝐶 ;

20. Else

21. 𝐴←𝐴− {𝑎′}, 𝑠𝑢𝑏𝐶 ← 𝑠𝑢𝑏𝐶 ∪ {𝑎′};

22. Return to Step 2.

csse .szu .edu .cn /staff /zhuzx /datasets .html) [41]. The properties of the above datasets are shown in Table 2. All condition attributes 
were normalized in each dataset into the interval [0,1]. In terms of SSA, the number of iterations was set to 30. We compared the 
algorithm proposed in this paper (denoted by SSAANRS) with five existing algorithms. A brief description of the five algorithms is 
given as follows.

(1) Hu et al. [15] proposed a novel approach to handle heterogeneous data based on 𝜂-neighborhood rough sets, and applied it 
to attribute reduction. This algorithm (denoted by ENUM) used Euclidean distance as the distance measure and set the parameter 𝛿
to vary from 0.01 to 0.1 in steps of 0.01.

(2) Hu et al. [40] applied the K-nearest neighbor relation to neighborhood rough sets and proposed a novel attribute reduction 
algorithm. This algorithm (denoted by TNN) used Euclidean distance as the distance measure and set the parameter K to vary from 
0.01 to 0.1 in steps of 0.01.

(3) Wang et al. [39] proposed the concept of maximal neighborhood discernibility and applied it to neighborhood rough sets. 
They proposed a feature selection algorithm based on maximal neighborhood discernibility. This algorithm (denoted by HARCD) 
used Chebyshev distance as the distance measure and set the parameter 𝜀 to vary from 0.01 to 0.1 in steps of 0.01.

(4) Wang et al. [19] proposed the K-nearest neighborhood rough set model based on 𝛿-neighborhood rough sets and K-nearest 
neighbor relation, and applied it to attribute reduction. This algorithm (denoted by KNNRS) used Euclidean distance as the distance 
measure and set the parameter K to vary from 0.01N to 0.1N in steps of 0.01N, where N represents the number of samples.

(5) Qu et al. [27] proposed the adaptive neighborhood rough set model based on the label distribution near the sample, and used 
it to design a maximum relevance minimum redundancy-based feature selection algorithm. This algorithm (denoted by FSMRI) used 
Euclidean distance as the distance measure.

To evaluate the performance of different feature selection algorithms, the following two parts are adopted in the experiments: 
(1) evaluate the feature selection process; (2) evaluate the attribute groups selected. For Part (1), the running time is recorded for 
comparison. For Part (2), the KNN and Decision Tree algorithms in Matlab are used to evaluate the accuracies and balanced accuracies 
of the attribute groups selected by different feature selection algorithms. The parameter K in KNN is set to vary from 1 to 10, and 
the Gini index is used as the partition measure of the decision tree. The ten-fold cross validation is applied to each dataset when 
evaluating the accuracy and balanced accuracy of different attribute groups. The experiments are run in MATLAB2023a, and the 
hardware environment is as follows: Intel(R) Core(TM) i9-13900HX CPU @ 2.20 GHz with 32 GB of RAM.

4.2. The analysis of experiments

According to Table 3, the SSAANRS ranks third among the six algorithms compared. Regarding running time, the SSAANRS is 
less than TNN about two times, ENUM about four times, and HARCD about three times. From Table 4 and Table 5, it can be seen 
that SSAANRS is less than KNNRS and more than the other algorithms in the number of attributes selected, but there is not much 
diversity. Therefore, in the process of feature selection, SSAANRS shows better performance.

Fig. 3 describes the trends in the performance of the diverse algorithms on two classifiers KNN and Decision Tree. It is clear that 
SSAANRS outperforms other algorithms in most datasets, particularly in the case of the Decision Tree algorithm. Moreover, more 
details are perceived in Table 6 to Table 11. In terms of the accuracy and balanced accuracy in the case of the KNN classifier with 
diverse K, the SSAANRS proves to be the best, which outperforms in most datasets compared with other algorithms. For the decision 
9

tree classifier, both the accuracy and balanced accuracy, the SSAANRS has the best experiment results. In addition, from Fig. 4, the 

https://csse.szu.edu.cn/staff/zhuzx/datasets.html
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Table 2

The properties of seventeen datasets.

No. Datasets Abbreviation Samples Features Classes

1 plrx plrx 182 12 2

2 ionosphere ionosphere 351 33 2

3 parkinsons parkinsons 195 21 2

4 heart heart 270 13 2

5 wpbc wpbc 194 21 2

6 audit audit 776 26 2

7 breast cancer coimbra bcc 116 9 2

8 Climate Model Simulation Crashes cmsc 540 18 2

9 messidor feature mf 1151 19 2

10 glass1 glass1 214 9 2

11 wine wine 178 13 3

12 speaker accent recognition sar 329 12 6

13 hill hill 606 100 2

14 gait classification gc 48 321 15

15 wdbc wdbc 569 23 2

16 Toxicity tc 171 1203 2

17 colon colon 62 2000 2

Table 3

The running time of different algorithms.

no datasets SSAANRS TNN ENUM HARCD FSMRI KNNRS

1 plrx 2 15 27 16 1 18

2 ionosphere 133 899 1036 564 1 359

3 parkinsons 20 74 99 71 1 52

4 heart 20 68 112 45 1 43

5 wpbc 29 176 255 146 1 105

6 audit 658 1387 4060 2919 2 1370

7 bcc 1 6 7 3 1 5

8 cmsc 133 591 541 365 1 47

9 mf 556 1996 9049 4974 2 1296

10 glass1 4 20 53 29 1 8

11 wine 6 33 33 18 1 17

12 sar 21 88 113 57 1 19

13 hill 8991 13154 26912 18982 11 5801

14 gc 190 1228 1585 1193 2 392

15 wdbc 31 11 13 17 1 17

16 tc 519 3587 1365 3103 204 696

17 colon 362 803 1513 1767 48 227

average 707.1 1458.3 2828.8 2031.4 14.5 640.3

Table 4

The number of attributes selected by different algorithms.

no datasets SSAANRS TNN ENUM HARCD FSMRI KNNRS RAW

1 plrx 1 1 3 2 1 12 12

2 ionosphere 4 3 3 2 1 33 33

3 parkinsons 5 1 3 5 2 22 22

4 heart 8 3 5 3 2 13 13

5 wpbc 3 1 2 2 2 33 33

6 audit 16 1 3 3 3 22 26

7 bcc 3 3 2 4 2 9 9

8 cmsc 5 2 2 3 1 18 18

9 mf 3 3 7 4 2 19 19

10 glass1 2 1 4 4 2 9 9

11 wine 5 2 3 4 2 13 13

12 sar 8 3 3 4 1 12 12

13 hill 10 2 3 7 7 100 100

14 gc 3 1 3 5 2 321 321

15 wdbc 5 3 3 6 1 23 23

16 tc 3 2 2 2 6 1206 1206

17 colon 4 4 6 2 1 2000 2000

average 5.4 1.9 3.3 3.7 2.1 45.4 45.7
10
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FSMRI KNNRS RAW

1 all 12

33 all 33

5,6 all 22

8,13 all 13

11,28 all 33

4,14,18 Except for 2,4,13,25 26

1,3 all 9

3 all 18

11,18 all 19

5,6 all 9

7,10 all 13

3 all 12

32,42,55,64,65,67,71 all 100

94,110 all 321

8 all 23

67,204,264,343,798,1035 all 1206

1909 all 2000
Table 5

The attributes selected by different algorithms.

no datasets SSAANRS TNN ENUM HARCD

1 plrx 12 12 3,6,12 1,9

2 ionosphere 3,6,8,26 4,5,17 2,31,32 1,7

3 parkinsons 1,18,19,20,21 5 1,19,20 1,7,16,19,20

4 heart 1,2,3,5,9,11,12,13 3,10,13 3,4,9,10,11 7,10,12

5 wpbc 5,16,31 23 1,15 1,12

6 audit 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 26 14,19,22 2,4,14

7 bcc 1,4,8 1,4,8 1,3 1,2,3,7

8 cmsc 1,2,14,15,16 1, 3 2 ,14 1,2,6

9 mf 3,7,10 3,7,16 3,6,9,10,11,15,18 1,7,8,16

10 glass1 1,4 8 1,3,4,9 1,3,4,6

11 wine 1,4,5,7,11 7,11 7,10,13 1,6,8,13

12 sar 1,3,4,5,6,7,10,11 5,6,12 1,3,10 1,2,8,10

13 hill 1,2,5,16,18,44,52,72,89,100 25,73 2,14,15 22,43,58,72,74,83,89

14 gc 149,259,267 302 100,221,255 163,192,223,281,291

15 wdbc 14,23,24,25,28 23,26,29 22,23,30 3,4,21,22,23,24

16 tc 430,758,1104 430,442 517,571 41,464

17 colon 95,258,1047,1411 95,258,1047,1411 1293,1673 72,781,1187,1231,1241,1539
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Fig. 3. The performance of different algorithms on two classifiers.

SSAANRS owns the best average performance. Hence, we can obtain that the SSAANRS performs stably and robustly. Interestingly, 
in some datasets, while the SSAANRS ranks not first in accuracy, in balanced accuracy it does. In addition, this phenomenon occurs 
in both of the classifiers. By contrast, other algorithms perform well in accuracy but not in balanced accuracy. This indicates that our 
method performs well in all decision classes, and the adaptive approach is necessary in some situations with complex data distribution.

The Wilcoxon pairwise test is applied to compare the experimental results and test whether a significant diversity exists between 
the SSAANRS and other algorithms in classification performance [1]. Here, we set the threshold as 0.05. From Table 12, in light of the 
decision tree classifier, we can see that all the P-values are lower than 0.05 except for ENUM and HARCD in the accuracy measure. 
Besides, all P-values are lower than 0.05 in balanced accuracy except for HARCD, KNNRS, and RAW. Hence, for the decision tree 
classifier, we can obtain that the SSAANRS is significantly diverse from TNN, FSMRI, KNNRS, and RAW in accuracy and ENUM, 
TNN, and FSMRI in balanced accuracy. In light of the KNN classifier, it can be seen that all the P-values are lower than 0.05 except 
for ENUM, TNN, and HARCD in the accuracy measure. In addition, all P-values are lower than 0.05 in balanced accuracy except 
for ENUM, TNN, and HARCD. Therefore, for the KNN classifier, the results show that the SSAANRS is significantly different from 
FSMRI, KNNRS and RAW in both accuracy and balanced accuracy. Consequently, the statistical test shows the SSAANRS has a good 
classification performance.

5. Conclusions and future work

This paper creatively transforms three problems in the classical neighborhood construction approach into an optimization problem. 
In order to introduce SSA to solve the optimization problem, the label rate is designed and regarded as the fitness function. Driven by 
SSA, the adaptive neighborhood construction approach ignores the drawbacks of the classical approach and searches the surroundings 
of the sample, aiming to achieve the target of maxing the label rate. The adaptive neighborhood rough set model is constructed and 
a novel feature selection algorithm is proposed. The experiments indicate that the proposed algorithm can select the feature subsets 
with the optimal performance, providing a novel attempt to address the parameter problem in rough set theory from the optimization 
12

perspective. However, the high running time also reveals that the adaptive granulation to all samples remains in need of improvement.
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Fig. 4. The averaged performance of different algorithms on two classifiers.

Table 6

The accuracy of different algorithm on KNN classifier.

no datasets algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 average

1 plrx

SSAANRS 0.6758 0.6533 0.6593 0.6863 0.6918 0.6995 0.7016 0.7049 0.7143 0.6940 0.6881

ENUM 0.5824 0.6374 0.6016 0.6577 0.6412 0.6676 0.6401 0.6731 0.6731 0.6824 0.6457

TNN 0.6643 0.6577 0.6385 0.6786 0.6962 0.7027 0.6973 0.7104 0.7187 0.6912 0.6855

HARCD 0.6297 0.6725 0.6473 0.6615 0.6456 0.6560 0.6478 0.6808 0.6868 0.6940 0.6622

FSMRI 0.5571 0.6319 0.5901 0.6505 0.6330 0.6610 0.6577 0.6659 0.6725 0.6874 0.6407

KNNRS 0.6407 0.6676 0.6505 0.6692 0.6632 0.6549 0.6445 0.6714 0.6692 0.6808 0.6612

RAW 0.6407 0.6676 0.6505 0.6692 0.6632 0.6549 0.6445 0.6714 0.6692 0.6808 0.6612

2 ionosphere

SSAANRS 0.8855 0.8678 0.8781 0.8789 0.8772 0.8801 0.8726 0.8718 0.8595 0.8556 0.8727

ENUM 0.8812 0.8601 0.8638 0.8413 0.8259 0.8302 0.8376 0.8328 0.8293 0.8308 0.8433

TNN 0.8880 0.8875 0.9205 0.9242 0.9211 0.9188 0.9137 0.9128 0.9085 0.8966 0.9092

HARCD 0.7738 0.7818 0.8125 0.8085 0.8251 0.8197 0.8293 0.8265 0.8299 0.8288 0.8136

FSMRI 0.7396 0.7328 0.8123 0.8137 0.8425 0.8416 0.8444 0.8427 0.8433 0.8399 0.8153

KNNRS 0.8641 0.8689 0.8450 0.8459 0.8422 0.8373 0.8311 0.8319 0.8311 0.8382 0.8436

RAW 0.8641 0.8689 0.8450 0.8459 0.8422 0.8373 0.8311 0.8319 0.8311 0.8382 0.8436

3 parkinsons

SSAANRS 0.9031 0.8923 0.8821 0.8872 0.8923 0.8744 0.8923 0.8718 0.8744 0.8923 0.8862

ENUM 0.8846 0.8805 0.8733 0.8687 0.8733 0.8585 0.8723 0.8667 0.8733 0.8708 0.8722

TNN 0.8359 0.8226 0.8149 0.7769 0.7728 0.7990 0.8359 0.8359 0.8359 0.8359 0.8166

HARCD 0.8667 0.8667 0.8964 0.8887 0.8944 0.8846 0.8923 0.8872 0.8872 0.8918 0.8856

FSMRI 0.6979 0.6949 0.7554 0.7492 0.7415 0.7477 0.7410 0.7503 0.7533 0.7513 0.7383

KNNRS 0.8467 0.8221 0.8477 0.8318 0.8533 0.8410 0.8385 0.8190 0.8267 0.8128 0.8339

RAW 0.8467 0.8221 0.8477 0.8318 0.8533 0.8410 0.8385 0.8190 0.8267 0.8128 0.8339
13
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Table 6 (continued)

no datasets algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 average

4 heart

SSAANRS 0.6537 0.6507 0.6689 0.6819 0.6930 0.6881 0.6844 0.6485 0.6496 0.6278 0.6647

ENUM 0.6689 0.6837 0.7122 0.7004 0.7148 0.7037 0.7111 0.6981 0.6993 0.6952 0.6987

TNN 0.7300 0.7541 0.7641 0.7741 0.7556 0.7493 0.7626 0.7767 0.7752 0.7785 0.7620

HARCD 0.7137 0.6893 0.7641 0.7300 0.7493 0.7467 0.7496 0.7519 0.7574 0.7559 0.7408

FSMRI 0.6526 0.6311 0.7293 0.7274 0.7441 0.7300 0.7400 0.7348 0.7385 0.7319 0.7160

KNNRS 0.5815 0.6185 0.6530 0.6578 0.6611 0.6522 0.6700 0.6648 0.6596 0.6622 0.6481

RAW 0.5815 0.6185 0.6530 0.6578 0.6611 0.6522 0.6700 0.6648 0.6596 0.6622 0.6481

5 wpbc

SSAANRS 0.6392 0.6586 0.7113 0.7165 0.7216 0.7113 0.7423 0.7680 0.7629 0.7629 0.7195

ENUM 0.6758 0.6892 0.7309 0.7253 0.7345 0.7278 0.7309 0.7263 0.7392 0.7402 0.7220

TNN 0.6763 0.6665 0.7052 0.7165 0.7438 0.7356 0.7299 0.7216 0.7479 0.7490 0.7192

HARCD 0.7108 0.6686 0.6892 0.6881 0.7067 0.6866 0.7253 0.7309 0.7546 0.7418 0.7103

FSMRI 0.6912 0.6990 0.7046 0.6814 0.7098 0.7211 0.7443 0.7464 0.7526 0.7454 0.7196

KNNRS 0.6876 0.6670 0.7160 0.6995 0.7108 0.7010 0.7320 0.7330 0.7387 0.7438 0.7129

RAW 0.6876 0.6670 0.7160 0.6995 0.7108 0.7010 0.7320 0.7330 0.7387 0.7438 0.7129

6 audit

SSAANRS 0.9907 0.9910 0.9919 0.9906 0.9905 0.9885 0.9885 0.9881 0.9871 0.9867 0.9894

ENUM 0.8988 0.9053 0.8974 0.8957 0.8996 0.8921 0.8863 0.8872 0.8836 0.8823 0.8929

TNN 0.9999 0.9991 0.9987 0.9985 0.9986 0.9973 0.9982 0.9981 0.9972 0.9974 0.9983

HARCD 0.7869 0.7848 0.8335 0.8231 0.8282 0.8296 0.8456 0.8365 0.8369 0.8259 0.8231

FSMRI 0.9353 0.9289 0.9367 0.9339 0.9356 0.9304 0.9291 0.9281 0.9276 0.9280 0.9314

KNNRS 0.9698 0.9682 0.9684 0.9678 0.9719 0.9631 0.9624 0.9575 0.9522 0.9488 0.9630

RAW 0.9698 0.9682 0.9684 0.9678 0.9719 0.9631 0.9624 0.9575 0.9522 0.9488 0.9630

7 bcc

SSAANRS 0.6897 0.7328 0.7586 0.7328 0.7500 0.7328 0.7129 0.7155 0.7328 0.7336 0.7292

ENUM 0.7095 0.7129 0.7069 0.6940 0.7034 0.6871 0.6957 0.7095 0.7310 0.7224 0.7072

TNN 0.6819 0.6819 0.7138 0.7017 0.7086 0.7138 0.7336 0.7181 0.7293 0.7345 0.7117

HARCD 0.7147 0.7009 0.7509 0.7371 0.7776 0.7828 0.7733 0.7595 0.7733 0.7612 0.7531

FSMRI 0.7103 0.7000 0.7164 0.7052 0.7095 0.6922 0.6948 0.7034 0.7328 0.7284 0.7093

KNNRS 0.5922 0.5922 0.5388 0.5103 0.5414 0.5172 0.5121 0.5043 0.4853 0.4966 0.5291

RAW 0.5922 0.5922 0.5388 0.5103 0.5414 0.5172 0.5121 0.5043 0.4853 0.4966 0.5291

8 cmsc

SSAANRS 0.9239 0.9187 0.9370 0.9335 0.9315 0.9269 0.9330 0.9302 0.9250 0.9287 0.9288

ENUM 0.8691 0.8581 0.8835 0.8774 0.9022 0.9004 0.9089 0.9069 0.9104 0.9074 0.8924

TNN 0.8565 0.8528 0.8985 0.9013 0.9070 0.9050 0.9093 0.9107 0.9146 0.9141 0.8970

HARCD 0.8894 0.8889 0.9093 0.9085 0.9083 0.9120 0.9143 0.9137 0.9174 0.9141 0.9076

FSMRI 0.8465 0.8335 0.8980 0.8978 0.9089 0.9102 0.9148 0.9148 0.9148 0.9148 0.8954

KNNRS 0.8876 0.8874 0.9213 0.9196 0.9293 0.9306 0.9315 0.9280 0.9224 0.9209 0.9179

RAW 0.8876 0.8874 0.9213 0.9196 0.9293 0.9306 0.9315 0.9280 0.9224 0.9209 0.9179

9 mf

SSAANRS 0.6334 0.6247 0.6342 0.6360 0.6481 0.6681 0.6681 0.6620 0.6881 0.6820 0.6545

ENUM 0.6382 0.6375 0.6273 0.6377 0.6507 0.6622 0.6615 0.6685 0.6648 0.6669 0.6515

TNN 0.6221 0.6419 0.6430 0.6568 0.6493 0.6566 0.6535 0.6606 0.6599 0.6705 0.6514

HARCD 0.5703 0.5581 0.5662 0.5600 0.5680 0.5683 0.5692 0.5648 0.5698 0.5620 0.5657

FSMRI 0.5362 0.5146 0.5271 0.5184 0.5259 0.5107 0.5148 0.4959 0.5203 0.5067 0.5171

KNNRS 0.6203 0.6282 0.6380 0.6446 0.6461 0.6513 0.6658 0.6692 0.6638 0.6616 0.6489

RAW 0.6203 0.6282 0.6380 0.6446 0.6461 0.6513 0.6658 0.6692 0.6638 0.6616 0.6489

10 glass1

SSAANRS 0.6346 0.6220 0.6864 0.6706 0.7023 0.6869 0.6850 0.6935 0.6925 0.6977 0.6771

ENUM 0.7706 0.7388 0.7668 0.7607 0.7724 0.7804 0.7879 0.7804 0.7832 0.7864 0.7728

TNN 0.6201 0.6294 0.6299 0.6364 0.6299 0.6355 0.6379 0.6430 0.6449 0.6449 0.6352

HARCD 0.8005 0.7888 0.7855 0.7944 0.7972 0.7893 0.7850 0.7879 0.7827 0.7846 0.7896

FSMRI 0.6164 0.6350 0.6808 0.6710 0.6930 0.6911 0.6935 0.6874 0.6841 0.6794 0.6732

KNNRS 0.8561 0.8248 0.8028 0.7925 0.8051 0.7995 0.7953 0.7893 0.7776 0.7799 0.8023

RAW 0.8561 0.8248 0.8028 0.7925 0.8051 0.7995 0.7953 0.7893 0.7776 0.7799 0.8023

In the future, we will explore more efficient search strategies to improve the performance of the adaptive approach further. We will 
also discuss the expansion of the adaptive approach to multi-granulation knowledge discovery to achieve the no-parameterization.
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Table 7

The accuracy of different algorithm on KNN classifier (Continued).

no datasets algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 average

11 wine

SSAANRS 0.9388 0.9253 0.9309 0.9326 0.9365 0.9264 0.9303 0.9287 0.9298 0.9281 0.9307

ENUM 0.7663 0.7298 0.7365 0.7236 0.7146 0.7056 0.7017 0.7051 0.6753 0.6736 0.7132

TNN 0.8854 0.8640 0.8787 0.8410 0.8393 0.8393 0.8438 0.8427 0.8393 0.8444 0.8518

HARCD 0.7140 0.7140 0.6983 0.7051 0.6899 0.6736 0.6708 0.6916 0.6685 0.6770 0.6903

FSMRI 0.9292 0.9287 0.9326 0.9140 0.9079 0.9169 0.9135 0.9219 0.9169 0.9230 0.9204

KNNRS 0.7551 0.7579 0.7303 0.7135 0.7096 0.6927 0.7090 0.7169 0.7174 0.7140 0.7216

RAW 0.7551 0.7579 0.7303 0.7135 0.7096 0.6927 0.7090 0.7169 0.7174 0.7140 0.7216

12 sar

SSAANRS 0.7304 0.7176 0.7429 0.7307 0.7252 0.7343 0.7438 0.7210 0.7271 0.7301 0.7303

ENUM 0.5514 0.5617 0.5708 0.5818 0.5778 0.5717 0.5687 0.5705 0.5857 0.5906 0.5731

TNN 0.4809 0.5255 0.5608 0.5337 0.5441 0.5307 0.5392 0.5334 0.5389 0.5416 0.5329

HARCD 0.6018 0.5778 0.6158 0.6240 0.6343 0.6271 0.6319 0.6286 0.6304 0.6255 0.6197

FSMRI 0.3422 0.3301 0.3720 0.4046 0.4195 0.4173 0.4210 0.4119 0.4043 0.4298 0.3953

KNNRS 0.8055 0.7538 0.7903 0.8128 0.8170 0.8188 0.8155 0.8100 0.7991 0.7897 0.8013

RAW 0.8055 0.7538 0.7903 0.8128 0.8170 0.8188 0.8155 0.8100 0.7991 0.7897 0.8013

13 hill

SSAANRS 0.6700 0.5914 0.5955 0.5853 0.6038 0.5848 0.5698 0.5635 0.5645 0.5545 0.5883

ENUM 0.5581 0.5490 0.5535 0.5559 0.5604 0.5475 0.5611 0.5556 0.5611 0.5540 0.5556

TNN 0.5703 0.5589 0.5774 0.5525 0.5686 0.5559 0.5551 0.5462 0.5300 0.5442 0.5559

HARCD 0.6248 0.5686 0.5746 0.5596 0.5652 0.5441 0.5348 0.5322 0.5315 0.5272 0.5563

FSMRI 0.5356 0.5370 0.5360 0.5368 0.5348 0.5360 0.5348 0.5462 0.5480 0.5404 0.5386

KNNRS 0.5944 0.5616 0.5462 0.5513 0.5612 0.5535 0.5536 0.5375 0.5396 0.5414 0.5540

RAW 0.5944 0.5616 0.5462 0.5513 0.5612 0.5535 0.5536 0.5375 0.5396 0.5414 0.5540

14 gc

SSAANRS 0.4688 0.5625 0.5500 0.4833 0.4438 0.4417 0.4292 0.3979 0.3688 0.4354 0.4581

ENUM 0.7000 0.8104 0.7229 0.6604 0.6021 0.5854 0.5646 0.5625 0.5021 0.4313 0.6142

TNN 0.1333 0.2708 0.2396 0.1313 0.1417 0.1375 0.1792 0.1813 0.1750 0.1583 0.1748

HARCD 0.6958 0.9021 0.7438 0.7167 0.6833 0.6646 0.5313 0.5208 0.4250 0.3563 0.6240

FSMRI 0.0854 0.1667 0.2271 0.1917 0.2375 0.1583 0.1542 0.1792 0.2229 0.2521 0.1875

KNNRS 0.2292 0.2958 0.3375 0.2604 0.1875 0.1708 0.1583 0.1417 0.1458 0.1625 0.2090

RAW 0.2292 0.2958 0.3375 0.2604 0.1875 0.1708 0.1583 0.1417 0.1458 0.1625 0.2090

15 wdbc

SSAANRS 0.8840 0.8907 0.8974 0.9000 0.9042 0.9054 0.8996 0.9070 0.9107 0.9148 0.9014

ENUM 0.8213 0.8353 0.8606 0.8634 0.8735 0.8714 0.8796 0.8731 0.8677 0.8664 0.8612

TNN 0.9190 0.9132 0.9327 0.9332 0.9394 0.9371 0.9411 0.9411 0.9413 0.9394 0.9337

HARCD 0.9105 0.9139 0.9237 0.9271 0.9304 0.9276 0.9306 0.9311 0.9311 0.9299 0.9256

FSMRI 0.8434 0.8710 0.8910 0.8917 0.9070 0.9011 0.9130 0.9067 0.9086 0.9070 0.8941

KNNRS 0.9156 0.9223 0.9251 0.9236 0.9327 0.9299 0.9318 0.9293 0.9329 0.9308 0.9274

RAW 0.9156 0.9223 0.9251 0.9236 0.9327 0.9299 0.9318 0.9293 0.9329 0.9308 0.9274

16 tc

SSAANRS 0.6901 0.6316 0.6000 0.5930 0.5936 0.6374 0.6433 0.6257 0.6257 0.6491 0.6289

ENUM 0.5450 0.5526 0.5889 0.5515 0.6064 0.5930 0.6275 0.6310 0.6503 0.6409 0.5987

TNN 0.6374 0.6140 0.6140 0.6199 0.6199 0.6363 0.6257 0.6292 0.6433 0.6433 0.6283

HARCD 0.6316 0.6023 0.6023 0.6082 0.6199 0.6199 0.6404 0.6398 0.6906 0.6737 0.6329

FSMRI 0.5965 0.5556 0.6374 0.6374 0.6608 0.6608 0.6719 0.6766 0.6433 0.6374 0.6378

KNNRS 0.4901 0.4719 0.5205 0.5532 0.5620 0.5550 0.5760 0.5836 0.5667 0.5766 0.5456

RAW 0.4901 0.4719 0.5205 0.5532 0.5620 0.5550 0.5760 0.5836 0.5667 0.5766 0.5456

17 colon

SSAANRS 0.9000 0.8226 0.8161 0.8032 0.8484 0.8452 0.8387 0.8242 0.8323 0.8387 0.8369

ENUM 0.7339 0.7548 0.7016 0.7403 0.7371 0.7290 0.7177 0.7242 0.7065 0.7274 0.7273

TNN 0.9032 0.8290 0.8097 0.7968 0.8371 0.8355 0.8387 0.8226 0.8371 0.8274 0.8337

HARCD 0.7161 0.7129 0.7000 0.6613 0.6484 0.6694 0.6581 0.6516 0.6016 0.6306 0.6650

FSMRI 0.6452 0.6855 0.7000 0.7097 0.7419 0.7371 0.7548 0.7371 0.7565 0.7548 0.7223

KNNRS 0.7984 0.8258 0.8500 0.7887 0.8387 0.7984 0.7742 0.7742 0.7726 0.7613 0.7982

RAW 0.7984 0.8258 0.8500 0.7887 0.8387 0.7984 0.7742 0.7742 0.7726 0.7613 0.7982

Table 8

The balanced accuracy of different algorithm on KNN classifier.

no datasets algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 average

1 plrx

SSAANRS 0.6063 0.5287 0.5087 0.5319 0.5656 0.5329 0.5325 0.5294 0.5225 0.4946 0.5353

ENUM 0.4948 0.4869 0.4733 0.4977 0.4890 0.4848 0.4679 0.4846 0.4794 0.4887 0.4847

TNN 0.5960 0.5275 0.5133 0.5325 0.5719 0.5344 0.5358 0.5240 0.5279 0.4937 0.5357

HARCD 0.5427 0.5308 0.5448 0.5471 0.5238 0.5040 0.5160 0.5065 0.5231 0.5202 0.5259

FSMRI 0.4706 0.4850 0.4565 0.4762 0.4696 0.4885 0.4898 0.4900 0.4827 0.4852 0.4794

KNNRS 0.5423 0.5202 0.4862 0.4925 0.4898 0.4829 0.4556 0.4787 0.4783 0.4802 0.4907

RAW 0.5423 0.5202 0.4862 0.4925 0.4898 0.4829 0.4556 0.4787 0.4783 0.4802 0.4907
15
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Table 8 (continued)

no datasets algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 average

2 ionosphere

SSAANRS 0.8717 0.8576 0.8509 0.8522 0.8463 0.8462 0.8414 0.8290 0.8217 0.8148 0.8432

ENUM 0.8770 0.8547 0.8552 0.8286 0.8135 0.8082 0.8040 0.8040 0.7929 0.7920 0.8230

TNN 0.8811 0.8840 0.9064 0.9055 0.9067 0.9019 0.8965 0.8884 0.8811 0.8690 0.8921

HARCD 0.7501 0.7685 0.7932 0.7915 0.7965 0.8000 0.8069 0.7996 0.7956 0.8013 0.7903

FSMRI 0.7303 0.7160 0.7833 0.7829 0.8045 0.8047 0.8113 0.8063 0.8082 0.8048 0.7852

KNNRS 0.8208 0.8218 0.7931 0.7989 0.7869 0.7937 0.7754 0.7756 0.7746 0.7800 0.7921

RAW 0.8208 0.8218 0.7931 0.7989 0.7869 0.7937 0.7754 0.7756 0.7746 0.7800 0.7921

3 parkinsons

SSAANRS 0.8607 0.8522 0.8096 0.8436 0.8165 0.8180 0.7935 0.7935 0.7968 0.8083 0.8193

ENUM 0.8303 0.8504 0.8130 0.8319 0.7933 0.8067 0.7891 0.8024 0.7923 0.8039 0.8113

TNN 0.7007 0.6972 0.6996 0.6991 0.6779 0.6928 0.7017 0.7017 0.7017 0.7017 0.6974

HARCD 0.8334 0.8677 0.8528 0.8595 0.8314 0.8281 0.8365 0.8445 0.8266 0.8233 0.8404

FSMRI 0.5478 0.6227 0.6360 0.6577 0.6077 0.6678 0.6417 0.6669 0.6444 0.6753 0.6368

KNNRS 0.8000 0.8047 0.7786 0.7712 0.7675 0.7518 0.7287 0.7386 0.7061 0.6966 0.7544

RAW 0.8000 0.8047 0.7786 0.7712 0.7675 0.7518 0.7287 0.7386 0.7061 0.6966 0.7544

4 heart

SSAANRS 0.6544 0.6334 0.6611 0.6621 0.6876 0.6767 0.6710 0.6276 0.6360 0.5948 0.6505

ENUM 0.6591 0.6581 0.6997 0.6813 0.7097 0.6838 0.6962 0.6736 0.7008 0.6783 0.6841

TNN 0.7158 0.7338 0.7493 0.7633 0.7433 0.7346 0.7583 0.7621 0.7652 0.7665 0.7492

HARCD 0.6986 0.6677 0.7512 0.7133 0.7498 0.7276 0.7369 0.7354 0.7445 0.7350 0.7260

FSMRI 0.6298 0.6048 0.7246 0.7111 0.7403 0.7235 0.7418 0.7224 0.7349 0.7213 0.7054

KNNRS 0.5703 0.5920 0.6523 0.6363 0.6590 0.6365 0.6593 0.6419 0.6440 0.6376 0.6329

RAW 0.5703 0.5920 0.6523 0.6363 0.6590 0.6365 0.6593 0.6419 0.6440 0.6376 0.6329

5 wpbc

SSAANRS 0.5126 0.5257 0.5214 0.5305 0.4923 0.4823 0.4955 0.5000 0.5049 0.5035 0.5069

ENUM 0.5575 0.5733 0.5947 0.5938 0.5636 0.5783 0.5608 0.5568 0.5475 0.5626 0.5689

TNN 0.5272 0.5656 0.5466 0.5584 0.5515 0.5270 0.4963 0.4907 0.4990 0.4947 0.5257

HARCD 0.6088 0.5843 0.5462 0.5572 0.5018 0.5081 0.5144 0.5336 0.5599 0.5501 0.5464

FSMRI 0.5519 0.6017 0.5017 0.4874 0.4873 0.4829 0.4935 0.4914 0.4926 0.4845 0.5075

KNNRS 0.6009 0.5639 0.5693 0.5495 0.5290 0.5145 0.4964 0.5038 0.4918 0.4904 0.5310

RAW 0.6009 0.5639 0.5693 0.5495 0.5290 0.5145 0.4964 0.5038 0.4918 0.4904 0.5310

6 audit

SSAANRS 0.9891 0.9890 0.9899 0.9876 0.9881 0.9871 0.9855 0.9850 0.9845 0.9831 0.9869

ENUM 0.9011 0.8995 0.9032 0.9073 0.9110 0.9067 0.9030 0.8997 0.8977 0.8983 0.9028

TNN 0.9995 0.9995 0.9982 0.9984 0.9977 0.9980 0.9972 0.9969 0.9966 0.9962 0.9978

HARCD 0.7802 0.7860 0.8284 0.8079 0.8166 0.8182 0.8244 0.8189 0.8185 0.8060 0.8105

FSMRI 0.9329 0.9249 0.9393 0.9369 0.9365 0.9355 0.9333 0.9337 0.9319 0.9344 0.9339

KNNRS 0.9648 0.9615 0.9603 0.9601 0.9621 0.9584 0.9531 0.9457 0.9378 0.9363 0.9540

RAW 0.9648 0.9615 0.9603 0.9601 0.9621 0.9584 0.9531 0.9457 0.9378 0.9363 0.9540

7 bcc

SSAANRS 0.6725 0.7119 0.7013 0.6933 0.7073 0.7047 0.7225 0.7199 0.7252 0.7209 0.7080

ENUM 0.6996 0.7159 0.7088 0.6853 0.6866 0.6745 0.6796 0.7012 0.7275 0.7206 0.7000

TNN 0.6681 0.6934 0.6977 0.6974 0.7036 0.7033 0.7136 0.7100 0.7329 0.7338 0.7054

HARCD 0.7247 0.6984 0.7474 0.7469 0.7725 0.7607 0.7666 0.7526 0.7600 0.7665 0.7496

FSMRI 0.7121 0.7328 0.7102 0.6880 0.7017 0.6903 0.6889 0.7127 0.7231 0.7157 0.7076

KNNRS 0.5776 0.5883 0.5267 0.5150 0.4830 0.5142 0.5031 0.4859 0.4457 0.4811 0.5121

RAW 0.5776 0.5883 0.5267 0.5150 0.4830 0.5142 0.5031 0.4859 0.4457 0.4811 0.5121

8 cmsc

SSAANRS 0.7214 0.7607 0.7497 0.7504 0.7079 0.7150 0.6919 0.6763 0.6489 0.6648 0.7087

ENUM 0.5520 0.5697 0.5120 0.5145 0.5180 0.5195 0.5113 0.5118 0.5057 0.5081 0.5223

TNN 0.5503 0.5402 0.5218 0.5295 0.5149 0.5244 0.5016 0.5122 0.4999 0.4996 0.5194

HARCD 0.6275 0.6786 0.6332 0.6595 0.5944 0.6305 0.5997 0.6081 0.5830 0.5924 0.6207

FSMRI 0.4878 0.5084 0.4990 0.5022 0.4970 0.4976 0.5000 0.5000 0.5000 0.5000 0.4992

KNNRS 0.6043 0.6443 0.6018 0.6247 0.6158 0.6098 0.6012 0.5731 0.5631 0.5446 0.5983

RAW 0.6043 0.6443 0.6018 0.6247 0.6158 0.6098 0.6012 0.5731 0.5631 0.5446 0.5983

9 mf

SSAANRS 0.6196 0.6234 0.6157 0.6386 0.6387 0.6554 0.6553 0.6669 0.6685 0.6728 0.6455

ENUM 0.6413 0.6462 0.6386 0.6536 0.6590 0.6678 0.6620 0.6744 0.6667 0.6769 0.6587

TNN 0.6207 0.6498 0.6486 0.6652 0.6485 0.6676 0.6597 0.6675 0.6684 0.6767 0.6573

HARCD 0.5669 0.5639 0.5620 0.5665 0.5704 0.5799 0.5676 0.5684 0.5636 0.5653 0.5674

FSMRI 0.5337 0.5268 0.5300 0.5235 0.5220 0.5172 0.5144 0.4947 0.5113 0.5025 0.5176

KNNRS 0.6213 0.6414 0.6376 0.6515 0.6512 0.6536 0.6642 0.6705 0.6676 0.6669 0.6526

RAW 0.6213 0.6414 0.6376 0.6515 0.6512 0.6536 0.6642 0.6705 0.6676 0.6669 0.6526

10 glass1

SSAANRS 0.6016 0.6064 0.6566 0.6420 0.6548 0.6450 0.6386 0.6374 0.6369 0.6407 0.6360

ENUM 0.7472 0.7131 0.7262 0.7333 0.7477 0.7568 0.7620 0.7611 0.7465 0.7552 0.7449

TNN 0.4793 0.4871 0.4879 0.4960 0.4898 0.4950 0.4960 0.4982 0.5000 0.5000 0.4929

HARCD 0.7767 0.7798 0.7519 0.7513 0.7665 0.7528 0.7507 0.7508 0.7566 0.7497 0.7587

FSMRI 0.5782 0.6118 0.6158 0.6301 0.6326 0.6346 0.6192 0.6198 0.6166 0.6218 0.6181

KNNRS 0.8263 0.8022 0.7653 0.7664 0.7698 0.7764 0.7520 0.7487 0.7337 0.7339 0.7675

RAW 0.8263 0.8022 0.7653 0.7664 0.7698 0.7764 0.7520 0.7487 0.7337 0.7339 0.7675
16
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Table 9

The balanced accuracy of different algorithm on KNN classifier (Continued).

no datasets algorithm K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 average

11 wine

SSAANRS 0.9503 0.9409 0.9410 0.9429 0.9474 0.9371 0.9425 0.9359 0.9408 0.9418 0.9421

ENUM 0.7410 0.7372 0.7231 0.7196 0.6953 0.6822 0.6854 0.6931 0.6688 0.6689 0.7014

TNN 0.8993 0.8826 0.8950 0.8653 0.8594 0.8674 0.8657 0.8648 0.8595 0.8660 0.8725

HARCD 0.6932 0.7097 0.6724 0.6916 0.6549 0.6587 0.6592 0.6766 0.6686 0.6832 0.6768

FSMRI 0.9356 0.9354 0.9450 0.9263 0.9194 0.9317 0.9218 0.9308 0.9268 0.9334 0.9306

KNNRS 0.7542 0.7460 0.7222 0.7250 0.7010 0.6938 0.7000 0.7205 0.7079 0.7075 0.7178

RAW 0.7542 0.7460 0.7222 0.7250 0.7010 0.6938 0.7000 0.7205 0.7079 0.7075 0.7178

12 sar

SSAANRS 0.7084 0.6829 0.6893 0.6915 0.6669 0.6637 0.6820 0.6597 0.6511 0.6594 0.6755

ENUM 0.4506 0.4731 0.4445 0.4402 0.4427 0.4165 0.3994 0.4021 0.4018 0.4183 0.4289

TNN 0.3652 0.4058 0.4136 0.3950 0.3935 0.3847 0.3775 0.3836 0.3666 0.3669 0.3852

HARCD 0.5087 0.4897 0.4920 0.4948 0.4951 0.5013 0.4944 0.4799 0.4913 0.4869 0.4934

FSMRI 0.2007 0.1992 0.1984 0.2209 0.2149 0.2121 0.2031 0.1724 0.1688 0.1623 0.1953

KNNRS 0.7933 0.7682 0.7651 0.7819 0.7806 0.7722 0.7552 0.7637 0.7479 0.7219 0.7650

RAW 0.7933 0.7682 0.7651 0.7819 0.7806 0.7722 0.7552 0.7637 0.7479 0.7219 0.7650

13 hill

SSAANRS 0.6592 0.5997 0.5872 0.5833 0.5925 0.5778 0.5652 0.5630 0.5656 0.5570 0.5851

ENUM 0.5614 0.5471 0.5478 0.5483 0.5617 0.5477 0.5563 0.5524 0.5616 0.5548 0.5539

TNN 0.5668 0.5538 0.5771 0.5603 0.5611 0.5596 0.5496 0.5451 0.5399 0.5422 0.5556

HARCD 0.6194 0.5618 0.5720 0.5607 0.5620 0.5456 0.5360 0.5276 0.5209 0.5318 0.5538

FSMRI 0.5326 0.5335 0.5408 0.5391 0.5278 0.5411 0.5379 0.5382 0.5444 0.5325 0.5368

KNNRS 0.5953 0.5600 0.5467 0.5620 0.5703 0.5546 0.5508 0.5448 0.5343 0.5386 0.5558

RAW 0.5953 0.5600 0.5467 0.5620 0.5703 0.5546 0.5508 0.5448 0.5343 0.5386 0.5558

14 gc

SSAANRS 0.4583 0.5708 0.5396 0.4813 0.4542 0.4500 0.4500 0.3833 0.3896 0.4292 0.4606

ENUM 0.6958 0.8021 0.7292 0.6500 0.6021 0.5729 0.5625 0.5667 0.5125 0.4167 0.6110

TNN 0.1313 0.2813 0.2458 0.1417 0.1333 0.1250 0.1750 0.1646 0.1729 0.1563 0.1727

HARCD 0.7063 0.9021 0.7458 0.7167 0.6917 0.6563 0.5354 0.5042 0.4188 0.3500 0.6227

FSMRI 0.0896 0.1667 0.2167 0.1813 0.2479 0.1646 0.1354 0.1875 0.2250 0.2583 0.1873

KNNRS 0.2292 0.2958 0.3396 0.2521 0.1875 0.1604 0.1333 0.1542 0.1542 0.1708 0.2077

RAW 0.2292 0.2958 0.3396 0.2521 0.1875 0.1604 0.1333 0.1542 0.1542 0.1708 0.2077

15 wdbc

SSAANRS 0.8751 0.8753 0.8846 0.8860 0.8909 0.8877 0.8851 0.8908 0.8937 0.9002 0.8869

ENUM 0.8029 0.8090 0.8433 0.8400 0.8586 0.8595 0.8614 0.8527 0.8484 0.8493 0.8425

TNN 0.9171 0.9030 0.9235 0.9232 0.9332 0.9305 0.9324 0.9328 0.9362 0.9341 0.9266

HARCD 0.9001 0.8946 0.9133 0.9159 0.9222 0.9159 0.9208 0.9166 0.9205 0.9188 0.9139

FSMRI 0.8331 0.8585 0.8843 0.8810 0.8992 0.8950 0.9061 0.9019 0.9045 0.9018 0.8865

KNNRS 0.9084 0.9062 0.9169 0.9168 0.9230 0.9192 0.9236 0.9218 0.9227 0.9210 0.9180

RAW 0.9084 0.9062 0.9169 0.9168 0.9230 0.9192 0.9236 0.9218 0.9227 0.9210 0.9180

16 tc

SSAANRS 0.6502 0.6203 0.6113 0.5717 0.4940 0.5245 0.5154 0.5429 0.5245 0.5339 0.5589

ENUM 0.4716 0.5061 0.4882 0.4787 0.4971 0.4977 0.5169 0.5209 0.5302 0.5265 0.5034

TNN 0.6042 0.5983 0.5571 0.5530 0.5605 0.5619 0.5518 0.5365 0.5221 0.5348 0.5580

HARCD 0.4809 0.4770 0.4815 0.5060 0.4905 0.4960 0.5057 0.5346 0.5689 0.5563 0.5098

FSMRI 0.5399 0.5054 0.5518 0.5607 0.5731 0.5733 0.5797 0.5700 0.5577 0.5528 0.5564

KNNRS 0.4390 0.4329 0.4305 0.4910 0.4659 0.4744 0.4617 0.4838 0.4438 0.4580 0.4581

RAW 0.4390 0.4329 0.4305 0.4910 0.4659 0.4744 0.4617 0.4838 0.4438 0.4580 0.4581

17 colon

SSAANRS 0.8885 0.8010 0.7978 0.7765 0.8419 0.8467 0.8427 0.8065 0.8209 0.8108 0.8233

ENUM 0.7180 0.7270 0.6936 0.6802 0.6774 0.6848 0.6590 0.6520 0.6585 0.6733 0.6824

TNN 0.8915 0.8005 0.8034 0.7843 0.8318 0.8247 0.8361 0.7949 0.8327 0.8302 0.8230

HARCD 0.6606 0.6188 0.5878 0.5430 0.5450 0.5765 0.5855 0.5490 0.5415 0.5415 0.5749

FSMRI 0.6191 0.6066 0.6627 0.6663 0.6897 0.6701 0.7184 0.6931 0.7070 0.6786 0.6712

KNNRS 0.7548 0.7734 0.8008 0.7553 0.7909 0.7318 0.7045 0.7103 0.6967 0.6856 0.7404

RAW 0.7548 0.7734 0.8008 0.7553 0.7909 0.7318 0.7045 0.7103 0.6967 0.6856 0.7404

Data availability

Data will be made available on request.
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Table 10

The accuracy of different algorithm on Decision Tree classifier.

no datasets SSAANRS ENUM TNN HARCD FSMRI KNNRS RAW

1 plrx 0.6588 0.5819 0.6670 0.6170 0.6302 0.5868 0.5868

2 ionosphere 0.8795 0.8467 0.8858 0.7974 0.7772 0.8764 0.8764

3 parkinsons 0.8549 0.8544 0.8359 0.8610 0.8164 0.8492 0.8492

4 heart 0.7785 0.7193 0.7544 0.7237 0.7181 0.7544 0.7544

5 wpbc 0.6768 0.6933 0.6670 0.7294 0.6644 0.6778 0.6778

6 audit 0.9999 0.8934 0.9997 0.8715 0.9273 0.9999 0.9999

7 bcc 0.6621 0.7103 0.6319 0.6466 0.7043 0.7017 0.7017

8 cmsc 0.8654 0.8626 0.8639 0.8950 0.8622 0.9044 0.9044

9 mf 0.6294 0.6202 0.6540 0.5913 0.5217 0.6104 0.6104

10 glass1 0.7514 0.7607 0.6215 0.8014 0.7079 0.7355 0.7355

11 wine 0.9124 0.9247 0.8601 0.8416 0.8910 0.8944 0.8944

12 sar 0.6526 0.5140 0.5064 0.5836 0.3766 0.6608 0.6608

13 hill 0.6114 0.5503 0.5449 0.5617 0.5165 0.5865 0.5865

14 gc 0.3833 0.4833 0.1500 0.4917 0.1896 0.2938 0.2938

15 wdbc 0.9295 0.8332 0.9281 0.9204 0.8531 0.9223 0.9223

16 tc 0.6275 0.5392 0.6333 0.6012 0.5632 0.5673 0.5673

17 colon 0.8387 0.7468 0.7903 0.7048 0.7387 0.7355 0.7355

Average 0.7478 0.7138 0.7055 0.7200 0.6740 0.7269 0.7269

Table 11

The balanced accuracy of different algorithm on Decision Tree classifier.

no datasets SSAANRS ENUM TNN HARCD FSMRI KNNRS RAW

1 plrx 0.5685 0.4852 0.5669 0.5213 0.5133 0.4787 0.4787

2 ionosphere 0.8672 0.8366 0.8758 0.7842 0.7580 0.8688 0.8688

3 parkinsons 0.8076 0.7926 0.7017 0.8201 0.7456 0.8126 0.8126

4 heart 0.7728 0.7151 0.7464 0.7150 0.7148 0.7493 0.7493

5 wpbc 0.5517 0.5638 0.5038 0.6151 0.5284 0.5656 0.5656

6 audit 0.9998 0.8818 0.9997 0.8593 0.9301 0.9998 0.9998

7 bcc 0.6581 0.7076 0.6291 0.6462 0.7023 0.6989 0.6989

8 cmsc 0.5845 0.5345 0.5974 0.6469 0.5038 0.6751 0.6751

9 mf 0.6286 0.6199 0.6548 0.5922 0.5209 0.6095 0.6095

10 glass1 0.7218 0.7373 0.4822 0.7780 0.6793 0.7142 0.7142

11 wine 0.9130 0.9260 0.8676 0.8406 0.8960 0.8986 0.8986

12 sar 0.5807 0.3914 0.3835 0.4786 0.2169 0.5756 0.5756

13 hill 0.6109 0.5502 0.5445 0.5612 0.5165 0.5856 0.5856

14 gc 0.3833 0.4833 0.1500 0.4917 0.1896 0.2938 0.2938

15 wdbc 0.9228 0.8210 0.9236 0.9140 0.8434 0.9176 0.9176

16 tc 0.5829 0.4714 0.5869 0.5280 0.5153 0.5111 0.5111

17 colon 0.8177 0.7127 0.7669 0.6618 0.7095 0.7142 0.7142

Average 0.7042 0.6606 0.6459 0.6738 0.6167 0.6864 0.6864

Table 12

The wilcoxon test results of SSAANRS and other algorithm.

Classifier Measure ENUM TNN HARCD FSMRI KNNRS RAW

DT
Accuracy 0.0684 0.0148 0.084 0.0008 0.0437 0.0437

Balanced accuracy 0.0245 0.0129 0.1626 0.0006 0.0879 0.0879

KNN
Accuracy 0.0552 0.0929 0.2097 0.0036 0.0312 0.0312

Balanced accuracy 0.1359 0.2274 0.2097 0.0023 0.0442 0.0442
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