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Abstract
Neighborhood rough sets (NRS) is widely used in various fields with good adaptability, and its related information measure-
ment plays an important role in uncertainty analysis. In the existing research, although the three-layer granular structure of
neighborhood decision system (NDS) has been proposed, there are notmany related research on it, especially in the uncertainty
measurement. Therefore, this paper firstly deeply discusses the expression of neighborhood dependence in the three-layer
granularity structure of neighborhood decision system, as well as its relationship in three levels and some related properties.
Secondly, considering the influence of the fixed neighborhood radius(Nr) on the neighborhood model, we define the adaptive
neighborhood radius by using the standard deviation and the neighborhood mean. Finally, we use the neighborhood depen-
dence at the macro top level as the split node measurement function to construct the decision tree. Our experimental results
show the reliability of the algorithm.

Keywords Neighborhood rough sets · Decision tree · Three-level analysis · Hierarchical neighborhood dependence

1 Introduction

Rough sets (Pawlak 1982) is a mathematical tool proposed
by Professor Z.Pawlak of Warsaw University of Technol-
ogy in Poland to deal with uncertain and fuzzy data. It has
shown a strong ability to describe uncertain or inaccurate
knowledge without prior knowledge. Therefore, rough sets
are widely used in data mining (Luo et al. 2018; Saha et al.
2019; Zhang et al. 2014), machine learning and knowledge
discovery (Qian et al. 2018;Eissa et al. 2016), artificial intelli-
gence (Bishop andNasrabadi 2006;Dai et al. 2012) andmany
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other fields. However, the classical rough set theorywith lim-
itation of processing discrete data. For continuous data, the
strategy of discretization is adopted in data preprocessing,
generally, which may cause information loss and calcula-
tion error. With the increment of data scale, this shortcoming
will be continuously amplified, and the classical rough set
cannot be well applied to big data. Based on the above short-
comings, scholars who study rough sets have generalized the
traditional theory and proposed more adaptable models (Hu
et al. 2008; Yao 1998).

NRS is one of the extended models of classical rough set,
which is proposed by Hu et al. (2008). In the NRSmodel, the
strict equivalence relation in rough set is replaced by neigh-
borhood relation, which reduces the information loss caused
by data discretization and more suitable for the current situa-
tion of data explosion. As an applicable model, the selection
of neighborhood radius is a key issue in neighborhoodmodel.
The size of the radius of the neighborhood affects the thick-
ness of the neighborhood granule, and whether the radius is
large or small will have a certain impact on the entire model.
However, in most of the existing models, the Nr implements
an empirical setting approach. Hence, in order to decrease
the influence, many scholars have developed diverse radius
constructions. Qu et al. (2023) proposed a novel neighbor-
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hood radius via calculating the distance between boundary
samples in different decision classes, and then averaging all
the distances. This radius can reflect samples in the same
class have the same granularity space, and different samples
have different granularity space. Sun et al. (2022) combined
the classification accuracy of the selected attributes, the aver-
age correlation degree of the reduced attribute set, and the
reduction rate of the classification results to construct a new
adaptiveNr function to avoid artificially selecting the optimal
neighborhood radius. In the study of NRS-based multi-label
feature selection, Liu et al. (2023) defined the adaptive
radius based on the neighborhood relationship constructed
by using the distribution information of similar instances,
and obtained good results in the experiment. The granular
ball NRS proposed by Xia et al. (2020, 2019) enables each
object to adaptively generate a neighborhood, which tackles
the problems of the empirical setting of neighborhood radius.
Although several scholars have developed studies about the
radius, the adaptive model is still worth researching due to
the complex data environment in real applications.

Granular computing (Yao 2016, 2001; Zhang and Miao
2014), as a structured method of hierarchical computing and
granular processing, provides several multi-level and multi-
granularityblue (Bakkouri et al. 2022; Bakkouri and Afdel
2023) research methods, and brings some novel strategies to
uncertainty analysis and knowledge reasoning. For instance,
Zhang andMiao (2017) first introduced the three-layer gran-
ular structure of decision table, and hierarchicalized the
classical rough set. Chen et al. (2019) introduced analytic
hierarchy process into neighborhood rough sets and proposed
the three-layer granular structure for neighborhood system.
The introduction of hierarchical analysis makes the struc-
ture of the neighborhood system more clear, which provides
conditions for the improvement of the neighborhood sys-
tem. In addition, we can further analyze the characteristics
of different levels of granular structure and the correlation
among them. Zhang et al. focused on the three-layer gran-
ular structure of NRs, and deeply studied the uncertainty
measures such as neighborhood conditional entropy, neigh-
borhood complementary entropy and neighborhood mutual
information at different levels (Gou and Zhang 2021; Liao
et al. 2021; Mu et al. 2019; Tang et al. 2020; Zhang and Yao
2022; Zhang et al. 2021). This shows that the three-layer
granular structure of the neighborhood system still has sig-
nificance to explore.

The decision tree algorithm (Breiman 2017; Quinlan
1996; Liu et al. 2022, 2023) is one of the classic classifi-
cation (Safavian and Landgrebe 1991) methods and it has
been widely used owing to its high intelligibility. However,
it cannot handle continuous data directly without the strat-
egy of discretization. Generally, the discretization may leads
to the loss of important information contained in the data,
which has a certain impact on the classification performance.

Neighborhood rough sets as a theoretical tool that can be
directly applied to continuous data, has certain advantages in
data processing. However, there is a lack of research about
the improved decision tree algorithm based on NRS. Xie
et al. (2022); Xin et al. (2022) proposed a neighborhood
decision tree algorithm by combining it with decision tree
algorithm, and obtained good experimental results. Based on
this research, this paper further studies the improvedmethod.
We find that according to the corresponding equivalence par-
titioning method in the above research, using neighborhood
information gain as themetric function of node selectionwith
the disadvantage of the tendency to depend on the attributes
with more equivalence classes, and the attributes with more
equivalence classes are not necessarily important attributes,
resulting in poor generalization performance. In addition,
it requires a large number of logarithmic operations, which
increases the difficulty of calculation. In this paper, the neigh-
borhood dependence degree is used as the nodemeasurement
function, which can not only solve the problems mentioned
above, but also fully consider the relationship between con-
ditional attributes and decision attributes. The greater the
dependence of decision attributes on conditional attributes,
the more specific information they contain. Therefore, the
conditional attribute with the highest degree of dependence
is selected as the current node. This method not only speeds
up the growth of the decision tree, but also can obtain a well-
structured decision tree and convenient for mining good rule
information.

Based on the above research, this paper focuses on the
three-layer granular structure of the NDS, studying the
expression of the neighborhood dependence at the macro-
high level, meso-middle level, and micro-bottom level and
the relationship of it between three levels, and discuss some
related properties of it. At the same time, focusing on the
selection of Nr, an adaptive Nr is defined to reduce the influ-
ence on the neighborhoodmodel. Subsequently, an improved
decision tree algorithm is constructed by using the neigh-
borhood dependence at the macro-high level as the partition
measure. Our main contributions of this paper are as follows:

• Completely explored the expression of dependence under
different granularity levels.

• A new adaptive Nr is defined to reduce the influence of
radius selection on the model.

• A novel decision tree algorithm is designed by using the
neighborhood dependency as the node metric function.

The remaining structure of this paper is as follows. Sec-
tion2 briefly reviews some related uncertainty measures in
decision tree algorithms and the neighborhood rough set
model. Section3 analyzes the three-layer granular structure
of neighborhood decision system and constructs the neigh-
borhood dependence on three-layer granular structure. Then,
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we define the adaptive neighborhood radius and design a
more robust decision tree algorithm that is combined with
the neighborhood rough set. In Sect. 4, we verify the effec-
tiveness of the proposed algorithmonpublic datasets. Finally,
we make a summary in Sect.5.

2 Preliminaries

In this section, we first review some knowledge of decision
tree. As a classical classification algorithm that has been
developed for decades, its powerful classification function
is still worthy of our in-depth study. A review of the original
classical decision tree algorithm can provide a knowledge
base for subsequent research. Next, we will introduce some
well-known decision tree metric functions. Throughout the
paper, U is called universe to represent a non-empty finite
set.

2.1 Decision tree

Decision tree algorithm, as a classical classification algo-
rithm that has been developed for decades, is still worthy of
a deepen study. The powerful uncertainty measures of the
algorithm have also been well applied to different fields and
achieved good performance. In this subsection, the partition
measure in ID3 and CART algorithms are briefly reviewed.

Definition 1 Let DT = (U , A ∪ D) be a decision table,
where A is the conditional feature set and D is the deci-
sion feature set. Given the decision classification U/D =
{D1, D2, ..., Dk}, the information entropy I e(D) of U/D is
defined as follows:

I e(D) = −
k∑

r=1

|Dr |
|U | log

|Dr |
|U | (1)

Given any attribute subsetC ⊆ A, letU/C = {C1,C2, ...,

Cm}, the conditional entropy I e(D|C) of D with respect to
C is defined as:

I e(D|C) =
m∑

j=1

|C j |
|U | I e(C j ) (2)

where 1 ≤ j ≤ m, I e(C j ) = −
k∑

i=1

|C j∩Dr |
|C j | log

|C j∩Dr |
|C j | .

Then, the information gain of C is

Gain(C) = I e(D) − I e(D|C) (3)

Definition 2 Let DT = (U , A ∪ D) be a decision table, and
given the decision classification U/D = {D1, D2, ..., Dk},
the gini index Gini(D) of U/D is defined as:

Gini(D) =
k∑

r=1

|Dr |
|U |

(
1 − |Dr |

|U |
)

= 1 −
k∑

r=1

( |Dr |
|U |

)2
(4)

Given any C ⊆ A, let U/C = {C1,C2, ...,Cm}, the gini
index Gini(D,C) of D with respect to conditional attribute
C is defined:

Gini(D,C) =
m∑

j=1

|C j |
|U | Gini(C j ) (5)

where 1 ≤ j ≤ m and Gini(C j ) = 1 −
k∑

r=1

( |C j∩Dr
|C j |

)2
.

2.2 Neighborhood rough set model

NRS is proposed by Hu et al. (2008), which is the general-
ization of classical rough set. Compared with classical rough
sets, NRS use neighborhood relation to replace the equiv-
alence relation, so as to divide the universe and generate
equivalence classes. The proposed of neighborhood relation
solves the problem that the classical rough set with the dif-
ficulty of processing continuous data, so it is widely used in
various fields. Here, we depict some essential knowledges
about it.

Definition 3 Let NDS = (U ,C ∪ D, V , f , δ) be a NDS,
where U represents a non-empty finite set with samples
{a1, a2, a3, ..., an} and is called universe.C = {c1, c2, c3,
...cn} is a set of conditional feature variable, and D represents
the decision feature. Given a sample ai ∈ U and B ⊆ C , the
neighborhood δB(ai ) of ai with respect to B is defined as

δB(ai ) = {a j ∈ U |�B(ai , a j ) ≤ δ} (6)

where � is a distance function, as for ∀a1, a2, a3 ∈ U , �
always satisfies,

(1) �(a1, a2) ≥ 0,�(a1, a2) = 0 only when a1 = a2;
(2) �(a1, a2) = �(a2, a1);
(3) �(a1, a3) ≤ �(a1, a2) + �(a2, a3).

Given any two samples ∀a1, a2 ∈ U with respect to B ⊆
C ,where B = {c1, c2, c3, ...cn}, dB(a1, a2) represents the
distance between sample a1 and a2 on attribute set B, then
the Minkowsky distance is expressed as

dB(a1, a2) =
( n∑

k=1

| f (a1, ci ) − f (a2, ci )|p
)1/p

(7)
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where f (a1, ci ) is the value of sample a1 on attribute ci ,
1 ≤ i ≤ n.

For the distance function above, if p = 1, it is called
Manhattan distance, if p = 2, named Euclidean distance, if
p = ∞, named Chebyshev distance. Generally, the Manhat-
tan distance is used in the NRS.

Definition 4 Let NDS = (U ,C ∪ D, V , f , δ) be a NDS,
for any set X ⊆ U and feature subset B ⊆ C , the upper
approximation and the lower approximation of set X on B
are defined as follows,

N B(X) = {ai ∈ U |δ(ai ) ∩ X 
= φ} (8)

N B(X) = {ai ∈ U |δ(ai ) ⊆ X}. (9)

At the same time, we denotes the boundary region of set
X on B as BN (X) = N B(X) − N B(X).

Definition 5 Let NDS = (U ,C ∪ D, V , f , δ) be a NDS, let
U/D = {D1, D2, ..., Dn} be the equivalence classes(Es) on
U . For any B ⊆ C , we have

POSB(D) = N B(D) (10)

where N B(D) = ⋃n
i=1N BDi and N BDi = {ai |δB(ai ) ⊆

X , ai ∈ U }.
Definition 6 Let NDs = (U ,C ∪D, V , f , δ) be a NDS, the
dependency of D with respect to B is expressed as

γB(D) = |POSB(D)|
|U | (11)

3 Hierarchical neighborhood dependence
degree based on three-level granular
structures

In this section, firstly, we briefly review the three-layer gran-
ular structure of NDS, then study the uncertainty measure of
neighborhood dependence in the three-layer granular struc-
ture in detail and propose the hierarchical neighborhood
dependence. Finally, an example is given to illustrate.

3.1 Three-layer granular structure in neighborhood
decision system

In recent years, with the study of three levels of thinking, it
has been gradually developed and applied. Zhang and Miao
(2017) introduced three-layer thinking into rough set the-
ory and proposed a three-layer granularity structure. With
the deepening of research, it has been successfully applied to
classical decision systems. Subsequently, Zhang et al. (2022)

Fig. 1 Hierarchical relationship and structure of three-layer granular
structure (Zhang and Miao 2017)

proposed a three-layer granular structure for the neighbor-
hood decision system and analyzed it. This subsection we
will briefly review and research it.

Figure 1 shows the three-layer granular structure of neigh-
borhood decision system in detail. Next, we will discuss in
more detail from the information contained in the figure to
understand the system more clearly.

Let NDs = (U ,C ∪ D, V , f , δ) be a NDS, U/I N D
(D) = {D1, D2, ...Dn} represents the decision classification,
for any feature subset A ⊆ C ,U/N Rδ(A) represents the Es
of U on A, ηδ

A(x) is the δ neighborhood of sample x on
feature subset A.We can get the following conclusions.

We can obviously find the following characteristics by
observing the whole decision system top-down from the
macro high-level.

(1) The macro top-level can be decomposed into k =
2A − {∅} meso middle-level, and the middle-level can
be decomposed into |U | micro bottom-level.

(2) The macro top-level can be decomposed into k ∗ |U |
micro bottom-level.

Conversely, we can find the following characteristics by
looking at the whole decision system bottom-up.

(1) The related |U | micro bottom-level can form meso
middle-level, and k middle-level can compose a macro
high-level.

(2) All k ∗|U |micro bottom-level can compose macro high-
level.

Table 1 gives a general description of the three-layer gran-
ular structure of the NDS. Neighborhood granules at the
micro-bottom mainly focus on the interaction with a deci-
sion class, describing a relationship between granules. We
can observe that the universe is divided into n equivalence
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Table 1 Three-level granules of
neighborhood decision system
(Zhang and Miao 2017)

Structure Composition Granular scale/level Simple name

1 U/I N D(A),U/I N D(D) Macro/top Macro-top

2 U/I N D(A),Dj Meso/middle Meso-middle

3 ηδ
A(x),Dj Micro/bottom Micro-bottom

classes and interacts with a decision equivalence class under
the attribute subset A at themeso-middle level. The n equiva-
lence classes are related to the micro neighborhood granules.
The macro-level involves dependency relationship between
n equivalence classes and all decision equivalence classes.

3.2 Hierarchical neighborhood dependence degree

In the theory of NRS, neighborhood dependence is an impor-
tant uncertainty measure, which plays an important role in
knowledge reasoning and data mining. However, in previ-
ous studies, the measurement at the macro level is mostly
used. With the introduction of the three-layer granular struc-
ture, the expressions of neighborhood dependence between
different levels become clearer. In this subsection, we pro-
pose a hierarchical neighborhood dependence based on the
three-layer granular structure and discuss it in detail.

Definition 7 Let NDS = (U ,C ∪ D, V , f , δ) be a NDS,
for any feature subset A ⊆ C , δA(x) is the neighborhood
granule of sample x on the attribute subset A, and Dj is a
decision class inU/I N D. At the micro-level, the upper and
lower approximations of Dj regarding δA(x) are defined as

N (Dj |δA(x)) = {x |δA(x) ⊆ Dj , x ∈ U }
N (Dj |δA(x)) = {x |δA(x) ∩ Dj 
= ∅, x ∈ U } (12)

Then, we can get the neighborhood dependence and the
positive region of Dj on δA(x) is defined as

POS(Dj |δA(x)) = N (Dj |δA(x)) (13)

γ (Dj |δA(x)) = POS(Dj |δA(x))

|U | (14)

According to the relevant definitions at the bottom-level,
the hierarchical neighborhood dependence is related to the
neighborhood granule δA(x) and the class Dj . Let δA(x) be
contained in the decision class Dj , then the δA(x) belongs
to the lower approximation N (Dj |δA(x)), which repre-
sents the positive region. Hence, it can be obtained that
the POS(Dj |δA(x)) is dependent on the certain decision
class Dj , and the recognition ability of existing knowl-
edge to certain decision class Dj is reflected by the measure
γ (Dj |δA(x)).

Definition 8 Let NDS = (U ,C ∪ D, V , f , δ) be a NDS,
U/N R(A) is the equivalence classes of the universe U on
the feature subset A, denoted as ∂A, and Dj is a decision
class in U/I N D. At the meso-level, the upper and lower
approximations of Dj regarding ∂A are defined as

N (Dj |∂A) = ∪|U |
1 N (Dj |δA(x))

N (Dj |∂A) = ∪|U |
1 N (Dj |δA(x))

(15)

Then, we can get the neighborhood dependence and the
positive region of Dj on ∂A are defined as

POS(Dj |∂A) = N (Dj |∂A) (16)

γ (Dj |∂A) = POS(Dj |∂A)

|U | (17)

According to the structure and related definitions at
the middle-level, the hierarchical neighborhood dependence
involves the interaction of the Es U/N Rδ(A) and the class
Dj . The equivalence class U/N Rδ(A) is formed of |U |
equivalence granules δA(x), similarly, U/N Rδ(A) can be
decomposed into |U | equivalent granules δA(x). The union
of |U | N (Dj |δA(x)) forms the lower approximation of
the meso-level with fixed class Dj , and then the positive
region POS(Dj |∂A) is obtained. Therefore, the hierarchical
neighborhood dependence at the meso-level is γ (Dj |∂A) =
POS(Dj |∂A)

|U | .

Theorem 1 Hierarchical neighborhood dependence degree
shows the characteristics of hierarchical decomposition /
integration,as shown in Fig.1.

γ (Dj |∂A) = POS(Dj |∂A)

|U |
= N (Dj |∂A)

|U |

= ∪|U |
1 N (Dj |δA(x))

|U |

= ∪|U |
1 {x |δA(x) ⊆ Dj , x ∈ U }

|U |

(18)

It can be seen from Theorem 1, the hierarchical neigh-
borhood dependence depends on the positive region POS
(Dj |∂A) from the perspective of the middle-level, and the
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positive region is equivalent to the lower approximation
N (Dj |∂A). ∂A is composed of |U | equivalent granules, so
N (Dj |∂A) is decomposed into |U | lower approximations of
neighborhood granuleswith fixed decision class Dj placed at
the bottom-level. at the bottom-level, the lower approxima-
tion is determined by the neighborhood granule contained
in the fixed decision class Dj . The decomposition of this
level shows the relationship between themiddle-level and the
bottom-level of the hierarchical neighborhood dependence.
The hierarchical neighborhood dependence at the middle-
level, it can be decomposed downward according to the
equivalence class ∂A, and also can be integrated upward from
the bottom-level.

Proposition 1 Given 〈U , A, N R〉 and two neighborhood
radii δ1 and δ2,for any attribute C ⊆ A, if δ1 ≤ δ2, we
have

(1) ∀ei ∈ U , N R1 ⊆ N R2, δ1(ei ) ⊆ δ2(ei );
(2) ∀E ⊆ U : N R1E ⊇ N R2E; N R1E ⊇ N R2E.

where N R1 and N R2 represent the neighborhood relations
induced by δ1 and δ2, respectively.

Proof 1 If δ1 ≤ δ2,explicitly, we have δ1(ei ) ⊆ δ2(ei )
and then N R1 ⊆ N R2. Suppose δ2(ei ) ⊆ E , we can
get δ1(ei ) ⊆ E . Therefore, if we let ei ∈ N R2E ,then
ei ∈ N R1E . However, ei is not necessary in N R2E if we
have ei ∈ N R1E . Hence, N R1E ⊇ N R2E .And we can get
N R1E ⊇ N R2E similarly.

Proposition 1 shows that the selection of neighborhood
radius affects the size of neighborhood granules, thus affect-
ing the lower approximation. The smaller neighborhood
radius has a larger lower approximation, and the larger neigh-
borhood radius has a smaller lower approximation. ��

Proposition 2 Given 〈U , A ∪ D, N R, δ〉,for any attribute
C1 ⊆ C2 ⊆ A, we have

(1) If C1 ⊆ C2,[e]NER
C1
δ

⊆ [e]
NER

C2
δ

(2) If C1 ⊆ C2,POSC1
δ E ⊆ POsC2

δ E

Proof 2 IfC1 ⊆ C2,Wewill say thatC2 has a rougher classi-
fication thanC2,sowehave [e]

NER
C1
δ

⊆ [e]
NER

C2
δ

.Therefore,

POSC1
δ E ⊆ POSC2

δ E . ��

Definition 9 Let NDS = (U ,C ∪ D, V , f , δ) be a NDS,
U/N R(A) is the equivalence class of the universe U on the
attribute subset A, denoted as ∂A, and let U/I N D(D) =
{D1, D2, ..., Dm} be the decision equivalence classes on
U ,denoted as ∂D . At the macro-level, the upper and lower
approximations of ∂D regarding ∂A are defined as

N (∂D|∂A) = ∪m
1 N (Dj |∂A)

N (∂D|∂A) = ∪m
1 N (Dj |∂A)

(19)

Then, we can get the neighborhood dependence and the
positive region of Dj on ∂A are defined as

POS(∂D|∂A) = N (∂D|∂A) (20)

γ (∂D|∂A) = POS(∂D|∂A)

|U | (21)

At the macro top-level, the hierarchical neighborhood
dependence is related to the number of decision equiva-
lence classes U/I N D(D). m is the number of decision
equivalence classes, and the union of m N (Dj |∂A) at the
middle-level form N (∂D|∂A). The positive region is deter-
mined by the lower approximation N (∂D|∂A), so we can get
γδ(∂D|∂A) = POS(∂D |∂A)

|U | .

Theorem 2 Hierarchical neighborhood dependence degree
at the macro-level is related to the number of decision equiv-
alence classes.

γ (∂D|∂A) = POS(∂D|∂A)

|U |
= N (∂D|∂A)

|U |
= ∪m

1 N (Dj |∂A)

|U |

(22)

Theorem 2 reflects the relationship between high-level
and middle-level of hierarchical neighborhood dependence.
From the perspective of macro high-level, the hierarchi-
cal neighborhood dependence is related to the number of
decision equivalence classes. The hierarchical neighborhood
dependence at the macro high-level, it can be decomposed
into the lower approximation N (∂D|∂A) ofm decision equiv-
alence classes with respect to ∂A at the middle-level and also
can be integrated upward from the middle-level.

Proposition 3 Given 〈U , A ∪ D, N R, δ〉, for any attribute
C ⊆ A, let U/NERC

δ be neighborhood granular,if δ = 0
we have γδ(D,U/NERC

δ ) = γ (D,U/RC ).

Proof 3 Obviously, if if δ = 0, neighborhood rough sets
will degenerate into classical Pawlak rough sets. Hence
γδ(D,U/NERC

δ ) = γ (D,U/RC ).
Proposition 3 shows that NRs is the generalization of

classical rough set. When the neighborhood radius δ = 0,
the neighborhood relation degenerate into classical equiv-
alence relation. Hence, neighborhood rough set degenerate
into Pawlak rough set. ��
Proposition 4 Given 〈U , A ∪ D, N R, δ〉,for any attribute
C1 ⊆ C2 ⊆ A, let U/NERC

δ be neighborhood granular,we

have γδ(D,U/NERC1
δ ) ≤ γδ(D,U/NERC2

δ ).
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Table 2 A given decision Table U C1 C2 C3 C4 D

e1 0.5 0.8 1 0.9 Y

e2 0.8 0.1 0.5 0 N

e3 0.5 0.4 0.6 0.3 Y

e4 0.2 0.7 0.9 0.7 Y

e5 0.1 0.3 0.3 0.6 Y

e6 0.9 0.1 0.7 0.6 N

Proof 4 According to Proposition 2, we can get that POSC1
δ

E ⊆ POSC2
δ E ,hence γδ(D,U/NERC1

δ ) ≤ γδ(D,U/

NERC2
δ ).

Proposition 4 describes the monotonicity of neighbor-
hood dependence degree. The increase of features in the
feature subset does not reduce the dependence, showing a
tendency to increase monotonically with the increase of fea-
tures. Then, we use Example 1 to describe the relationship
of the neighborhood dependence between different levels in
the three-layer granular structure. ��
Example 1 Given a dataset table shown as Table 2. We use
an example to explore the close relationship between the
three-layer granular structure. According to the definition of
the three-level granular structure, we first give the various
measurement results of the neighborhood granules under the
micro-bottom layer as shown in Table 3, and then calculate
the relevant measurement results according to the different
definitions of the other two levels. Herein, we give δ = 0.3.

In the meso middle-level, according to the above defini-
tion, then we can calculate the lower and upper approxima-
tions of D1 and D2 regarding C1. The results are as follows.

(1) N (D1|∂C1) = ∪6
1N (D1|δC1(x)) = {e4, e5},

(2) N (D1|∂C1) = ∪6
1N (D1|δC1(x)) = {e1, e2, e3, e6},

(3) N (D2|∂C1) = ∪6
1N (D2|δC1(x)) = {e6},

(4) N (D2|∂C1) = ∪6
1N (D2|δC1(x)) = {e1, e2, e3, e4, e5}.

Then, we can get their dependency degree as follows,

(1) γ (D1|∂C1) = POS(D1|∂C1 )

|U | = 1
3 ,

(2) γ (D2|∂C1) = POS(D2|∂C1 )

|U | = 1
6 .

The calculation results at the macro-level and the middle
level are closely related to it. Through the above calculation,
we can get

(1) N (D|∂C1) = ∪2
1N (D|∂C1) = {e4, e5, e6},

(2) N (D|∂C1) = ∪2
1N (D|∂C1) = {e1, e2, e3, e4, e5, e6}.

Regarding the calculation of dependence degree, we have

γ (D|∂C1) = POS(D|∂C1 )

|U | = 1
2

3.3 Adaptive neighborhood and algorithm design

Definition 10 Let NDS = (U ,C ∪ D, V , f , δ) be a NDS,
and δ is neighborhood radii parameter, for any B ⊆ C , the
neighborhood equivalence relation on B is denoted as fol-
lows:

NERδ
B = {(x, y) ∈ U ×U |ηδ

B(x) = ηδ
B(y)} (23)

where δ ∈ [0, 1], andηδ
B(∗) represents the δ-neighborhood

of sample ∗ on B. The neighborhood equivalence division on
U induced by the neighborhood equivalence relation NERδ

B
is expressed as follows:

U/NERδ
B = {[y]NERδ

B
|y ∈ U } = {Y B

1 ,Y B
2 , ..., Y B

n } (24)

where Y B
r = {yi ∈ U |ηδ

B(yi ) = ηδ
B(y j )}; y j ∈ Y B

r (r =
1, 2, ..., n).

According to the above expressionof neighborhood equiv-
alence, we can conclude that when the neighborhoods of two
samples are exactly equal, they are considered to be equal.
This equivalence relation can be used as the dividing standard
of decision tree algorithm.

The selection of Nr will affect the applicability of the
whole neighborhood model, due to the fact that the size of
the Nr determines the roughness of certain neighborhood
granules. Therefore, how to select an appropriate Nr is a key
issue. It is known that the distribution of attribute values can
excellently reflect the characteristics of numerical attributes.

Table 3 Correlation
measurement results at the
micro-bottom

U Equivalent class of C1 N (D1) N (D1) γ (D1) N (D2) N (D2) γ (D2)

e1 {e1,e2,e3,e4} ∅ {e1 } 0 ∅ {e1} 0

e2 {e1,e2,e3,e6} ∅ {e2 } 0 ∅ {e2} 0

e3 {e1,e2,e3,e4} ∅ { e3} 0 ∅ {e3} 0

e4 {e1,e3,e4,e5} {e4} ∅ 1/6 ∅ {e4} 0

e5 {e4,e5} {e5} ∅ 1/6 ∅ {e5} 0

e6 {e2,e6} ∅ {e6} 0 {e6} ∅ 1/6
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Hence, this paper constructs the adaptive radiusmainly based
on standard deviation and mean value.

Definition 11 In NDS = (U ,C ∪ D, V , f , α), for the
condition feature set C = {c1, c2, ..., cn}, its adaptive neigh-
borhood radius set is expressed as

α = {α1, α2, ..., αn} (25)

where αi = std(ci )
mean(ci )

and 1 ≤ i ≤ n.

std(ci ) is the standard deviation of the values of all objects
under condition attribute ci , and mean(ci ) is the mean of
the values of all objects under this attribute. Obviously,
std(ci )
mean(ci )

∈ (0, 1)
The standard deviation reflects the average fluctuation size

of the data on the average value, showing a normal distribu-
tion. The mean can reflect the concentration trend of a set of
data. The combination of standard deviation and mean can
make the obtained neighborhood radius not appear too large
or too small as the normal distribution median, and can bet-
ter constrain the radius size. The neighborhood radius under
each attribute can be adjusted independently by using this
method to select the radius. The effectiveness of the adaptive
radius will be reflected in the construction of the decision
tree.

After determining the value of the neighborhood radius,
we give the following algorithmby combiningNRS and deci-
sion tree.It is known that the NRs can handle the continuous
data without the strategy of discretization. Hence, for the
decision tree algorithm with the problem that cannot fit con-
tinuous data directly, the combination of neighborhood rough
sets is one of the methods to solve this shortcoming, which
broadens the applicability of decision tree algorithm. More-
over, the rough set technology with more complex output
results and the decision tree technology with simpler output
results are integrated with each other to achieve complemen-
tary advantages. The experimental algorithm is designed as
follows:

The time complexity involved in this algorithm is mainly
generated by the calculation of step 1, the uncertainty mea-
sure γ (D, c). Firstly, we need to granulate all the samples
in the universe to generate neighborhood granules, the time
complexity is O(M ∗ N 2), M is the number of attributes,
and N denotes the number of samples in the universe.
Secondly, the calculation of attribute dependency is rela-
tively simple, and its time complexity is O(M). Finally, the
equivalence partition of the decision tree needs to find the
equivalence class of each attribute, and its time complexity
is O(M ∗ N 2). Therefore, the time complexity of the algo-
rithm is O(M ∗ N 2).

Table 4 A new decision algorithm

Algorithm: A decision tree algorithm combined with NRs

Input: NDs = (U , A ∪ D, V , f , α),α is adaptive
neighborhood radius, attribute subset C ⊆ A

Output:A new decision tree based on NRs

1: For each C do

Calculate the γ (D, c) placed at the top of the macro level;

End For

2: Determine the max value max
c∈C⊆A

γ (D, c) and randomly select an

optimal attribute from arg max
c∈C⊆A

γ (D, c) as the current splitting

attribute;

3: According to the above selected optimal attributes, calculate
the neighborhood equivalence division
U/NERα

C = {XC
1 , XC

2 , ..., XC
n }, where each granule

structure (i.e., XC
i , 1 ≤ i ≤ n) denotes a branch;

For each branch do

4: If all samples with the same decision class, create leaf nodes
under this decision class;

5: If B = ∅, use the decision class with the largest number of
samples to create leaf node;

6: Otherwise, turn to step 1;

End For

7: Return A new decision tree based on NRs.

Table 5 The describe of dataset

No Dataset Samples Conditional attribute Classes

1 Iris 150 4 3

2 Wine 178 13 3

3 Glass 214 10 6

4 Crayo 90 6 2

5 Ecoil 336 7 7

6 Plrx 182 18 1

7 Wpbc 194 33 2

8 ILPD 583 10 2

9 Heart 270 13 2

10 Seg 210 19 7

11 END2012 768 9 5

12 Segment 2310 19 7

4 Experimental analysis

In this section, we verify the effectiveness of the proposed
algorithm. Here, we use 12 public datasets to verify its relia-
bility and evaluate the algorithm from different perspectives.

4.1 Data sets

We select 13 public UCI datasets as the experimental data.
The description of these datasets are as as Table 5:
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Table 6 The accuracy of
algorithms

No Data ID3 CART C4.5 VPNDT TD

1 Crayo 0.6667 0.5556 0.6786 0.8333 1

2 Iris 0.6 0.6667 0.6 0.8 0.9333

3 Wine 0.8333 0.6806 0.8611 0.7222 0.9444

4 Plrx 0.6842 0.6164 0.7368 0.7838 0.9474

5 Wpbc 0.8 0.5769 0.7692 0.8462 0.95

6 Seg 0.619 0.5833 0.619 0.8571 0.9524

7 Glass 0.6364 0.6395 0.6818 0.7907 0.9545

8 Heart 0.8148 0.6481 0.8148 0.8333 0.963

9 Ecoil 0.7941 0.7822 0.8088 0.7941 0.9706

10 ILPD 0.7458 0.7561 0.8136 0.8376 0.9831

11 END2012 0.3636 0.3701 0.4156 0.7922 0.961

12 Segment 0.8918 0.7792 0.8831 0.8312 0.9351

13 Arithmetic Mean 0.7041 0.6379 0.7235 0.8101 0.9579

4.2 Experiment setting

This experiment is carried out in the hardware environment
of Intel(R) Core(TM) i5-11300H @3.10GHz 3.11 GHz,
RAM 16.0GB, and the comparative algorithms include ID3
algorithm, C4.5 algorithm, CART algorithm and VPNDT
algorithm. All data sets are continuous data. Since the above
algorithms cannot be directly applied to continuous data, we
use the approach of equi-distant for discretization. The per-
formance of the effectiveness of the decision tree algorithm
is usually reflected by the two indicators of accuracy and leaf
number. In this experiment, these two indicators are used to
evaluate the algorithm. In order to verify its effectiveness,
ten-fold cross-validation is used.

4.3 Experimental results and analysis

Table 6 lists the accuracy of our algorithm, the three classical
algorithms and the VPNDT algorithm in the latest litera-
ture on 13 datasets. The data show that our algorithm have
achieved good performance in classification, and its accuracy
is greater than 90%. Compared with the other four algo-
rithms, the improvement of accuracy is considerable. From
the perspective of average accuracy, theTDalgorithm ismore
than 30% higher than the classical algorithm.

Figure 2 visualizes the accuracy of the algorithms. It can
be seen that the improvement of the proposed algorithm
is obvious. In particular, the performances on the dataset
Wpbc, END2012, Glass, and Iris are very obvious. The pro-
posed algorithm can not only be applied to continuous data
directly, but also has better performance, which shows that
our improvement has reference significance. Therefore, the
proposed algorithm is effective.

Table 7 describes the number of leaves of four algorithms
and TD algorithm. We can see it presented by each algo-

Fig. 2 The accuracy description diagram of four algorithms with TD
algorithm

rithm on different data sets is not much different. Compared
with the other four algorithms, the number of leaves in this
algorithm is slightly lower, and there is no big gap, so our
algorithm has good performance. From the average num-
ber of leaves, our algorithm is slightly higher within the
acceptable range, which indicates that our algorithm is still
effective.

Figure 3 is an intuitive representation of the number of
leaves of five algorithms on 12 data sets. It can be seen from
the figure that the number of leaves of the TD algorithm does
not increase dramatically. It maintains the same number as
other algorithms, and even has better performance on some
datasets. Although there is a higher number of leaves in parts
of datasets, this is acceptable. Therefore, the performance of
TD algorithm is effective.
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Table 7 The leaves of
algorithms

No. Data ID3 CART C4.5 VPNDT TD

1 Crayo 34 52 26 51 41

2 Iris 16 46 16 108 57

3 Wine 76 237 62 161 153

4 Plrx 172 233 186 140 160

5 Wpbc 207 391 173 153 171

6 Seg 174 288 174 187 200

7 Glass 149 180 130 184 188

8 Heart 176 334 165 222 225

9 Ecoil 180 242 151 305 302

10 ILPD 525 542 419 462 526

11 END2012 1224 787 1227 825 930

12 Segment 1479 1842 1187 1754 1987

13 Arithmetic Mean 367.67 431.17 326.33 379.33 411.67

Fig. 3 The leaves description of four algorithms with TD algorithm

5 Conclusions

In this paper, the three-layer granular structure of NDS is
studied, and then extended to neighborhood decision system,
and the three-layer granular structure under neighborhood
decision system is studied. The related properties between
different structural levels and their internal relations are dis-
cussed, and the uncertainty measure of dependence is deeply
studied, and the dependence between different levels is deter-
mined. Aiming at the influence of fixed Nr on neighborhood
model, we define adaptive neighborhood to improve the
model. Then, the neighborhood rough sets are combinedwith
the decision tree algorithm to solve the problem that the deci-
sion tree algorithm can not handle continuous data directly,
and a new decision tree algorithm is proposed. Focusing on
the existing research using neighborhood information gain
as the metric function of node selection, which has the ten-
dency of relying on more attributes of equivalence classes

and the need for a large number of logarithmic operations,
we adopt the method of using neighborhood dependence as
themetric function of nodes, which not only solves the above
problems, but also fully considers the relationship between
conditional attributes and decision attributes. We have veri-
fied the method on 12 data sets, and achieved good accuracy.
Compared with other existing methods, it shows better clas-
sification results. This shows that our improved method is
effective.In the future, considering the combination of neigh-
borhood model and decision tree to improve the accuracy of
classical algorithms is still worthy of our further research.
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