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Abstract— With the continuous advancement of remote sens-
ing (RS) technology, RS ship detection plays a crucial role
in ensuring maritime safety and the oceanic economy, but it
also faces various challenges. Most existing RS ship detection
methods typically apply deblurring processing to all input images
before using a feature pyramid network (FPN) to detect ships
of different sizes. However, this indiscriminate operation may
cause image quality degradation due to excessive deblurring.
Moreover, FPN has limitations in fully utilizing multigranularity
features, which is particularly severe in RS ship detection
tasks. These issues severely affect the accuracy of RS ship
detection. To address these problems, this article proposes an
effective feature augmentation network, 3WM-AugNet, based on
the three-way decisions (3WDs) and multigranularity feature
learning for RS ship detection. It consists of two modules: a
blurred classification and deblurring module (BCDM) and a
multigranularity feature augmentation module (MFAM). BCDM
aims to combine 3WD and support vector machine (SVM) to
design an image clarity classification algorithm and use the multi-
temporal recurrent neural network (MT-RNN) algorithm to
process the blurry images classified, effectively avoiding excessive
deblurring of clear images. MFAM is used to enhance the richness
and robustness of feature representations for ships of different
sizes by introducing the bottom-up feature fusion layer and
designing an adaptive coordinate attention module. Experimental
results on three commonly used datasets, FGSD2021, HRSC2016,
and UCAS-AOD, show that our proposed 3WM-AugNet achieves
state-of-the-art performance in RS ship detection.

Index Terms— Adaptive coordinate attention (ACA), multi-
granularity, remote sensing (RS), ship detection, three-way
decisions (3WDs).

I. INTRODUCTION

HIPS are important tools and carriers for maritime trans-
portation and the utilization of marine resources, playing a
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crucial role in both the marine economy and national security.
Remote sensing (RS) technology can provide high-resolution
and wide-coverage marine image data, which is an indispens-
able data foundation for real-time monitoring and analysis
of ship detection. Therefore, ship detection in RS images
has been increasingly receiving attention, as confirmed by
numerous studies [1], [2], [3].

However, efficient ship detection in RS images is chal-
lenging. On the one hand, several factors such as shaking
of the satellite imaging equipment, atmospheric disturbances,
and the movement of the ships themselves can affect RS ship
image acquisition, resulting in blurry representations of ships
in the image, as shown in Fig. 1(a). This makes it difficult
to accurately extract object features and affects the accuracy
of the detection algorithm. On the other hand, factors such as
the size of the ship itself, voyage distance, and shooting angle
make the ship targets in the RS image show different sizes,
as shown in Fig. 1(b). This increases the difficulty of ship
detection. Therefore, an adaptive and accurate ship detection
method is required to address issues such as image blurring
and varying sizes of ship targets to improve the reliability and
accuracy of ship detection.

In recent years, advancements in deep learning have greatly
enhanced the performance of RS ship detection networks.
Many studies have continuously introduced various excellent
detection networks that enhance the richness and robustness
of features for ships, thereby further improving the accu-
racy of RS ship detection. During RS ship detection, deep
learning-based algorithms are often used to deblur images,
addressing the problem of blurry RS images. However, this
strategy can lead to the loss of details in clear images due
to excessive deblurring, which can affect the accuracy and
reliability of RS ship detection. In addition, when dealing
with the problem of different sizes of ship targets in RS
ship detection, some studies have adopted feature pyramid
network (FPN)-based frameworks [4], [5] to extract ship
object features of different granularities. FPN constructs a
feature pyramid structure by propagating high-level seman-
tically strong features to low-level features, thereby achieving
accurate localization and classification of ship targets of dif-
ferent sizes in the ship detection network. However, there are
some design flaws in FPN, as shown in Fig. 2. On the one
hand, due to the adoption of layer-by-layer fusion, low-level
features can only influence high-level features through top-
down propagation, thus limiting the effective transmission and
impact of low-level features on high-level features. On the
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Fig. 1. Challenges of RS images in FGSD2021. (a) Motion blur and (b) ship
targets of different sizes. Blue boxes represent ground truth.

other hand, during feature fusion, features propagate along a
top-down path. The features at the top pyramid level suffer
from information loss due to the reduced number of channels.
These deficiencies limit FPN to a certain extent to make full
use of multigranularity features, resulting in a decrease in RS
ship detection performance.

To overcome the limitations of existing methods in RS
ship detection, this article proposes a network called 3WM-
AugNet. This network aims to address the problems of RS
image blurring and inconsistent ship target sizes, thereby
improving the accuracy of RS ship detection. Specifically,
we adopt a preprocessing and detection strategy for RS ship
images. First, based on the three-way decision (3WD) theory,
we design the blurred classification and deblurring module
(BCDM) to preprocess the RS images to avoid excessive
blurring of clear images. The 3WD theory is a method for
dealing with uncertain decision-making [6]. The preprocessing
of RS images based on the 3WD theory can effectively classify
clear and blurry images. This strategy allows for targeted
deblurring processing solely for the blurry images while
avoiding overprocessing the clear ones. Then, combining with
the idea of multigranularity feature learning [7], [8], we design
the multigranularity feature augmentation module (MFAM) to
enhance the richness and robustness of feature representations
for different-sized ships by introducing the bottom-up feature
fusion layer (BF?L) and designing an adaptive coordinate
attention (ACA) module, thus solving the defects in FPN.

Our work mainly has the following contributions.

1) We propose a BCDM to differentially process the input
RS images for data augmentation. BCDM can avoid
excessive blurring of clear images while effectively
deblurring blurry images, which greatly benefits subse-
quent feature extraction.
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Fig. 2.  FPN structure of the baseline. “1 x 1 Conv” refers to 1 x
1 convolution, “2x up” refers to bilinear difference for upsampling, and &
means addition.

2) We design an MFAM to tackle the shortcomings of FPN
in extracting RS ship features of different sizes. MFAM
can facilitate the transfer of low-level features to the high
level, thus minimizing the loss of high-level features
while enriching their representation.

The rest of this article is structured as follows. Section II
introduces the related works. Section III describes the details
of the proposed 3WM-AugNet. Section IV presents the
qualitative and quantitative comparisons with state-of-the-art
methods and some ablation studies. Section V draws some
conclusions and potential future work.

II. RELATED WORKS

In this section, we first briefly introduce the existing RS
ship detection methods. Then, the related technologies used
in the proposed method are introduced, including RS image
deblurring and multigranularity feature learning.

A. RS Ship Detection

RS ship detection is an important branch of RS image
processing, which has received widespread attention from
many researchers. RS ship detection methods can be divided
into traditional and deep learning-based methods. Traditional
methods [9], [10] usually require extensive manual feature
extraction, and the extracted features are then fed into a
classifier for learning. However, the robustness and gener-
alization ability of manually extracted features is limited,
resulting in poor performance in complex scenes, such as
detecting ships with varying sizes and blurry backgrounds.
In recent years, the continuous development of deep learning
technology [11], [12], [13] has made deep learning-based ship
detection methods a research hotspot.

Many algorithms based on convolutional neural networks
(CNNs) have been proposed for RS ship detection to enhance
accuracy and robustness. In particular, Liu et al. [4] drew
inspiration from the YOLOV3 algorithm in RS ship detection,
dividing the detection task into coarse and fine detection
stages and utilizing distinct network structures for each
stage. Wang et al. [5] proposed a RetinaNet automatic ship
detection method using multiresolution Gaofen-3 RS images
and achieved object detection through a pyramidal classifier.
Yang et al. [14] proposed a robust one-stage detector that can
detect RS ships of different sizes in complex backgrounds.
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In addition, to further improve the accuracy of ship detection
in any direction within RS images, many researchers have pro-
posed arbitrary-direction object detection methods, including
both one- and two-stage methods.

Two-stage arbitrary-orientation object detection methods
involve the extraction of candidate boxes followed by clas-
sification and regression on each candidate box to obtain
accurate location and category information for the objects.
Popular methods in this category include R2CNN [15], Rol
Transformer [16], SCRDet [17], Gliding Vert [18], and
SCRDet++ [19]. While these methods can effectively detect
objects in any orientation and provide precise location and
category information, they come with high computational costs
and are unsuitable for real-time applications.

In contrast, one-stage arbitrary-orientation object detection
methods are simpler and faster, typically requiring only a
single neural network to complete the task of object detection
and orientation estimation. Some common methods include
CSL [20], R*Det-DCL [21], R*Det [22], RSDet [23], BBAVec-
tors [24], DAL [25], and Oriented R-CNN [26]. More recently,
various methods for detecting objects with arbitrary orienta-
tions have emerged. For instance, Zhang et al. [27] designed
the CHPDet detector that utilizes center point extraction to
detect ships in any direction in RS images. This is achieved
by combining the center point with the prediction of the head
direction. Han et al. [28] proposed S?A-Net that solves the
problem of rotation variance in object detection by using
aligned depth features, achieving more accurate object detec-
tion. Zhang et al. [29] proposed FFN that generates fountain
features by reconstructing unsatisfactory detection unit fea-
tures, significantly improving object detection accuracy in
any direction in RS images. Li et al. [30] designed Ori-
ented RepPoint that uses a deformable convolutional network
to generate rotated boxes and represents the target through
deformable points, realizing efficient detection of targets in any
direction in RS images. Zhang et al. [31] proposed TCD that
significantly improves the performance of detecting oriented
objects in RS images through task-collaborative learning and
information sharing. Li et al. [32] designed LSKNet that
uses a spatial selection mechanism to dynamically adjust the
receptive field of the feature extraction backbone for better
RS object detection. Liang et al. [33] proposed DEA-Net that
improves the robustness of object detection in RS images by
adaptively optimizing the position and size of prior boxes
through mutual interaction and information transfer between
models. Wang et al. [34] proposed GF-CSL that optimizes the
detection results of arbitrary-direction targets in RS images
by introducing polarization angle prediction and Gaussian
distribution strategy. These methods have demonstrated high
accuracy and robustness in practical applications and can be
used in RS image ship detection. However, these methods
mainly improve the precision of ship detection by enhancing
the representation of rotation boxes and do not fully consider
the impact of image blur and varying ship sizes on detection
results.

Therefore, this article proposes a feature augmentation
network named 3WM-AugNet for RS ship detection, which is
based on S?A-Net and integrates the principles of 3WD theory
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and multigranularity feature learning. The proposed method
aims to tackle the challenges posed by image blurring and
various sizes of ship targets.

B. RS Image Deblurring

High-quality RS images [35], [36], [37] are essential for
effectively operating many intelligent visual algorithms. How-
ever, such images often suffer from motion blur caused by
camera shake or ship motion, which can severely impact image
quality and utility. Therefore, motion deblurring of RS images
has become a widely researched field.

To improve the clarity and visual quality of RS images,
researchers have adopted techniques for motion deblurring,
supporting the analysis and interpretation of RS images and
providing an accurate and reliable data foundation. Traditional
RS image deblurring algorithms usually use regularization
techniques based on statistical priors, such as gradient sparsity
prior [38], hyper-Laplacian prior [39], low-rank prior [40], and
Ly-norm gradient prior [41]. However, these methods heavily
rely on image priors, and their performance will significantly
degrade if the image priors do not hold.

In recent years, a series of extension methods based on
deep learning for RS image motion deblurring have shown
remarkable progress [42], [43]. For example, Tao et al. [44]
proposed SRN that utilizes a scale-recursion mechanism in
CNN to address motion blur in images. This method sig-
nificantly improves the clarity of images through multilevel
feature representation and information propagation. Kupyn
et al. [45] designed DeblurGAN-v2 that utilizes generative
adversarial networks (GANSs) for motion deblurring of images,
resulting in significant improvements in both efficiency and
effectiveness. Park et al. [46] designed a multi-temporal recur-
rent neural network (MT-RNN) for incremental time training
in progressive nonuniform single-image deblurring, achiev-
ing more accurate motion deblurring effects. Cho et al. [47]
proposed MIMO-UNet that incorporates multiscale attention
mechanisms and deconvolution operations to better preserve
the details and structural information of the image, thereby
achieving more accurate motion deblurring effects in single-
image deblurring. Ji et al. [48] proposed XYDeblur that
utilizes image decomposition and deep CNN to partition
single image deblurring into subtasks, achieving image motion
deblurring. These methods fully exploit the advantages of deep
learning, providing more powerful techniques in the field of
RS image motion deblurring and improving image quality.

Although the above algorithms can solve the motion blur
problem of RS images to a certain extent, their objective
is to deblur all RS images, including those clear ones. This
can disrupt subsequent image target detection. To address this
issue, this article presents a classification-based deblurring
strategy that specifically targets blurry images, preventing
the overdeblurring of clear ones and ultimately resulting in
high-quality RS images.

C. Multigranularity Feature Learning

Multigranularity feature learning is a key issue for object
detection since there are many differences in the size, shape,
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Architecture of 3WM-AugNet. Compared with the baseline S>A-Net, we mainly design a BCDM for RS image preprocessing to mitigate image
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targets. (a) BCDM. (b) Backbone. (c) MFAM. (d) FAM. (e) ODM.

and pose of objects in images. How to effectively learn
multigranularity features has been extensively studied by many
researchers. Previous methods employed single-granularity
feature networks [49], [50] for prediction, but they struggled
to effectively handle the variations of targets at different
sizes. To improve the performance of multigranularity fea-
ture learning, a series of network frameworks dealing with
multigranularity features have emerged. FPN [51] is a widely
used multigranularity feature learning framework, which uses
a top-down feature extraction method to obtain multigranu-
larity features of objects through feature pyramids between
different levels, enabling more accurate detection of objects
with different sizes.

However, several studies have revealed the limitations
of FPN, including the loss of high-level features and the
difficulty of low-level features effectively influencing high-
level features. To address the loss of high-level features,
Ghiasi et al. [52] proposed NAS-FPN that employs neural
architecture search to automatically learn the architecture
of FPN. This approach better preserves and propagates the
semantic information of high-level features, enabling more
efficient and accurate multigranularity feature extraction.
Zhao et al. [53] designed GraphFPN that incorporates graph
convolutional networks to better propagate and fuse low-level
features with high-level features, thereby improving the
robustness and accuracy of object detection. In addition,
to enhance the interactions between low- and high-level
features, Liu et al. [54] proposed PANet that achieves
cross-layer feature fusion through information aggregation
between different branches in FPN and further utilizes
low-level spatial information, thereby significantly improving
the accuracy of object detection. Tan et al. [55] designed
BiFPN that introduces a bidirectional FPN on top of PANet,
integrating low- and high-level features, thereby significantly
improving the accuracy and efficiency of object detection.
Huang et al. [56] proposed FaPN to align feature pyramids at
different levels by introducing a feature alignment mechanism
to enhance information transfer and detail reservation.
Jin et al. [57] introduced a cascaded attention mechanism
to augment the fusion of low- and high-level features in
FPN while simultaneously focusing on global context and
fine-grained features. This significantly improves the accuracy
and robustness of the model on objects of different sizes.

Nevertheless, these algorithms predominantly address one
of the two shortcomings of FPN and have certain limitations.

Therefore, this article proposes an MFAM that incorporates
multigranularity feature learning to address the two main
flaws in FPN, thereby improving the performance of object
detection.

III. METHOD

This article proposes a novel RS ship detection network,
3WM-AugNet, built on the S2A-Net [28] baseline. First,
a BCDM is innovatively proposed by incorporating the 3WD
theory to solve the problem of excessive blurring in RS images.
Then, the MFAM is designed to replace the FPN, improve the
richness of feature representations of ships with various sizes,
and reconstruct the pyramid network with multigranularity
features. The overall framework of 3WM-AugNet is shown
in Fig. 3. The proposed 3WM-AugNet in this article will be
explained in detail from the following three aspects.

A. SPA-Net as Baseline

This article chooses the one-stage detector S2A-Net [28]
as the baseline model. It is an RS ship detection model
based on rotating RetinaNet, which consists of the backbone
network, FPN [51], the feature alignment module (FAM),
and the orientation detection module (ODM). FAM uses an
anchor refinement network (ARN) to generate rotated anchors
and an aligned convolutional layer (ACL) to extract aligned
features. ODM uses an active rotation filter (ARF) [58] to
encode orientation information and obtain direction-sensitive
features, which are fused to extract direction-invariant features.
The model changes the RetinaNet regression output from hor-
izontal bounding boxes (BBoxes) to rotating BBoxes, making
it compatible with arbitrary-oriented RS ship detection.

B. Blurred Classification and Deblurring Module

In ship detection for RS images, image blurring can impact
image clarity and reduce model detection rates. To enhance
model robustness, RS images must be deblurred. However,
existing RS image deblurring algorithms deblur all images,
leading to excessive deblurring of clear images and reduced
clarity, which is counterproductive to subsequent detection.
Therefore, we propose a BCDM for deblurring RS ship images
and obtaining high-quality RS image samples for subsequent
training, as shown in Fig. 4. Specifically, we first design
a 3WD-based RS image blur level classification algorithm,
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which can effectively classify clear and blurry images. Then,
we use the MT-RNN algorithm [46] to deblur the blurry
images, achieving efficient deblurring while avoiding the
overdeblurring of clear images.

The pseudocode of our 3WD-based RS image blur level
classification algorithm is shown in Algorithm 1. Specifically,
first, under the guidance of no-reference image blur assessment
metrics, our classification algorithm mainly selects two ambi-
guity evaluation algorithms for all images I = (i1, iz, ..., in)-
The first algorithm is based on the value of the sum of
the modified differential squared (SMD2) function in pixel
technology. The SMD?2 function can be expressed as

SMD2(g) = > > "lg(a, b) — gla + 1, b)|
b a

*|gla,b) —gla, b+ 1| (1)

where g(a, b) represents the gray-scale value of the image g
corresponding to the pixel (a, b). The smaller the SMD2(g)
is, the blurrier the image becomes, and vice versa. The second
is based on the Tenengrad function value in the image gradient
technology, which can be written as

Tenengrad(g) = y/g3(@. b) + g3(a. b) @)
8x(a,b) = gla, b) * K, 3)
g(a.b) = g(a.b) K, )
+# 0 -1 +H 2+
Ke=|+#2 0 =2|, kK,=[0 0 0 (5)
+ 0 -l -1 2 -

where g, and g, are the convolution of the Sobel horizontal
convolution kernel K, and the vertical convolution kernel
K, at the pixel point (a, b), respectively. The smaller the
Tenengrad(g) is, the blurrier the image becomes, and vice
versa. By calculating the value of the SMD?2 function and the
Tenengrad function, the blurring degree of each image can be
obtained, namely, s; = SMD2(i;) and #; = Tenengrad(i;).
Take the SMD2 values and Tenengrad values as data points
qg; = Is;,tj]1(j = 1,2,...,m), and combine them into
a dataset QO = (q1,92,---,9m).- Then, the dataset Q =
(g1, g2, - - - gm) s clustered using a Gaussian mixture cluster-
ing algorithm and 3WD theory. The steps are given as follows.
Step 1, based on the 3WD theory, randomly initializes the
Gaussian distribution parameters of each category, including
mean value p;, covariance matrix X, and mixing coefficient

Xxr- Step 2 calculates the posterior probability that each data
point g; belongs to each Gaussian distribution. The formula
for the posterior probability 7n;; produced by each mixed
component of g; is given as follows:

xk - P(q; s Z)
S - p(qjlm, =)

;o (I1=k=3)

(6)

where p(q;|u, Xi) denotes the probability density function
of each blend element in g;. To better fit the clustering data,
in Step 3, the mean p, covariance matrix X;, and mixing
coefficient x; of each Gaussian distribution are updated as
follows:

nx=p(z; =k|q;) =

/L, _ ZT:] 77]k‘1] (7)

¢ > Mk
AT

(g — mi) (g5 — i)

¥ = ; (8)

> Mk

;K

X, = == )

m
In Step 4, repeat Steps 2 and 3 until the Gaussian distribution
parameters of each category remain unchanged. Step 5, for
each data point g;, calculates its posterior probability value
belonging to each Gaussian distribution through Step 3, then
assigns it to the category represented by the Gaussian distribu-
tion with the highest probability, and marks this category as a
cluster mark A;. The cluster mark JA; is calculated as follows:

Aj = argmax 1 ;. (10)

In this way, the category that each data point belongs to can be
obtained. Finally, we use the clear and blurry images obtained
in Step 5 as the training set and the uncertain images as the
test set. By employing the support vector machine (SVM)
classifier, we further classify the uncertain images into clear
and blurry images to obtain the final clear and blurry images.

C. Multigranularity Feature Augmentation Module (MFAM)

In the RS ship detection task, significant variations in ship
sizes and the frequent presence of small objects make it
common to use the FPN structure for extracting features of
different granularities. As shown in Fig. 2, the feature map of
the top layer Ps in FPN is propagated in a top-down manner
and fused with the feature maps of the lower layers Py, P3, P>
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Algorithm 1 Automatic Classification of Image Blur Level

Based on 3WD

Input: All images I = (ij,iz,...,1,), mean vector (i,
covariance matrix X, and mixing coefficient y;

Output: Clear images I¢, blurry images Ip

1: For all images, use Egs. (1) to (5) compute the SMD2 and
Tenengrad values for each image, get s; = SMD2(i;),
tj = Tenengrad(ij), q; = [s;,t;1 (j = 1,2,...,m),
note @ = (q1,92; --->4qm)

2: Based on 3WD theory, initialize the model parameters
{(ur, 2k, xx) | 1 < k < 3} of the Gaussian mixture
distribution

3: Repeat

4: for j =1,2,...,m do

5. Calculate the posterior probability generated by each

mixed component of g; according to Eq. (6), that is
nixk =p(z; =klg;)) (1 <k <3)

6: end for

7. for k=1,2,3 do

8

9

Update u;, X;, and x; according to Egs. (7) to (9)
end for
Until the stop condition is met: the current py, X and yy
remain unchanged
11: Cluster division C, = ¢ (1 <k < 3)
for j =1,2,...,m do
Calculate the cluster mark A; of g; according to Eq.
(10) and assign ¢, to the corresponding cluster C,
Cy, Ufg,}, and there is a one-to-one correspondence
between ¢; and i;
end for
. Get C = {Cy, C,, C3}, namely clear images C;, uncertain
images C, and blurry images C3. And the uncertain
images C, is divided into clear images C;; and blurry
images Cs3 using a SVM classifier
return IC = C1 @) C11, IB = C3 @] C33

layer by layer. However, this layer-by-layer fusion strategy
has two limitations. First, the features of the lower layers
cannot directly and effectively affect the high-level features.
Second, reducing feature dimensions leads to the loss of
high-level feature Ps information. As both low- and high-level
features are beneficial for detecting small and large ships,
respectively, these issues may significantly affect the detection
performance of the detection model for ships of different
sizes.

To address these issues, this article proposes an MFAM
based on the idea of multigranularity feature learning. The
low-level features cannot affect high-level features in FPN,
hence a bottom-up feature fusion layer (BF?L) is included,
which can facilitate the transfer of information from the
bottom to the top, as shown in Fig. 5(b). It enhances the
interaction between low- and high-level features. In addition,
to solve the information loss of high-level feature Ps, ACA is
introduced as shown in Fig. 5(a), which improves the feature
Ps by incorporating distinct channel and position information
into the original branch, thereby reducing the loss of channel
and coordinate information of Ps. In this way, it preserves
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critical high-level features. Meanwhile, the adaptive feature
fusion significantly improves the detection performance of
ships of different sizes, making the MFAM more advantageous
than FPN.

1) Bottom-Up Feature Fusion Layer: A BF’L is incorpo-
rated into the FPN architecture. On the one hand, the lowest
layer Cj is directly transferred to the highest layer Gs. On the
other hand, the shallower layer G; and the deeper layer P;y;
are fused to generate the subsequent layer G;.;. Therefore,
three feature maps, namely, {G3, G4, Gs}, are obtained.

The fusion method of BF?L is shown in Fig. 6. First, G;
is downsampled using a 3 x 3 depthwise convolution [59]
with stride 2, yielding G;. Next, feature fusion is performed
on P and G; using the addition operation. The resulting
output is then passed through a 3 x 3 depthwise convolution
with a stride of 1 to obtain G;;;. Both G4 and G5 adopt
the fusion method in Fig. 6, and G5 is a direct copy of the
value of P;. Applying depthwise convolution to BF’L can
effectively fuse features and reduce the number of parameters
during convolution.

2) Adaptive Coordinate Attention: As shown in Fig. 7,
let C5 € ROV denote the input feature map, where C,
H, and W denote the number of input channels, height,
and width, respectively. First, it uses ratio-invariant adaptive
pooling (RAP) to generate multigranularity feature maps with
different scales {81 x S, B> x S,..., B, x S} and performs
1 x 1 convolution to obtain the same channel dimension as
256. Then, these feature maps are upsampled to the scale of
S = H x W using bilinear interpolation. Finally, the fusion is

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 25,2023 at 03:21:23 UTC from IEEE Xplore. Restrictions apply.



YING et al.: 3WM-AugNet: A FEATURE AUGMENTATION NETWORK FOR RS SHIP DETECTION 1001219
B1H / H
§ Upsampling X1 >
é: ;8 1 w M §
5 = 2l
< =
H &) BH _ 4??7H o H
=} Upsampling e gl
> 2 P,
Cs & B.W ww £ ®
<. £l
w s © w
5 BsH /V g c
c a Upsampling X3 E'
(= BsW w
Global Coordinate Attention Weight
CxHx1 C/rx(W +H) C/rx(W + H) CxHx1 CxHx1
X Avg Split [ Pointwise si id
nCXHXW Pool Sorest BatchNorm Conv2d 1gmot
Concat R + plit
Y Avg Pglnt‘gze ReLU Split[ Pointwise Si id .
Pool ony. Convad — Sigmol Split
Xl CX1xW CX1xXW CX1xW \
.
X nX(CxHXW) Weight
_2 Aggregation
: A
Xn CxHx1  C/rx(W+H) C/rxW+H)  CxHx1 CxHx1 //
X Split [ Pointwise . . Split
nEXHXW Convld Coicat BatchNorm Conv2d e
Concat Pointwise R IU Solic QP Split
Conv2d e plit [ Pointwise . .
Convld v Conv2d St
CxX1xW CxX1xW CX1xW

Local Coordinate Attention Weight

Fig. 7. Structure of the ACA. ACA consists of RAP and ACF. First, RAP uses adaptive pooling to process the input feature map Cs to generate multigranularity
features. Then, ACF can adaptively adjust the fusion weight and fuse multigranularity features with global coordinate attention weight and local coordinate
attention weight to generate a richer and more robust feature representation. “X Avg Pool” and “Y Avg Pool” refer to 1-D horizontal global pooling and 1-D
vertical global pooling, respectively. “X Convld” and “Y Convl1d” refer to 1-D convolution with convolution kernels (H, 1) and (1, W), respectively.

performed by the adaptive coordinate fusion (ACF) to obtain
Pg with multigranularity context information.

Our ACF is an upgrade over the CAM [60] to capture
the local-to-global position information of RS ship targets
by combining various pooling sizes and point convolutions,
thereby capturing richer feature representations. The details
of the ACF module are shown in Fig. 7. Specifically, the ACF
module takes a single feature as input and generates global
and local coordinate attention weights for each feature. Then,
it uses the generated weights to aggregate contextual features
into Pg and assigns multigranularity global-to-local contextual
information to Pg. To make the ACF module as lightweight
as possible, we only add local context to the global context
within the attention module and select pointwise convolution
as the aggregator for global and local coordinate contexts.

a) Global coordinate attention weight: First, we use
concatenation to perform channel fusion on feature maps
{B1xS,BxS,..., B, xS} of different granularities. Second,
the fused feature map X uses two spatial pooling kernels
(H, 1) and (1, W) to encode each channel along the horizontal
and vertical coordinates, respectively. The output of the cth
channel at width & can be expressed as

% Z x.(h, i).

O<i<w

(1)

Similarly, the cth channel output of height w can also be
written as

1
W)= > xe(jw). (12)

0<j<H

We then aggregate features along two spatial directions
through Eqgs. (11) and (12) to generate a pair of direction-
and position-aware feature maps Z" € RE*H#*! and Z¥ ¢
RE*XW “which can effectively obtain global receptive fields
and encode accurate position information. To fully leverage
feature representations with global receptive fields and accu-
rate location information, we apply a shared 1 x 1 pointwise
convolutional layer N; € RE*(/NxIx1 o both Z" and Z¥.
Finally, we use two 1 x 1 pointwise convolutional layers
N, e RE/M*CxIxl gpnd N, e RE/MI*XCXIXT 15 process the
intermediate feature map obtained after the N; operation so
that the transformed feature map has the same number of
channels as the input feature map X. This allows us to
calculate the global coordinate attention weight as follows:

g"=a(Ni(8(B(N:(2"))))) (13)
g" = o (N, (8(B(N\(Z"))))) (14)
gei, j)=gli)xgl(j) (15)

where o represents the sigmoid activation function, § rep-
resents the ReLU activation function, and B(-) denotes
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batch normalization. g" and g" denote the global coordinate
attention weights in the horizontal and vertical directions,
respectively. g.(i, j) represents the global coordinate attention
weight. The hyperparameter » is the channel reduction ratio,
and we set r to 32.

b) Local coordinate attention weight: Similarly, we also
use the concatenation to perform channel fusion on feature
maps {B; x S, By x S, ..., B, x S} of different granularities.
We then utilize two 1-D convolutions with kernel sizes of
(H,1) and (1, W) to convolve the fused feature map X in
each channel horizontally and vertically, resulting in two 1-
D feature maps X" € RE*H*! and X¥ e REI*W_ Next,
we apply a shared 1 x 1 pointwise convolutional layer N, €
REXC/mxIx1 o both X" and X™. Finally, we use two 1 x
1 pointwise convolutional layers Nj, € R(C/DxCxIxIand N, e
R(E/N*CxIx1 o process the intermediate feature obtained after
the N, operation, so that the transformed feature has the same
number of channels as the input feature X. This allows us to
calculate the local coordinate attention weight as follows:

1= o (Ni(8(B(N2(x"))))) (16)
1" = o (Nu@GBN(X"))) a7)
(i ) = 1¢ @) X [(j) (18)

where o represents the sigmoid activation function, § repre-
sents the ReLLU activation function, and B(-) denotes batch
normalization. /" and [* denote the local coordinate attention
weights in the horizontal and vertical directions, respectively.
I.(i, j) represents the local coordinate attention weight. The
hyperparameter r is the channel reduction ratio, and we set r
to 32.

After computing the global and local coordinate attention
weights as described above, we obtain a new feature Y that
contains both local and global coordinate attention. This can
be written as

y=xc, j)® (&l j)®ILG, j))

where @ and ® denote broadcast addition and elementwise
multiplication, respectively.

Therefore, the feature map Ps generated by ACA contains
rich multigranularity global and local contextual information.
To alleviate the information loss due to the reduced number
of channels, we combine Pg with Ps and fuse them with
other lower level features. This fusion method enhances the
perceptual ability of the model and the representation ability of
multigranularity features, thereby improving the performance
of the model.

19)

IV. EXPERIMENTS AND RESULTS
A. Datasets and Evaluation Metrics

1) Datasets: FGSD2021 [27] is a high-resolution ship
dataset with fixed GSD obtained from publicly available
Google Earth. It contains 636 normalized GSD images. It has
a width of 157-7789 pixels, an average width of 1202 pixels,
and a height of 224-6506 pixels. We use 424 training and
212 test images, respectively. For single-scale experiments,
we resize the image to 512 x 512. For multiscale experiments,
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the original images are initially resized at three scales (0.5, 1.0,
and 1.5) before being cropped into 1024 x 1024 patches using
a stride of 512.

HRSC2016 [61] is a high-resolution RS ship dataset marked
with a rotating box. It includes 1061 RS images obtained from
Tianditu, and its size ranges from 300 x 300 to 1500 x 900.
We train with a training set (436 images) and a validation set
(181 images), test with a test set (444 images), and rescale all
images to (512 x 512).

UCAS-AOD [62] is an RS dataset for aircraft and vehicle
detection. It has 1510 images and 14596 instances, includ-
ing 510 car and 1000 airplane images. Previous research
on ship detection [27] and studies that involve partial ship
detection [19], [22] also use UCAS-AOD to verify the gen-
eralization ability of the model. Similar to the ship datasets
FGSD2021 and HRSC2016, UCAS-AOD exhibits characteris-
tics such as image blurring and inconsistent target sizes. In our
experiments, we divide the dataset into training and testing sets
on a 7:3 scale and cut the size of each image to 512 x 512.

2) Evaluation Metrics: We mainly utilize the intersection
over union (IoU) between rotating BBoxes to distinguish
detection results and adopt the widely used mean average
precision (mAP) as the evaluation metric for RS ship detection
methods. The IoU is calculated by dividing the overlapping
area of the detection box with the ground-truth box by their
union area. The detection box is labeled as true positive (TP) if
the IoU between the two boxes exceeds a threshold. Otherwise,
it is labeled as a false positive (FP). A ground-truth box is
labeled as a false negative (FN) if it has no corresponding
detections. The mAP is obtained by calculating the precision
P = TP/(TP + FP) and the recall rate R = TP/(TP + FN),
which can be expressed as mAP = (1/A) Z:}zl f P,(R,))dR,,
where A represents the total number of categories, and P,
and R, denote the precision and recall for each category a,
respectively.

For FGSD2021, we choose to use the PASCAL VOC2007
metric with an IoU threshold of 0.5 to calculate the mAP.
For HRSC2016 and UCAS-AOD, we select the PASCAL
VOC2007 and PASCAL VOC2012 metrics with an IoU thresh-
old of 0.5 to compute the mAP. In addition, we also consider
model parameters (Param), giga floating-point operations per
second (GFLOPs), runtime, and frames per second (FPS) to
verify the efficiency of the methods.

B. Implementation Details

Our proposed 3WM-AugNet builds on the baseline model
S2A-Net, including its network architecture and most parame-
ter settings. We keep the regression objective and loss function
of 3WM-AugNet the same as S?A-Net. During the inference,
an image is passed through the entire network without com-
plicated Rol operations, and we select top-2000 predictions
and employ NMS to produce final detections. We use two
Tesla V100s 32 GB for training and one Tesla V100 32
GB for testing. We choose ResNet50 and ResNetlOl as
the backbone networks for a fair comparison with the other
methods. In Algorithm 1, mean vector u; = gg, U2 = G202,
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TABLE I

COMPARISON OF RESULTS UNDER DIFFERENT DEHAZING ALGORITHM
SETTINGS IN BCDM. BCDM MEANS THE BLURRED CLASSIFICA-
TION AND DEBLURRING MODULE. BOLD HIGHLIGHTS THE BEST

RESULTS
Setting Deblurring Algorithm Param(M) GFLOPs mAP(%)
Baseline - 35.02 189.71 80.19
BCDM SRN 41.82 227.53 83.01
BCDM DeblurGAN-v2 95.90 520.21 83.05
BCDM MT-RNN 37.66 207.93 83.08
BCDM MIMO-UNet 51.12 277.34 83.08
BCDM XYDeblur 46.74 254.18 83.06

and w3 = gy7, covariance matrix

and mixing coefficient x; = x» = x3 = (1/3), and choose to
use a linear classifier SVM. In the loss function, we set the loss
balance parameter A to 1 and the hyperparameters « and y of
focal loss L, to 0.25 and 2.0, respectively. The SGD optimizer
is used with an initial learning rate of 0.01, the learning rate
is divided by 10 for each decay step, and the batch size is 4.
Momentum and weight decay are 0.9 and 0.0001, respectively.
We train on FGSD2021, HRSC2016, and UCAS-AQOD datasets
for 100, 60, and 80 epochs, respectively. All experiments
are conducted based on MMDetection [63] and default to a
single-scale experiment unless otherwise specified.

C. Parametric Analysis

In this section, we conduct experiments on the FGSD2021
dataset to investigate the effect of different parameter settings
on the performance of the proposed module.

1) Effect of Different Deblurring Algorithms on BCDM:
To investigate the impact of different deblurring algorithms on
the detection performance of BCDM, we compare MT-RNN
with other deblurring algorithms on the FGSD2021 dataset
and evaluate the influence of MT-RNN on BCDM. During
the comparison process, we keep all other settings the same
and only replace MT-RNN [46] with SRN [44], DeblurGAN-
v2 [45], MIMO-UNet [47], or XYDeblur [48]. The results
are shown in Table I. The experimental results indicate that
incorporating MT-RNN in BCDM improves the baseline mAP
by 2.89%. In addition, using MT-RNN enables the model to
achieve the best accuracy, reaching 83.08% mAP, while its
parameters and GFLOPs are only slightly higher than the
baseline model, with an increase of merely 2.64M parame-
ters and 18.22 GFLOPs in computational cost. Compared to
SRN, DeblurGAN-v2, and XYDeblur, MT-RNN achieves a
higher accuracy by 0.07%, 0.03%, and 0.02%, respectively.
In addition, compared to MIMO-UNet, MT-RNN reduces
parameters and GFLOPs by 13.46M and 69.41, respectively,
while achieving the same level of accuracy as MIMO-UNet.
This further proves the effectiveness of MT-RNN in improving
the detection performance of the model.
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TABLE I

COMPARISON OF RESULTS UNDER DIFFERENT POOLING SETTINGS IN
ACF. ACF MEANS THE ADAPTIVE COORDINATE FUSION. SUM
REFERS TO THE ELEMENTWISE SUMMATION. GMP, GAP, AND
RAP REPRESENT GLOBAL MAX POOLING, GLOBAL AVERAGE
POOLING, AND RATIO-INVARIANT ADAPTIVE POOLING,

RESPECTIVELY
Setting Pooling Type B mAP(%)
Baseline - - 80.19
sum GMP - 78.62
sum GAP - 82.31
sum RAP 0.1,0.2,0.3 83.14
ACF RAP 0.1 83.27
ACF RAP 0.1,0.2 83.85
ACF RAP 0.1,0.2,0.3 85.93
ACF RAP 0.1,0.2,0.3,0.4 86.65
ACF RAP 0.1,0.2,0.4 86.57
ACF RAP 0.1,0.2,0.5 86.55
ACF RAP 0.1,0.2,0.6 86.21
ACF PSP - 85.94
TABLE III

COMPARISON OF RESULTS UNDER DIFFERENT REDUCTION RATIO r SET-
TINGS IN ACF. ACF MEANS ADAPTIVE COORDINATE FUSION. BOLD
HIGHLIGHTS THE BEST RESULTS

Setting Reduction rate r Param(M) GFLOPs mAP(%)
Baseline - 35.02 189.71 80.19
ACF 8 3751 207.35 85.20
ACF 16 35.93 200.78 85.99
ACF 32 35.58 198.12 86.57
ACF 64 35.19 194.86 85.73

2) Effect of Different Pooling Types on ACA: To study the
impact of different pooling types on the detection performance
of ACA, two different types of pooling are compared by
replacing RAP, where the reduction ratio r is set to 32. Since
there is only one branch, we use a summation operation
for feature fusion. Table II shows that global max pooling
(GMP) reduces the baseline by 1.57% mAP, while global
average pooling (GAP) increases the baseline by 2.12% mAP.
Therefore, GAP is found to be more effective than GMP in
detecting RS ships. Then, we replace GAP with RAP and set
three B values of 0.1, 0.2, and 0.3, respectively. In the fifth row
of Table II, RAP improves by 2.95% mAP and 0.83% mAP
compared to the baseline and GAP, respectively, indicating the
effectiveness of RAP. Finally, combining ACF with RAP at the
same B value results in an experimental outcome of 85.93%
mAP, which is 5.74% mAP higher than the baseline.

We also explore the impact of different values of 8 on the
model detection performance. Based on the results in Table II,
we choose to set three values of 8 to achieve a better balance
between model complexity and accuracy. The three B’s are
set to 0.1, 0.2, and 0.4, respectively. To further verify the
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TABLE IV

COMPARISON OF RESULTS UNDER DIFFERENT TYPES OF CONVOLUTION
SETTINGS IN BF2L. BF2L MEANS THE BOTTOM-UP FEATURE FUSION
LAYER. CONV, DILATEDCONYV, AND DEPTHWISECONV REPRESENT
CONVOLUTION, DILATED CONVOLUTION, AND DEPTHWISE
CONVOLUTION, RESPECTIVELY. BOLD HIGHLIGHTS THE
BEST RESULTS

Setting Convolution type Param(M) GFLOPs mAP(%)
Baseline - 35.02 189.71 80.19
BF?L Conv 36.90 203.53 80.70
BF2L DilatedConv 36.37 200.93 81.16
BF?L DepthwiseConv 35.23 195.09 82.71
TABLE V
RESULTS OF DIFFERENT ABLATION EXPERIMENTS ON FGSD2021.

VMEANS TO USE THIS MODULE, BASELINE MEANS SZA-NET,
BCDM MEANS THE BLURRED CLASSIFICATION AND DEBLURRING
MODULE, BF’L MEANS THE BOTTOM-UP FEATURE FUSION
LAYER, AND ACA MEANS ADAPTIVE COORDINATE ATTEN-
TION. MFAM CONSISTS OF BF?L AND ACA. ABLA-

TION EXPERIMENTS USING SINGLE-SCALE TRAIN-

ING AND TESTING

Baseline BCDM BF’L ACA Param(M) GFLOPs mAP(%) FPS
v 3502 18971  80.19  33.12
v v 37.66 20793  83.08 2852
v v 3523 19509 8273  31.09
v v 3558 19664 8657 30.72
v v 35.79 198.12  89.45 30.50
v v v o/ 3843 21235 9153 2649

effectiveness of RAP, we use PSP [64] with pooling kernel
sizes of 1 x 1,2 x 2, and 3 x 3 to replace RAP, and the
results show that it is 0.63% mAP worse than RAP.

3) Effect of Different Reduction Ratios r on ACA: In
Section III-C, we propose an ACA composed of RAP and
ACF, where ACF introduces a hyperparameter reduction ratio
r. Since different reduction ratios r have a certain impact on
the performance of ACA, we conduct a series of experiments
to determine the optimal r value and recorded the performance
and parameter count under different r values, as shown in
Table III. We found that, as r doubles, the parameter count of
the model also significantly increases, but the performance ini-
tially improves and then deteriorates. On the contrary, a small r
enables the convolutional layer to better eliminate redundant
channel information, thus enhancing the performance of the
model. However, increasing r may result in the loss of useful
features, leading to a decline in performance. To better balance
the number of parameters and the performance of the model,
we set r to 32, achieving a better performance of 86.57% mAP.
Compared to the baseline, the mAP of the model increases by
6.38% while only adding 0.56M parameters and 8.41 GFLOPs.

4) Effect of Different Convolution Types on BF?L: We com-
pare DepthwiseConv with other convolution types to evaluate
its effectiveness in improving BF’L detection performance.
While keeping all other settings unchanged, we only replace
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TABLE VI

RESULTS OF TIME EFFICIENCY OF BCDM IN TRAINING AND TESTING
ON DIFFERENT DATASETS. BCDM MEANS THE BLURRED CLASSIFI-
CATION AND DEBLURRING MODULE

. Runtime(s)
Datasets Setting Params(M)
Train  Test
FGSD2021 BCDM 2.64 0.15 0.11
HRSC2016 BCDM 2.64 0.19 0.15
UCAS-AOD BCDM 2.64 0.19 0.16

DepthwiseConv with Conv or DilatedConv, and the experi-
mental results are shown in Table IV. The results indicate
that DepthwiseConv significantly improves the detection per-
formance of the model to 82.71% mAP, which is 2.52% mAP
higher than the baseline and only increases 0.21M parameters
and 5.38 GFLOPs. On the contrary, replacing DepthwiseConv
with Conv and DilatedConv results in the inferior performance
of the model, reaching only 80.70% mAP and 81.16% mAP,
respectively, and both require more parameters and GFLOPs
than DepthwiseConv. This demonstrates the effectiveness of
DepthwiseConv in improving the detection performance of the
model.

D. Ablation Study

Taking S?A-Net as the baseline, we propose two novel
modules, BCDM and MFAM, where MFAM is composed
of ACA and BF’L. To verify the effectiveness of different
modules, we conduct an ablation study on FGSD2021, and
the results are shown in Table V.

1) S?A-Net as Baseline: As a one-stage alignment network,
S?A-Net uses the combination of FAM and ODM to detect
rotating objects in RS images efficiently. Table V shows that
S?A-Net achieves 80.19% mAP on FGSD2021, which shows
that our baseline is competitive.

2) Effectiveness of the BCDM: Before we add BCDM to the
backbone of the baseline, other settings remained unchanged,
and its effectiveness was verified on FGSD2021, as shown in
Table V. Compared with the baseline, the detection result of
the model adopting BCDM improves by 2.89%, from 80.19%
mAP to 83.08% mAP. In addition, the parameter and GFLOPs
of the model only increased by 2.64M and 18.22, respectively,
indicating a significant performance improvement. Due to
the blurred characteristics of RS images, existing algorithms
perform deblurring on all images, resulting in some originally
clear images being excessively deblurred, which reduces their
clarity and is not conducive to subsequent detection. Therefore,
incorporating BCDM into the model enables it to selectively
deblur only the necessary images (blurry images), improving
the detection accuracy.

In BCDM, all input unclassified RS images are first divided
into clear, uncertain, and blurry images by combining the 3WD
theory. Then, the SVM classifier is used to further classify
uncertain images. Finally, only the blurry images are subjected
to deblurring processing using the MT-RNN algorithm, while
the clear images remain unchanged. Fig. 8 displays the results
of the blur level classification of images in the FGSD2021
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Fig. 8. Blur level classification results of images in the FGSD2021 dataset based on 3WD. First, we calculate the SMD2 and Tenengrad values for all input
images, taking the obtained SMD?2 values and Tenengrad values as data points and combining them to form a dataset, as shown in (a). Next, the dataset is
processed using the Gaussian mixture clustering algorithm and 3WD theory, categorizing the images into three classes: clear, uncertain, and blurry, as shown in
(b). Subsequently, clear and blurry images are obtained as the training set, while uncertain images are used as the testing set. By utilizing the SVM classifier,
uncertain images are further categorized into clear and blurry images, yielding the final classification results depicted in (c). Unclassified samples (orange
dots) represent all input images. Positive samples (blue dots) represent clear images, uncertain samples (red dots) represent uncertain images, and negative

samples (green dots) represent blurry images.

(a) Unclassified images
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Example of BCDM operation process in the FGSD2021 dataset. First, the 3WD theory is employed to classify all input unclassified images into

clear, uncertain, and blurry categories. Second, the SVM classifier is used to further divide the uncertain images into clear and blurry images. Next, the
MT-RNN algorithm is exclusively employed to deblur the blurry images, while the clear images remain unchanged. Finally, this process yields clear images.
(a) Unclassified images. (b) Clear images. (c) Uncertain images. (d) Blurry images. (e) Clear images. (f) Blurry images. (g) Clear images.

dataset based on 3WD. Fig. 9 shows an example of the BCDM
operation process in the FGSD2021 dataset and presents
images classified as clear, uncertain, and blurry. Specifically,
clear images refer to images in which most of the details and
features of the ships in the image can be clearly distinguished.
Uncertain images refer to images with moderate clarity, and
blurry images refer to images with low clarity.

3) Efficiency of the BCDM: Given that BCDM should
operate on each training and testing image separately in the
training and testing stages, its time efficiency should also be
studied to evaluate the practicality and feasibility of BCDM in

practical applications. We conduct comprehensive experiments
on three datasets (FGSD2021, HRSC2016, and UCAS-AOD)
with varying scales and complexities. To ensure the reliability
of the results, we run multiple trials on each dataset and
calculate the average running time as the measure of time
efficiency.

As shown in Table VI, the average time cost for BCDM
training and testing on the three datasets is about 0.18 and
0.14 s, respectively. Compared with the test phase, training
BCDM shows an additional time cost when training an SVM
classifier using clear and blurry images. On the one hand, the
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TABLE VII
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DETECTION PERFORMANCE OF DIFFERENT METHODS ON FGSD2021. THE SHORT NAME OF THE CLASS IS DEFINED AS (ABBREVIATION-FULL
NAME): AIR- AIRCRAFT CARRIERS, WAS-WASP CLASS, TAR-TARAWA CLASS, AUS-AUSTIN CLASS, WHI-WHIDBEY ISLAND CLASS, SAN-SAN

ANTONIOCLASS, NEW-NEWPORT CLASS, TIC-TICONDEROGA CLASS, BUR-ARLEIGH BURKE CLASS, PER-PERRY CLASS, LEW-LEWIS,

CLARK CLASS, SUP-SUPPLY CLASS, KAI-HENRY J. KAISER CLASS, HOP-BOB HOPE CLASS, MER-MERCY CLASS, FRE-FREEDOM

CLASS, IND-INDEPENDENCE CLASS, AVE-AVENGER CLASS, SUB-SUBMARINE, AND OTH-OTHER. * MEANS THAT THE

DATASET USES THE PREPROCESSING MODULE BCDM. ¥ MEANS MULTISCALE TRAINING AND TESTING. *' MEANS
THAT THE DATASET USES THE PREPROCESSING MODULE BCDM AND PERFORMS MULTISCALE TRAINING
AND TESTING. MAP(07) REFERS TO THE MAP COMPUTED ON THE PASCAL VOC2007. BOLD HIGHLIGHTS

THE BEST RESULTS

Method Backbone Air Was Tar Aus Whi San New Tic Bur Per Lew Sup Kai Hop Mer Fre

Ind Ave Sub Oth mAP(07)(%) FPS

Two-stage methods

R2CNN [15] ResNet50 89.91 80.90 80.48 79.41 87.01 87.77 44.20 89.03 89.62 79.45 80.40 47.73 81.52 87.36 100 82.44 100 66.37 50.9157.19  78.09  10.31
ROI Transformer [16] ResNet50 90.90 88.55 87.17 89.51 78.53 88.80 81.77 89.69 89.83 90.44 71.71 74.65 73.72 81.60 78.58 100 75.56 78.44 68.01 66.92  82.22  19.19
Oriented R-CNN [26] ResNet50 90.85 89.71 81.46 81.06 79.57 88.23 98.92 89.90 90.58 87.83 60.44 73.88 81.81 86.73 100 60.03 100 79.37 66.85 63.74  82.55  27.43
DEA-Net [33] ResNet50 90.43 91.37 84.61 93.50 88.71 94.54 92.11 90.73 92.35 88.92 60.62 81.63 85.37 90.32 99.66 83.10 98.52 76.63 68.45 69.18  86.04  12.08
SCRDet++ [19]  ResNet50 93.50 90.11 87.21 89.57 87.23 96.35 90.14 90.82 92.33 88.39 62.67 85.73 88.74 95.55 100 85.16 100 82.5674.3477.36  87.89  16.41
SCRDet++*[19]  ResNet50 95.34 91.70 88.56 90.47 88.49 97.06 93.32 91.37 92.33 90.69 75.47 86.93 89.93 95.79 100 87.00 100 86.71 78.8380.76  90.04  12.52
One-stage methods
CSL [20] ResNet50 89.67 81.25 77.23 80.19 71.43 77.24 52.68 87.71 87.74 74.15 57.07 97.23 77.64 80.46 100 72.71 100 32.58 36.98 40.74  73.74  10.38
RDet-DCL [21]  ResNet50 89.91 81.37 78.62 80.70 78.01 87.88 49.79 78.73 87.15 76.11 60.62 76.85 90.42 80.03 78.79 77.88 100 37.1331.2345.58  73.34  10.03
R3Det [22] ResNet50 90.93 80.90 81.51 90.05 79.26 87.52 29.47 77.36 89.44 69.73 59.87 67.30 80.66 76.84 72.69 83.31 90.85 38.43 23.1440.04 7047  14.01
RSDet [23] ResNet50 89.90 80.43 75.76 77.28 78.64 88.82 26.06 84.73 87.63 75.16 55.11 74.37 89.67 89.33 100 86.36 100 27.64 37.6150.63  73.76 1538
RSDet* [23] ResNet50 90.32 81.43 77.76 79.34 83.78 89.54 38.06 84.99 88.93 78.34 55.11 75.01 89.63 89.73 100 87.09 100 34.5539.2352.14  75.75 11.12
Anchor-free methods
BBAVectors [24]  ResNet50 99.53 90.92 75.86 94.27 90.93 52.88 88.47 90.03 80.41 72.17 76.93 88.19 99.64 100 93.97 100 74.54 58.91 63.12 81.84  83.63 18.53
CHPDet [27] DLA34 90.90 90.40 89.60 89.30 89.60 99.10 99.40 90.20 90.20 90.30 70.70 87.90 89.20 96.50 100 85.10 100 84.40 68.50 56.90  87.91 15.40
Oriented RepPoint [30] ResNet50 91.16 89.21 85.61 89.30 87.59 93.13 94.15 91.52 88.73 83.30 71.37 81.14 89.42 91.48 95.60 82.63 100 86.55 64.74 57.48  85.71 36.73
GF-CSL [34] ResNet50 92.56 90.33 86.61 90.52 88.16 95.32 97.90 89.77 91.21 86.94 69.65 85.63 92.73 92.54 99.71 85.12 98.58 86.67 79.44 70.36  88.49  40.32
GF-CSL* [34] ResNet50 96.04 95.15 89.73 96.75 89.98 96.22 98.73 90.62 91.18 88.94 72.65 87.63 94.65 92.87 100 88.08 100 88.3180.94 73.54  90.60  35.64
GF-CSL+ [34] ResNet50 97.31 95.82 90.63 96.98 93.45 99.53 99.41 92.11 93.03 95.13 85.44 95.77 91.25 96.73 100 92.01 100 90.33 81.06 75.32  93.07  14.31
S?A-Net [28] ResNet50 90.91 81.43 73.25 89.11 80.87 89.92 81.23 89.16 90.67 88.93 60.52 75.86 81.64 89.20 100 68.63 90.88 61.31 55.6564.72  80.19  33.12
S2A-Net* [28] ResNet50 93.20 83.48 77.09 92.64 84.99 91.72 82.73 90.35 90.97 91.03 60.74 78.06 86.71 90.34 100 74.83 93.58 67.03 61.48 70.63 ~ 83.08  28.52
3WM-AugNet (Ours) ResNet50 96.01 92.07 88.78 95.96 90.01 95.47 87.12 92.97 93.70 93.21 62.04 87.76 90.58 96.84 97.64 86.74 99.98 79.32 79.12 83.70 ~ 89.45  30.50
3WM-AugNet (Ours)* ResNet50 98.52 94.67 90.65 97.62 91.36 96.88 89.78 94.12 93.82 95.09 67.82 88.74 93.78 97.34 100 89.52 100 81.1485.7284.02  91.53  26.49
3WM-AugNet (Ours)*t ResNet50 98.64 96.77 94.01 97.58 97.32 97.01 92.85 94.83 94.77 95.73 88.61 89.02 95.32 98.55 100 94.20 100 84.23 90.19 84.57  94.21 9.02

TABLE VIII

COMPARISON OF THE NUMBER OF PARAMETERS AND COMPUTATION OF
DIFFERENT METHODS ON FGSD2021. * MEANS THAT THE DATASET
USES THE PREPROCESSING MODULE BCDM. MAP(07) REFERS
TO THE MAP COMPUTED ON THE PASCAL VOC2007. BOLD
HIGHLIGHTS THE BEST RESULTS

Method BackBone  Param(M) GFLOPs mAP(07)(%)
DEA-Net [33] ResNet50 59.90 237.21 86.04
R®Det-DCL [21] ResNet50 37.31 152.85 73.34
GF-CSL [34] ResNet50 49.71 225.63 88.49
S2A-Net [28] ResNet50 35.02 189.71 80.19
3WM-AugNet* (Ours)  ResNet50 38.43 212.35 91.53

training phase of BCDM includes Gaussian mixture clustering
and SVM training. Its time complexity is O (m) (m represents
the total number of images). On the other hand, the testing

phase of BCDM includes testing of both SVM and MT-
RNN. The testing time complexity of SVM is O(m’) (m’
denotes the number of uncertain images and m’ < m). The
testing time complexity of MT-RNN is 18.22 GFLOPs. Given
the large-scale and complex characteristics of RS images,
these processing times are considered acceptable. Meanwhile,
BCDM is designed to preprocess input images in a reasonable
way to improve detection accuracy. Therefore, it is feasible
to sacrifice a small amount of processing time to achieve
improved performance.

4) Effectiveness of ACA and BF?L: Table V demonstrates
that incorporating ACA in the model results in a significant
performance improvement, with the model achieving 86.57%
mAP. This indicates that ACA is effective in reducing infor-
mation loss during high-level feature map generation, thereby
enhancing the accuracy of model detection. As shown in
Table V, with the participation of ACA, the model reaches
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TABLE IX

DETECTION PERFORMANCE OF DIFFERENT METHODS ON HRSC2016.
MAP(07) AND MAP(12) REFER TO THE MAP COMPUTED ON THE
PAsCAL VOC2007 AND PASCAL VOC2012, RESPECTIVELY. *
MEANS THAT THE DATASET USES THE PREPROCESSING MOD-

ULE BCDM. BOLD HIGHLIGHTS THE BEST RESULTS

Method Backbone mAP(07)(%) mAP(12)(%)
Two-stage methods
R2CNN [15] ResNet101 73.07 79.73
ROI Transformer [16] ResNet101 86.20
Gliding Vert [18] ResNet101 88.20 -
Oriented R-CNN [26] ResNet101 90.50 97.60
DEA-Net [33] ResNet101 90.56 -
DEA-Net* [33] ResNet101 90.62 -
SCRDet++ [19] ResNet101 - 97.67
SCRDet++* [19] ResNet101 - 97.75
One-stage methods
CSL [20] ResNet101 89.62 96.10
R3Det [22] ResNet101 89.26 96.01
RSDet [23] ResNet152 86.50 -
R3Det-DCL [21] ResNet101 89.46 96.41
R3Det-DCL* [21] ResNet101 89.57 96.53
Anchor-free methods
BBAVectors [24] ResNet101 88.60 -
Oriented RepPoint [30] ResNet50 90.38 97.26
CHPDet [27] DLA34 88.81 -
GF-CSL [34] ResNet101 90.53 97.90
GF-CSL~* [34] ResNet101 90.61 97.97
S2A-Net [28] ResNet101 90.17 95.01
S2A-Net* [28] ResNet101 90.28 95.30
3WM-AugNet (Ours) ResNet101 90.60 96.94
3WM-AugNet (Ours)* ResNet101 90.69 97.02

86.57% mAP, indicating that ACA can effectively reduce
information loss when generating high-level feature maps,
thereby improving the accuracy of model detection. In addi-
tion, we also find that incorporating BF’L can also achieve
82.73% mAP, indicating that feature fusion can fully use
accurate positioning information of low level to improve
high-level feature learning. Therefore, by combining ACA
and BF?L, we achieve a detection accuracy of 89.45% mAP.
Compared with the baseline, this combination results in a
9.26% increase in the mAP of the model while only increasing
0.77M parameters and 8.41 GFLOPs. Therefore, ACA and
BF’L have been proven to be effective in improving the
performance of the model.

E. Comparison With State-of-the-Art

This section compares our 3WM-AugNet with other state-
of-the-art methods on the three RS datasets, i.e., FGSD2021,
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TABLE X

DETECTION PERFORMANCE OF DIFFERENT METHODS ON UCAS-AOD.

MAP(07) AND MAP(12) REFER TO THE MAP COMPUTED ON THE
PASCAL VOC2007 AND PASCAL VOC2012, RESPECTIVELY. *
MEANS THAT THE DATASET USES THE PREPROCESSING MOD-
ULE BCDM. BOLD HIGHLIGHTS THE BEST RESULTS

Method Backbone Car Plane mAP(07)(%) mAP(12)(%)
Two-stage methods
ROI Transformer [16] ResNet1l01 87.99 89.90 88.95 -
DEA-Net [33] ResNet101 88.12 90.38 89.25 -
DEA-Net* [33] ResNet101 88.34 90.41 89.38 -
SCRDet++ [19] ResNet101 94.97 98.93 - 96.95
SCRDet++" [19] ResNet101 95.09 98.97 - 97.03
One-stage methods
YOLOV3 [4] Darknet53 74.63 89.52 82.08 -
84.64 90.51 87.50 -
RetinaNet [5] ResNet101
93.61 97.30 - 95.46
CSL [20] ResNet101 88.09 90.38 89.23 -
R®Det-DCL [21] ResNet101 88.15 90.57 89.36 -
DAL [25] ResNet101 89.25 90.49 89.87 -
DAL* [25] ResNet101 89.47 90.54 90.01 -
R3Det [22] ResNet101 94.14 98.20 - 96.17
R3Det* [22] ResNet101 94.25 98.26 - 96.26
Anchor-free methods
CHPDet [27] DAL34  88.58 90.64 89.61 -
Oriented RepPoint [30] ResNetl01 89.51 90.70 90.11 -
Oriented RepPoint* [30] ResNetl01 89.69 90.77 90.23 -
88.39 90.60 89.49 -
GF-CSL [34] ResNet101
93.05 98.53 - 95.79
88.56 90.68 89.62 -
GF-CSL* [34] ResNet101
93.22 98.55 - 95.89
S?A-Net [28] ResNet101 89.50 90.40 89.90 -
S?A-Net* [28] ResNet101 89.61 90.45 90.03 -
90.02 90.73 90.38 -
3WM-AugNet (Ours)  ResNet101
95.31 98.93 - 97.12
90.16 90.83 90.50 -
3WM-AugNet (Ours)* ResNet101
95.43 98.98 - 97.21

HRSC2016, and UCAS-AOD. To ensure a fair comparison,
we do not use the preprocessing module BCDM for all
algorithms. Meanwhile, to evaluate the performance of our
3WM-AugNet more comprehensively, we also select several
excellent algorithms that use our proposed BCDM in the
preprocessing. This step eliminates the influence of the pre-
processing module BCDM on the experimental results and
ensures a fair evaluation of the performance of our 3WM-
AugNet.
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1) Results on FGSD2021: As shown in Table VII, we can
see that, when all algorithms did not use our proposed
preprocessing module BCDM, our 3WM-AugNet improved
the mAP from 80.19% to 89.45% compared to the baseline
S?2A-Net [28]. Our 3WM-AugNet outperforms two-stage algo-
rithms in terms of performance, and this advantage is even
more pronounced compared to one-stage anchor-free methods.
In particular, the anchor-free method GF-CSL [34] achieves
88.49% mAP at a speed of 40.32 FPS, while our 3WM-
AugNet outperforms GF-CSL by 0.96% mAP, with the highest
accuracy of 89.45% mAP and a speed of only slightly lower
than GF-CSL. This is attributed to MFAM enhancing the
interaction between low- and high-level features, preserving
critical high-level features, and significantly improving the
detection performance for ships of different sizes through
adaptive feature fusion.

In addition, Table VII shows that, compared to other
state-of-the-art methods using the same preprocessing module
BCDM, our 3WM-AugNet achieved the highest detection
accuracy, reaching 91.53% mAP at 26.49 FPS. Compared
with SCRDet++ [19], RSDet [23], GF-CSL, and S?A-Net,
our 3WM-AugNet improves the detection accuracy by 1.49%,
15.78%, 0.93%, and 8.45%, respectively. Meanwhile, our
3WM-AugNet achieves the best detection accuracy in Was,
Tar, Aus, Whi, Tic, Bur, Per, Lew, Mer, Ind, Sub, and Oth
detection categories. Furthermore, our 3WM-AugNet achieves
94.21% mAP when using multiscale training and testing,
which is 1.14% higher than GF-CSL and obtains the best
performance. The reason is that BCDM performs effective
image deblurring on RS images. It can accurately identify and
process blurry images while avoiding unnecessary processing
of clear images, thereby improving the quality and clarity of
the images. This further contributes to enhancing the detection
performance of ships of different sizes in RS images.

Given that our 3WM-AugNet incorporates the preprocessing
module BCDM, we further compare its computation and
number of parameters with several excellent methods to high-
light the superiority of our 3WM-AugNet. The experimental
results are shown in Table VIII. According to Table VIII,
it can be observed that our 3WM-AugNet utilizes the BCDM
preprocessing module, which introduces only a few parameters
and computations, while significantly improving the accuracy
of ship detection.

2) Results on HRSC2016: We evaluate our 3WM-AugNet
on PASCAL VOC2007 and PASCAL VOC2012 metrics.
Under the VOC2007 metric, we evaluate R2CNN [15], ROI
Transformer [16], Gliding Vert [18], Oriented R-CNN [26],
DEA-Net [33], CSL [20], R?Det [22], RSDet [23], R3Det-
DCL [21], BBAVectors [24], Oriented RepPoint [30],
CHPDet [27], GF-CSL [34], and S?A-Net [28] methods.
Under the VOC2012 index, we evaluate R2CNN, Oriented
R-CNN, SCRDet++ [19], CSL, R3Det, R*Det-DCL, Oriented
RepPoint, GF-CSL, and S?A-Net methods. The experimental
results are shown in Table IX. When all algorithms do not
use our proposed preprocessing module BCDM, our 3WM-
AugNet achieves 90.60% mAP and 96.94% mAP under
the VOC2007 and VOC2012 indicators, demonstrating the
effectiveness of the network design of 3WM-AugNet. This
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Fig. 10. Comparison of detection visualization results of different methods
on FGSD2021. Each row represents the detection results of (a) ground truth,
(b) SCRDet++, (c) RSDet, (d) GF-CSL, (¢) S?A-Net, and (f) proposed
3WM-AugNet. Different colored rotating boxes represent different types of
ship targets. Red and green boxes indicate missed and false detections,
respectively.

achievement is attributed to our integration of the multigran-
ularity concept into the global and local coordinate attention
mechanisms. Moreover, compared with several state-of-the-
art methods using the same preprocessing module BCDM,
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Fig. 11. Comparison of detection visualization results of different methods
on HRSC2016. Each row represents the detection results of (a) ground truth,
(b) DEA-Net, (c) R®Det-DCL, (d) GF-CSL, (e) S*A-Net, and (f) proposed
3WM-AugNet. Light blue boxes represent detected ship targets. Red and green
boxes indicate missed and false detections, respectively.

3WM-AugNet achieves the best performance on the VOC2007
metric, achieving 90.69% mAP, demonstrating its superior
performance. However, our 3WM-AugNet fails to achieve
state-of-the-art performance under the PASCAL VOC2012
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Googlecst

Fig. 12. Comparison of detection visualization results of different methods
on UCAS-AOD. Each row represents the detection results of (a) ground
truth, (b) DEA-Net, (c) Oriented RepPoint, (d) GF-CSL, (e) S2A-Net, and
(f) proposed 3WM-AugNet. Green and purple boxes represent detected cars
and planes, respectively. Red and green boxes indicate missed and false
detections, respectively.

metric. Since our 3WM-AugNet mainly focuses on image blur
and ship targets of different sizes, it does not fully consider
other complex and diverse scene factors, such as occlusion and
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Fig. 13.  Some examples of detection results of the proposed 3WM-AugNet
on FGSD2021. Different color rotating boxes represent different types of ship
targets.

Fig. 14. Some examples of detection results of the proposed 3WM-AugNet
on HRSC2016. Light blue boxes represent detected ship targets.

illumination changes, resulting in poor performance under the
PASCAL VOC2012 metric.

3) Results on UCAS-AOD: To better evaluate the gener-
alization performance and practical value of the proposed
3WM-AugNet, we also choose an RS dataset, UCAS-AOD,
containing high-resolution images of airplanes and cars
for detection. In addition, since the image scenes in the
UCAS-AOD are similar to those in ship detection, this exper-
iment can comprehensively evaluate the performance of the
algorithm in RS ship detection.

We choose PASCAL VOC2007 and PASCAL VOC2012
as evaluation metrics to comprehensively evaluate the per-
formance of different methods. Table X shows the detection
results of different methods on UCAS-AOD. Remarkably,
our 3WM-AugNet demonstrates outstanding performance on
UCAS-AOD even without using the preprocessing module

Fig. 15. Some examples of detection results of the proposed 3WM-AugNet
on UCAS-AOD. Green and purple boxes represent detected cars and planes,
respectively.

BCDM. It achieves state-of-the-art performance in PASCAL
VOC2007 and PASCAL VOC2012 evaluation metrics, achiev-
ing 90.38% mAP and 97.12% mAP, respectively. In addition,
compared with several excellent and popular methods employ-
ing the same preprocessing module BCDM, our 3WM-AugNet
achieves state-of-the-art performance on both metrics. Specifi-
cally, its mAP on the two indicators of PASCAL VOC2007 and
PASCAL VOC2012 reached 90.50% and 97.21%, respectively.
This further verifies the outstanding performance of 3WM-
AugNet in terms of generalization ability. The reason is that
our 3WM-AugNet uses image preprocessing operations and
makes full use of the multigranularity attention mechanism
when dealing with image blur and ships of varying sizes in
the UCAS-AOD dataset, resulting in significant performance
improvements.

F. Visualizing Results and Insight

We visualize the detection results on FGSD2021,
HRSC2016, and UCAS-AOD, as shown in Figs. 10, 11,
and 12, respectively. Furthermore, we also give some
examples of the proposed 3WM-AugNet to further verify its
accuracy and feasibility, as shown in Figs. 13, 14, and 15,
respectively.

1) Visualization Results of FGSD2021: To facilitate the
comparison of RS ship detection performance among differ-
ent algorithms, we visualize the results of several excellent
algorithms and compare their missed and false detection rates
to highlight the strengths of our proposed 3WM-AugNet.
Fig. 10 shows the visual comparison of detection results on
FGSD2021 for ground truth, SCRDet++ [19], RSDet [23],
GF-CSL [34], S?A-Net [28], and 3WM-AugNet.

In Fig. 10, the first column displays clear images, and all
compared detectors exhibit a certain degree of missed or false
detection. Specifically, RSDet has the highest missed detection
rate, missing one Oth, and one New. GF-CSL and SZA-Net
both have a false detection of one Oth. SCRDet++ has a
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false detection of one Tic. However, our 3WM-AugNet can
accurately detect each type of ship with low missed detection
and false detection rates. The second column displays blurry
images. Due to motion blur, the compared detectors exhibit
a certain degree of missed and false detections for ships of
various sizes, especially for small and medium-sized ships,
such as Ave, Oth, and Per. SCRDet++ has one false detection
of Oth. RSDet misses one Oth and one Ave while falsely
detecting one Ave. GF-CSL misses one Oth. S>?A-Net misses
one Per and falsely detects one Per. Compared to other
detectors, our 3WM-AugNet demonstrates significantly better
performance and can accurately detect ships of varying sizes,
even under blur interference.

Fig. 13 shows some detection results of 3WM-AugNet on
FGSD2021. The first row displays clear images, while the sec-
ond displays blurry images caused by motion blur interference.
It should be noted that the first and second rows show the
detection results of FGSD2021 by 3WM-AugNet added to the
preprocessing module BCDM. The results indicate that 3WM-
AugNet can effectively detect ship targets of different sizes in
scenes with motion blur interference, further demonstrating
the high accuracy and feasibility of 3WM-AugNet.

2) Visualization Results of HRSC2016: The visual com-
parison results of ground truth, DEA-Net [33], R3Det-
DCL [21], GF-CSL [34], S*>A-Net [28], and 3WM-AugNet on
HRSC2016 are shown in Fig. 11. The first column displays
clear images, where R*Det-DCL and S?A-Net miss one ship
each, while DEA-Net and S?A-Net falsely detect one ship
each. Both GF-CSL and 3WM-AugNet accurately detect all
ship targets. The second column displays blurry images, where
DEA-Net and GF-CSL falsely detect one ship each, while
R3Det-DCL and S?A-Net miss one ship each. In contrast, our
3WM-AugNet can effectively detect ship targets of different
sizes in blurry scenes. In addition, in Fig. 14, we present some
detection results of 3WM-AugNet on HRSC2016, showcasing
its superiority in detecting ship targets of different sizes in
clear and blurry scenes.

3) Visualization Results of UCAS-AOD: To comprehen-
sively evaluate the performance and generalization ability of
3WM-AugNet, we present the detection results compared with
other algorithms in Fig. 12 and visualize some examples of
detections in Fig. 15. This approach can not only compre-
hensively evaluate the performance of the model in different
datasets and scenarios but also demonstrates its generalization
ability and applicability.

In Fig. 12, the first column shows clear images, and the
second shows blurry images. All detectors have some degree
of missed detection and false detection. In the case of blurry
images, missed and false detection is more severe. DEA-
Net [33] has the highest missed and false detection rates,
while Oriented RepPoint [30], GF-CSL [34], and S2A-Net [28]
also have some degree of missed and false detection. In con-
trast, our 3WM-AugNet has extremely low missed and false
detection rates, and can correctly detect all cars and planes
in clear and blurry scenes. In addition, Fig. 15 shows some
detection results of 3WM-AugNet in different scenes of
UCAS-AOD, including clear scenes (first row) and blurry
scenes (second row). These results demonstrate the robustness
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and generalization ability of our model, which can perform
well in different scenarios and datasets.

V. CONCLUSION

This article proposes a novel one-stage RS ship detec-
tion method 3WM-AugNet. To achieve the goal of only
deblurring blurry images without reducing the clarity of
clear images, we design BCDM based on 3WD, resulting in
high-quality images. In addition, to enhance the interactions
of low- and high-level features, we incorporate multigran-
ularity feature learning in coordinate attention. Specifically,
an ACA is designed to reduce the loss of high-level fea-
tures. Meanwhile, BF2L is added to enhance the influence
of bottom-level features on the overall features. Extensive
ablation experiments show that the proposed 3WM-AugNet
not only effectively improves the baseline performance but
also achieves state-of-the-art performance on FGSD2021,
HRSC2016, and UCAS-AOD. However, despite BCDM and
MFAM significantly improving model performance by imple-
menting data augmentation and enhancing multigranularity
feature representation, they also introduce additional param-
eters, thereby reducing the detection speed of the model to
some extent. In future work, we plan to explore more advanced
blur classification methods, aiming to eliminate complex pre-
processing procedures and construct a more elegant, concise,
and efficient end-to-end RS ship detection network, to better
balance the performance and speed of the model.
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