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Feature Selection Using Zentropy-Based
Uncertainty Measure

Kehua Yuan , Duoqian Miao , Yiyu Yao , Hongyun Zhang , and Xuerong Zhao

Abstract—Feature selection and entropy theory are two effica-
cious data analysis tools for investigating uncertainty information
processing in artificial intelligence. The fruitful marriage of the
two has been an active research topic in knowledge discovery. Cur-
rently, most feature selection methods via entropy theory mainly
focus on the information measures at a single granular level. How-
ever, it ignores the interaction between granular levels, which leads
to the poor stability and accuracy of related methods. Hence, this
article proposes a novel zentropy-based uncertainty measure to
design a feature selection method by exploiting the granular level
structure in knowledge space. Subsequently, by analyzing the gran-
ular level structure in decision data, the zentropy-based uncertainty
measure and its properties are designed and analyzed to depict
the uncertainty knowledge from whole and internal. Moreover,
two importance measures are defined to evaluate features based
on the designed uncertainty measure, and then a corresponding
feature selection algorithm is developed. Finally, some experiments
are carried out on public datasets to demonstrate that the proposed
method can achieve state-of-the-art performance among methods,
especially regarding stability and classification accuracy.

Index Terms—Decision information system, feature selection,
granular computing, rough set (RS), uncertainty measure.

I. INTRODUCTION

F EATURE selection, a crucial issue of knowledge discovery
in information systems, aims to select the key features (re-

move the irrelevant and redundant features with the target) from
the original features to enhance the performance of task-specific
learning. Undoubtedly, feature selection has become a hot topic
in many fields, such as machine learning [14], pattern recogni-
tion [20], data mining [18], and approximate reasoning [40].

In recent years, big data have added new vigor and vitality to
the development of artificial intelligence, in which data are a cru-
cial resource. The processing of uncertainty for big data is related
to the credibility and interpretability of artificial intelligence [7],
[11], [22]. An influential theory to this processing is granular
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computing, which plays an important role in studying uncertain
phenomena when humans use concepts, symbols, and models
to describe the objective world [32]. From the perspective of
granular computing, to characterize an uncertainty concept, sev-
eral theoretical tools were applied to process this phenomenon
from its representation, measurement, and reasoning methods,
such as the three decision regions in three-way decision the-
ory [5], [33], the boundary region in rough set (RS) [35], [37],
and the pseudoconcept in concept cognitive learning [6], [29],
[30]. Up to now, numerous uncertainty measures of granular
computing have been proposed to meet different requirements
of uncertainty processing [4], [8], [36]. In these theories, it
is worth stressing that the fruitful marriage of entropy theory
and granular computing has become a practical method for
exploring uncertainty in artificial intelligence [15]. In particular,
the RS theory provides a mathematical set representation of
uncertainty [19]. In this theory, the vague concepts are described
by two precision approximate sets, which provide an “accurate”
method for dealing with imprecision knowledge. At present, the
RS model has been widely used in knowledge acquisition [18],
decision-making [9], [33], and artificial intelligence [20].

Note that the classical Pawlak RS can only handle discrete
data and the discretization of data could lead to the lack of
helpful information, thus, it is also extended to solve complex
situations, including fuzzy data [24], [39], interval data [12],
and ordered data [21]. In particular, neighborhood rough set
(NRS) as a crucial RS model is usually adopted to characterize
the uncertainty knowledge in real-valued data [26], [27]. In the
NRS model, the vague concept is approximately characterized
based on neighborhood similarity classes, which could avoid
noise interference to a certain extent and improve the tolerance
of differences between objects in continuous data [16], [17]. This
neighborhood thought has been widely adopted to extend the RS
model and successfully applied to concept approximation and
feature selection. This is one reason for studying the uncertainty
measure of real-valued data via the NRS in this article.

Meanwhile, inspired by entropy-based uncertainty measures,
some researchers have successfully applied these methods to
knowledge reduction and rule extraction in decision informa-
tion system [23], [31]. Liang [13] investigated the information
entropy (IE) and rough entropy from knowledge granulation.
Dai et al. [1], [2] studied two kinds of conditional IE for an
incomplete decision system. Wang et al. [25] proposed four
kinds of uncertainty measures to describe the uncertainty in
NRS based on self-information. Gao et al. [3] introduced a
monotonic uncertainty measure to describe the knowledge and
applied it to attribute reduction in the decision-theoretic RS
model. Moreover, considering the distribution structure of the

1941-0034 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 26,2024 at 11:42:06 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3580-3669
https://orcid.org/0000-0001-6588-1468
https://orcid.org/0000-0001-6502-6226
https://orcid.org/0000-0001-9781-5078
https://orcid.org/0000-0002-2324-955X
mailto:yuan945527632@163.com
mailto:dqmiao@tongji.edu.cn
mailto:zhanghongyun@tongji.edu.cn
mailto:xrzhao@tongji.edu.cn
mailto:yiyu.yao@uregina.ca


YUAN et al.: FEATURE SELECTION USING ZENTROPY-BASED UNCERTAINTY MEASURE 2247

decision, Xu et al. [31] defined a composite entropy combined
with data distribution and designed the corresponding feature
selection algorithm. Nevertheless, these methods mainly focus
on handling uncertainty on a single granular level so that the
interaction between granular leavers is ignored, leading to the
poor stability and accuracy of the related method. Hence, another
motivation in this article is to point out this issue and solve it by
analyzing the granular level structure.

IE is an important measure to describe the uncertainty within
a probability distribution. Nevertheless, the existing entropy-
based measures mostly focus on the information at a single
level while ignoring the granular level structure in information
systems, which is an incomplete description and could lead
to the poor performance of learning models. Zentropy is an
emerging entropy to comprehensively characterize the chaos
of system confusion from multiple levels [15]. In particular,
zentropy shows an excellent performance in predicting the phys-
ical properties of the phase, such as the variation of volume
with temperature. In material properties, phase refers to dif-
ferent states of substances, such as solids, liquids, and gases,
each having specific physical properties that can be reflected
as melting point, heat capacity, density, and bulk modulus. By
comprehensively considering the relationship between different
states, one can better understand and describe their behavior
and characteristics. In the zentropy theory, system entropy is
the overall reflection of each internal entropy on different scales
related to the cognitive mechanism of granular computing. This
article applies the naive idea of zentropy to the uncertainty
measure method in information system. In this method, this
article draws systematic thought to explore the expression of
uncertainty to achieve a comprehensive and stable cognition
of uncertainty between different granular levels. Therefore, the
third motivation of this article is how to systematically integrate
this idea to measure the uncertainty of granular structure.

Inspired by the abovementioned issues, this article proposes a
zentropy-based uncertainty measure to characterize the granular
level structure from particle to whole and explores its applica-
tion. The main contributions of this article are as follows.

1) It offers a new thought for uncertainty measures based on
entropy theory, focusing on the uncertainty at different
granular levels to design feature evaluation functions.
The core idea of this thought is no longer to focus on a
single granular level but to present a more comprehensive
analysis for an understanding of uncertainty.

2) It proposes a novel zentropy-based uncertainty measure
by analyzing the relationship between the defined gran-
ular levels. Compared with other existing entropy-based
measures, it has a more comprehensive and robust ability
to depict uncertainty in the decision information system.

3) It applies the proposed zentropy-based measure to feature
selection for selecting valuable features. The experiments
on public datasets demonstrate that it can achieve state-
of-the-art performance compared with others, especially
in terms of stability and classification accuracy.

The rest of this article is organized as follows. Section II
briefly reviews the related works and introduces the motivation
for the study. Section III investigates the construction of the
zentropy-based uncertainty measure. Moreover, Section IV rep-
resents the designed feature selection algorithm, and Section V

analyzes the experimental results on public datasets. Finally,
Section VI concludes this article.

II. SEVERAL MEASURES OF UNCERTAINTY

This section briefly reviews some basic notions about the
NRS, uncertainty measures, and IE to facilitate the subsequent
discussions.

A. NRS in Decision Information System

Let DIS = (U,C ∪D,V, f) be a decision information sys-
tem, where U = {x1, x2, . . . , xn} is the universe, C and D
are, respectively, the conditional attribute set and decision at-
tribute set, U/D = {D1, D2, . . . , Ds}, V = ∪a∈C∪DVa, and
f : U × C ∪D → V . Given a parameter δ, the neighborhood
binary relation with B ⊆ C is defined as follows:

RB(x, y) =

{
0, d(x, y) > δ
1, d(x, y) ≤ δ

(1)

where d(x, y) is the Euclidean distance between x and y.
It is easily obtained from (1) that this neighborhood binary

relationRB has the following properties:
1) reflexivity: for ∀x ∈ U ,RB(x, x) = 1;
2) symmetry: for ∀x, y ∈ U ,RB(x, y) = RB(y, x).
Thus, RB is a neighborhood similarity relation, and the

neighborhood similarity class of object x is denoted as δB(x) =
{y ∈ U |xRy}.

Definition 1 (see [25]): Let DIS = (U,C ∪D,V, f) be a
decision information system. Given the parameter δ, for any
X ⊆ U , the neighborhood lower approximation and upper ap-
proximation of X on B ⊆ C are represented as follows:

RB(X) = {x ∈ U |δB(x) ⊆ X}
RB(X) = {x ∈ U |δB(x) ∩X 	= ∅}. (2)

The pair < RB(X),RB(X) > is called an NRS. The bound-
ary region ofX onB is BonB(X) = RB(X)−RB(X). More-
over, the neighborhood lower and upper approximations of D
on B are represented as follows:

RB(D) = {RB(D1),RB(D2), . . . ,RB(Ds)}
RB(D) = {RB(D1),RB(D2), . . . ,RB(Ds)}. (3)

The boundary regions of D on B is defined as BonB(D) =∑s
q=1RB(Dq)−

∑s
q=1RB(Dq).

B. Uncertainty in NRS

Similar to the Pawlak RS, the uncertainty of the NRS is caused
by the boundary region that can be described by lower approx-
imation and upper approximation. For convenience, the lower
approximation and upper approximation is called approximation
level in the approximation process. To depict the uncertainty in
NRS, the dependency degree based on lower approximation is
proposed.

Definition 2 (see [27]): LetDIS = (U,C ∪D,V, f)be a de-
cision information system. For B ⊆ C, the dependency degree
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of D on B is defined as follows:

γB(D) =
|∑s

i=1 RB(Di)|
|U | . (4)

The dependency degree defined by the ratio of the cardinalities
of the positive region to all objects in U is usually used to char-
acterize the relevancy between conditional attribute subset B
and decision attribute set D [27]. Note that this measure mainly
focuses on the information presented at the lower approxima-
tion while ignoring the elements influencing the approximation
process.

C. Uncertainty Measures Based on Entropy

Entropy theory proposed by Shannon [23] gives a measure
of uncertainty in the probabilistic domain. Given a random
variable, the Shannon entropy can be represented as follows.

Definition 3 (see [23]): Let W = {w1, w2, . . . , wr} be a
random variable, where wi(i = 1, 2, . . . , r) is its possible value.
The probability p(wi) is the probability of wi, then the Shannon
entropy is defined as follows:

E(W ) = −
r∑

i=1

p(wi)logp(wi) (5)

where−logp(wi) is the information content associated with the
value wi having a probability p(wi).

Currently, many scholars researched Shannon’s concept and
its variants to measure uncertainty. Some representative entropy-
based measures are usually adopted for model evaluation in
NRS theory, such as neighborhood entropy and neighborhood
conditional entropy (NCE).

Definition 4 (see [10]): Let DIS = (U,C ∪D,V, f) be a
decision information system. For B ⊆ C and δ, δB(x) is the
neighborhood class of object x under attribute subset B. Then,
the neighborhood entropy of B can be defined as follows:

NEB(D) = − 1

|U |
|U |∑
i=1

log
|δB(xi)|
|U | . (6)

This neighborhood entropy mainly focuses on the size of
neighborhood similarity classes while ignoring the relationship
with decisions. Thus, it is usually not adopted in decision tasks.
To characterize the uncertainty in the decision information sys-
tem, the NCE [10] is further proposed.

Definition 5 (see [10]): Let DIS = (U,C ∪D,V, f) be a
decision information system. For B ⊆ C and δ, δB(x) is the
neighborhood class of object x under attribute subset B. Then,
the neighborhood conditional entropy NCE(D|B) of D related
to B is defined as follows:

NCE(D|B) = − 1

|U |
|U |∑
i=1

log
|δB(xi) ∩D(xi)|
|δB(xi)| (7)

where D(xi) is the decision class of xi.
The abovementioned entropy-based measures mainly concen-

trate on the information presented at the neighborhood similarity
class to construct uncertainty measures in an information sys-
tem. It is a finer method to analyze and describe uncertainty
but ignores the data distribution and the interaction with other

Fig. 1. Two scenarios of configurations of a system. (a) Configura-
tion k ∈ {1, 2, . . . ,m} includes n subconfigurations. (b) Subconfiguration
l ∈ {1, 2, . . . , n} can be explained to the average of m configurations.

TABLE I
EXAMPLE OF DECISION INFORMATION SYSTEM

information levels. This incomplete characterization could lead
to the poor stability and accuracy of related methods.

D. Motivation

As is well known, the external expression of anything re-
sults from the collective influence of its parts. Each configura-
tion can be considered a subsystem with subconfigurations as
proposed in [15]. When evaluating the disorder of a system,
the configurations and all their subconfigurations should be
considered. Thus, the zentropy theory considering multilevel
information is proposed and applied to actual application. In this
theory, two scenarios of system configurations can be depicted
in Fig. 1, where (a) depicts a configuration consisting of n
subconfigurations, while (b) suggests that all subconfigurations
can be explained by the average of m configurations, indicating
an interaction between different levels of configurations. This
figure shows that the configurations interact, and the disorder of
a system should be the overall performance of all configurations
at different levels.

In NRS theory, the uncertainty of a vague concept is usually
approximated by lower approximation and upper approxima-
tion. This approximation process is related to the target con-
cept, approximation level, neighborhood similarity classes, and
specific objects, which are multiple granular levels and influ-
ence each other in the approximation process. Nevertheless, the
existing uncertainty measures, such as dependency degree and
NCE, mostly focus on the information presented at a single level,
which is incomplete for characterizing uncertainty knowledge,
especially when the information system changes. Example 1 is
given to illustrate this limitation in decision information.

Example 1: A decision information system DIS = (U,C ∪
D,V, f) is shown in Table I , where U = {x1, x2, . . . , x8}
is the universe of 8 patients, C = {a, b, c} includes three tu-
mor genes, D = {d} is the diagnosis results, “1” and “0” are
“Sickness” and “Health,” and D1 = {x1, x2, x3, x4, x5}, D2 =
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{x6, x7, x8}. At present, gene a is known to be necessary, and
the other gene only needs to be selected due to the cost. In
this example, the dependency degree and NCE are adopted to
evaluate genes. For a fair comparison, the neighborhood radius
is uniformly set to 0.1. Let A = {a, b} and B = {a, c}, the
Euclidean distance matrix D1 under A can be computed as
follows:

D=

⎡
⎢⎢⎢⎢⎣

0.000 0.099 0.272 0.374 0.286 0.051 0.092 0.305
0.099 0.000 0.177 0.278 0.191 0.135 0.181 0.400
0.272 0.177 0.000 0.103 0.014 0.311 0.340 0.576
0.374 0.278 0.103 0.000 0.089 0.412 0.443 0.678
0.286 0.191 0.014 0.089 0.000 0.326 0.353 0.590
0.051 0.135 0.311 0.412 0.326 0.000 0.106 0.266
0.092 0.181 0.340 0.443 0.353 0.106 0.000 0.261
0.305 0.400 0.576 0.678 0.590 0.266 0.261 0.000

⎤
⎥⎥⎥⎥⎦.

The neighborhood similarity classes of each object under A
are obtained as follows:
δA(x1) = {x1, x2, x6, x7}, δA(x2) = {x1, x2}, δA(x3) =

{x3, x5}, δA(x4) = {x4, x5}, δA(x5) = {x3, x4, x5}, δA(x6)
= {x1, x6}, δA(x7) = {x1, x7}, δA(x8) = {x8}.
Then, the lower approximations of D1 and D2 under A are
RA(D1) = {x2, x3, x4, x5}, RA(D2) = {x8}.

Similarly, the neighborhood similarity classes of each object
under B are obtained as follows:

δB(x1)={x1, x7}, δB(x2)={x2, x7}, δB(x3) = {x3, x4},
δB(x4) = {x3, x4}, δB(x5) = {x3, x4, x5}, δB(x6) = {x6,

x7}, δB(x7) = {x1, x2, x6, x7}, δB(x8) = {x8}.
Then, the lower approximations of D1 and D2 under B are
RB(D1) = {x3, x4, x5}, RB(D2) = {x6, x8}.

According to the definitions 2 and 5, the measure values could
be computed as follows:
γA(D) = γB(D) = 5

8 ,NCE(D|A) = NCE(D|B) = 3
8 log2.

It can be known that the genes subset A and B cannot be
distinguished based on the dependency degree or NCE. That is
because they only consider the information presented at a single
level while not considering the connection between different
levels, thus leading to an incomplete and imprecision description
of uncertainty. Combining the multiple granular levels in the
approximation process to investigate a systematic method to
characterize uncertainty is necessary for decision information
systems.

III. ZENTROPY-BASED UNCERTAINTY MEASURE

Considering the incomplete description and lower accu-
racy of uncertainty measures on a single granular level, a
novel zentropy-based uncertainty measures combining gran-
ular level analysis and its properties are investigated in this
section.

A. Granular Level Analysis of Concept Approximation

As a new computing theoretical paradigm, granular com-
puting can simulate the human brain to realize multiper-
spective and multilevel cognition [34]. Especially the RS
model provides a mathematical expression for the cognition
of uncertainty and describes uncertainty quantitatively. In RS
theory, a target concept is approximated by the lower ap-
proximation and upper approximation, and the model’s pre-
cision is characterized by boundary region. Many methods
based on approximation level have been proposed to describe
uncertainty.

Fig. 2. Granular levels in concept approximation. There are s decision classes
and each target decision Di can be described by lower approximation Ni1 and
nonlower approximation Ni2. To further investigate the elements influencing
approximation level, the objects’ similarity classes are investigated. Moreover,
the specific object in each similarity class can also reflect the properties of the
corresponding similarity class at a finer level.

Note that the approximation process of target concept is
related to the target concept, classes, and objects, which is a
gradually refined granular level structure and each granular level
influenced each other. Thus, the depiction of uncertainty should
be multilevel and gradually refined from the target concept to
samples. However, the existing uncertainty measures mostly
focus on the information presented at a single level, leading to
a limited and incomplete characterization of uncertainty, which
motivates this study.

Specifically, the recognition process in NRS can be shown in
Fig. 2. Given the dataset with s decision classes, it can roughly
depict the target decision from its lower approximation and up-
per approximation. To further investigate the factors affecting the
model’s precision, it is necessary to analyze the similarity class
and their specific objects. The approximation process is multiple
granular levels from coarser to finer. Thus, the uncertainty of a
decision information system should be the overall performance
of different granular levels. This section investigates a novel
uncertainty measure combined with the granular level structure
and systematically discusses its representation and properties.

B. Uncertainty Measure With Granular Level

Based on the analysis in Section III-A, in this section, a
zentropy-based uncertainty measure combining information in
different granular levels is proposed.

As the approximation process shown in Fig. 2, the uncertainty
measure in a decision information system should represent the
information presented at the target concept, approximation level,
similarity class, and specific objects, which can be shown as
follows.

Definition 6: Let DIS = (U,C ∪D,V, f) be a decision in-
formation system. For B ⊆ C, the zentropy-based uncertainty
measure(Z) of D on B is defined as follows:

ZB(D) = −
s∑

k=1

pklogpk +

s∑
k=1

pkZk (8)

where pk = |Dk |
|U | is the probability of the kth class at the decision

level, Zk represents the entropy of kth class, which can be
decomposed into granular in the lower levels with the same (8).
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Next, the Zk reflected the uncertainty at approximation level
can be represented as follows:

Zk = −
2∑

l=1

pkllogpkl +
2∑

l=1

pklZkl (9)

where pk1 =
|RB(Dk)|
|Dk | , pk2 =

|Dk−RB(Dk)|
|Dk| , depicting the dis-

tribution of certainty set and noncertainty set in class Dk.
The certainty of an object depends on the relationship between

its similar class and target concept. Thus, the Zk1 and Zk2 can
be further defined from the similarity classes, which are defined
as follows:

Zkl = −
|Nkl|∑
w=1

pklwlogpklw +

|Nkl|∑
w=1

pklwZklw (10)

where Nk1 = RB(Dk), Nk2 = Dk −RB(Dk), and pklw =
|δB(w)|

∑|Nkl |
w=1 |δB(w)| represents the probability of wth similarity class

δB(w) among all similarity classes of objects in Nkl.
Moreover, the uncertainty of finer specific object level needs

to be considered, which can be described as follows:

Zklw = −
2∑

o=1

pklwologpklwo (11)

where pklw1 = |δB(w)∩Dk|
|δB(w)| , pklw2 =

|δB(w)∩Dc
k|

|δB(w)| reflecting the
distribution of objects with decision labels in similarity classes.

From the abovementioned definition, it can be obtained that
the zentropy at each granular level consists of two parts, where
the first one describes the uncertainty at this level, and the others
reflect the information presented at the interior of this level.
This representation reflects the interaction of granular level in
uncertainty measure.

C. Properties About Zentropy-Based Uncertainty Measure

This section shows an example to illustrate the computational
process of the proposed measure, and then some properties are
given and analyzed to investigate its rationality. Specifically, the
computational details of the zentropy-based uncertainty measure
are shown in Example 2.

Example 2: Continue to the Example 1, we know
D1 = {x1, x2, x3, x4, x5}, D2 = {x6, x7, x8}, N11 =
RA(D1) = {x2, x3, x4, x5}, N12 = D1 −N11 = {x1},
N21 = RA(D2) = {x8}, N22 = D1 −N21 = {x6, x7}. Then,
we could obtain the probability distribution at the target decision
level is
p1 = |D1|

|U | = 5
8 , p2 = |D2|

|U | = 3
8 .

The probability distribution at the approximation level is
p11 =

|RA(D1)|
|D1| = 4

5 , p12 =
|D1−RA(D1)|

|D1| = 1
5

p21 =
|RA(D2)|
|D2| = 1

3 , p22 =
|D2−RA(D2)|

|D2| = 2
3 .

The probability distribution at the similarity class level is
p111 = |δ(x2)|∑

w∈N1 l
|δ(xw)| =

2
9 , p112 = |δ(x3)|∑

w∈N1 l
|δ(xw)| =

2
9

p113 = |δ(x4)|∑
w∈N1 l

|δ(xw)| =
2
9 , p114 = |δ(x5)|∑

w∈N1 l
|δ(xw)| =

3
9

p121 = |δ(x1)|∑
w∈N12

|δ(xw)| = 1, p211 = |δ(x8)|∑
w∈N2 l

|δ(xw)| = 1

p221 = |δ(x6)|∑
w∈N22

|δ(xw)| =
1
2 , p222 = |δ(x7)|∑

w∈N22
|δ(xw)| =

1
2 .

The probability distribution at the specific object level is
p1111 = |δA(x2)∩D1|

|δA(x2)| = 1, p1112 =
|δA(x2)∩Dc

1|
|δA(x2)| = 0

p1121 = |δA(x3)∩D1|
|δA(x3)| = 1, p1122 =

|δA(x3)∩Dc
1|

|δA(x3)| = 0

p1131 = |δA(x4)∩D1|
|δA(x4)| = 1, p1132 =

|δA(x4)∩Dc
1|

|δA(x4)| = 0

p1141 = |δA(x5)∩D1|
|δA(x5)| = 1, p1142 =

|δA(x5)∩Dc
1|

|δA(x5)| = 0

p1211 = |δA(x1)∩D1|
|δA(x1)| = 1

2 , p1212 =
|δA(x1)∩Dc

1|
|δA(x1)| = 1

2

p2111 = |δA(x8)∩D2|
|δA(x8)| = 1, p2112 =

|δA(x8)∩Dc
2|

|δA(x8)| = 0

p2211 = |δA(x6)∩D2|
|δA(x6)| = 1

2 , p2212 =
|δA(x6)∩Dc

2|
|δA(x6)| = 1

2

p2221 = |δA(x7)∩D2|
|δA(x7)| = 1

2 , p2222 =
|δA(x7)∩Dc

2|
|δA(x7)| = 1

2 .
Based on the probability at different granular levels, the

zentropy values at specific object level are computed as
Z111 = 0, Z112 = 0,Z113 = 0,Z114 = 0,Z121 = log2
Z211 = 0,Z221 = log2,Z222 = log2.
Then, the entropy values at similarity class can be computed

according to (10)

Z11= −
|N11|∑
w=1

p11wlogp11w +

|N11|∑
w=1

p11wZ11w

= −
(
2

9
log

2

9
+

2

9
log

2

9
+

2

9
log

2

9
+

3

9
log

3

9

)
+ 0

= − 1

3
log

22

35
.

Similarly, we obtainZ12 = log2,Z21 = 0,Z22 = 2log2. More-
over, the zentropy values at approximation level are obtained
according to (9)

Z1= −
2∑

l=1

p1 llogp1 l+

2∑
l=1

p1 lZ1 l=−29

15
log2+

4

3
log3+ log5

Z2 = −
2∑

l=1

p2 llogp2 l +

2∑
l=1

p2 lZ2 l =
2

3
log2 + log3.

Therefore, the zentropy-based uncertainty measure of D on
A can be computed as follows:

ZA(D) = −
s∑

k=1

pklogpk +
s∑

k=1

pkZk

= −
(
5

8
log

5

8
+

3

8
log

3

8

)
+

(
5

8
Z1 +

3

8
Z2

)

=
49

24
log2 +

5

6
log3.

Similarly, the zentropy-based uncertainty measure of D on
B can be computed as ZB(D) = 461

168 log2− 2
7 log3 + 3

8 log7.
Compared with the dependency degree and NCE in Example 1,
the gene B could be selected according to the minimum values
of the zentropy-based uncertainty measure.

Property 1: Let DIS = (U,C ∪D,V, f) be a decision in-
formation system. For B,B1, B2 ⊆ C, ZB(D) is the zentropy-
based uncertain measure. Then, the following properties hold.

1) Nonnegative: ZB(D) ≥ 0.
2) ForB1 ⊆ B2, theZB1

(D) andZB2
(D) is nonmonotonic.
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3) For B,P ⊆ C and B ≺ P , the ZB(D) and ZP (D) is
incomparable.

Proof: 1) From definition 6, it is easily obtain that
0 ≤ pk, pkl, pklw, pklwo ≤ 1 for k = 1, 2, . . . , s, l = 1, 2, w =
1, 2, . . . , |Nkl|, o = 1, 2, thus the ZB(D) ≥ 0 holds.

2) According to (1), for Dk ∈ U/D and w ∈ Dk, when

B1 ⊆ B2, the
|δB1

(w)∩Dk |
|δB1

(w)| and
|δB2

(w)∩Dk |
|δB2

(w)| is incomparable.

Then, based on definition 6, the ZB2
(D) and ZB1

(D) is non-
monotonic.

3) Since B ≺ P , then δB(w) ⊆ δP (w) for any w ∈ Dk(k =

1, 2, . . . , s). Since |δB(w)∩Dk|
|δB(w)| and |δP (w)∩Dk|

|δP (w)| are incomparable,

and the relationship between RB(Dk) and RP (Dk), RB(Dk)
andRP (Dk) are unclear, the ZB(D) and ZP (D) are incompa-
rable according to definition 6. �

Property 2: Let DIS = (U,C ∪D,V, f) be a decision in-
formation system. For B ⊆ C, Dk ∈ U/D, the following prop-
erties hold.

1) Zk1 = −∑|Nk1|
w=1 pklwlogpklw.

2) IfRB(Dk) = Dk, Zk = Zk1.
3) IfRB(Dk) = ∅, Zk = Zk2.
4) For Q ⊆ C,RQ(w) = w for w ∈ U , then ZQ = logn.
Proof: 1) According to definition 1, for the wth object

in RB(Dk), δB(w) ⊆ Dk holds, thus, pk1w1 = |δB(w)∩Dk |
|δB(w)| =

1, pk1w2 =
|δB(w)∩Dc

k |
|δB(w)| = 0. Then, Zk1w = 0 and Zk1 =

−∑|Nk1|
w=1 pklwlogpklw holds.

2) According to (9), pk1 =
|RB(Dk)|
|Dk | = 1 and pk2 =

|Dk−RB(Dk)|
|Dk | = 0 whenRB(Dk) = Dk, thus, Zk = Zk1.

3) Similarly, according to definition 1, if RB(Dk) = ∅, then
pk1 = 0 and pk2 = 1. Therefore, Zk = Zk2 holds.

4) From definition 1, it can be obtained that RQ(Dk) = Dk

whenRQ(w) = w forw ∈ U , thenZk = Zk1 from the 2) in this
property. Furthermore, from (10), Zk1 = log|Dk|. Therefore,
ZQ = logn according to (8). �

According to the abovementioned analysis, the proposed
zentropy-based uncertainty measure considers the information
presented at multiple granular levels and is systematically
defined by the probability distribution at different levels. Thus,
when the information system changes, the changes of the pro-
posed measure will depend on the whole changes of different lev-
els. Different levels exhibit diverse responses to system changes,
and the increase or decrease of entropy at different levels might
offset each other. Therefore, compared with other entropy mea-
sures focusing on a single level, the proposed measure from the
whole system is relatively stable for changes.

IV. FEATURE SELECTION VIA UNCERTAINTY MEASURE Z
In this section, a feature selection algorithm based on the pro-

posed zentropy uncertainty measure Z is designed for selecting
the optimal feature subset.

A. Features Evaluation in DIS

As the zentropy-based uncertainty measure increases, it indi-
cates a higher level of confusion within the information system.
Therefore, the ultimate goal of feature selection is to choose a

subset of features that reduces the zentropy measure compared
to the original information system.

Definition 7: Let DIS = (U,C ∪D,V, f) be a decision in-
formation system. For R ⊆ C, R is called a feature reduct of
(U,C ∪D,V, f) if it has the following properties.

1) ZR(D) ≤ ZC(D).
2) ZR−{r}(D) > ZR(D) for any r ∈ R.
The first item guarantees that the uncertainty degree of the

reduced system (U,R ∪D,V, f) is not higher than the original
(U,C ∪D,V, f). The second item confirms that there are no
redundant features in reduct R.

In the feature selection process, the inner and outer importance
measures based on the proposed measure are defined to evaluate
features.

Definition 8: Let DIS = (U,C ∪D,V, f) be a decision in-
formation system. For any c ∈ C, and parameter δ, the inner
importance measure of c relative to C is defined as

IM(c, C) = ZC(D)−ZC−c(D). (12)

This inner measure is used to compute the increment of the
system’s certainty after reducing an attribute.

Definition 9: For any b ∈ C −B, the outer importance mea-
sure of b relative to B is defined as

OM(b,B) = ZB(D)−ZB∪b(D). (13)

Similarly, the outer measure can also be used to calculate the
reduction of system uncertainty introduced by attributes. In this
selection process, the relative most important feature could be
selected according to the maximum principle.

B. Feature Selection Algorithm

This section designs a heuristic algorithm for feature se-
lection in Algorithm 1. The relatively important features
satisfying IM(c, C) > 0 for c ∈ C are first selected. Then,
the following excellent features are selected when ZR(D) >
ZC(D). Finally, steps 18–22 are also adopted to remove rel-
ative redundant features. Fig. 3 shows more details about this
algorithm.

In Algorithm 1, step 2 first calculates theZC(D), which needs
to compute all similar classes in U . Thus, the time complexity
of step 2 is O(n2 m). Steps 3–8 select some important fea-
tures relative to the original information system, whose time
complexity is O(|C|n2(m− 1)). Suppose there are l1 and l2
features selected in steps 3–8 and 10–17, respectively. To ob-
tain the ith feature in steps 10–17, similar class of all objects
under i+ 1 features needs to be computed. Thus, its complexity
is O(n2(i+ 1)) and the whole complexity of steps 10–17 is
O(

∑l2
i=l1

(m− i+ 1)n2(i+ 1)). Similarly, steps 18–22 for re-
moving some redundant features is O(|R|n2(|R| − 1)). There-
fore, the whole time complexity of Algorithm 1 is O(n2 m2).

C. Wrapper Technique of Searching a Best Subset

It can be obtained from Algorithm 1 that the feature reduction
preserves the complete information of multiple information
scales. Algorithm 1 offered a heuristic feature selection method
based on the proposed measure. This way focuses on the max-
imum information gain in a forward and greedy strategy and
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Fig. 3. Schematic flow chart of FSZWT. This chart describes three stages: firstly, the high dimension is processed as a DIS, and then the granular structure of the
N-RS model and zentropy-based measure is analyzed and proposed. Finally, a feature selection method is designed for reduction.

Algorithm 1: Feature Selection Via Zentropy-Based Mea-
sure.
Input:Decision information system(DIS), radius δ.
Output:The feature reduction R.
1: Initialize R← ∅, start = 1;
2: Compute ZC(D) according to definition 6;
3: for c ∈ C do
4: Calculate IM(c, C) by definition 8;
5: if IM(c, C) > 0 then
6: R← c;
7: end if
8: end for
9: Compute ZR(D) according to definition 6;

10: while ZR(D) > ZC(D) do
11: for b ∈ C −R do
12: Calculate OM(b,R) according to definition 9;
13: end for
14: Obtain b0 = argmaxb∈C−ROM(b,R);
15: R← b0;
16: Compute ZR(D);
17: end while
18: for r ∈ R do
19: Calculate ZR−r(D);
20: if ZR−r(D) < ZR(D) then
21: R← R− {r};
22: end if
23: end for
24: return R.

easily causes redundant features in the feature subset, disturbing
the classification performance. Therefore, To avoid this situation
as much as possible, the wrapper technique [38] is also added
to the proposed method for selecting the best excellent feature
subset, the detail as shown in Algorithm 2.

Algorithm 2 displays the process of selecting the best
feature subset with the highest classification accuracy. This
algorithm needs to compare |R| feature subsets, including
R1, R2, . . . , R|R|, thus, the whole time complexity is O(|R|).
In this article, Algorithm 1 is first adopted to select a fea-
ture reduction, and a better feature subset with the opti-
mal classification performance is determined according to

Algorithm 2: An Optimal Subset Based on Wrapper Tech-
nique.

Input:The selected feature subset R = {r1, r2, . . . , r|R|}
obtained by Algorithm 1.

Output:The best feature subset R∗ for DIS.
1: Initialize R1 = {r1}, R2 = {r1, r2}, . . . , R|R| =
{r1, r2, . . . , r|R|};

2: for i = 1 to |R| do
3: Select the feature subset Ri and denote

DISi = (U,Ri ∪D,V, f), for i = 1, 2, . . . , |R|;
4: Compute the average classification accuracy

Accuracyi of DISi by two employed classifiers;
5: end for
6: Select the best subset R∗ = argmax1≤i≤|R|Accuracyi;
7: return R.

Algorithm 2. The whole feature selection process is called
FSZWT.

V. EXPERIMENTAL DESIGN AND ANALYSIS

In this section, various comparative experiments are con-
ducted to validate the effectiveness and superiority of the pro-
posed uncertainty measure. Specifically, the Z is compared
with other existing IE measures in robustness for noisy data
and then compare the performance of FSZWT with the other
eight representative feature selection methods in classification
performance. All the experiments are carried out on a pub-
lic computer with OS: Microsoft WIN10; Processor: Intel(R)
Core(TM) i7-6800 K CPU @ 3.4 GHz×12; Memory: 62.7 GB;
Programming language: MATLAB.

A. Experimental Design

A total of 12 public datasets from UCI Repository (https:
//www.uci.edu/) are employed to analyze the performance of
different methods, whose information is shown in Table II. For
each dataset, the conditional attribute value of each object xi ∈
U is normalized as follows:

f̂(xi, aj) =
f(xi, aj)−min(Vaj

)

max(Vaj
)−min(Vaj

)
∀aj ∈ C (14)
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TABLE II
DATASET DESCRIPTION

where f(xi, aj) is the value of object xi under conditional
attribute aj ∈ C, the max(Vaj

) and min(Vaj
) denote the maxi-

mum and minimum value of all objects in aj .
In this section, to evaluate the robustness of the pro-

posed zentropy-based measure, four representative entropy-
based measures under the same parameter δ = 0.9, including
IE based on approximation (IEA) [25], composite information
entropy (CIE) [31], IE [10] based on neighborhood class, and
conditional entropy (CE) [1] are adopted to make comparisons
in noise environment.

Meanwhile, five representative feature methods, includ-
ing feature selection based on neighborhood self-information
(FSNSI) [25], feature selection with fuzzy rough set (FS-
FRS) [26], local neighborhood rough set (LNRS) [27],
feature selection based on fuzzy neighborhood rough set
(FSFNRS) [28], fuzzy feature selection using composite
entropy-based measure (FFSCE) [31], and other three entropy-
based feature selection methods, including uncertainty measure
for incomplete decision table (UMIDT) [1], conditional entropy
for incomplete decision system (CEIDS) [2], and rough entropy
knowledge granulation (REKG) [13] are selected to illustrate
the superiority of the proposed FSZWT method in classification
performance. For these above-compared methods, they need to
compute the similarity classes of n objects under m features
to select the first important feature. Thus, the time complexity
of this step is O(n2 m). Subsequently, in a heuristic algorithm,
they also need to obtain the similarity classes under i+ 1(i =
1, 3, . . . ,m− 1) features at most and repeated m− i+ 1 times
in each cycle; thus, the complexity is O( 12n

2 m2). Therefore,
the whole time complexity of compared methods is O(n2 m2).
The running time would differ due to the actual selection mech-
anism, and the related results are recorded and analyzed in the
experimental section.

All the compared methods rerun with the same optimization
by K-nearest neighbor (KNN) and naive Bayes (NB) classifiers
in Algorithm 2. Meanwhile, ten-fold cross-validation is adopted
to evaluate the classification performance of each method on 12
datasets for a fair comparison.

B. Robustness Analysis Between Different Measures

This section evaluates the robustness of the proposed
zentropy-based measure compared with IEA [25], CIE [31],
IE [10], and CE [1]. In each dataset, we add random noise to
different sample proportions on the conditional attribute set, and

the proportion changes from 2.5% to 25% with a step of 2.5%.
For each conditional attributeaj ∈ C, the noise data are obtained
as follows:

v̂(xi, aj) =

⎧⎪⎨
⎪⎩

0 , f̂(xi, aj) + rij < 0

f̂(xi, aj) + rij , 0 ≤ f̂(xi, aj) + rij ≤ 1

1 , f̂(xi, aj) + rij > 1
(15)

where f̂(xi, aj) is the normalized data and all rij obeys a
Gaussian distribution with mean value 0 and variance 1.

The values of compared entropy-based measures at differ-
ent noise levels and their standard deviation (std) are shown
in Fig. 4, where the bar figure in each subfigure describes
the std. Note that the CE’s values shown in this figure are
scaled to describe clearly the trends of different measures,
where the reduction multiple is shown in Table III. It could
be obtained that the value of Z is relatively stable with the
noise data increasing compared with other entropy measures.
The smallest column height of our measure variance in most
datasets also illustrates this issue. Moreover, the detailed values
of compared entropy-based measures are shown in Table III,
where the smallest std of compared measures is in bold on
each dataset. From this table, the IE measure increases with the
noise data increasing except on the Ionosphere, while the other
compared measures show a decreasing trend in most datasets.
That is because the Gaussian noise significantly enhances the
dataset’s discreteness, and the neighborhood class is refined with
the same neighborhood parameter. Therefore, the IE measure
defined on neighborhood class shows an upward trend with noise
data increasing. By contrast, the refined neighborhood class will
reduce the uncertainty in neighborhood approximation and im-
prove the approximation accuracy. Thus, other entropy measures
only focusing on the approximation sets mostly decrease with
noise data due to the uncertainty reduction in the approximation
process. Under the interaction of different levels, the proposed
measure increases with noise data on the Ionosphere, Sonar,
urban land cover data set (ULCD), and Derma and shows a
decreasing trend on other datasets. Moreover, these compared
measures are sensitive to noise data because these single granular
levels are easily influenced. The systematic thought in zentropy
theory could avoid this issue by considering the interaction of
changes between different levels. These experimental results
illustrate the robustness of the proposed measure in a noise
environment.

C. Classification Performance Evaluation of FSZWT

To further verify the effectiveness of the FSZWT method
based on zentropy, eight other representative feature selection
methods are selected to make comparisons. In the FSZWT
method, δ is an important parameter that directly affects the
computational process of FSZWT. Its range is set from 0.05 to
0.5 with a step of 0.05 to learn the optimal classification perfor-
mance of FSZWT on two classifiers. In this section, three aspects
are analyzed to analyze the performance of FSZWT, including
the number of selected features, classification performance, and
statistical test.

1) Consuming Time and Number of Selected Features: Ta-
ble IV records the time consumption and number of the selected
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Fig. 4. Comparison of robustness of different entropy under different noise levels. (a) Card. (b) Hill. (c) Ionosphere. (d) Movement. (e) MPED. (f) Nursery.
(g) Sonar. (h) Spambase. (i) ULCD. (j) Colonok. (k) DryBean. (l) Derma.

features for different methods, where the minimum time and
feature number are in bold. This table shows that our method
is superior to REKG, CEIDS, and UMIDT, while it is inferior
to other compared methods from the average cardinality of
selected features. Meanwhile, our method is more effective than
FSFNI, CEIDS, and FSFRS from the average consuming time.
From this table, the FSFNRS and FSFRS can only select 1 or 2
features in most cases, which significantly reduces the number
of features, but their effect is limited to the classification per-
formance. Since LNRS, FFSCE, and FFSCE only focus on the
information presented at the approximation level while ignoring
the other details in the approximation process, they effectively
select fewer features to approximate the original information.
However, they are not good at classification performance due
to the incomplete characterization of uncertainty knowledge.
Therefore, FSZWT has suitable reduction abilities in feature
selection.

2) Classification Performance: This part mainly verifies the
classification performance of different feature selection methods
on 12 datasets. The results are expressed as μ± σ, where μ and
σ represent different methods’ average values and std in ten-fold
cross-validation experiments.

Tables V and VI record the classification accuracy of different
methods on KNN and NB classifiers. Among these tables,
rank is the average order of twelve datasets under different
methods, and the excellent results are in bold. It can be seen

from these tables that our method achieves the highest accuracy
eight times on KNN and NB classifiers, which illustrates the
excellent classification performance of our method. Moreover,
the average accuracy of FSFNRS and FSFRS is much lower
than that of other methods because fewer essential features are
selected. The REKG, CEIDS, and UMIDT methods also have
poor classification performance because the redundant features
of interference classification still need to be removed. Fig. 5
additionally represents the excellence of FSZWT on average
accuracy on KNN and NB classifiers. A common observation
from all the subgraphs in Fig. 5(a) and (b) is that our designed
method has the best classification accuracy in almost dataset.
The FSZWT is relatively effective in feature selection.

Tables VII–XII also record the precision, recall, and F1-
score of nine methods under two classifiers, where the ex-
cellent classification results are also in bold. On the KNN
classifier, FSZWT achieves the highest values at 8, 7, and 7
times precision, recall, and F1-score in 12 datasets. On the
NB classifier, the FSZWT performs very well at 7 times of 12
datasets in these three indicators and has the best behavior in
average performance and rank. From the average classification
performance, the FSFNRS and FSFRS still perform poorly on
these 12 datasets due to the failure to filter out sufficiently
essential features. Although many features are selected to fea-
ture subsets for REKG, CEIDS, and UMIDT methods, the
classification performance could not be excellent. Thus,
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TABLE III
DIFFERENT VALUES OF COMPARED ENTROPY-BASED MEASURES AT DIFFERENT NOISE LEVELS(%)

TABLE IV
TIME CONSUMPTION(S) AND NUMBER(NUM) OF SELECTED FEATURES BY DIFFERENT METHODS

effectively choosing essential features is crucial to improving
classification performance.

3) Statistical Test: To test whether there is a statistical differ-
ence from compared methods in classification performance, the
Friedman test is first adopted at a significant level of P = 0.1.
Table XIII shows the average rankings of these nine methods and
the Friedman test’s results, including χ and the corresponding
p-value, where the minimum average ranking is in bold. This
table shows that all the p-values are much less than 0.1, indicat-
ing significant differences among the nine methods on the two
classifiers. Therefore, the Nemenyi post hoc test is necessary to

determine whether there is a substantial difference between any
two methods. In the Nemenyi test, the critical distance obtained
as follows:

CD = qα

√
k(k + 1)

6N
(16)

where the qα=0.1 = 2.9716 when k = 12, N = 9. A significant
difference exists in the classification performance when the dis-
tance between two compared methods exceeds the CD = 3.192.

Fig. 6 is the CD diagram that reflects the ranking of nine
methods, in which the more minor the rank of the method, the
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TABLE V
CLASSIFY ACCURACY OF DIFFERENT ALGORITHMS ON KNN BAYESIAN CLASSIFIER

TABLE VI
CLASSIFY ACCURACY OF DIFFERENT ALGORITHMS ON NAIVE BAYESIAN CLASSIFIER

Fig. 5. Accuracy performance of different algorithms on two classifiers. (a) KNN. (b) Naive Bayesian.

better the performance. As shown in Fig. 6, FSZWT ranks first
on all metrics and statistically better than the other compared
methods in most situations.

D. Parameter Analysis of FSZWT

According to the analysis in Section III, the neighborhood
radius δ is an important parameter that influences the construc-
tion of the proposed zentropy-based uncertainty measure and
further affects the selection process of optimal feature subsets.

Therefore, it is necessary to explore the influence of the radius
parameter for feature selection on classification performance.
The optimal parameter of FSZWT under different datasets is
shown in Table XIV, and the classification accuracy of four
datasets with different parameters is shown in Fig. 7.

Fig. 7 records the classification accuracy of the proposed
method in KNN(C1), NB(C2), and their average accuracy(C3)
under different parameters. It can be seen from this figure that
in all experimental datasets, the classification accuracy fluctu-
ates significantly with the change in neighborhood parameters.
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TABLE VII
CLASSIFY PRECISION OF DIFFERENT ALGORITHMS ON KNN CLASSIFIER

TABLE VIII
CLASSIFY PRECISION OF DIFFERENT ALGORITHMS ON NAIVE BAYESIAN CLASSIFIER

TABLE IX
CLASSIFY RECALL OF DIFFERENT ALGORITHMS ON KNN CLASSIFIER

TABLE X
CLASSIFY RECALL OF DIFFERENT ALGORITHMS ON NAIVE BAYESIAN CLASSIFIER
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TABLE XI
CLASSIFY F1-SCORE OF DIFFERENT ALGORITHMS ON KNN CLASSIFIER

TABLE XII
CLASSIFY F1-SCORE OF DIFFERENT ALGORITHMS ON NAIVE BAYESIAN CLASSIFIER CLASSIFIER

TABLE XIII
STATISTICAL TEST OF NINE ALGORITHMS UNDER KNN AND NB CLASSIFIERS

Fig. 6. Accuracy performance with nine algorithms on two classifiers. (a)–(d) are the results on KNN classifier, (e)–(h) are the results on NB classifier.
(a) Accuracy1. (b) Precision1. (c) Recall1. (d) F1-score1. (e) Accuracy2. (f) Precision2. (g) Recall2. (h) F1-score2.
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TABLE XIV
OPTIMAL NEIGHBORHOOD PARAMETERS OF FSZWT METHOD

Fig. 7. Parameter analysis of FSZWT on selected four datasets. (a) Card.
(b) Sonar. (c) Colonok. (d) Derma.

Therefore, the parameter δ is sensitive to the result of feature
selection.

As mentioned above, the radius is an important parameter af-
fecting the model building and feature selection process. Mean-
while, classification performance is susceptible to the change of
feature subset. Thus, the value of the radius parameter could be
adjusted to further adapt to the distribution structure of features
to obtain better classification performance.

According to the abovementioned analysis, we find that the
proposed zentropy-based uncertainty measure is stable to noise
data due to the interaction of changes between different granular
levels, as shown in Example 2 and Section V-B. Moreover, it is
efficient for feature selection by considering the information
presented at multiple levels in the neighborhood approximation
process, which is verified by the excellent classification perfor-
mance in Section V-C.

VI. CONCLUSION

This article presents a novel zentropy-based uncertainty mea-
sure to design a feature selection algorithm by analyzing the
granular level structure in knowledge space. By exploiting the
granular level in decision information systems, the zentropy-
based uncertainty measure is first established to depict uncertain
knowledge from whole and internal and further applied to select
optimal features. All the designed experimental results show
that the proposed zentropy-based uncertainty measure is more
stable in noise data and can choose a feasible feature subset
with excellent classification performance. Compared with some
existing methods, the proposed zentropy-based method could

comprehensively depict uncertain knowledge combining granu-
lar level structure, providing a novel viewpoint to uncertainty
information processing. Nevertheless, the proposed measure
considers the information at multiple granular levels, which
increases the computational burden to a specific extent, espe-
cially in a dynamic environment. Therefore, an efficient strategy
for computing the proposed uncertainty measure needs to be
developed in further work.
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