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Hierarchical Sequential Three-Way Multi-Attribute
Decision-Making Method Based on Regret Theory

in Multi-Scale Fuzzy Decision Systems
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Abstract—Most of the existing multi-attribute decision-making
models under multi-scale decision information systems are es-
tablished by selecting the optimal scale or fusing multi-scale
information into a single scale. These models will lose part of
the decision information, resulting in inaccurate decision results.
However, sequential three-way decision can not only process
information hierarchically, but also provide delayed decision
between acceptance and rejection. In addition, the irrational
behavior of decision-makers will have a certain impact on the
decision-making results. To this end, for multi-scale and diversity
decision-making problems, this paper proposes a hierarchical
sequential three-way multi-attribute decision-making method
based on regret theory. Specifically, to represent this diversity,
the multi-scale evaluation information table is converted into
a digital evaluation value table through a fuzzy membership
function. Second, based on the regret-rejoicing function of regret
theory, the regret-rejoicing relation of alternatives in multi-scale
information systems is established, which can be used to calculate
conditional probability. Third, the relative loss functions based
on regret theory are proposed by considering the psychological
behaviors of decision-makers. Finally, the hierarchical sequential
three-way multi-attribute decision-making method for solving the
multi-scale decision-making problem is proposed. The stability
and effectiveness of the proposed method are verified by the
corresponding experiments and the comparative analysis of
practical cases. The proposed method solves the fusion problem
of multi-scale decision information and obtains flexible ranking
results according to the risk factor.

Index Terms—hierarchical sequential three-way decision,
multi-scale fuzzy decision systems, regret-rejoicing function, re-
gret theory, multi-attribute decision-making.

I. INTRODUCTION

MULTI-attribute decision-making (MADM) is a process
of integrated evaluation and decision-making by using

appropriate methods or models and considering multiple evalu-
ation criteria when facing multiple possible alternatives. With
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the advent of the era of big data, the decision environment
and decision data have become more complex, diverse, and
uncertain, and the traditional single-scale decision information
systems (SSDISs) are difficult to meet the requirements of
the modern decision environment. In this context, multi-scale
decision information systems (MSDISs) emerge as neces-
sary, storing extensive and precise data and thereby offering
valuable support for decision-making. They have become an
essential component of modern decision-making science.

For multi-scale decision problem, two core issues need
to be addressed. One is how to represent and process this
complex multi-scale information quantitatively, and the other
is how to aggregate multi-scale decision results into a whole,
including classification results and ranking results. In addition,
uncertainty and fuzziness run through the whole process of
MADM, because the decision result is easily influenced by
subjective factors, such as the knowledge structure, experience
level and personal preference of the decision-maker. Thus,
the complicity and uncertainty of MADM problems is still
a challenging task.

In a MSDIS, each object can take on different tagged values
under the same attribute depending on different scales or gran-
ularity of the observation, and there is a full projection of the
granularity transformation from the fine-scale attribute value
domain to the coarse-scale attribute value domain. Multi-scale
decision tables are currently handled by two main methods:
(1) selecting the optimal combination of scales, and (2) fusing
multiple scales into a single scale. In recent years, these two
methods have become the main research direction for multi-
scale data analysis, and numerous research results have been
achieved. For example, Wu and Leung [1] investigated the
problem of optimal scale selection for various requirements in
multi-scale decision tables from the perspective of granular
computing. Chen et al. [2], [3] studied the optimal scale
selection problem based on sequential three-way decision
(S3WD) in dynamic MSDISs, which solves the problem of
more difficult selection of the optimal scale due to the dynamic
growth of data. Zhang et al. [4] investigated the optimal scale
selection problem with the reduced cost and uncertainty under
S3WD theory by considering cost sensitivity. On the other
hand, Deng et al. [5] fused multiple scales into a single
scale by assigning different weights to different scales and
performing weighted aggregation, then combined it with three-
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way decision (3WD) theory to conduct the MADM study.
Both of these approaches will cause a certain degree of

loss of original information during processing, and the chosen
multi-scale fusion and optimal scale selection are different,
and the ranking result and the best solution may also be
different. Therefore, this paper adopts a new method, the hi-
erarchical sequential three-way decision (HS3WD) method, to
ensure that multi-scale information can participate in decision-
making, rather than be part of the decision-making.

3WD [6], [7] based on the decision-theoretic rough sets
theoretical model and further combined with decision scenar-
ios. The basic idea is to divide the whole into three disjoint
regions and to adopt different decision-making behaviors or
partitioning strategies for different regions, thus liberating the
decision outcome from the two-sidedness of the traditional
decision-making problem. 3WD has been successfully applied
to a variety of fields, such as data mining [8], medical
decision [9], conflict analysis [10]. Considering the cost of the
decision process and decision outcome in real life, Yao and
Deng [11] proposed a S3WD model from the multi-granulation
perspective, in which the more important sets of conditional
attributes are sequentially selected to form a multi-granularity
space for multi-step decision. Because its decision-making
strategy is close to human thinking patterns, it has attracted
many scholars to study extended models of S3WD in different
scenarios from different perspectives. Qian et al. [12] argued
that a more reasonable decision may be obtained by using
a multi-view granular structure for solving complex prob-
lems, and proposed a multi-granularity S3WD. Later, Qian et
al. [13], [14] generalized the concept of conditional attributes
based on the concept hierarchy tree, designed a multi-level
S3WD model with multiple levels of granularity, and then
proposed a generalized hierarchical multi-level S3WD model
based on hierarchical decision attributes. Besides, there are
many studies on 3WD in fuzzy environments [15]–[17].

Classical MADM methods [18]–[22] only provide results
for ranking objects. However, many real-life decision-making
scenarios require objects to be classified, and the three divi-
sions idea of 3WD allows objects to be classified into three
mutually disjoint regions. In recent years, many scholars have
extended and improved the 3WD theory and introduced it into
MADM [23]–[26]. All the above studies are rational decisions
under the premise of perfect decision-making methods. How-
ever, in the actual decision-making process, decision-makers
are often not perfectly rational but finitely rational, because
they have different mental states when facing risks.

Two important scientific theories describe the psychological
behavior of decision-makers, prospect theory [27] and regret
theory [28], both of which are theories that take into account
other factors in decision-making rather than just the expected
benefits. Based on the different psychological behaviors of
decision-makers when making decisions, current research on
psychological-behavior decision-making can be broadly classi-
fied into three categories: behavior decision-making based on
regret theory [29]–[31], behavior decision-making based on
prospect theory [32], and behavior decision-making based on
prospect-regret theory [33]. Huang and Zhan [30] proposed a
new method for calculating conditional probability and relative

utility functions by defining a dominance relation based on
the regret-rejoicing value of objects under each attribute.
Deng et al. [31] combined the generalized 3WD with regret
theory under incomplete multi-scale information systems to
remedy the existing MADM from the perspective of utility.
Huang et al. [33] fully considered the loss and utility in the
decision-making process, and proposed a three-way classifica-
tion ranking method to solve multi-scale information systems
problems. Zhan et al. [34] and Deng et al. [36] studied a three-
way multi-attribute decision-making model based on triangular
fuzzy number and interval fuzzy number respectively under
incomplete multi-scale information systems. Xiao et al. [38],
[39] proposed a new 3WD method and a group consensus
method under intuitionistic fuzzy number and interval multi-
scale data respectively.

According to the above analysis, most of the existing multi-
attribute decision models [30]–[37] in multi-scale decision
information systems are established by selecting the optimal
scale or fusing multi-scale information into a single scale.
These models will lose some decision information, resulting
in inaccurate decision results. One of the basic assumptions
of traditional decision models is that decision-makers are
completely rational, that is, they follow the principle of
maximizing benefits. In fact, people’s decisions are influenced
by their emotions, and it is difficult for decision-makers to
remain completely rational. However, using existing methods
can not effectively solve similar problems mentioned above.
For multi-scale data, we can use the developed 3WD method
to complete the single-scale decision first, to obtain the ranking
and classification results for each scale. Therefore, how to
summarize the ranking and classification results of all scales
becomes a problem.

Although there is a large amount of 3WD research based
on behavioral decision theory, most 3WD models and meth-
ods [40]–[42] are proposed based on single-scale information
systems in complete environments. Considering that the infor-
mation of decision problems in real life may be multi-scale
and diverse, the sequential three-way decision paradigm can
solve the problem of information loss in multi-scale decision-
making. However, from existing 3WD research, we can see
that there are two main components: loss function and condi-
tional probability. At present, there are also some deficiencies,
either considering behavioral decisions in the loss function
or considering behavioral decisions in conditional probability,
lacking the case of considering both parts simultaneously.

To sum up, we summarize the motivation of this study as
follows. On the one hand, in the existing MADM studies,
new features such as multi-scale and diversity of data are not
considered at the same time. In order to adapt to realistic
decision scenarios, we need to develop new methods that
match the actual data features. On the other hand, in order
to overcome the above shortcomings of the existing MADM
method, it is necessary to explore decision theory and methods
for solving multi-scale decision problems.

Based on the above motives and considerations, a new hier-
archical sequential three-way multi-attribute decision method
based on regret theory is proposed to deal with a class of multi-
scale and diversity MADM problems. Firstly, we introduce a

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2024.3397876

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 24,2024 at 08:39:45 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. X, NO. X, XX 2023 3

fuzzy membership function to convert multi-scale and digital
information, transforming the multi-scale evaluation informa-
tion table into a digital evaluation value table. Secondly,
we utilize the regret-rejoicing function to establish a regret-
rejoicing relationship, and use the loss function and conditional
probability to obtain the classification and ranking results of
all objects. Thirdly, we propose a new fusion method for
ranking results, which takes into account the decision-makers’
tolerance for risk, to achieve optimal ranking and classification
results. Finally, we prove the feasibility, validity and stability
of this method through empirical analysis of application cases.

The main contributions of our study are concluded as
follows.

(1) In this paper, a regret-rejoicing dominance relationship
is proposed from the psychological behavioral perspective of
the decision-maker, which can be effectively differentiated
according to the dominance of the object. Based on this, a new
method for calculating conditional probability is proposed. The
method can effectively represent the regret-rejoicing relation-
ship of each alternative.

(2) Considering the influence of the irrational behavior
of the decision maker on the decision and enhancing the
rationality of the decision-making process, this paper designs a
new method for calculating the relative loss function based on
regret theory. It is worth noting that the construction process
reduces the risk of the subjective loss function as well as
considers the risk attitude of the decision-maker.

(3) For the ranking of alternatives, this paper obtains the
rejoicing matrix and regret matrix based on the regret-rejoicing
function, which is used to calculate the relative advantageous
relationship between objects. Unlike the general relationship
based on the distance between objects, this paper takes into
account the influence of behavioral decisions and is therefore
more practical.

The remainder of the paper is organized as follows. Section
II introduces some basic knowledge and concepts of MSDISs,
regret theory, and 3WD. Section III explores a new dominance
relation, a relative loss function based on regret theory and a
new three-way MADM method. Section IV uses the proposed
method to solve a practical case. The validity, feasibility, and
stability of the regret theory-based three-way MADM method
are verified using real data sets in Section V. In Section VII,
the full paper is summarized and future research directions are
proposed.

II. PRELIMINARIES

To facilitate the introduction of subsequent content, this
section briefly reviews some basic concepts of MSDISs, regret
theory, and HS3WD.

A. Multi-Scale Decision Information Systems

As an extension of SSDISs, MSDISs can help humans better
deal with multi-level and multi-granulation decision problems
and provide information closer to the real world, allowing us
to better reflect the complexity of real-world problems. The
specific concepts are described below.

Definition 1: ( [43]) Let S = (U,C) be a single-scale
information system, where U = {x1, x2, ..., xl} is a finite non-
empty set of objects, and C = {c1, c2, ..., cm} is a finite non-
empty set of conditional attributes. A multi-scale information
system can be written as S = (U,C = {cij |j = 1, 2, ...,m, i =
1, 2, ..., s}) , where cij(x) is the attribute value of the object x
at the scale i under the attribute cj , and i is the scale number
from coarse to fine.

A multi-scale information system is a merging of several
single-scale information systems. Let Vcij

be the domain of
values of an attribute cj at scale i, for any i ∈ {1, 2, ..., s−1},
there exists a full projection mapping gi,i+1

j : Vci+1
j

→ Vcij
,

such that for any x ∈ U , there exists cij(x) = gi+1,i
j (ci+1

j (x)),
where gi,i+1

j is a composite function called the information
granule transformation function from scale i to scale i+ 1.

Definition 2: ( [43]) Given a MSDIS S = (U,C∪D), where
U = {x1, x2, ..., xl} is a finite set of non-empty objects, C =
{c1, c2, ..., cm} and D are a non-empty finite set of conditional
and decision attributes of S, respectively. A MSDIS can be
represented as S = (U,C ∪D) = (U, {cij |j = 1, 2, ...,m, i =
1, 2, ..., s} ∪D).

B. Regret Theory
Regret theory describes regret as the emotion that arises

when comparing outcomes or states of affairs for a given event.
Specifically, it refers to the psychological state of regret that
investors often experience during the investment process.

The perceived utility consists of both the utility of the
chosen alternative and the regret-rejoicing value resulting from
the comparison with other alternatives. Let a1, a2 be the
outcome of the alternatives x1, x2 , then the decision maker’s
perceived utility of the alternative x1 is computed by the
following formula:

u1 = v(a1) +R(v(a1)− v(a2)) (1)

where v(a1) is the utility gained by the decision-maker from
the outcome a1, and R(v(a1)−v(a2)) is the regret or rejoicing
of the decision-maker for choosing the alternative x1 that
x2 is not chosen. Specifically, when R(v(a1) − v(a2)) > 0,
R(v(a1) − v(a2)) represents the rejoicing value, otherwise it
is a regret value.

Bell [28] gave the corresponding utility function, which can
reflect the degree of risk preference of the decision-maker
through the parameters. The utility value v(a) is computed
by the following formula:

v(a) =
1− e−θa

θ
(2)

where θ ∈ (0, 1) denotes the risk aversion coefficient. The
greater θ, the greater the risk aversion of the decision-maker,
the smaller the utility value.

In addition, Bell gave a specific form of regret-rejoicing
function in the form of

R(∆v) = 1− e−∂∆v (3)

where ∆v = v(a1)− v(a2), ∂ denotes the risk preference of
the decision-maker and satisfies ∂ ∈ [0,+∞). The greater ∂,
the stronger the decision maker’s regret.
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C. Hierarchical Sequential Three-way Decision

The idea of HS3WD was proposed by Qian et al. [13],
[14]. It is based on S3WD and aims to create a comprehensive
HS3WD model.

Definition 3: ( [6]) Given a decision table S = (U,C∪D),
where C = {c1, c2, ..., cm} is a set of conditional attributes,
D is the set of decision attributes, the partition of the universe
domain U with respect to D is πD = {D1, D2, ..., Dr}, where
k ∈ {1, 2, ..., r}, the conditional probability function is defined
as

P (Dk|[x]C) =
|[x]C ∩Dk|

|[x]C |
. (4)

Based on the idea of 3WD, the decision-theoretic rough set
uses two state sets and three action sets to describe the decision
process. The set of states is assumed to be Ω = {X,¬X},
indicating that the object belongs X or does not belong to X ,
and the set Λ = {aP , aB , aN} indicates the decision actions
that divide the objects into three regions, namely acceptance,
delayed decision and rejection.

When the object x ∈ U belongs to X , λPP , λBP and
λNP indicate the loss of the three strategies aP , aB and
aN , respectively. When the object x ∈ U belongs to ¬X ,
λPN , λBN and λNN indicate the loss of the three strategies
aP , aB and aN , respectively. At the same time, it assumes
that λPP ≤ λBP ≤ λNP and λPN ≥ λBN ≥ λNN . Thus, the
expected loss Φ(a⋄|[x])(⋄ = P,B,N) for each object x ∈ U
are calculated as follows:

Φ(a⋄|[x]) = λ⋄PP (X|[x]) + λ⋄NP (¬X|[x]). (5)

Definition 4: ( [13]) Given a multilevel decision table
Si(i = 1, 2, ..., s), a multilevel granular structure G =
{G1, G2, ..., Gn} based on a sequence of sequential sets of
attributes C1 ⊂ C2... ⊂ Cn ⊆ C, with corresponding sequen-
tial threshold pairs (α, β) = {(α1, β1), (α2, β2), ..., (αn, βn)}.
For x ∈ Uq , the equivalence class containing the object x is
denoted as [x]Cq

= {y ∈ U |(x, y) ∈ Cq}. For the q-level
granular structure Gq(q ∈ {1, 2, ..., n}) , three regions are
defined as follows:

POS
(αq,βq)

Gq
(Dt,i) =

s⋃
i=1

apr
(αi

q,β
i
q)

Ci
q

(Di
q,k); (6)

NEG
(αq,βq)

Gq
(Dq,k) =

s⋃
i=1

(U i
q − apr

(αi
t,β

i
t)

Ci
q

(Di
q,k)); (7)

BND
(αq,βq)

Gq
(Dq,k) = Uq − POS

(αq,βq)

Gq
(Dq,k)−NEG

(αq,βq)

Gq
(Dq,k).

(8)

where apr
(αi

q,β
i
q)

Ci
q

(Di
q,k) and apr

(αi
q,β

i
q)

Ci
q

(Di
q,k) are the upper

and lower approximations of Di
q,k, respectively.

III. A HIERARCHICAL SEQUENTIAL THREE-WAY
MULTI-ATTRIBUTE DECISION MAKING METHOD BASED

ON REGRET THEORY

Most existing methods can only solve decision problems
under a single scale. Therefore, we define in this section a
regret theory-HS3WD method to solve the MADM problems
under multi-scale.

A. Conditional Probability

Considering the influence of the irrational behavior of
decision-makers on decision-making, this paper designs a new
method for calculating conditional probability and relative loss
functions based on regret theory. Specifically, a detailed ex-
planation is provided on how to construct the regret-rejoicing
dominance relation and class, including the relevant definitions
and propositions. Conditional probability is calculated using
this approach.

Definition 5: Given an information system S = (U,C), for
any xt, xu ∈ U , t, u ∈ {1, 2, ..., l}, the dominance of regret-
rejoicing of xt, xu with respect to the set of attributes C are
calculated as follows:

R+ =

m∑
j=1

wjR(vj(xt)− vj(xu)),

R− =

m∑
j=1

wjR(vj(xu)− vj(xt)).

(9)

where wj is the weight of the jth attribute, j ∈ {1, 2, ...,m},
0 ≤ wj ≤ 1 and

∑m
j=1 wj = 1.

The absolute regret-rejoicing dominance relationship R of
xt, xu under the set of attributes C are expressed as:

R↑
C = {(xt, xu) ∈ U × U |R+ ≥ 0 and R− ≤ 0},

R↓
C = {(xt, xu) ∈ U × U |R+ < 0 and R− > 0}.

(10)

where R↑
C and R↓

C are the absolute rejoicing dominance set
and absolute regret dominance set, respectively. For the special
case of R+(xt, xu) = 0, R−(xt, xu) = 0, namely xt = xu,
we assume that xt, xu has an absolute rejoicing dominance
relationship. For the case of R+(xt, xu) > 0, R−(xt, xu) >
0 or R+(xt, xu) < 0, R−(xt, xu) < 0, it is impossible to
determine whether xt, xu is an absolute rejoicing dominance
relationship or an absolute regret dominance relationship, and
will not be considered.

In addition, the absolute regret-rejoicing dominance class of
xt is obtained based on the conditional attributes set C and
expressed as follows:

[xt]
R
C = {xu ∈ U |(xu, xt) ∈ R↑

C and(xu, xt) /∈ R↓
C , t = 1, 2, ..., l}

(11)
Remark 1: The interpretation of Eq. (11) is that if (xu, xt) ∈

R↑
C and (xu, xt) /∈ R↓

C , then xu ∈ [xt]
R
C , i.e. xu is superior to

xt. From the point of view of profit and advantage, the greater
the advantage, the higher the profit, which is the optimal
decision effect.

Proposition 1: For the absolute regret-rejoicing dominance
relationship R, we conclude that it has the following property:

(1) Self-reflexivity: for a set [xu]
R
C and a relation R based

on [xu]
R
C , for any element xu in [xu]

R
C , there < xu, xu > is

an element of R.
Proof: As can be seen from Definition 5, the above (1) are

easily proved. ■
Definition 6: Given a decision information system IS =

(U,C ∪D), where C = {c1, c2, ..., cm} is a set of conditional
attributes, D is a set of decision attributes. The decision
attributes classify U into two categories: X and ¬X , the
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conditional probability that object xt belongs to X or ¬X
under attribute set C is as follows:

P (X|[xt]
R
C) =

|[xt]
R
C ∩X|

|[xt]RC |
. (12)

Proposition 2: Given a decision information system IS =
(U,C ∪ D), P (X|[xt]

R
C) and P (¬X|[xt]

R
C) represent the

conditional probability that object xt belongs to X and ¬X
under attribute set C, respectively, then we have P (X|[xt]

R
C)+

P (¬X|[xt]
R
C) = 1.

Proof: P (X|[xt]
R
C) + P (¬X|[xt]

R
C) =

|[xt]
R
C∩X|

|[xt]RC | +

|[xt]
R
C∩¬X|

|[xt]RC | =
|[xt]

R
C∩U |

|[xt]RC | = 1.
The proof of Proposition 2 is thus complete. ■

B. Relative Aggregation Loss Functions

The loss functions serve as a description of the loss of
different behaviors taken by an object in a certain state, reflect-
ing the decision maker’s attitude. Considering the influence of
the irrational behavior of decision-makers on decision-making,
this paper will define the value of loss for taking different
actions in different states based on regret theory and propose
the relative loss functions.

First, in a decision information system IS = (U,C ∪ D),
for any xt ∈ U , the utility value of xt for attribute set C is
computed to obtain a utility matrix. The calculation is shown
below:

v(x) = [vj(xt)]l×m (13)

where the utility function is vj(xt) = [(1 − e−θxtj )/θ], θ is
the risk aversion coefficient and ranges from θ ∈ (0, 1).

Then, the rejoicing and regret values between each object
xt and the optimal and inferior objects are calculated to obtain
the corresponding rejoicing and regret matrices, which are
calculated as follows:

D+ = [R(vj(xt)−min(vj(x)))]l×m,

D− = [R(vj(xt)−max(vj(x)))]l×m.
(14)

where min(vj(x)) is the utility value of the inferior object
under the jth conditional attribute, and max(vj(x)) is the
utility value of the optimal object under the jth conditional
attribute. Each row of the matrix D+ represents the rejoicing
index between each object and the inferior object under each
condition attribute, and each row of the matrix D− represents
the regret index between each object and the optimal object
under each condition attribute.

Afterward, the rejoicing and regret matrices are summed to
obtain the integrated preference matrix, which is calculated as
follows:

Dtotal = D+ +D− (15)

where each row of the Dtotal matrix represents the difference
between the distance of an object from the optimal object and
the inferior object under each conditional attribute, the larger
the value, the better the object.

Finally, the integrated preference matrix is normalized and
calculated as follows:

Dtotal =
Dtotal

max(|Dtotal|)
, j = 1, 2, ...,m (16)

After introducing regret theory into the decision information
system, the concept and metric of relative aggregation loss
functions are proposed from a loss perspective.

The basic loss functions are constructed based on Jia and
Liu [25], defining Γ and ¬Γ as two different sets of states,
aP , aB and aN as the three adopted strategies, namely ac-
ceptance, delayed decision and rejection. Thus, for any object
xt ∈ U , the relative aggregation loss functions are shown in
TABLE I.

TABLE I
RELATIVE AGGREGATION LOSS FUNCTIONS FOR xt

Γ ¬Γ

aP 0 max−
∑m

j=1 wjDtotal,j

aB
∑m

j=1 ϑjwj(Dtotal,j −min)
∑m

j=1 ϑjwj(max−Dtotal,j)

aN
∑m

j=1 wjDtotal,j −min 0

In TABLE I, max = max(Dtotal), min = min(Dtotal).
0,
∑m

j=1 ϑjwj(Dtotal,j − min) and
∑m

j=1 wjDtotal,j − min
are the losses if actions aP , aB and aN are taken
when xt ∈ Γ, respectively, while max−

∑m
j=1 wjDtotal,j ,∑m

j=1 ϑjwj(max−Dtotal,j) and 0 are the losses if actions
aP , aB and aN are taken when xt ∈ ¬Γ, respectively. wj is the
weight of the jth conditional attribute, ϑj is the risk aversion
factor for the jth conditional attribute and ϑj ∈ [0, 0.5).
Clearly, the relative aggregation loss functions based on regret
theory satisfy λPP ≤ λBP ≤ λNP and λPN ≥ λBN ≥ λNN .

Once the relative loss functions have been established, the
thresholds α and β for object xt are calculated as follows:

α =

∑m
j=1 wj(1− ϑj)(max−Dtotal,j)∑m

j=1 wj(1− ϑj)(max−Dtotal,j) +
∑m

j=1 wjϑj(Dtotal,j −min)
,

β =

∑m
j=1 wjϑj(max−Dtotal,j)∑m

j=1 wjϑj(max−Dtotal,j) +
∑m

j=1 wj(1− ϑj)(Dtotal,j −min)
.

(17)

Theorem 1: Considering α and β as functions of ϑj , and
the risk aversion coefficient ϑ ∈ [0, 0.5), then for any xt ∈ U ,
the following conclusion holds:

(1) The value of α decreases as the value of ϑj increases;
(2) The value of β increases as the value of ϑj increases.
Proof: For (1), calculate the derivative of α:

α
′
=

−
∑m

j=1 wj(max−Dtotal,j)
∑m

j=1 wjϑj(Dtotal,j − min)

(
∑m

j=1 wj(1 − ϑj)(max−Dtotal,j) +
∑m

j=1 wjϑj(Dtotal,j − min))
2

−
−

∑m
j=1 wj(Dtotal,j − min)

∑m
j=1 wj(1 − ϑj)(max−Dtotal,j)

(
∑m

j=1 wj(1 − ϑj)(max−Dtotal,j) +
∑m

j=1 wjϑj(Dtotal,j − min))
2
.

Due to Dtotal,j ∈ (min,max), then max−Dtotal,j ≥ 0,
and Dtotal,j − min ≥ 0, hence (max−Dtotal,j)(Dtotal,j −
min) > 0 can be obtained. Therefore, the numerator of α′ is
less than 0, and the denominator of α′ is greater than 0, then
α′ < 0. The proof of (1) is complete.

(2) is proved as (1). ■
Theorem 2: The thresholds α and β satisfy 0 ≤ β < α ≤ 1

when 0 ≤ ϑ < 0.5.
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Proof: α > β

⇔
∑m

j=1 wj(1− ϑj)(max−Dtotal,j)∑m
j=1 wj(1− ϑj)(max−Dtotal,j) +

∑m
j=1 wjϑj(Dtotal,j −min)

>

∑m
j=1 wjϑj(max−Dtotal,j)∑m

j=1 wjϑj(max−Dtotal,j) +
∑m

j=1 wj(1− ϑj)(Dtotal,j −min)

⇔ (1− ϑj)
2 > ϑ2

j ⇔ 1− 2ϑj > 0 ⇔ 0 ≤ ϑj < 0.5.

Therefore, it is proved that α > β. According to the
calculation formula of α and β, it is clear that 0 ≤ α, β ≤ 1.
Based on the above reasoning, it is proved that Theorem 2
holds. ■

According to Theorem 2, the following three-way classifi-
cation rule can be obtained:

(P) If P (Γ|[xt]
R
C) ≥ αt, then xt ∈ POS(Γ);

(B) If βt < P (Γ|[xt]
R
C) < αt, then xt ∈ BND(Γ);

(N) If P (Γ|[xt]
R
C) ≤ βt, then xt ∈ NEG(Γ).

C. Hierarchical Sequential Three-Way Multi-Attribute Deci-
sion Making Method

In what follows, we introduce the HS3WD into the MSDIS
to address the issue of multi-scale information. It processes
the multi-scale information hierarchically and sequentially,
resulting in the final classification result.

Compared with the classical S3WD model, HS3WD model
has less classification and shorter rule length. It is also easy to
understand the specific semantics of the rules, which is in line
with the cognition of ordinary people. Because multi-scale data
has hierarchy, general granular computing tools can’t solve this
kind of problem, and the hierarchical sequential computing
paradigm can fit this kind of problem well, so we adopt the
hierarchical sequential in multi-scale classification decision.

For a MSDIS MIS = (U, {cij |j = 1, 2, ...,m, i =
1, 2, ..., s} ∪ {d}), the SSDIS at the ith scale is Si =
(U, {ci1, ci2, ..., cim} ∪ {d}), and given a sequential set of
attributes C1 ⊂ C2... ⊂ Cq... ⊂ Cn ⊆ C, its induced
multilevel granular structure is G = {G1, G2, ..., Gq, ..., Gn}.
Under each granular structure, there are s SSDISs.

Starting from the granular structure G1, the 3WD is made
from the coarsest scale S1 according to the principle of coarse-
to-fine. And the conditional probability P (Γi|[xt]

i
G1

) and loss
function as well as the thresholds αi

t and βi
t are calculated

based on subsections III-A and III-B, and the universe U
is divided into positive region, negative region and boundary
region. The boundary region BND1

G1
is used as the universe

U2
G1

of the next scale S2, the above process is repeated up
to the finest scale Ss. The boundary region BND1 under
this granular structure is used as the universe U1

G2
of the

next granular structure G2 and the process is repeated until
the universe is empty or the last granular structure Gn is
finished. The specific sequential process is shown in Fig. 1,
where the three ellipses represent the positive, negative and
boundary regions after the decision on granular structure Gq

is completed.
The positive, negative and boundary regions after all gran-

ular structure decisions are respectively

POSG =

n⋃
q=1

POSGq =
n⋃

q=1

{x|P (Γ
i|[xt]

i
Gq

) ≥ α
i
t, x ∈ U

i
Gq

}; (18)

1
qG

BND

2
qG

BND

3
qG

BND

……

q

s
GBND

1

1
q qG GBND U

 1

1
q qG GBND U




qG
BND

qG
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qG
NEG

1
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3
qG
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q

s
GPOS

1
qG

NEG

2
qG

NEG

3
qG

NEG

q

s
GNEG

Fig. 1. Sequential process between the different levels in G.

NEGG =
n⋃

q=1

NEGGq =
n⋃

q=1

{x|P (Γ
i|[xt]

i
Gq

) ≤ β
i
t, x ∈ U

i
Gq

}; (19)

BNDG =

n⋂
q=1

BNDGq =

n⋂
q=1

{x|βi
t < P (Γ

i|[xt]
i
Gq

) < α
i
t, x ∈ U

i
Gq

}.

(20)

For the ranking of objects, two methods are proposed in
this paper. The data processing part before getting the ranking
result is as follows.

Firstly, the comprehensive utility value of each scale is
calculated by

Hi =
∑m

j=1
wjD

i,+
j +

∑m

j=1
wjD

i,−
j . (21)

Then, the comprehensive utility value of each scale is
normalized by

Hi =
Hi

|max(Hi)|
. (22)

Method 1: The coarse ranking is carried out under each
scale, and then the fusion is carried out according to the
principle that the finer the scale is, the larger the weight is,
and finally the comprehensive ranking result is obtained.

The comprehensive utility value of each scale is fused by

H =
i

1 + ...+ i+ ...+ s
Hi. (23)

Method 2: The ranking results on the coarsest and finest
scales are selected and comprehensively ranked according to
the optimist-pessimistic fusion strategy. The specific formula
is as follows:

H = ηH1 + (1− η)Hs (24)

where the magnitude of the parameter η ∈ [0, 1], η indicates
the risk attitude of the decision maker.

D. Specific Steps in the Hierarchical Sequential Three-Way
Multi-Attribute Decision Making Method

The discussion in the previous three subsections mainly
deals with the calculation of conditional probability and loss
functions, and the construction of the HS3WMADM method.
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Algorithm 1: three-way MADM method in a MSDI.
Input: A multi-scale decision table IS, attribute

weights w and four parameters θ, ∂, ϑ, η.
Output: Classification and ranking of all objects.

1 Normalize the multi-scale decision table according to
Eq. (25);

2 Initialize POSG, BNDG and NEGG;
3 for q =1 to n do
4 for i =1 to s do
5 Calculate the utility value of each object

according to Eqs. (13)-(16);
6 Calculate conditional probability of each object

according to Definitions 5 and 6;
7 Calculate α, β of each object according to

Eq. (17);
8 (P) If P (Γ|[xt]

E
C) ≥ αi

t, then xt ∈ POSi
Gq

(Γ);
9 (B) If βi

t < P (Γ|[xt]
E
B) < αi

t, then
xt ∈ BNDi

Gq
(Γ);

10 (N) If P (Γ|[xt]
E
B) ≤ βi

t , then xt ∈ NEGi
Gq

(Γ);
11 end
12 end
13 Obtain POSG, BNDG and NEGG according to

Eqs. (18)-(20);
14 for i =1 to s do
15 Calculate the comprehensive utility value of each

object according to Eqs. (21) and (22);
16 end
17 The first ranking result is obtained by fusing the

comprehensive utility value according to Eq. (23);
18 The optimistic-pessimistic fusion of the combined

utility value is performed according to Eq. (24) to
obtain the second ranking result;

The above processes are summarized in a corresponding
algorithm, as shown in Algorithm 1.

Remark 2: In Algorithm 1, the time complexity of
steps 1-2 is O(|U |). The time complexity of steps 3-7 is
O (|n| × |s| × |U |). The time complexity of step 8 is O(|U |).
The time complexity of step 9 is O(|s|), and the time com-
plexity of steps 10-11 is O(|U |). Therefore, the maximum time
complexity of Algorithm 1 is O (|n| × |s| × |U |). Obviously,
the space complexity is O(|U |2).

The above processes are summarized in a corresponding
flowchart, as shown in Fig. 2.

IV. AN APPLICATION CASE

A. Selected Case of Outstanding Employee of the Year

TABLE II is a primitive multi-scale decision table describ-
ing whether an employee in a particular company will be
awarded Employee of the Year. U = {x1, ..., x16} is the
employee in the company; C = {a1, a2, a3} is the conditional
attributes set, indicating education, usual performance, and job
title; d is the decision attribute, indicating whether or not
the employee is an employee of the year. Each conditional
attribute has three scales, Va1

1
={H, L}, representing “High”

Begin

Original multi scale 

data

 Term conversion

Normalized Attribute weight





NoYes

YesNo

Pos
Bnd Neg

Partition 

granularity 

structure

Calculate conditional 

probability

Calculate loss 

function

Regret-rejoicing 

relation

Regret-rejoicing 

class

Regret 

matrix

Rejoicing

matrix

Ranking

End

Fig. 2. Flowchart of this model.

and “Low” respectively; Va2
1
= {B, M, S}, representing “High

grade”, “Medium grade” and “Low grade ” respectively; Va3
1
=

{G, U, K, O}, representing “Graduate”, “Undergraduate”,
“high school student” and “Other” respectively; Va1

2
= {P, N},

representing “Pass” and “Fail” respectively; Va2
2
= {I, II, III,

IV}, representing “Excellent”, “Good”, “Average” and “Poor”
respectively; Va3

2
= {3, 4, 5, 6, 7, 8, 9, 10}, representing

the employee’s rating in daily performance; Va1
3
= {A, C,

J}, representing “Senior”, “Intermediate” and “Junior” respec-
tively; Va2

3
= {J1, J2, J3, J4}, representing “Senior”, “Engi-

neer”, “Assistant” and “Technician” respectively; Va3
3
= {P1,

P2, P3, P4, P5}, representing “Senior engineer”, “Associate
senior engineer”, “Engineer” and “Technician” respectively
Vd = {0, 1}, representing “No” and “Yes” respectively.

The processing method of Deng et al. [31] is used to convert
linguistic terms into hierarchical terms. a2 as an example, term
conversion is shown in Fig. 3. a1 and a3 are converted using
the same method.

The transformed multi-scale decision table is shown in
TABLE III.

The multi-scale hierarchy is transformed into values in the
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TABLE II
MULTI-SCALE DECISION TABLE

U a11 a21 a31 a12 a22 a32 a13 a23 a33 d

x1 L S O N IV 3 J J4 P5 0
x2 L S O N IV 5 J J4 P4 0
x3 L S K N IV 4 J J4 P4 0
x4 L S K P III 6 J J3 P5 0
x5 H B U N IV 5 J J4 P4 0
x6 L S K P III 6 J J3 P4 0
x7 H B U P III 6 J J4 P4 0
x8 H B U N IV 4 C J2 P3 0
x9 H B U N IV 5 C J2 P3 0
x10 H B G N IV 3 J J4 P4 0
x11 H B G N IV 3 J J4 P5 0
x12 L S O P I 9 C J2 P3 0
x13 H B U P II 8 A J1 P2 1
x14 H B U P II 8 A J1 P1 1
x15 L M K P I 10 A J1 P1 1
x16 H B G P III 7 A J1 P1 1

P

N

I

II

III

IV

9,10

8

6,7

3,4,5

2a
3

1

4

3

2

1

4

3

2

1

2a

Fig. 3. Term conversion.

TABLE III
MULTI-SCALE HIERARCHICAL DECISION TABLE

U a11 a21 a31 a12 a22 a32 a13 a23 a33 d

x1 1.5 1.5 1 1 1 1 1 1.5 1.5 0
x2 1.5 1.5 1 1 1 1 1 1.5 1.5 0
x3 1.5 1.5 2 1 1 1 1 1.5 1.5 0
x4 1.5 1.5 2 3 2 2 2 1.5 1.5 0
x5 3.5 3.5 3 1 1 1 1 1.5 1.5 0
x6 1.5 1.5 2 3 2 2 2 1.5 1.5 0
x7 3.5 3.5 3 3 2 2 2 1.5 1.5 0
x8 3.5 3.5 3 1 1 1 1 3 3 0
x9 3.5 3.5 3 1 1 1 1 3 3 0
x10 3.5 3.5 4 1 1 1 1 1.5 1.5 0
x11 3.5 3.5 4 1 1 1 1 1.5 1.5 0
x12 1.5 1.5 1 3 4 4 4 3 3 0
x13 3.5 3.5 3 3 3 3 3 4.5 4.5 1
x14 3.5 3.5 3 3 3 3 3 4.5 4.5 1
x15 1.5 1.5 2 3 4 4 4 4.5 4.5 1
x16 3.5 3.5 4 3 2 2 2 4.5 4.5 1

interval [0, 1], and the Cauchy distribution and logarithmic
distribution are used to describe the satisfaction of decision-
makers with the evaluation values. A low-level evaluation
value corresponds to a low degree of satisfaction, and a
high-level evaluation value corresponds to a high degree of
satisfaction. The quantitative functions were selected based on
the range of values in TABLE III as follows:

TABLE IV
MULTI-SCALE NUMERICAL DECISION TABLE

U a11 a21 a31 a12 a22 a32 a13 a23 a33 d

x1 0.2053 0.2053 0.0100 0.0100 0.0100 0.0100 0.2053 0.2053 0.0100 0
x2 0.2053 0.2053 0.0100 0.0100 0.0100 0.0100 0.2053 0.2053 0.4563 0
x3 0.2053 0.2053 0.4563 0.0100 0.0100 0.0100 0.2053 0.2053 0.4563 0
x4 0.2053 0.2053 0.4563 0.7500 0.4563 0.4563 0.2053 0.2053 0.0100 0
x5 0.8224 0.8224 0.7500 0.0100 0.0100 0.0100 0.2053 0.2053 0.4563 0
x6 0.2053 0.2053 0.4563 0.7500 0.4563 0.4563 0.2053 0.2053 0.4563 0
x7 0.8224 0.8224 0.7500 0.7500 0.4563 0.4563 0.2053 0.2053 0.4563 0
x8 0.8224 0.8224 0.7500 0.0100 0.0100 0.0100 0.7500 0.7500 0.7500 0
x9 0.8224 0.8224 0.7500 0.0100 0.0100 0.0100 0.7500 0.7500 0.7500 0
x10 0.8224 0.8224 0.8852 0.0100 0.0100 0.0100 0.2053 0.2053 0.4563 0
x11 0.8224 0.8224 0.8852 0.0100 0.0100 0.0100 0.2053 0.2053 0.0100 0
x12 0.2053 0.2053 0.0100 0.7500 0.8852 0.8852 0.7500 0.7500 0.7500 0
x13 0.8224 0.8224 0.7500 0.7500 0.7500 0.7500 0.9405 0.9405 0.8852 1
x14 0.8224 0.8224 0.7500 0.7500 0.7500 0.7500 0.9405 0.9405 0.9900 1
x15 0.2053 0.2053 0.4563 0.7500 0.8852 0.8852 0.9405 0.9405 0.9900 1
x16 0.8224 0.8224 0.8852 0.7500 0.4563 0.4563 0.9405 0.9405 0.9900 1

f(x) =

{
[1 + k(x− λ)

−2
]
−1

, 1 ≤ x < 3

µ ln(x) + v, 3 ≤ x ≤ 5
. (25)

To solve for this quantification function, assume that “very
satisfied”, “satisfied” and “very poor” are 0.99, 0.75 and 0.01,
respectively, thus, f(1) = 0.01, f(3) = 0.75 and f(5) = 0.99
are obtained. The undetermined coefficient method is used
to solve the coefficients, and to obtain k = 1.503, λ =
0.8768, µ = 0.4698, v = 0.2339, after substituting into
Eq. (25), TABLE IV is obtained.

B. Analysis of Experimental Results

We select five methods for ranking and classification com-
parison with our method, including TOPSIS (M-I) [44],
TODIM (M-II) [21], Jia and liu’s method (M-III) [25], Deng
et al.’s method (M-IV) [31] and Huang et al.’s method (M-V)
[33].

The weights w = (0.5, 0.3, 0.2) are given by the experts,
assuming θ = 0.3, ∂ = 0.6 and ϑ = 0.1, the granular structure
constructed from the sequential attribute set is G = {G1, G2},
where G1 = (a1, a2) and G2 = (a1, a2, a3). The classification
results obtained according to Algorithm 1 are shown in Fig. 4
and the ranking results are shown in TABLE V.

Fig. 4 illustrates the specific process of three-way decision
sequencing, it can be seen that {x13, x14, x15, x16} are parti-
tioned in the positive region, {x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12} are partitioned in the negative region and
the boundary region is empty. The classification results are
consistent with the actual classification, thus verifying the
validity of our proposed method.

The results of the proposed ranking method 1 and 2 with
η = 0.1, η = 0.5 and η = 0.9 are shown in TABLE V.
From the ranking results, the optimal object is consistently
x14, and the ranking results are almost identical, which is also
consistent with the ranking of objects in the positive region

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2024.3397876

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 24,2024 at 08:39:45 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. X, NO. X, XX 2023 9

TABLE V
RANKING RESULTS OF THE PROPOSED METHOD

Methods Ranking Optimal object

Method 1 x14 ≻ x13 ≻ x16 ≻ x7 ≻ x15 ≻ x8 = x9 ≻ x12 ≻ x6 ≻ x10 ≻ x5 ≻ x4 ≻ x11 ≻ x3 ≻ x2 ≻ x1 x14

Method 2 (η = 0.1) x14 ≻ x13 ≻ x16 ≻ x15 ≻ x7 ≻ x8 = x9 ≻ x6 ≻ x12 ≻ x10 ≻ x5 ≻ x11 ≻ x4 ≻ x3 ≻ x2 ≻ x1 x14

Method 2 (η = 0.5) x14 ≻ x13 ≻ x16 ≻ x7 ≻ x15 ≻ x8 = x9 ≻ x6 ≻ x12 ≻ x10 ≻ x5 ≻ x4 ≻ x11 ≻ x3 ≻ x2 ≻ x1 x14

Method 2 (η = 0.9) x14 ≻ x13 ≻ x16 ≻ x15 ≻ x7 ≻ x8 = x9 ≻ x10 ≻ x6 ≻ x12 ≻ x5 ≻ x11 ≻ x4 ≻ x3 ≻ x2 ≻ x1 x14

TABLE VI
CLASSIFICATION RESULTS OF THE PROPOSED METHOD

Methods Pos Bnd Neg

Our method {x13, x14, x15, x16} ∅ {x1,......, x12}
Our method (non-hierarchical) {x4, x6, x7, x8, x9, x12, x13, x14, x15, x16} ∅ {x1, x2, x3, x5, x10, x11}

M-III [25] {x13, x14, x15, x16} ∅ {x1,......, x12}
M-IV [31] ∅ U ∅
M-V [33] {x5} {x1, x2, x3, x4, x6,......, x16} ∅

……

POS BND NEG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16, , , , , , , , , , , , , , ,x x x x x x x x x x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 15 16, , , , , , , , , , , , ,x x x x x x x x x x x x x x13 14,x x

15 16,x x
1 2 3 4 5 6 7 8 9 10 11 12, , , , , , , , , , ,x x x x x x x x x x x x

1 2 3 4 5 6

7 8 9 10 11 12

, , , , , ,
, , , , ,
x x x x x x
x x x x x x

13 14 15 16, , ,x x x x 1 2 3 4 5 6

7 8 9 10 11 12

, , , , , ,
, , , , ,
x x x x x x
x x x x x x

Fig. 4. Classification results of the proposed method.

before objects in the boundary region and negative region
objects.

To better test the proposed method in this paper, classical
methods and recent methods are selected to compare with our
proposed method. The methods are M-I [44], M-II [21], M-
III [25], M-IV [31] and M-V [33].

The comparison results are shown in Fig. 5. It can be found
that our method has almost the same ranking results as those
of other methods, and the optimal object is x14, which verifies
the effectiveness of our method. Compared with the methods
of M-I [44], M-II [21] and M-III [25], our method takes
into account the psychological changes of decision makers.
Compared with the method of M-IV [31] and M-V [33],
our method takes into account the importance of different
scales, which makes the decision results more scientific and
reasonable.

To further investigate the consistency of our method with
existing methods, this paper used the Spearman correlation
coefficient (SCC) to indicate the correlation between the
ranking results of different methods. In general, when the SCC
is greater than 0.6, there is a significant correlation between
the two methods. TABLE VII gives the SCC of the ranking
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Fig. 5. Comparison of different ranking methods.

TABLE VII
SCC FOR DIFFERENT RANKING METHODS

Method Method M-I M-II M-III M-IV M-V
1 2 [44] [21] [25] [31] [33]

Method 1 1.0000
Method 2 0.9764 1.0000
M-I [44] 0.9676 0.9470 1.0000
M-II [21] 0.9853 0.9558 0.9882 1.0000
M-III [25] 0.9588 0.9617 0.9912 0.9735 1.0000
M-IV [31] 0.9558 0.9647 0.9882 0.9676 0.9971 1.0000
M-V [33] 0.6979 0.6139 0.6389 0.6610 0.5873 0.5696 1.0000

results of different methods, from which it can be seen that
our method has a strong correlation with existing methods,
which indicates that our method has good validity and high
reliability.

The classification results are shown in TABLE VI. Our
method is the same as that obtained in M-III [25] and is
consistent with reality. Without hierarchical sequence, it is in-
appropriate to classify {x4, x6, x7, x8, x9, x12} into positive
region. M-IV [31] has only boundary region, which is ob-
viously unreasonable. M-V [33] divides {x13, x14, x15, x16}
into boundary region and x5 into positive region, and x5 ranks
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TABLE VIII
SCC FOR DIFFERENT RANKING METHODS

Data set Objects
Conditional

Scales
Decision

Classes
attributes attributes

Car Evaluation (CE) 1728 5 3 1 2
Liver Disorders (LD) 345 5 3 1 2

Haberman’s Survival (HS) 306 3 3 1 2

TABLE IX
SCC FOR DIFFERENT METHODS UNDER THE DATASET CE

Our M-I M-II M-III M-IV M-V
method [44] [21] [25] [31] [33]

Our method 1.0000
M-I [44] 0.9751 1.0000
M-II [21] 0.9545 0.8741 1.0000
M-III [25] 0.9998 0.9737 0.9565 1.0000
M-IV [31] 0.9945 0.9745 0.9510 0.9945 1.0000
M-V [33] -0.5951 -0.5549 -0.6075 -0.5967 -0.5847 1.0000

behind {x13, x14, x15, x16} in the ranking result, which is
unreasonable. Overall, the classification results obtained by
our method are valid and in line with reality.

V. EXPERIMENTS AND ANALYSIS

In this section, this paper downloads some real-world
datasets from the UCI machine learning repository to validate
the verify and feasibility of the proposed method. Given that
these datasets are single-scale, we will convert them into multi-
scale datasets using the method [31]. The relevant information
on the processed datasets is shown in TABLE VIII.

A. Ranking Comparison and Analysis

From the ranking results of the case in the previous section,
it is clear that the ranking results of the proposed ranking
methods 1 and 2 (η = 0.5) are highly consistent. Therefore,
this section only compares the proposed ranking method 1.
The ranking results of our proposed method are compared with
those methods of M-I [44], M-II [21], M-III [25], M-IV [31]
and M-V [33] to further verify that our decision results are
not obtained by chance.

As can be noticed from Fig. 6, the ranking results of the
five ranking methods under the datasets CE and LD follow
the same trend, with a high degree of consistency in the
object rankings. The results in TABLEs IX and X show
that our method has a high degree of similarity with the
ranking results obtained by the other four methods, with the
SCC reaching a maximum value of 0.9. M-V [33] does not
find the optimal scale in dataset CE and LD, which leads
to low similarity between its ranking results and those of
other methods. This fully demonstrates the effectiveness and
feasibility of the proposed method in this paper.

B. Classification Comparison and Analysis

To verify the validity, the classification results of our
method are compared with those of M-III [25],M-IV [31]
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Fig. 6. Comparison of different ranking methods under the two datasets.

TABLE X
SCC FOR DIFFERENT METHODS UNDER THE DATASET LD

Our M-I M-II M-III M-IV M-V
method [44] [21] [25] [31] [33]

Our method 1.0000
M-I [44] 0.7490 1.0000
M-II [21] 0.8830 0.9316 1.0000
M-III [25] 0.8395 0.9706 0.9462 1.0000
M-IV [31] 0.8469 0.9767 0.9641 0.9877 1.0000
M-V [33] 0.1090 0.1548 0.1142 0.1648 0.1577 1.0000

and M-V [33] under the datasets CE and HS, respectively.
Four commonly used classification indicators are selected and
calculated as follows:

Error rate =
tX→NEG + t¬X→POS

|U |
; (26)

Precision =
tX→POS + t¬X→NEG

|POS|+ |NEG|
; (27)

Recall =
tX→POS

tX→POS + tX→NEG
; (28)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
. (29)

As can be noticed from Fig. 7, the classification results of
our method are more reasonable than those of the other two
methods. M-IV [31] has too large boundary region and the
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Fig. 7. Comparison of classification results by different methods.
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Fig. 8. Comparison of four classification indicators for different methods.

model is not stable enough. M-V [33] has a greater boundary
region, and there is no negative region, while data set CE
and HS has labeled, therefore, this is not compliant with the
actual situation. The method of M-III [25] has only a negative
region under the dataset CE and no boundary region under the
dataset HS, which is obviously unreasonable. Our method has
objects in all three regions and the different number of objects
in the three regions is more reasonable. As can be found from
Fig. 8, our method performs well under the four metrics. In
particular, our method has a lower classification error rate than
that of M-III [25], and higher precision, recall and F1 than the
other methods. This indicates that our method has stronger
classification ability and performance, and outperforms the
other methods.

C. Parametric Sensitivity Analysis

The parameters related to the ranking are θ and ∂. Therefore
the value of one parameter is fixed, and the effect of the change
of the other parameter on the ranking result is analyzed. Fixed
∂ = 30.2 in TABLE XI and θ = 0.5 in TABLE XII. The
results in TABLES XI and XII show that the changes in
parameter ∂ and θ have little effect on the ranking results.
It shows that our method has good stability.

TABLE XI
SCC OF THE RANKING RESULTS FOR DIFFERENT VALUES OF θ UNDER

THE DATASET HS

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9

θ = 0.1 1.0000
θ = 0.3 0.9999 1.0000
θ = 0.5 0.9997 0.9998 1.0000
θ = 0.7 0.9993 0.9994 0.9996 1.0000
θ = 0.9 0.9992 0.9993 0.9995 1.0000 1.0000

TABLE XII
SCC OF THE RANKING RESULTS FOR DIFFERENT VALUES OF ∂ UNDER

THE DATASET HS

∂ = 0.2 ∂ = 1.2 ∂ = 10.2 ∂ = 30.2 ∂ = 50.2

∂ = 0.2 1.0000
∂ = 1.2 1.0000 1.0000
∂ = 10.2 0.9999 0.9999 1.0000
∂ = 30.2 0.9986 0.9987 0.9993 1.0000
∂ = 50.2 0.9959 0.9960 0.9970 0.9991 1.0000
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Fig. 9. Classification results for different values of ϑ under the two datasets.

The parameters associated with the classification are θ, ∂
and ϑ. When θ = 0.3 and ∂ = 0.2, the parameter ϑ increases
gradually from 0.1 to 0.45, and the step size is 0.05. From
Fig. 9, it can be noticed that with the increase of parameter ϑ,
the positive and negative regions increase continuously, while
the boundary region gradually decreases. This result conforms
to the description of Theorem 1. As can be seen from Fig. 10,
the larger the ϑ, the higher the classification error rate, but the
lower the overall rate; the larger the ϑ, the lower the precision,
recall and F1, but the higher the overall rate. In general, ϑ has
little effect on the classification performance of the method,
and the classification performance is good, which shows the
stability of our method.

Fixed ϑ = 0.35 and ∂ = 15.2, the parameter θ is gradually
increased from 0.1 to 0.9 in steps of 0.2. From Figs. 11
and 12, it can be noticed that with the increase of parameter θ,
the classification results and classification performance change
only slightly, so θ has little effect on the classification ability
and classification performance of the method. Fixed ϑ = 0.35
and θ = 0.3, the parameter ∂ gradually increases from 0.2 to
50.2. From Fig. 11, it can be found that as the parameter
∂ increases, the positive and the negative regions increase
continuously, and the boundary region decreases continuously.
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Fig. 10. Variation of the four indicators for different values of ϑ under the
two datasets.
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Fig. 11. Classification results for different values of θ and ∂ under the two
datasets.

As can be seen from Fig. 12, the larger the ∂, the higher the
classification error rate, but the overall lower; the larger the ∂,
the almost constant precision and the overall higher; the larger
the ∂, the higher the recall and F1, and the overall higher. In
general, ∂ has little effect on the classification performance of
our method, and the classification performance is good, which
indicates the stability of our method.

D. Discussion

After the above quantitative analysis, the validity and sta-
bility of our proposed method have been proved. Below, we
compare our method with existing decision methods from a
qualitative perspective, as shown in TABLE XIII

According to TABLE XIII, our method differs from some
existing methods as follows.
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Fig. 12. Variation of the four indicators for different values of θ and ∂ under
the two datasets.

(1) Among the chosen comparison methods, only M-IV [31]
and M-V [33] are explored using multi-scale information. M-
IV [31] results in information loss, while M-V [33] encounters
difficulties in finding the optimal scale. In contrast, our method
does not suffer from these issues.

(2) Among the comparison methods selected, only M-
III [25] and M-V [33] considered decision attributes, and none
of the others. However, in this paper, we combine subjective
decision attributes with objective conditional attributes for
knowledge and data-driven, to get more scientific and realistic
decisions.

(3) Similar to the comparison method chosen, our method
also considers attribute weights. The difference, however, is
that the attribute weights in our method are adaptively adjusted
according to the granular structure.

(4) For psychological behavior, other alternative methods
are not considered except M-III [25] and M-V [33]. In
our method, we consider both the acquisition of conditional
probabilities and the acquisition of loss functions.

(5) In terms of ranking, the selected method can achieve
ranking of all objects.

(6) For classification, all decision methods are available
except methods M-1 [44] and M-II [21]. In addition, our
method and the selected classification method are different,
the specific difference is that other methods only make one
classification decision, while our method makes multiple clas-
sification decisions, which is more consistent with practical
decision-making.

The feasibility, validity and stability of this method are
verified by the above analysis. Furthermore, we can see that
our method is an extension of the existing method. More
importantly, we are able to point out the advantages of our
approach as follows:

(1) Our method can overcome some shortcomings of exist-
ing decision-making methods. On the one hand, compared to
methods based on single scales, our method can solve more
complex problems by considering multi-scale attributes. On
the other hand, according to the risk factor, the ranking results
are flexible, and the decision-maker can choose the appropriate
parameter values according to the actual situation and needs.

(2) Our method is more practical and more in line with
realistic decision scenarios. Our method can reconcile the
inconsistency between conditional attribute information and
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TABLE XIII
THE DIFFERENCES OF DIFFERENT METHODS

Methods Multi-scale information Decision attribute Weight vector Psychological behavior Ranking Classification

Our method
√ √ √ √ √ √

M-I [44] × ×
√

×
√

×
M-II [21] × ×

√
×

√
×

M-III [25] ×
√ √

×
√ √

M-IV [31]
√

×
√ √ √ √

M-V [33]
√ √ √ √ √ √

decision attribute information, so that we can test experts’
decision experience and make scientific decisions. On the
other hand, 3WD is common in reality. However, the existing
classification decisions are made only once. On this basis, we
combine HS3WD with regret theory and introduce conditional
probability into behavior decision for the first time.

Be that as it may, there are still two limitations to our study.
Firstly, according to the composite data, attribute weights are
given by experts in this paper, and the influence of scale
weights on ranking results is not considered. Secondly, many
real-life decision problems are more complex. Some data
characteristics, such as dynamic data and unbalanced data are
not considered in this paper.

VI. CONCLUSION

This paper considers the complex MADM problems with
multi-scale and establishes a new MADM method by using the
3WD theory and regret theory. The main work of this paper is
as follows. First, according to multi-scale data, we introduce
HS3WD into MADM problems under MSDISs to ensure
the integrity of the original decision information. Second,
we introduce regret theory into 3WD and construct a loss
function based on regret theory, which takes into account the
psychological behavior of the decision-maker and makes the
decision more objective. Third, we establish a new MADM
method based on MSDISs and give an illustration example to
show the decision-making steps. Finally, through comparative
analysis and sensitivity analysis, the stability, effectiveness,
feasibility, and superiority of the method are discussed.

In the future, research should consider both attribute and
scale weights, address dynamic and unbalanced data, and
explore decision methods for more complex problems, such
as financial risk evaluation in the new energy automobile
industry. Additionally, further investigation into defining a
state set for decision attribute value domains with more than
two elements would be valuable.
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