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Learning Domain Invariant Prompt for
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Abstract— Prompt learning stands out as one of the most
efficient approaches for adapting powerful vision-language
foundational models like CLIP to downstream datasets by tuning
learnable prompt vectors with very few samples. However,
despite its success in achieving remarkable performance on
in-domain data, prompt learning still faces the significant
challenge of effectively generalizing to novel classes and domains.
Some existing methods address this concern by dynamically
generating distinct prompts for different domains. Yet, they
overlook the inherent potential of prompts to generalize
across unseen domains. To address these limitations, our
study introduces an innovative prompt learning paradigm,
called MetaPrompt, aiming to directly learn domain invariant
prompt in few-shot scenarios. To facilitate learning prompts
for image and text inputs independently, we present a dual-
modality prompt tuning network comprising two pairs of
coupled encoders. Our study centers on an alternate episodic
training algorithm to enrich the generalization capacity of the
learned prompts. In contrast to traditional episodic training
algorithms, our approach incorporates both in-domain updates
and domain-split updates in a batch-wise manner. For in-domain
updates, we introduce a novel asymmetric contrastive learning
paradigm, where representations from the pre-trained encoder
assume supervision to regularize prompts from the prompted
encoder. To enhance performance on out-of-domain distribution,
we propose a domain-split optimization on visual prompts for
cross-domain tasks or textual prompts for cross-class tasks during
domain-split updates. Extensive experiments across 11 datasets
for base-to-new generalization and 4 datasets for domain
generalization exhibit favorable performance. Compared with
the state-of-the-art method, MetaPrompt achieves an absolute
gain of 1.02% on the overall harmonic mean in base-to-new
generalization and consistently demonstrates superiority over all
benchmarks in domain generalization.
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I. INTRODUCTION

RECENT research in pre-training large Vision-Language
Models (VLM) using web-scale data has shown

remarkable progress in learning transferable representa-
tions [23], [47]. In contrast to conventional supervised learning
approaches that acquire closed-set visual concepts through
discrete labels, these models align images within a shared
embedding space using contrastive learning, presenting a
promising prospect for harnessing human language to guide
visual recognition tasks. Benefiting from this paradigm,
pre-trained vision-language models can conduct zero-shot
or few-shot transfer to downstream tasks with open-set
visual concepts learned from natural language supervision.
Consequently, how to effectively leverage these powerful
foundation models emerges as a pivotal direction of research.
Recent studies [62], [73] have employed a simple yet
effective way to adapt pre-trained vision-language models to
downstream tasks, called prompting. Manually designing an
appropriate prompt constitutes a nontrivial endeavor due to
its inherent ambiguity, thereby rendering automatic prompt
tuning the current mainstream approach. Drawing inspiration
from recent progress in prompt learning [30], [34], [37]
within the domain of natural language processing, methods
like CoOp [73], CoCoOp [62] and MaPLe [26] learn a set
of continuous vectors as the context (i.e., prompt vector)
with the pre-trained parameters fixed. This approach leads
to noteworthy enhancements even when utilizing a limited
number of training samples.

Despite demonstrating promising performance in i.i.d.
samples, as discussed in prior research [62], prompt learning
still encounters a significant challenge in terms of domain
generalization. Similar to other machine learning methods,
conventional prompt tuning approaches [73] often tend to
overfit the distribution of the training set. When transferred
to unseen domains, the strong generalization capacity of
learned prompt vectors becomes compromised, leading to
a substantial reduction in performance. Even with massive
tuning, ensuring an optimal prompt for downstream tasks
remains elusive. Recently, several methods [62], [71] have
addressed this challenge through the adaptive generation of
prompts for different tokens or domains, known as conditional
prompt learning. Nevertheless, they fall short in enhancing the
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Fig. 1. Comprehensive comparison of the harmonic mean of previous
methods CoCoOp, MaPLe, and our method MetaPrompt on 11 diverse image
recognition datasets for base-to-new generalization. MetaPrompt surpasses
state-of-the-art methods on 9 of 11 datasets.

generalization ability of learned prompts and cannot enforce
the prompts to generalize to unseen domains.

In this paper, our goal is to explicitly learn the domain
invariant prompt for vision-language models, which is
independent of the input and exhibits a low bias toward
visual representations of various downstream tasks. Due to
the significant distribution shift, our emphasis is directed
towards cross-domain tasks, wherein the test samples are
out-of-domain. As discussed in previous literature [21],
[27], [65], input samples are composed of attributes (i.e.,
factors of variation), such as color, shape, texture, etc., and
different domains are defined by different distributions of
each attribute. As a result, there exists a unified meta-
domain containing all possible attributes, where data domains
are attribute distributions sampled from this meta-domain.
Under this assumption, our theoretical analysis, in alignment
with [8], demonstrates that tuning prompts via an episodic
training strategy provides a robust generalization guarantee.
Specifically, this approach has the generalization bound
of O(1/

√
N ), where N represents the number of tasks,

independent of the sample size within each domain. This
observation drives our proposal of an episodic prompt tuning
method in few-shot scenarios.

Consequently, to better leverage the potency of episodic
training and maintain good performance on unseen domains,
we introduce MetaPrompt, a simple but effective few-shot
approach that generates the domain invariant prompt for
vision-language models. Aiming at addressing the overfitting
issue of prompts learned on in-domain data, we introduce
an alternated episodic training algorithm designed to improve
generalization when applied to out-of-domain data. To facili-
tate this algorithm, we propose a dual-modality prompt tuning
network as our framework, which learns prompt vectors from

both vision and text modalities, respectively, using two distinct
pairs of coupled encoders.

In contrast to conventional meta-learning-based episodic
training strategies, our alternate algorithm, as a batch-wise
algorithm, performs two distinct updates on a single batch,
i.e. an in-domain update following a domain-split update.
During in-domain updates, a novel asymmetric contrastive
learning paradigm is elaborated, aiming to exploit the robust
generalization capacity of the pre-trained vision-language
model. For instance, representations from the pre-trained text
encoder assume guidance for tuning the prompted image
encoder with contrastive learning, and vice versa. To explicitly
enhance the generalization ability of prompts on unseen
domains, we additionally present a domain-split optimization
for prompt tuning. With a modality-specific optimization
strategy, we impose a constraint on visual prompts for
cross-domain tasks and textual prompts for cross-class tasks
during domain-split updates. During training on a specific
distribution, this constraint optimizes prompts for achieving
good performance on out-of-distribution samples.

In this paper, the ability of generalization is evaluated
from two perspectives, new image domains and new class
domains. Our MetaPrompt is applicable for both out-of-
domain classes (i.e., base-to-new generalization) and images
(i.e., conventional domain generalization). As shown in Fig. 1,
for base-to-new generalization, MetaPrompt obtains an overall
improvement of harmonic mean accuracy by an average gain
of 1.02% over the previous state-of-the-art method MaPLe
on 11 image recognition benchmark datasets. For domain
generalization, our few-shot method achieves comparable
performance over other methods training on full samples and
outperforms other zero-shot or few-shot methods on all domain
generalization benchmark datasets. These experimental results
demonstrate the effectiveness of MetaPrompt and show its
superiority in generalization capacity to other prompt tuning
approaches.

The contributions of our work are summarized as follows. 1)
We introduce an innovative prompt learning paradigm, called
MetaPrompt, which directly learns domain invariant prompt
in few-shot scenarios. This paradigm aims to tackle the major
challenge of generalizing to unseen classes or domains in
prompt learning with vision-language models. 2) We present a
dual-modality prompt tuning network comprising two pairs of
coupled encoders to facilitate learning prompts for image and
text inputs independently. 3) We center on an alternate episodic
training algorithm to enrich the generalization capacity of the
learned prompts, which alternates between in-domain updates
and domain-split updates for prompt tuning.

II. RELATED WORK

A. Prompt Learning

Prompt learning emerges from recent advances in natural
language processing. The core idea of prompt learning is to
formalize various tasks [11], [47], [48] to masked language
modeling problems with different prompt templates. A prompt
can be seen as a function of the input tokens, providing
instruction for adapting pre-trained language models such
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as BERT [11] or GPT [48] to downstream tasks. Earlier
work [36] has enabled the model to understand the task
and make better predictions by manually designing discrete
natural language prompts. Nonetheless, some hand-crafted
prompt templates prove inappropriate in many cases due to
their inherent ambiguity, while the performance of recognition
remains sensitive to the form of the provided content. Based on
LLMs, some works in the field of multi-modal comprehension
solve this problem by designing or generating discrete
text prompts using answers [29], reasoning questions [53],
and structure-driven contexts [70] instead of vanilla task-
specific templates. However, a paradigm for automated prompt
learning is urgently needed. Recent methods [30], [34], [37]
learn continuous contexts to automate prompt engineering and
explore optimal prompts, called prompt tuning. This paradigm
can also be applied to vision-language models [23], [47].
Specifically, CoOp [73] demonstrates that a suitable prompt
for improving the recognition performance of CLIP can be
learned with very few samples. CoCoOp [62] extends CoOp
by learning an input-conditional token for each image to
obtain generalizable representations. ProDA [38] captures the
distribution of diverse prompts to handle the varying visual
representations and provides high-quality task-related content
for facilitating recognition. ProGrad [75] aligns the gradient
to the general direction with other parameters frozen, which
prevents prompt tuning from forgetting the general knowledge
learned from VLMs.

While the existing approaches primarily focus on learning
prompts for text modality, they overlook the optimization
of prompts for vision modality. To address this gap, Visual
Prompt Tuning (VPT) [24] achieves remarkable performance
gains with only a minimal set of trainable vectors acting as
prompts, while keeping the model backbone frozen. Drawing
from the previously mentioned approaches, MaPLe [26]
introduces a method for multi-modal prompt learning to
improve the alignment between representations from vision
and text modalities. FG-VPL [58] proposes fine-grained visual
prompt learning to induce VLMs to focus on the target object
and capture discriminative visual information. In contrast,
based on a dual-modality prompt tuning network with
asymmetric regularization and domain-split constraint, our
method learns the domain invariant prompt for both modalities
with vision-language models in an end-to-end manner,
resulting in better generalization on image classification.

B. Domain Generalization

Domain generalization refers to learning a robust model
generalized to unseen domains. In this paper, the gen-
eralization ability of a model is evaluated from the
perspectives of both out-of-domain images and classes,
corresponding to conventional domain generalization and
base-to-new generalization respectively. Conventional domain
generalization mainly evaluates the generalization capacity on
unseen image domains. Many approaches [2], [18], [33], [41]
have attempted to measure the domain gap between images
and learn domain invariant features. In order to acquire a set of
parameters capable of generalizing to unseen domains, several

methods [4], [31] employ meta-learning to simulate domain
shift during training. In this paper, we present a theoretical
analysis within the context of episodic training, focusing on
the guarantee of generalization in the domain generalization
scenario.

Recently, another type of generalization task called base-
to-new generalization has emerged, aiming to exploit the
generalization ability on unseen classes [7], [63], [66],
[67]. Conventional methods [17], [22], [25], [64] learn a
semantic space based on auxiliary information. Compared
with supervised learning, CLIP-based methods achieve high
generalization performance due to more vital transferring
ability. CoCoOp [62] tackles this generalization problem with
conditional prompt learning. Our study explores the viability
of learning the domain invariant prompt for the pre-trained
V-L model CLIP [47] and introduces the novel concept of
conducting episodic training in an alternate way for the first
time.

C. Meta-Learning

Most existing meta-learning approaches focus on few-shot
learning, which can be divided into metric learning methods,
memory network methods, and optimization-based methods.
Metric learning methods [51], [55], [59], [61] learn a similarity
space to extract discriminative meta-features for new classes
efficiently. Memory network methods [40], [42], [44], [52]
store meta-knowledge by memory models when learning seen
tasks and then generalize it to unseen tasks. Optimization-
based methods [14], [15], [49], [50] train meta-optimizer that
enable fast adaption for new tasks. Works like MAML [1],
[14], [16], [74] focus on learning meta-initial parameters of a
deep model so that it would perform well on new tasks after
only a small number of gradient updates. Drawing on recent
advancements, we optimize parameters after every in-domain
update to learn robust representations instead of learning
the initial parameters of the model. In concrete, we utilize
gradients on meta-test subtasks to regularize parameters, i.e.,
prompts. By imposing a modality-specific constraint, our
model performs better on various generalization tasks.

III. GENERALIZATION BOUND OF EPISODIC TRAINING

Following previous literature [65], our theoretical analysis
is based on the assumption that data is composed of attributes
(i.e., factors of variation), such as color, shape, texture, etc.,
and different domains can be defined by different distributions
of attributes. For example, as shown in Fig. 2, a sketch domain
corresponds to a color distribution with only two values, black
and white. In contrast, a cartoon or natural image domain
may correspond to a color distribution with more color values.
As a result, we assume that there exists a unified meta-domain
distribution τ containing all possible attributes, where data
domains P = {Pi }

N
i=1 are distributions sampled from this

meta-domain with different attribute distributions. Under this
assumption, we expect a training strategy to learn invariant
features from seen domains and be able to generalize to
unseen domains. Specifically, given a training algorithm F
trained on a dataset D =

{
Di = Ds

i
}N

i=1, where Ds
i is the
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set of data sampled from a support domain, drawn from a
domain distribution PM

i containing M training samples (i.e.,

Ds
i

i.i.d.
∼ PM

i ), the generalization error R obtained by F(D) is
as follows:

R(F(D), τ ) = EP∼τ,Ds∼PM ,z∼P L(F(D)(Ds), z). (1)

Here z represents an instance sampled from the distribution of
data domains P .

To improve the generalization ability of meta-learning
algorithms, the pioneering work [61] proposes a training
strategy – episodic training strategy, which treats each task
as a training instance and updates the inner-task algorithm
by episode (task by task). In this paper, we transfer episodic
training to the domain generalization scenario by treating
each data domain as a training instance and updating the
inner-domain algorithm by episode (domain by domain).
Specifically, we first update the model on a support domain
(i.e., in-domain error). Then the performance of the updated
model is measured and optimized on another query domain
(i.e., out-of-domain error or episodic training error). As a
result, the training error of the episodic training strategy R̂epi
is as follows:

R̂epi (F(D), D) =
1
N

N∑
i=1

1
N q

i

∑
zi∈Dq

i

L̂(F(Ds
i ), zi ), (2)

where Dq
i is the set of data sampled from a query domain,

and N q
i is the sample number of Dq

i . From Eq. 2 we can
see that episodic training strategy directly minimizes the out-
of-domain testing error, and hence intuitively the in-domain
sample number M in the generalization bound vanishes,
with the generalization bound only depending on the domain
number N .

Based on this paradigm, we naturally associate episodic
training with domain generalization tasks, aiming to learn
invariance from various distributions by creating meta-tasks
with domain gaps as episodes. By applying this strategy, the
distribution shift between the meta-train and meta-test subtask
can be approximately equivalent to that between the original
training and test task. The error of the parameter over the
meta-test task is exactly the test error of generalization tasks
and thereby is an unbiased estimate of the generalization error
on unseen domains. Theoretically, following [8], we derive the
bound of the generalization gap between these two errors only
depending on the domain number N , which is formulated by:

EF[R(F(D), τ )] ≤ EF

[
R̂epi (F(D), D)

]
+ O

(
1
√

N

)
. (3)

The generalization bound implies a strong generalization
guarantee for episodic training algorithms in the few-shot
regime, which motivates this paper to adopt episodic training
to learn the domain invariant prompt with very few samples.

IV. ALTERNATE EPISODIC TRAINING ALGORITHM

In order to enhance generalization performance on out-
of-domain data, we propose an alternate episodic training
algorithm. To enhance the performance of this algorithm,

Fig. 2. Input samples are composed of attributes (i.e., factors of variation),
such as color, shape, texture, etc., and different domains can be defined by
different distributions of attributes.

we introduce a dual-modality prompt tuning network as the
foundation of our approach. As a batch-wise algorithm, our
approach conducts an in-domain update with an asymmetric
contrastive learning paradigm following a domain-split update
with a modality-specific optimization strategy on each
batch.

A. Dual-Modality Prompt Tuning Network

To enhance the effectiveness of episodic training in
prompt tuning and to establish a network that sustains high
performance across unseen domains, we demonstrate our
framework for prompt tuning on vision-language foundation
models, such as CLIP. Among recent works on prompt tuning,
prompt vectors can be learned for both text encoder [62],
[73] and image encoder [24]. In this section, we first
formulate prompt tuning for text and vision modalities as
follows:

1) Textual Prompt Tuning: We follow CoOp [73] that
automatically learns a set of tunable continuous vectors as
context tokens that are fed into the text encoder together
with the class tokens. Instead of introducing prompts only at
the first layer, we expand these vectors at every Transformer
layer’s input space. Given the textual prompt composed of
P vectors for the i-th class denoted as t i , the prediction
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Fig. 3. Our dual-modality prompt tuning network consists of a pre-trained encoder and a prompted encoder for each modality, where we further couple the
prompted encoder with the pre-trained encoder from the relative modality. The asymmetric contrastive learning module outputs three probability distributions
for the end-to-end training to achieve better recognition performance, where po is used for the final prediction.

probability of the i-th class can be calculated by:

pt (y = i | x) =
exp (sim (x, g (t i )) /τ)∑K

j=1 exp
(
sim

(
x, g

(
t j

))
/τ

) , (4)

where x represents the image representation from the image
encoder and g(·) denotes the text encoder.

2) Visual Prompt Tuning: We follow VPT-Deep [24] that
adopts a similar idea as textual prompt, where extra prompt
vectors are automatically learned to be fed into the image
encoder. The image patches are firstly embedded into a latent
space as the input of the first Transformer layer, and then P
learnable vectors are introduced at every Transformer layer’s
input space as prompts. The output of the Transformer head
is considered the final image representation x̃. The prediction
probability of the i-th class can be calculated by:

pi (y = i | x) =
exp (sim (̃x, g (hi )) /τ)∑K

j=1 exp
(
sim

(̃
x, g

(
h j

))
/τ

) , (5)

where g(·) denotes the text encoder and hi denotes the
handcrafted prompt for the i-th class.

Motivated by previous works on textual and visual prompt
tuning, we propose a dual-modality prompt tuning network
that jointly learns visual and textual prompts for better
recognition performance with in-domain data. As shown in
Fig. 3, unlike methods [26], [69] that learn two sets of prompt
vectors on a single pair of encoders with cross-entropy loss,
we couple each prompted encoder with a pre-trained encoder
from the relative modality. By leveraging representations
from pre-trained encoders as regularization, the generalization
ability of learned prompts can be promised, thereby mitigating

the overfitting issue on in-domain data. More details of the
implementation will be discussed in the following section.

B. Asymmetric Contrastive Learning for In-Domain Updates

To achieve good performance on in-domain training samples
while preventing the learned prompt vectors from the
overfitting issue (especially in a few-shot setting), we propose
a novel asymmetric contrastive learning paradigm for in-
domain updates. This paradigm employs representations from
the pre-trained encoder, renowned for its robust transferability,
to serve as guidance for enhancing the generalization ability
of prompts in the prompted encoder. Specifically, instead of
concurrently training prompted encoders from both modalities
in a single pair using cross-entropy loss, we opt for
independent training, where prompted representations of one
modality are aligned with pre-trained ones of another modality,
as shown in Fig. 3.

With this asymmetric contrastive learning paradigm,
we have two probabilities pt and pi , corresponding to textual
and visual prompts with Eq. 4 and Eq. 5. We average them
to obtain an overall probability po. In the training phase,
we employ the cross-entropy loss to minimize the distance
between the ground-truth label y and three probabilities
pt , pi and po. We denote the losses associated with these
probabilities as Lt , Li and Lo, respectively. As a result,
the final asymmetric contrastive loss function LAC can be
expressed as the sum of three losses:

LAC = Lo + Lt + Li . (6)

During inference, the probability po is used for prediction.
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Fig. 4. Given a batch of training data containing samples from different
domains, we conduct an in-domain update and a domain-split update. For
in-domain updates, we use all samples of the batch for training. For
domain-split updates, we split the samples into a support set and a query
set by their class domains or image domains based on corresponding tasks.

C. Domain-Split Optimization for Domain-Split Updates

Motivated by the analysis from Section III, we propose
a domain-split optimization strategy for prompt tuning.
Based on the generalization bound derived from Eq. 3, the
generalization gap only depends on the domain number N ,
which indicates the feasibility of conducting meta-updates
by splitting samples according to their domains. Compared
with in-domain updates which focus on learning robust
representations with asymmetric regularization using full in-
domain samples, domain-split updates explicitly enhance
the generalization capacity on the out-of-domain distribution
based on meta-learning. The performance of this update is
only related to the characteristics of the dataset itself instead
of the amount of training samples. Given a batch of training
data containing samples from various domains generated from
the meta-domain, we split it into a support set and a query
set based on domains. Our domain-split optimization aims to
regularize learnable prompts with a constraint that narrows the
gap between training errors on the support and query set.

Specifically, given a batch of N datasets sampled from N
domains at the t-th time step denoted as Dt = {Di }

N
i=1, where

Di ∼ Pi and Pi indicates the distribution of the i-th data
domains, we split the set by grouping samples from some
selected domains as the query set Dq

j , and samples from
the rest as the support set Ds

j , where the index j denotes
the j-th split. Note that, for domain generalization, since it
is clear which domain each sample belongs to, the query
and support set can be easily split. However, for base-to-
new generalization, there is no explicit definition of which
domain each sample belongs to. Hence, we randomly split

the query and support set based on the class label of each
sample. By imposing various separations, we provide a unified
episodic generation paradigm for different generalization
tasks, as shown in Fig. 4.

Based on our dual-modality prompt tuning network,
we propose a modality-specific optimization strategy, where
the prompts of only the task-specific modality are tuned during
domain-split updates. For example, when conducting base-to-
new generalization on Flowers102, differentiating between the
semantics of flower names such as “pink primrose” and “hard-
leaved pocket orchid” becomes crucial. This underscores the
necessity of tuning invariant textual prompts to accommodate
diverse classes within the topic of flowers. On the other
hand, in the context of domain generalization tasks, utilizing
invariant visual prompts to extract common semantics across
diverse domains enhances recognition performance. Based on
the aforementioned, we apply constraints on visual prompts
concerning cross-domain tasks with Li and on textual prompts
concerning cross-class tasks with Lt .

During domain-split updates, the learnable prompt θ from
the task-specific modality is updated with the samples
on the support set Ds

j to get the updated prompt θ ′j .
Then the generalization error of the updated prompt θ ′j
is measured by the cross-entropy loss on the query set
Dq

j , whose corresponding gradients are back-propagated to
update the original prompt θ . Since this update involves
second-order gradient computation with high complexity,
in our implementation, we design a first-order approximating
method. The parameter θ is updated as follows:

θ ← θ − αη
∑

j

∇θ ′j
L(θ ′j ; Dq

j ), (7)

where α is the meta-step rate, and η is the learning rate of
the normal training. LMeta indicates the meta-test loss on the
query set for calculating gradients, which is associated with the
aforementioned modality-specific loss function. To simplify
the training process, our paradigm treats one batch-wise
iteration in Eq. 7 as a series of training episodes and conducts
several splits of the query and support set within each batch
iteration. The detailed implementation of the alternate episodic
training algorithm is shown in Alg. 1.

D. Computational Complexity Analysis

To analyze the computational complexity of our batch-
wise episodic training, we consider the number of operations
required for both in-domain and domain-split updates.
We denote the batch size of images and the number of class
names as Ni and Nt . N j indicates the domain number, where
N j equals to 2 especially for base-to-new generalization.
When we conduct independent V-L prompts within one pair
of prompted encoders, the complexity of a batch step is
O(Ni + Nt ).

During in-domain updates, we feed all samples in a batch
into our dual-modality prompt tuning network. Considering
that the pre-trained encoder is frozen during training, we pre-
cache the representations for alignment with those of the
prompted encoder. Therefore, the overall complexity of in-
domain updates is O(Ni + Nt ). During domain-split updates,
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Algorithm 1 Batch-Wise Episodic Training

we split samples in the batch into a support set and a query set
based on domains. As we feed them into encoders one after the
other and compute gradients with first-order approximating,
the complexity of one split is also O(Ni + Nt ). Since our
domain-split optimization contains N j episodes for calculating
the meta-gradients, the overall complexity of domain-split
updates is O(N j (Ni + Nt )).

In summary, considering the overall complexity of in-
domain and domain-split updates is O((N j + 1)(Ni + Nt )).
Despite the increase in computation compared to the baseline,
our algorithm does not introduce additional sub-networks to
increase the computational burden. Furthermore, since we
perform multiple computations for the same batch in an epoch,
the overall number of epochs can be fewer compared to other
methods, thus compensating for the additional computational
consumption brought about by episodic learning.

V. EXPERIMENTS

We evaluate our approach mainly in the two generalization
settings, i.e. base-to-new generalization and conventional
domain generalization. In our experiments, we use the open-
source CLIP [47] as the foundation vision-language model.
Here we elaborate on the experimental configurations.

a) Datasets: For base-to-new generalization, we follow
Zhou et al. [73] and evaluate the performance of our

method using 11 image recognition datasets, which cover a
wide range of recognition tasks. Specifically, the benchmark
includes ImageNet [10] and Caltech101 [13] for classification
on generic objects; OxfordPets [45], StanfordCars [28],
Flowers102 [43], Food101 [5] and FGVCAircraft [39] for
fine-grained classification; SUN397 [68] for scene recognition;
UCF101 [56] for action recognition; DTD [9] for texture
classification; and finally EuroSAT [20] for satellite imagery
recognition. For each dataset, we split the classes equally into
two groups as base and new classes. We train the model
only on base classes in a few-shot setting, while evaluation
is conducted independently on base and new classes.

For conventional domain generalization experiments,
we select four real-world datasets from the DomainBed bench-
mark, including VLCS [12], PACS [32], OfficeHome [60],
DomainNet [46]. We conduct experiments with the leave-one-
out strategy, where one of the domains is selected as the target
domain at a time, and other domains are used as the source
domains. We train the model on the source domains in few-
shot, while evaluation is conducted on the target domain.

b) Implementation Details: Our implementation is based on
dassl [72], a well-designed PyTorch toolbox for domain gen-
eralization. We apply prompt tuning on the pre-trained CLIP
model with ViT-B/16 as the visual backbone. Both prompts
are randomly initialized from the Gaussian distribution with a
mean of 0 and a standard deviation of 0.02. We adopt SGD
optimization with an initial learning rate of 0.0015, decayed
by the cosine annealing rule, and the meta-step rate α is set
to 0.2. The warming-up trick is adopted during the first epoch
with a fixed learning rate of 10−5.

For base-to-new generalization, the maximum epoch is set
to 8 for all datasets with a batch size of 16. The prompt
length P of visual and textual prompts is set to 2. We set
the split number N j to 2 for domain-split optimization, where
we evenly divide the samples of a batch into two groups based
on their classes during every split. Following Zhou et al. [73],
we use the few-shot evaluation protocol that selects 16 shots
for training and leverages the whole test set for evaluation.

For conventional domain generalization, the maximum
epoch is set to 6 for all datasets with a batch size of 32.
The prompt length P of visual and textual prompts is set to 4.
We set the split number N j the same as the domain number N .
The leave-one-out strategy is adopted, wherein samples from
one domain are grouped as the query set at a time, while
samples from other domains are grouped as the support set.
We adopt 1-shot and 5-shot settings for each source domain
during training and evaluate our model on all samples of
the target domain. For the hyper-parameter selection of our
implementation, we share the same hyper-parameters instead
of searching for each dataset.

A. Base-to-New Generalization

The performance of our MetaPrompt in base-to-new
generalization setting on 11 image recognition datasets is
shown in Table I. We compare its performance with zero-
shot CLIP using hand-crafted prompts as the input, and recent
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TABLE I
COMPARISON OF CLIP, COOP, COCOOP, MAPLE, AND OUR METAPROMPT ON BASE-TO-NEW GENERALIZATION BENCHMARKS. OUR

EXPERIMENTS ARE REPEATED THREE TIMES USING DIFFERENT RANDOM SEEDS. METAPROMPT OUTPERFORMS ALL OTHER METHODS

ON BOTH BASE AND NEW CLASSES AND DEMONSTRATES STRONG GENERALIZATION PERFORMANCE ON 11 IMAGE RECOGNITION

DATASETS. H: HARMONIC MEAN (TO HIGHLIGHT THE GENERALIZATION TRADE-OFF)

prompt learning methods, including CoOp, CoCoOp, and
MaPLe.

1) Generalization to Unseen Classes: In comparison with
the state-of-the-art prompt tuning method MaPLe, MetaPrompt
obtains an overall improvement to 76.09% in terms of the
average accuracy of new classes over 11 datasets with our
episodic training strategy that explicitly constrains the prompt
to generalize to out-of-domain classes. When considering both
base and new classes, MetaPrompt shows an absolute average
gain of 1.02% on the harmonic mean over MaPLe. The
results strongly prove that our method of learning the domain
invariant prompt improves the generalization ability.

2) Performance Gain in Seen Classes: While our approach
achieves excellent performance on generalizing to unseen
classes, it still maintains high accuracy on seen classes
compared with other methods optimized to fit in-domain data,
even better than MaPLe by 1.10%. While the performance

on EuroSAT is inferior to MaPLe on seen classes, the
substantial improvement exceeding 5% on unseen classes
implies that our approach exhibits remarkable generalization
capabilities.

3) Explanation of our Better Trade-Off: MetaPrompt
achieves a good trade-off between in-domain and out-of-
domain data for two reasons. Firstly, our multi-modal prompts
improve the recognition accuracy from two modalities con-
currently and independently. With in-domain updates where
the pre-trained vision-language model assumes supervision,
we obtain a stable boost in fitting both in-domain and out-
of-domain data. Secondly, from the perspective of training
strategies, MaPLe does not explicitly consider the in-domain
and out-domain trade-off and achieving good generalization at
the expense of lower in-domain accuracy, while our approach
proposes an explicit constraint during domain-split updates to
optimize prompts for both seen and unseen classes.
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TABLE II
COMPARISON OF DOMAIN GENERALIZATION METHODS AND OUR METAPROMPT ON DOMAIN GENERALIZATION BENCHMARKS. CLIP
(TEMPLATE) INDICATES USING ’A PHOTO OF A {CLASS NAME}’ PROMPT.‘ENSEMBLE’ AND ‘CLIP’ INDICATE ENSEMBLE AND CLIP-BASED

METHODS. OUR EXPERIMENTS ARE REPEATED THREE TIMES USING DIFFERENT RANDOM SEEDS. ALTHOUGH OUR METHOD IS BASED

ON few-shot SETTING, IT ACHIEVES COMPETITIVE RESULTS AGAINST FULL-TRAINING METHODS AND DEMONSTRATES

STRONG PERFORMANCE ON DOMAIN GENERALIZATION BENCHMARKS

4) Failure in Some Datasets: Nevertheless, it is still
noteworthy that in some datasets, there exists a gap compared
to previous methods on base or new classes. In OxfordPets,
with fewer classes than most datasets, the effectiveness of the
domain-split optimization is slightly limited due to the poor
diversity of categories. In Food101, the good performance
of zero-shot CLIP indicates the small difference between
distributions of this dataset and pre-trained data, thus leading
to a potential risk of overfitting during training. For other
datasets like EuroSAT and UCF101, the performance trade-
off on base and new classes should be better balanced.

B. Conventional Domain Generalization

The performance of our MetaPrompt in conventional
domain generalization setting on four benchmarks is shown
in Table II. We compare its performance with different
categories of domain generalization methods, including the
non-ensemble methods like ERM [19], MLDG [31], Fish [54],
CORAL [57], the ensemble methods like SWAD [6], EoA [3],
SEDGE [35], as well as zero-shot CLIP and CoCoOp
in domain generalization setting. Since extracting domain
invariant features is the mainstream idea in traditional domain
generalization tasks, we follow this idea for CLIP-based
learning to train the domain invariant prompt.

In comparison with traditional domain generalization
methods, CLIP-based methods demonstrate outstanding gener-
alization capabilities, attributed to the strong transfer learning
ability acquired from pre-trained knowledge. Despite using a
limited number of training samples, our MetaPrompt yields
competitive results in domain generalization benchmarks.
It outperforms alternative methods, including the conditional
prompt tuning approach CoCoOp, across all datasets when
considering average accuracy in the 5-shot setting. Moreover,
it achieves comparable performance even in the 1-shot
setting. By simulating the generalization error between
different domains with domain-split optimization, our domain
invariant prompt has a stronger generalization capacity than

a conditional-based prompt generator training independently
with domains.

C. Further Analysis

1) Influence of Model Components: We analyze the
influence of components in our model and conduct an
ablation study on various combinations of them, as shown in
Table III. The baseline method (the first row) simultaneously
trains both textual and visual prompts with a conventional
gradient descent optimizer. The results show that our alternate
episodic training algorithm with both in-domain updates
and domain-split updates positively affects generalization to
unseen domains. Among them, in-domain updates achieve
an absolute performance gain on new class domains and
an overall boost on new image domains, which shows
the effectiveness of leveraging representations of pre-trained
vision-language foundation models. Our domain-split updates
with a novel optimization strategy also play an important
role in boosting the ability of generalization, which will be
analyzed in the subsequent section. In addition, our modality-
specific optimization strategy during domain-split updates
further improves performance on both tasks.

2) Influence of Model Architectures: We perform an
ablation study on diverse model architectures and evaluate the
efficacy of our proposed approach on domain generalization.
We conduct experiments utilizing three commonly employed
architectures for the visual encoder: ViT-B/32, ViT-B/16,
and ViT-L/14. We evaluate the performance of both zero-
shot CLIP and our method in 1-shot and 5-shot settings.
As demonstrated in Table IV, under the 1-shot setting,
our approach consistently outperforms zero-shot CLIP in
terms of out-of-domain performance. The only exception
is VLCS, where there is a slight lag attributable to the
limitations imposed by sample size and significant domain
shift. In the 5-shot setting, our method demonstrates notably
greater progress, yielding a substantial 6.0% improvement
on DomainNet when employing the ViT-L/14 as our model
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TABLE III
ABLATION ON DIFFERENT COMPONENTS. ‘ID-UPDATE’ AND

‘DS-UPDATE’ DENOTE OUR IN-DOMAIN UPDATES AND DOMAIN-
SPLIT UPDATES. ‘MOS’ INDICATES USING OUR MODALITY-

SPECIFIC OPTIMIZATION STRATEGY INSTEAD OF REGULAR-
IZING PROMPTS FOR BOTH MODALITIES IN BOTH TASKS

DURING DOMAIN-SPLIT UPDATES. FOR DOMAIN GEN-
ERALIZATION, WE USE THE 5-SHOT ACCURACY

AS THE EVALUATION METRIC

TABLE IV
ABLATION ON DIFFERENT MODEL ARCHITECTURES

architecture. This illustrates the efficacy of our method across
various model architectures.

3) Visualization of Image Embeddings: We randomly select
three datasets to analyze the t-SNE plots of image embedding,
as shown in Fig. 5. Our MetaPrompt demonstrates superior
inter-class separability and intra-class cohesiveness across both
base and new classes. We attribute the strong performance
of our method to the utilization of visual prompts, which
are acquired under the guidance of pre-trained textual
representations. Because these representations remain constant
during the training process, embeddings with visual concepts
can be more effectively aligned with their corresponding
textual labels, thus tending to form distinct clusters On the
other hand, the pre-trained CLIP model possesses a robust
capability for semantic representation. Under the guidance of
distinct textual semantics, image embeddings from various
classes can be better separated.

4) Influence of Prompt Length: We conduct an ablation
study on prompt length in both generalization settings.
Specifically, we examine prompt vectors of 1, 2, 4, 8, 16, and
32 in each layer for both modalities, all initialized randomly,
as summarized in Table V. For base-to-new generalization, it is
evident that models with longer prompt lengths perform better

Fig. 5. T-SNE plots of image embeddings in previous methods MaPLe and
our method MetaPrompt on diverse image recognition datasets. Points with
the same color represent image embeddings of the same class.

TABLE V
ABLATION ON DIFFERENT PROMPT LENGTHS

on base classes, while the opposite trend emerges on the new
classes When applying our training strategy, the difference in
performance on the harmonic mean is relatively small, except
for 32 prompt vectors with a dramatic drop. These results
suggest that employing 2 prompt vectors is the optimal choice
when considering the accuracy of both base and new classes.
For conventional domain generalization, a shorter prompt
proves insufficient for recognizing visual concepts effectively,
whereas a longer prompt appears prone to overfitting on in-
domain samples. Our method demonstrates promising results
in terms of overall performance with a prompt length of 4.

5) Influence of Domain-Split Optimization: We investigate
the influence of our proposed domain-split optimization strat-
egy. Fig. 6 illustrates a consistent performance improvement
across datasets for both generalization tasks. Specifically,
our optimization strategy leads to an approximate 3%
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Fig. 6. Performance change with our proposed domain-split optimization
strategy over datasets for base-to-new generalization and domain generaliza-
tion. We compare the performance of our model with domain-split updates
and with in-domain updates instead (equivalent to doubling the learning rate
of in-domain updates).

increase in accuracy for both FGVCAircraft in base-to-
new generalization and VLCS in conventional domain
generalization. The consistent improvements provide evidence
that our domain-split optimization significantly mitigates
failures on out-of-domain data and enhances robustness
to new classes, underscoring its excellent generalization
capability. Comparing the replacement of domain-split updates
with in-domain updates, the observed improvements are not
statistically significant, thus demonstrating the effectiveness
of alternate updates.

D. Limitation and Bias

Although achieving significant experimental results com-
pared with previous methods, it is noteworthy that our
experimental design may still have some limitations and
biases. From the aspect of dataset selection, despite the
selected image recognition datasets covering a wide range of
tasks, we only randomly sample a small amount of data from
the whole dataset. It may be a tricky challenge to apply the
method to real few-shot datasets, like medical images. From
the aspect of metric limitations, beyond the aforementioned
generalization tasks, experiments on more complex settings
of generalization, like from different tasks with larger domain

shifts, may also validate the effectiveness of domain invariant
prompts.

VI. CONCLUSION

We introduce MetaPrompt, a novel approach for learning the
domain invariant prompt with the vision-language model CLIP
to address the challenge of generalization. Our theoretical anal-
ysis demonstrates that the episodic training strategy provides
a robust generalization guarantee for domain generalization
tasks. Utilizing this analysis as a foundation, we devise
an innovative episodic training algorithm, which alternates
between in-domain updates and domain-split updates for
prompt tuning. Through the application of asymmetric
regularization and modality-specific optimization, our dual-
modality prompt tuning network enables prompt learning
in few-shot scenarios, showing remarkable generalization to
unseen classes and domains. Extensive experiments on base-
to-new generalization and domain generalization consistently
validate the superior performance of our approach over
existing methods.

While traditional prompt learning approaches frequently
lead to a degradation in generalization performance, our
method offers valuable insights into accessing the inherent
relationship between domains and presents a viable solution
for acquiring the invariant prompt, thus mitigating poor
performance on unseen tasks. In the future, we will attempt to
utilize the power of LLMs to acquire linguistic knowledge for
learning domain-invariant as well as domain-specific prompts
to fully capture semantic information to assist downstream
recognition tasks. In addition, we will aim to apply domain
invariant prompt learning for dense prediction, including
semantic segmentation and depth estimation, etc., to enhance
the generalization performance on other tasks.
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