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Abstract

Contrastive Language-Image Pretraining (CLIP)
has achieved remarkable success, leading to rapid
advancements in multimodal studies. However,
CLIP faces a notable challenge in terms of in-
efficient data utilization. It relies on a single
contrastive supervision for each image-text pair
during representation learning, disregarding a
substantial amount of valuable information that
could offer richer supervision. Additionally, the
retention of non-informative tokens leads to in-
creased computational demands and time costs,
particularly in CLIP’s ViT image encoder. To ad-
dress these issues, we propose Multi-Perspective
Language-Image Pretraining (MLIP). In MLIP,
we leverage the frequency transform’s sensitiv-
ity to both high and low-frequency variations,
which complements the spatial domain’s sensi-
tivity limited to low-frequency variations only.
By incorporating frequency transforms and token-
level alignment, we expand CILP’s single super-
vision into multi-domain and multi-level super-
vision, enabling a more thorough exploration of
informative image features. Additionally, we in-
troduce a token merging method guided by com-
prehensive semantics from the frequency and spa-
tial domains. This allows us to merge tokens to
multi-granularity tokens with a controllable com-
pression rate to accelerate CLIP. Extensive exper-
iments validate the effectiveness of our design.
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Figure 1. (a) A distorted image. (b) An objective error map. The
house and the sky regions are easily observable, and those on textu-
ral regions (e.g. rocks) are less noticeable, i.e., HVS is much more
sensitive to the low-frequency variations than the high-frequency
variations. (c) The original images and spectrums of the same
lying cat in different scenes. It shows spectrum is pretty effective
in extracting and differentiating features such as the complexity
and noise of a scene (the high-frequency variations).

1. Introduction
In recent times, multimodal study (Xu et al., 2024a; Zhang
et al., 2024; Xu et al., 2024b; Lin et al., 2023) has gained sig-
nificant popularity, leading to rapid advancements in Vision-
Language Pre-training (VLP). One noteworthy development
is Contrastive Language-Image Pretraining (CLIP) (Radford
et al., 2021), which has demonstrated remarkable perfor-
mance across a range of downstream tasks. CLIP achieves
this by training on 400 million image-text pairs with a con-
trastive mechanism to effectively bring the representations
of intra-pairs closer together while pushing apart those of
inter-pairs. However, upon closer examination, it is evident
that CLIP encounters a significant obstacle in terms of inef-
ficient data utilization. For example, only one contrastive
supervision is utilized for each pair during the forward pro-
cess, thereby leaving substantial uni-modal and cross-modal
information untapped, which can potentially enhance rep-
resentation. Additionally, the presence of non-informative
tokens leads to increased computational requirements and
time costs, especially in CLIP’s image encoder, i.e., a Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2020). This
additional workload hampers cross-modality alignment and
significantly slows down the overall training speed of CLIP.
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There has been a surge in studies focusing on the devel-
opment of data-efficient CLIP-like models. Prevailing ap-
proaches include self-supervision or image enhancement
techniques to increase the diversity of supervision (Mu et al.,
2022; Li et al., 2021; Lee et al., 2022) or probe token-level
alignments to refine feature learning (Yao et al., 2021; Zou
et al., 2022). Although these approaches have shown promis-
ing results, they primarily focus on enhancing feature learn-
ing in the single spatial domain. However, it is crucial
to recognize that a 2D image signal contains a wealth of
additional important features that can be extracted in the
frequency domain. CNNs and ViTs, which primarily oper-
ate in the spatial domain, are devised to mimic the human
visual system (HVS) (Kim & Lee, 2017). However, HVS
exhibits varying sensitivity to different frequency compo-
nents, as illustrated in Figure 1(a) and (b). Fortunately, fre-
quency transformation techniques can naturally differentiate
and isolate less sensitive frequency components, cf. Figure
1(c). This persuades us that image signals in the frequency
domain offer valuable information, potentially promoting
multi-domain supervision to enhance data efficiency.

Moreover, the additional merits of frequency analysis, in-
cluding computation efficiency, energy compacting, and a
global view (Yi et al., 2023a;b), further encourage us to con-
template data utilization from multiple perspectives to im-
prove CLIP accuracy and efficiency. i) Multi-domain: how
to benefit from complementary supervision in the frequency
domain to enhance the spatial domain? ii) Multi-level: How
to introduce token-level alignments to promote instance-
level alignments with fine-grained representation learning?
Note that there is a fundamental distinction between fre-
quency tokens and spatial tokens: Frequency tokens are
numerous in quantity but in relatively low-frequency seman-
tics, while spatial tokens are reduced in number, akin to text
tokens, but carry high-frequency semantics. The distinction
necessitates the multi-level alignments to alleviate seman-
tics mismatch and suggests a strict one-to-one alignment
at the spatial token level and a loose one-to-many align-
ment at the token-level alignment with text, respectively. iii)
Multi-granularity: Does global frequency effectively guide
to merge tokens at multi-granularity tokens for computa-
tional efficiency? Existing studies to accelerating CLIP, like
FLIP (Li et al., 2023) and A-CLIP (Yang et al., 2023b), uti-
lize masking image patches to achieve reduced accelerating
CLIP in ViT, however, suffering from information loss from
unreliable masking (Liang et al., 2022). Figure 2(a) and
(b) show that tokens exhibit higher semantic similarity in
deeper layers where reducing the token number should be
more reliable. Frequency information, especially high fre-
quency, effectively complements HVS with comprehensive
semantics, potentially enhancing reliable token merging.

In light of the above discussion, we present a novel Multi-
Perspective Language-Image Pretraining (MLIP). The ap-

Figure 2. The observation of performing similarity calculation and
reduction operations on tokens on ImageNet. (a) Average token
similarity in each layer of CLIP-ViT-B/32. (b) Zero-shot accuracy
of random token reductions on different layers.

proach utilizes frequency analysis to ground the model and
offers joint spatial-frequency token alignment, enabling ex-
haustive data utilization. Specifically, we propose splitting
the image encoder into two stages: the Frequency Stage and
the Spatial Stage, to provide frequency and spatial features
of images, respectively. The Frequency Stage leverages
the Discrete Fourier Transform (DFT) to efficiently mix to-
kens, allowing the image encoder to capture high-frequency
variation features such as textures. On the other hand, the
Spatial Stage utilizes the attention mechanism to learn lo-
cal or global spatial features, including shape and position.
These two stages generate a frequency embedding and a
spatial embedding for each image, which are then used in
contrastive learning alongside text embeddings at the in-
stance level. Additionally, MLIP aligns tokens from the
Frequency Stage and Spatial Stage with the text tokens at
the token level, employing a loose one-to-one and a strict
one-to-many matching respectively to fine-grain represen-
tation learning. To accelerate MLIP, we employ a token
merging method guided by frequency-spatial supervision to
reduce the token number at a controlled compression rate.
Briefly, we devise a light Guide module to process the low-
resolution counterpart of the image and send its class token
and global features to cross-attention layers of the Spatial
Stage, to enhance image tokens. This injection of high-level
semantic information provides additional reliable guidance
for selecting similar image tokens to merge.

Our contributions can be summarized as follows:

• Multi-domain supervision: We introduce the frequency
transform into the CLIP paradigm for the first time,
breaking the previous practice of only mining informa-
tion from image-text pairs in the spatial domain. This
enables a more thorough exploration of image features,
leading to a more powerful CLIP paradigm.

• Merging leads to acceleration: We utilize token merg-
ing to reduce the token number while maintaining in-
formation integrity. As far as we know, this is the first
application of token merging in the CLIP paradigm.

• Multi-perspective optimization: MLIP optimizes CLIP
from multi-domain, multi-level and multi-granularity
perspectives. Extensive experiments validate the effec-
tiveness of our methods, demonstrating efficiency in
both data utilization and model training.
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Figure 3. The overall framework of MLIP. We modify the image encoder, and related design lies in the colorful areas and indexes.

2. Related Work
CLIP is a simple yet powerful paradigm of representa-
tion learning. It is widely applied to various downstream
tasks (Wan et al., 2024; Liu et al., 2024; Gong et al., 2024).
However, CLIP is in inefficient data utilization. Several
studies are attempting to address the issue. For instance,
SLIP (Mu et al., 2022) and DeCLIP (Li et al., 2021) ex-
pand contrastive supervision; FILIP (Yao et al., 2021) ex-
plores token-level alignment; CLIP-PSD (Andonian et al.,
2022) and SoftCLIP (Gao et al., 2023) soften one-hot labels;
FLIP (Li et al., 2023) achieves acceleration by randomly
masking patches, and A-CLIP (Yang et al., 2023b) further
masks patches with weak semantic correlation to speed up.
Recent studies combine various aforementioned techniques
to explore new approaches (Gao et al., 2022; Yang et al.,
2023a; Dong et al., 2023; Geng et al., 2023). Diverging from
the above works, we solve the issue from new perspectives:
frequency transforming and token merging.

Frequency transforming plays a crucial role in signal pro-
cessing and has shown surprising performance when applied
to various fields of deep learning (Zheng et al., 2021; Cao
et al., 2020; Qin et al., 2021). These studies utilize Fourier
Transform (FT) in converting signals from the spatial or
time domain to the frequency domain. FNet (Lee-Thorp
et al., 2021), as the first work to explore the application
of frequency transforming to Transformer (Vaswani et al.,
2017), finds that FT can replace the Self-Attention layer to
achieve fast token mixing. GFNet (Rao et al., 2021), ap-
plying Fast Fourier Transform (FFT) to ViT, improves the
image classification performance of ViT. Subsequent stud-
ies, such as AFNO (Guibas et al., 2021) and AFFNet (Huang
et al., 2023), delve deeper into the application of FFT to
ViT. Currently, frequency transforming is rarely discussed
in VLP. We consider introducing frequency transforming in
CLIP to achieve efficiency. However, unlike above works,
we use both frequency and spatial domain features of images
and have made modifications to the process of transforming.

3. Methodology
In this section, we first introduce some CLIP preliminaries
and the overall MLIP loss. Sequentially present our three
methods: supervision expansion via frequency transforming,
joint spatial-frequency token alignment, and acceleration
via token merging. Figure 3 shows the overall framework.

3.1. CLIP Preliminaries and MLIP Overall Loss

For a batch of N image-text pairs {(Ij , Tj)}Nj=1, Ij and Tj

are the image and text of the j-th pair. yj and zj repre-
sent the normalized embeddings of Ij and Tj , respectively,
obtained from the image encoder and text encoder. The
InfoNCE loss (Oord et al., 2018) is used for contrastive
learning, and the loss for image-to-text can be computed as:

LIT =
1

N

N∑
j=1

log
exp(sim(yj , zk)/τ)∑N
k=1 exp(sim(yj , zk)/τ)

, (1)

where τ is a learnable temperature hyper-parameter, it is typ-
ically set to 0.07. The function sim(, ) is used to compute
the similarity by dot product, and the text-to-image loss LTI

can be obtained as Equation 1. Therefore, the overall loss
of CLIP is calculated through LCLIP = 1

2LIT + 1
2LTI .

Similarly, the overall loss of MLIP is donated as:

LMLIP = αLins
fre + βLins

spa + γLtok
fre + δLtok

spa, (2)

where ins and tok respectively represent instance-level
alignment and token-level alignment, while fre and spa re-
fer to aligning text tokens with frequency tokens and spatial
tokens of the image, respectively. We set mixing coefficients
α, β, γ and δ to balance multiple losses.

3.2. Supervision Expansion via Frequency Transforming

Frequency Stage. Frequency Stage contains LF× Fourier
Blocks for transforming tokens into the frequency domain
for mixing. For an image Y with the resolution of H ×
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W , we first split it into h × w non-overlapping patches,
h and w represent the number of patches split in the H
and W directions, respectively. After patch embedding, the
collection of these C-dimensional tokens, which serve as
the input to the image encoder, is denoted as y(p, q), 1 ≤
p ≤ h, 1 ≤ q ≤ w.

The spectrum is the representation of a signal in the fre-
quency domain. Therefore, to process a discrete signal
in the frequency domain, it’s essential first to obtain its
spectrum through Discrete Fourier Transform (DFT). The
separability of 2D DFT indicates that, for a given 2D image
signal f(m,n), 1 ≤ m ≤M, 1 ≤ n ≤ N , its 2D DFT can
be separated into two 1D DFTs: first perform a 1D DFT of
length N along one dimension of the variable n, then take
the computed result and perform a 1D DFT of lengthM
along the other dimension of the variable m to obtain the
spectrum F 2D(u, v) of the 2D signal:

F 1D(m, v) =

N∑
n=1

f(m,n)e−i2πvn/N , (3)

F 2D(u, v) =

M∑
m=1

F 1D(m, v)e−i2πum/M. (4)

Further, as for y(p, q), 1 ≤ p ≤ h,1 ≤ q ≤ w, we obtain:

Y (u, v) =

h∑
p=1

w∑
q=1

y(p, q)e−i2π(up/h+vq/w), (5)

where, i is the imaginary unit, and Y (u, v) is the spectrum of
the 2D signal at (ωu, ωv). ωu = 2πu/h and ωv = 2πv/w
correspond to the discrete frequency components in the
orthogonal dimensions. Here, we adopt the standard FFT
algorithm (Cooley & Tukey, 1965) to calculate the DFT.

DFT and its inverse process are lossless. Therefore, based
on the fundamental properties of DFT, given a 1D spectrum
F 1D(n), we can reconstruct the original signal f(n) by
Inverse DFT (IDFT):

f(n) =
1

N

N∑
n=1

F 1D(v)ei2πvn/N . (6)

Consequently, We can reconstruct the original 2D signal
y(p, q) from the 2D spectrum Y (u, v):

y(p, q) =
1

hw

h∑
u=1

w∑
v=1

Y (u, v)ei2π(up/h+vq/w). (7)

It is noteworthy that y(p, q) ∈ R. According to the funda-
mental properties of DFT, the spectrum Y (u, v) obtained
by 2D DFT is conjugate symmetric about the origin, which
means Y (u, v) = Y ∗(−u,−v). Moreover, considering the
periodicity of DFT, which states Y (u, v) = Y (u+P, v+q),

one can derive that Y (p−u, q−v) = Y ∗(p, q). This implies
that half of the spectrum Y (u, v) can be used to reconstruct
the complete 2D signal y(p, q). Therefore, we adopt a
smaller equivalent spectrum Y ′(u, v) to replace Y (u, v) for
signal reconstruction:

Y ′ = Y (:, 1 : w/2). (8)

Overall, we define F(·) as the 2D DFT, for token collection
y ∈ Rh×w×C , the spectrum of y can be represented as:

Y = F(y) ∈ Ch×w×C , (9)

where Y is a complex tensor. In order to reduce computation,
we take half of the spectrum Y , denoted as Y ′ ∈ Ch×w

2 ×C ,
to effectively reconstruct the original signal. Then we in-
troduce the Lego-Filter to modulate the spectrum to the Y ′.
We utilize X = [x1, x2, ..., xℵ] to represent the Lego-Filter,
where ℵ is the number of piece filters in the Lego-Filter:

Ŷ = 2

ℵ∑
j=1

1

hw
|Y ′|2 ⊙ xjcos((2j − 1)π/2ℵ), (10)

where⊙ is the element-wise multiplication (Hadamard prod-
uct), |Y ′|2 is the power spectrum of Y ′, which smooths the
spectrum, highlighting the main components of the spectrum
and facilitating the subsequent learning. cos((2j− 1)π/2ℵ)
compacts better energy and can aggregate the more impor-
tant information in a 2D signal.

Next, we utilize IFFT F−1(·) to construct and update the
token collection y:

y← F−1(Ŷ ). (11)

Finally, the tokens within the token collection, after trans-
forming through the Frequency Stage, are termed frequency
tokens yfre. After being embedded, frequency tokens gen-
erate an instance-level frequency embedding yfre, which
is used for alignment with the instance-level embedding z
coming from the text encoder.

Spatial Stage. Based on LS× MHSA (Multi-Head Self-
Attention)Blocks, some MHSA Blocks are replaced with
Acceleration Blocks to form the Spatial Stage. Spatial Stage
takes frequency tokens as input and outputs spatial tokens
yspa, also using the attention mechanism for token inter-
action. Similarly, spatial tokens yspa produce an instance-
level spatial embedding yspa, which aligns with z.

Instance-level alignment loss. In MLIP, instance-level
alignment losses include the alignment loss of (image)
frequency-text Lins

fre and (image) spatial-text Lins
spa. Taking
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Lins
fre as an example, it can be represented as:

Lins
fre =

1

2N

N∑
j=1

log
exp(sim(yfrej , zk)/τ)∑N
k=1 exp(sim(yfrej , zk)/τ)

+
1

2N

N∑
j=1

log
exp(sim(zj , y

fre
k )/τ)∑N

k=1 exp(sim(zj , y
fre
k )/τ)

. (12)

3.3. Joint Spatial-Frequency Token Alignment

CLIP only summarizes global visual and textual presenta-
tions (instance-level alignment), consequently overlooking
a substantial amount of fine-grained information. However,
token-level alignment can utilize fine-grained information
to assist the model in learning more detailed features. In
MLIP, token-level alignment is also categorized into (image)
frequency-text and (image) spatial-text.

Frequency-text. We still utilize frequency tokens for token-
level alignment of image-text, adopting the original ap-
proach (Yao et al., 2021). Specifically, We denote l1 and
l2 as the number of frequency tokens yfre and the number
of non-padded tokens z involved in late interaction, respec-
tively. The corresponding embeddings are a and b. We
require that through calculating cosine similarities, each
token involved in token-level alignment finds its most simi-
lar cross-modal token. For instance, for the r-th frequency
token yfre

r , we compute the similarity of its embedding
ar with all text token embeddings {bs}l2s=1, and select the
highest one to represent the matching completion of yfre

r :

max
1≤s≤l2

ar · bs

∥ar∥2 ∥bs∥2
. (13)

Subsequently, we use the average of matchings to represent
the token-level alignment ϖIT from image to text:

ϖIT =
1

l1

l1∑
r=1

ar · bsITr
∥ar∥2 ∥bsITr ∥2

, (14)

where sITr = max1≤s≤l2
ar·bs

∥ar∥2 ∥bs∥2
. Therefore, for N

image-text pairs, we can formulate the frequency token-
level alignment loss from image to text Ltok

fre−IT . Similarly,
we can derive the corresponding loss from text to image
Ltok
fre−TI . Assigning a mixing coefficient of 1/2 to each

loss, we get the full loss Ltok
fre, denoted as:

Ltok
fre = −

1

2N

N∑
j=1

ϖIT
j −

1

2N

N∑
j=1

ϖTI
j . (15)

Spatial-text. Spatial tokens perform a spatial-text token-
level alignment. We define the number of spatial tokens as
l3, and their corresponding embeddings as {ct}l3t=1. Due
to token merging, many spatial tokens are the products of

merging previously similar tokens, which have a higher
level of semantic concepts compared to frequency tokens,
and their number is close to that of test tokens. Therefore,
we adopt a one-to-one alignment scheme, which means
that every token, during cross-modal alignment, should not
only look for the most similar token but also consider the
cross-modal alignment of other intra-modal tokens to avoid
conflicts. Hence, we can view this as a bipartite matching
problem. Further considering that the similarity between
cross-modal tokens could naturally serve as a weight, we
model it as a maximum weight bipartite matching problem
and solve it using the Kuhn-Munkres (KM) algorithm.

For embedding collections {bs}l2s=1 and {ct}l3t=1, set l∗ =
max(l2, l3). To explain more succinctly, we use the embed-
ding’s index number within the collection to represent itself.
Therefore, we construct two sets S = {1, 2, · · · , l∗} and
T = {1, 2, · · · , l∗} to represent the embedding collections
of text tokens and spatial tokens, respectively. If l2 < l∗ or
l3 < l∗, add incremental elements until reaching l∗ to com-
plete the construction. Set up a weight matrix W ∈ Rl∗×l∗ ,
whose element w(s, t) is defined as follows:

w(s, t) =

{
0 if s ≥ l2 or t ≥ l3

bs·ct
∥bs∥2 ∥ct∥2

otherwise
(16)

We initialize the index (denoting the embedding) : Lb(s) =
maxt∈Tw(s, t),∀s ∈ S and Lc(t) = 0,∀t ∈ T . We in-
troduce M to record the matching scheme, setting M [t] =
−1,∀t ∈ T and adopt match to record whether a match has
already been made, setting match[s] = 0,∀s ∈ S. Set Ŝ,
T̂ , and array Slack[ ] are used for adjustments and updates
during matching. Algorithm 1 shows the core process.

Algorithm 1 KM for matching text and spatial embedding
Input: S, T , W , initialized settings (M , match, Lb, Lc)
Output: matching scheme M
for s← 1 to l∗ do

Ŝ ← {s}, T̂ ← ∅
for t← 1 to l∗ do

Slack[t]← Lb(s) + Lc(t)−w(s, t)
while match[s] = 0 do

if ∃t ∈ (T \ T̂ ) : Lb(s) + Lc(t) = w(s, t) then
if M [t] = −1 then

M [t]← s, match[s]← 1, break while
S ← S ∪ {M [t]}, T ← T ∪ {t}

else
t∗ ← argmint/∈T̂ Slack[t], ∆← Slack[t∗]

update: ∀j ∈ Ŝ, lb(j)← lb(j)−∆
∀k ∈ T̂ , lc(k)← lc(k) + ∆
∀t /∈ T̂ , Slack[t]← Slack[t]−∆

return M

After obtaining the matching scheme M , we can use M
to calculate the final spatial-text token-level alignment loss
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Ltok
spa. For N image-text pairs, Ltok

spa can be calculated by
the following equation:

Ltok
spa = − 1

Nmin(l2, l3)

N∑
j=1

l∗∑
t=1

wj(M [t], t). (17)

3.4. Acceleration via Token Merging

Constitution of Spatial Stage. Accelerating training is
realized in Acceleration Blocks, precisely owing to the To-
ken Merging module within them. The key to acceleration
lies in selecting tokens for merging to reduce their quan-
tity. As shown in Figure 2(b), performing the same token
reduction operation in different blocks leads to huge perfor-
mance differences. Therefore, deciding when to reduce the
token number, or in other words, how to place Acceleration
Blocks in the Spatial Stage, is vital. Due to the input of
the Spatial Stage, frequency tokens, do not interact in the
spatial domain. To enable these tokens to capture spatial
features (such as shape, position, etc.), and establish local
and global relationships, we set a few MHSA Blocks in the
early Spatial Stage for token interaction. The subsequent
setting combines MHSA Blocks and Acceleration Blocks.
Moreover, a (fine) class token Cf is appended to record the
importance of each token for later guiding the merging.

Guide and cross-attention. Due to the computational com-
plexity of self-attention being quadratically related to the to-
ken number, MHSA Blocks should be minimized. However,
this might lead to insufficient interaction between tokens be-
fore merging. A lack of global understanding may result in
suboptimal merging. To resolve this paradox, we equipped
Acceleration Blocks with a Guide. Simply put, Guide is
a lightweight pre-trained ViT. We split the low-resolution
counterpart of the image into fewer patches as the Guide’s
input, so the Guide could learn more global features of the
image with less computational cost, which has higher se-
mantic concepts. Then we input its (coarse) class token Cc

into the cross-attention layer, where it interacts with original
image tokens and (fine) class token. This process injects
higher semantics into them, allowing them to acquire more
global features and directional guides during their merging.

Token Merging. In the Token Merging module, we propose
a controllable compression ratio token merging strategy:
1) set a compression rate C, 2) sort all tokens from largest
to smallest, based on the ranking of each token’s attention
score in (fine) class token Cc, 3) take the last 2C tokens for
merging. The merging process is shown in Figure 4.

Our method is inspired by ToMe (Bolya et al., 2022) but
differs in three main aspects: (1) Our method not only uses
the fine features of the original image to determine to merge
but also adds the features with higher semantics brought by
Guide in the cross-attention layer to jointly determine the to-

Figure 4. The process of Token Merging: Step1. Divide tokens
at odd positions into set A and those at even positions into set B.
Step2. Find the most similar token in B for each token in A by
calculating cosine similarity. Step3. Put similar tokens together to
complete the match. Step4. Merge the similar tokens by weights.

kens involved in merging. (2) ToMe first performs matching,
and then selects tokens for merging; while our method first
selects tokens for merging, and then performs matching, this
can help us achieve a controllable compression rate. (3) In
our method, tokens have undergone frequency transforming,
possess complementary frequency features that can better
facilitate token merging.

4. Experiment
4.1. Experiment Setup

Pre-training datasets. To enable a fair comparison with as
many methods as possible, we use YFCC15M (Cui et al.,
2022), which is commonly adopted by many methods, for
the pre-training of MLIP. We also adopt CC3M (Sharma
et al., 2018) and CC12M (Changpinyo et al., 2021b) for pre-
training to verify that MLIP is data-efficient across multiple
datasets of different scales.

Table 1. Comparison against CLIP baselines with zero-shot
(ZS) and linear probing (LP) classification Top-1 accuracy on
ImageNet,♢Reported in (Cui et al., 2022),♡Our implementation.

Method Baesd Encoder ZS TOP-1 LP TOP-1

CLIP ViT-B / 32 32.8♢ 62.4♡

SLIP ViT-B / 32 34.3♢ 67.5♡

FILIP ViT-B / 32 39.5♢ —
DeCLIP ViT-B / 32 43.2♢ 70.4♡

MLIP ViT-B / 32 41.1 70.2

CLIP ViT-B / 16 39.0♡ 64.7♡

SLIP ViT-B / 16 43.2♡ 72.3♡

DeCLIP ViT-B / 16 47.9♡ 77.8♡

MLIP ViT-B / 16 46.3 77.1

Implementation details. We utilize two ViT variants, ViT-
B/32 and ViT-B/16, as the basis for constructing the image
encoders, corresponding to MLIP-ViT-B/32 and MLIP-ViT-
B/16, respectively. More details are in Appendix C. The
image resolution is 224×224, and the Guide employs DeiT-
Tiny (Wang et al., 2023) based on MAE pre-training to
process the counterpart with a resolution of 64 × 64. The
text encoder follows the original design of CLIP. Drawing
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Table 2. Zero-shot and linear-probe classification Top-1 accuracy (%) on 10 smaller datasets, based on variant ViT-B/32, against CLIP
baselines, C10/100/F101/FLOW/SUN/DTD/CAL/AIR is CIFAR10/CIFAR-100/Food101/Flowers/SUN397/Describable Textures/Caltech-
101/Aircraft. AVG is average accuracy across 10 datasets, AVG (+ImageNet) is average accuracy across 11 datasets, including ImageNet.
LS denotes label smoothing. Black text indicates the best performance, while underlined text indicates the second-best performance.

Method C10 C100 F101 PETS FLOW SUN CARS DTD CAL AIR AVG AVG (+ImageNet)

zero-shot classification:
CLIP 63.7 33.2 34.6 20.1 50.1 35.7 2.6 15.5 59.9 1.2 31.7 31.8
SLIP 50.7 25.5 33.3 23.5 49.0 34.7 2.8 14.4 59.9 1.7 29.5 30.0
FILIP 65.5 33.5 43.1 24.1 52.7 50.7 3.3 24.3 68.8 3.9 37.0 37.2
DeCLIP 66.7 38.7 52.5 33.8 60.8 50.3 3.8 27.7 74.1 2.1 41.1 41.3
MLIP 65.8 37.0 48.5 31.7 64.7 52.9 3.0 36.8 75.9 3.1 41.9 41.9
MLIP+LS 67.1 38.9 49.6 32.5 65.3 53.5 3.3 37.8 76.1 3.2 42.7 42.8

linear-probe classification:
CLIP 86.5 64.7 69.2 64.6 90.6 66.0 24.9 61.3 79.1 23.1 63.0 63.2
SLIP 86.4 65.1 73.9 69.5 89.2 70.6 27.0 64.1 82.8 25.7 65.4 65.6
DeCLIP 89.2 69.0 75.4 72.2 94.4 71.6 31.0 68.8 87.9 27.6 68.7 68.8
MLIP 88.6 67.0 72.3 69.9 96.7 75.1 26.8 83.3 92.2 26.1 69.8 69.8
MLIP+LS 90.3 70.7 73.4 72.5 97.0 75.6 27.9 84.6 92.5 28.2 71.3 71.3

from experience, we set the mixing coefficients α, β, γ,
and δ to 0.15, 0.65, 0.1, and 0.1, respectively. We train all
models for 32 epochs with the same hyperparameter setting.
More details are in Appendix D.

Downstream tasks for evaluation. We evaluate MLIP on
three downstream tasks: zero-shot and linear-probe image
classification, and zero-shot image-text retrieval. For image
classification, we perform experiments on ImageNet (Deng
et al., 2009) and 10 other smaller datasets, a total of 11
datasets. For image-text retrieval, we set experiments on
Flickr30K (Hodosh et al., 2013) and MS-COCO (Chen et al.,
2015). More information is in Appendix B.

4.2. Main Results

Zero-shot and linear-probe image classification. Zero-
shot and linear-probe classification results of MLIP on Im-
ageNet are shown in Table 1. It can be seen that MLIP’s
accuracy surpasses that of CLIP and CLIP-like baselines.
However, it’s worth noting that DeCLIP outperforms our
MLIP, primarily because Nearest-Neighbor Supervision
(essentially a kind of label smoothing) significantly en-
hances performance, and (Gao et al., 2023) holds the same
view. Therefore, we further conduct experiments with label
smoothing and find that MLIP could exceed the performance
of DeCLIP. More details are in Section 4.3. In Table 2, we
also present the zero-shot and linear-probe classification re-
sults on other datasets, where our MLIP is still competitive
overall. Especially when combined with label smoothing,
MLIP demonstrates a significant performance advantage.
Notably, on datasets like FLOW and DTD, which contain
more scenes, edges, and textures, MLIP’s superiority is par-
ticularly evident. This aligns well with our expectations
when introducing frequency domain transformation.

Zero-shot image-text retrieval. We evaluate MLIP’s zero-
shot image-text retrieval performance in Table 4, indicating
that MLIP outperforms CLIP or CLIP-like methods. We
can find notable improvements in most recall@1 metrics,
which we attribute to the increased supervision and finer
alignment. Additionally, unlike classification, image-text
retrieval involves processing more complex and noisy image
information, such as scene details, an area where frequency
transforming excels, hence yielding better results.

4.3. Ablation Study

In this section, we investigate the effectiveness of every
design in MLIP. Unless specifically stated, all experiments
use the MLIP-ViT-B/16 model pre-trained for 25 epochs on
CC3M to evaluate its zero-shot classification on ImageNet
and zero-shot image-text retrieval on MS-COCO.

Data efficiency across multiple datasets of different
scales. To confirm MLIP’s data efficiency across varying
dataset scales, we test its performance on various pretraining
datasets and datasets with fewer image-text pairs. Table 3
shows MLIP’s data efficiency on different scales.

Table 3. Data efficiency experiments on datasets of different scales.

Method Pretraing Dataset Baesd Encoder ZS TOP-1

CLIP♡ CC3M ViT-B / 16 16.3
MLIP CC3M ViT-B / 16 18.4(+2.1)
MLIP CC3M(95%) ViT-B / 16 17.9(+1.6)

CLIP♡ CC12M ViT-B / 16 30.4
MLIP CC12M ViT-B / 16 33.2(+2.8)
MLIP CC12M(90%) ViT-B / 16 31.1(+0.7)

CLIP♡ YFCC15M ViT-B / 16 37.6
MLIP YFCC15M ViT-B / 16 42.9(+5.3)
MLIP YFCC15M(90%) ViT-B / 16 39.4(+1.8)
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Table 4. Zero-shot image-text retrieval results on Flickr30k and MS-COCO.

Image-to-text retrieval Text-to-image retrieval
Flickr30k MS-COCO Flickr30k MS-COCO

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-B / 32 34.9 63.9 75.9 20.8 43.9 55.7 23.4 47.2 58.9 13.0 31.7 42.7
SLIP-ViT-B / 32 47.8 76.5 85.9 27.7 52.6 63.9 32.3 58.7 58.8 18.2 39.2 51.0
DeCLIP-ViT-B / 32 51.4 80.2 88.9 28.3 53.2 64.5 34.3 60.3 70.7 18.4 39.6 51.4
UniCLIP-ViT-B / 32 52.3 81.6 89.0 32.0 57.7 69.2 34.8 62.0 72.0 20.2 43.2 54.4
MLIP-ViT-B / 32 53.1 84.0 93.8 32.6 59.1 71.3 35.2 62.9 74.7 20.4 43.7 56.2

MLIP-ViT-B / 16 56.5 88.7 98.5 34.7 64.4 75.8 37.3 64.8 78.1 24.5 47.7 62.1

Influence of label softening. We employ Nearest-Neighbor
Supervision (NNS) (Li et al., 2021) and the label smooth-
ing method (LS) from PyramidCLIP (Gao et al., 2022) to
explore how label softening enhances MLIP’s performance.
As shown in Table 5, we can see that label softening signifi-
cantly boosts MLIP’s performance. Therefore, without the
label softening trick, MLIP outperforms DeCLIP.

Table 5. The influence of label softening on MLIP’s performance.

Method ZS TOP-1 LP TOP-1

DeCLIP-ViT-B/32 43.2 70.4
MLIP-ViT-B/32 41.1 70.2
MLIP-ViT-B/32 + NNS 43.1 71.6
MLIP-ViT-B/32 + LS 43.6 71.7

DeCLIP-ViT-B/16 47.9 77.8
MLIP-ViT-B/16 46.3 77.1
MLIP-ViT-B/16 + NNS 48.2 78.5
MLIP-ViT-B/16 + LS 48.6 78.9

Effectiveness of frequency transforming and token-level
alignment. To verify the effectiveness of these methods, we
conduct an ablation experiment as shown in Table 6. We
can observe that both frequency transforming and token-
level alignment markedly enhance the performance. This
indicates that expanding the supervision of learning repre-
sentation through these two methods is quite effective.

Table 6. Ablation study on the effects of frequency transforming
(Fre-T) and token-level alignment (Tok-A). 'I2T' and 'T2I' mean
image-to-text and text-to-image, respectively. 1Only use the one-
to-many matching strategy. 2Use both one-to-many and one-to-one
matching strategies, i.e., our token-level alignment method.

Method I2T R@1 T2I R@1 ZS TOP-1

CLIP (ViT-B / 16) 10.4 6.6 16.3
+ Fre-T 12.7 8.0 17.6
+ Tok-A1 13.1 8.2 17.9
+ Fre-T + Tok-A2 14.8 9.5 18.7

Influence of matching strategies. We design a set of exper-
iments to analyze the influence of using different matching
strategies on performance. As shown in Table 7, the MLIP’s
matching strategy realizes the best result, underscoring its
importance in token-level alignment.

Table 7. Ablation study on the influence of matching strategies.
'o-to-o' and 'o-to-m' are one-to-one and one-to-many, respectively.

Fre-Text Spa-Text I2T R@1 T2I R@1 ZS TOP-1

o-to-o o-to-m 13.0 8.2 17.8
o-to-o o-to-o 13.4 8.5 18.0
o-to-m o-to-m 14.1 8.9 18.3
o-to-m o-to-o 14.6 9.3 18.4

Effectiveness of Guide. Table 8 shows the results with and
without Guide, demonstrating that Guide is essential for bet-
ter performance. Furthermore, combining data from Table 6,
it’s evident that the performance loss due to token merging
operations can be largely compensated for by Guide. Ad-
ditionally, even when compared to other baselines without
the pre-trained Guide, MLIP remains competitive. This in-
dicates that MLIP’s performance gains are also attributed to
other well-designed components beyond Guide.

Table 8. Ablation study on the effectiveness of Guide.

Method I2T R@1 T2I R@1 ZS TOP-1

CLIP 14.1 8.9 18.0
SLIP 14.1 8.9 18.0
DeCLIP w/o NNS 14.1 8.9 18.0
MLIP w/o Guide 14.1 8.9 18.0
MLIP 14.6 9.3 18.4

Comparison of computational efficiency. Since MLIP
also reduces the computational cost by token merging, we
compare its balance of performance and computation with
other CLIP-like models, as shown in Table 9. We measure
the amount of computation required for each model by met-
ric GFLOPs. In the experiment, despite MLIP obtaining
sub-optimal performance, it achieves the best computation-
performance balance, suggesting MLIP’s efficiency is more
comprehensive.

Table 9. Comparison on computational efficiency. Metric ZS TOP-
1/GFLOPs is used to represent computation-performance balance.

Method ZS TOP-1 GFLOPs ZS TOP-1/GFLOPs

CLIP♡ 16.3 19.78 0.82
SLIP♡ 16.9 22.61 0.74
DeCLIP♡ 18.7 26.29 0.71
MLIP 18.4 19.54 0.94

8



MLIP: Efficient Multi-Perspective Language-Image Pretraining with Exhaustive Data Utilization

Figure 5. Text-to-image top 10 retrieval results on MS-COCO.

Comparison of training wall-clock time. Reporting the
wall-clock time for training more effectively demonstrates
computational efficiency. Table 10 reports the wall-clock
times for training MLIP, CLIP, DeCLIP, SLIP. Although
the overall training process of MLIP is about 17 minutes
slower than that of the fastest CLIP in terms of Wall-clock
time, the GPU Hours are still fewer. Given the better per-
formance of MLIP, we compare its balance of performance
and training time with other CLIP-like models, it is evident
that MLIP achieves the best balance between training time
and performance.

Table 10. Comparison on training wall-clock time. Metric ZS TOP-
1/WCT (wall-clock time) represents training-performance balance.

Method ZS TOP-1 GPU Hours ZS TOP-1/WCT

CLIP 16.3 361 1.44
SLIP 16.9 488 1.11
DeCLIP 18.7 545 1.09
MLIP 370 1.59 0.94

4.4. Visualization

Text-to-image retrieval. Figure 5 shows 2 sets of top 10
retrieval results on MS-COCO. In the first set, it can be seen
that MLIP has a more global and distinct ability to recognize
textures. And in another, MLIP also shows better retrieval.

Lego-Filter. Figure 6 visualizes Lego-Filter of MLIP-ViT-
B/32, showing that Lego-Filter effectively captures both
high and low-frequency variations.

Embedding space. We utilize t-SNE visualization to com-
pare the embedding spaces of CLIP and MLIP on the
CIFAR-10 dataset. From Figure 7, it’s evident that MLIP, on
the same pretrain dataset, exhibits better separation between

samples of different classes, indicating that MLIP indeed
improves data utilization and learns better representations.

Figure 6. Visualization of Lego-Filter.

Figure 7. Visualization of embedding space.

5. Conclusion
In this article, we propose MLIP, a framework to develop
an efficient CLIP via exhaustive data utilization in multi-
perspective. MLIP introduces frequency transforming and
alignments at both the token level and instance level to ex-
pand the supervision of learning representation in the image
encoder. Additionally, MLIP also incorporates a modified
token merging method, reducing the token number in the
image encoder and accelerating the overall training. Exten-
sive experiments validate the effectiveness of our design,
and we hope our work can inspire its community. We also
discuss the limitation of MLIP in Appendix E.
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A. Additional Fourier Theory Analysis
A.1. Discrete Fourier Transform

The Discrete Fourier Transform (DFT) can be understood through various approaches. In this context, we explore how DFT
is developed from the conventional Fourier Transform (FT), which is primarily applicable to continuous signals. The FT
transforms a continuous-time signal into its frequency domain representation, acting as a broader application of the Fourier
series concept. In essence, the Fourier transform for a signal f(t) is defined as follows:

F 1D(iω) =

∫ ∞

−∞
f(t)e−iωtdt = F 1D[f(t)]. (18)

The Inverse Fourier Transform (IFT) bears a resemblance in structure to the Fourier Transform:

f(t) =
1

2π

∫ ∞

−∞
F 1D(iω)eiωtdω. (19)

The equations for the FT and the IFT provide insight into the duality characteristic of the FT, which bridges the time
and frequency domains. This duality principle suggests that characteristics observed in the time domain find analogous
expressions in the frequency domain. Among the many attributes of the Fourier transform, several fundamental ones include
the transformation of a unit impulse function δ(t) (commonly referred to as the Dirac delta function), which is

F 1D(δ(t)) =

∫ ∞

−∞
δ(t)e−iωtdt =

∫ 0+

0−
δ(t)dt = 1, (20)

and the time-shifting property:

F 1D(δ(t− t0)) =

∫ ∞

−∞
f(t− t0)e

−iωtdt = e−iωt0

∫ ∞

−∞
f(t)e−iωtdt = e−iωt0F 1D(iω). (21)

In practical scenarios, continuous signals are seldom directly dealt with. Instead, a common approach involves sampling the
continuous signal to generate a sequence of discrete signals. This sampling process is typically carried out through a series
of unit impulse functions.

fs(t) = f(t)

∞∑
n=−∞

δ(t− nTs) =

∞∑
n=−∞

f(nTs)δ(t− nTs), (22)

When we take the Fourier Transform (FT) of the sampled signal fs(t) with a sampling interval T and then apply Equation
(A.3) and Equation (A.4), we obtain

F 1D
s (iω) =

∞∑
n=−∞

f(nTs)e
−inωTs . (23)

In the provided equation, it is evident that F 1D
s (iω) exhibits periodic behavior with a fundamental period of 2π/Ts. In fact,

there is always a direct correspondence between discrete signals in one domain and periodic signals in the other domain.
Typically, we prefer to work with a normalized frequency, denoted as ω ← ωTs, which results in F 1D

s (iω) having an exact
period of 2π. We can also represent f(n) as f(nTs), defining it as the sequence of discrete signals, and subsequently derive
the Discrete-Time Fourier Transform (DTFT):

F 1D(eiω) =

∞∑
n=−∞

f(n)e−inω. (24)
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When the discrete signal f(n) has a finite length N , which is a common scenario in digital signal processing, the DTFT can
be expressed as follows:

F 1D(eiω) =

N∑
n=1

f(n)e−inω. (25)

where the non-zero terms of the discrete signal f(n) are assumed to lie in the range [1, N ] without loss of generality, the
DTFT F 1D(eiω) is indeed a continuous function of ω. You can obtain a sequence F 1D[v] by sampling F 1D(eiω) at discrete
frequencies ωv = 2πv

N , resulting in:

F 1D(v) = F 1D(eiω)|ω=2πn/N =

N∑
n=1

f [n]e−i(2π/N )kn, (26)

Indeed, the extension from the 1D Discrete Fourier Transform (DFT) to the 2D DFT is straightforward. The 2D DFT can be
viewed as applying the 1D DFT independently to the two dimensions of the data. Specifically, the 2D DFT of a signal or
image f(m,n) is given by:

F 2D(u, v) =

M∑
m=1

N∑
n=1

f(m,n)e−i2π(um
M + vn

N ), (27)

Therefore, we can obtain Equation 5.

A.2. The equivalence between self-attention and frequency-domain computation

A.2.1. (SELF-ATTENTION)

Consider an input tensor X (for clearer expression, we choose X different from F ), where xn ∈ Rd signifies the n-th
element in the sequence, and N represents the sequence’s length.

Definition 1 Self-Attention The mechanism of self-attention, denoted as Self-Att : RN×d → RN×d, is articulated through
a kernel integration approach as found in (Kovachki et al., 2021; Guibas et al., 2021; Tsai et al., 2019):

Self-Att = softmax
(
(XWq)(XWk)

⊤
√
d

)
XWv (28)

Here, K is defined as the softmax-normalized score array of size N ×N : K = softmax
(

(XWq)(XWk)
⊤

√
d

)
. The operation

of self-attention is then equivalent to an asymmetric kernel κ : [N ]× [N ]→ Rd×d, with each entry κ[s, t] constructed as
K[s, t]⊗W⊤

v . Thus, we interpret self-attention as a sum over this kernel.

Self-Att(X)[s] =

N∑
t=1

κ[s, t] ·X[t], ∀s ∈ [N ] (29)

Expanding upon the notion of kernel summation, we incorporate the concept of continuous kernel integration. Within this
framework, the tensor X encapsulates a spatial function over the space X = (D,Rd), with D being a subset of R2.

Self-Att(X)[s] = K(X)(s) =

∫
D

κ(s, t)X(t) dt, ∀s ∈ D (30)

For any continuous element X within D, we define the kernel integral operator K : (Rd, D)→ (D,Rd) in the following
manner:
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Definition 2 Kernel Integral. The kernel integral operator, denoted as K, maps pairs of the domain D and the Euclidean
space Rd into themselves, symbolically represented as K : (D,Rd)→ (D,Rd). This operator is formally defined for all s
within the domain D as follows:

K(X)(s) =

∫
D

κ(s, t) ·X(t) dt, ∀s ∈ D (31)

where κ is a continuous function that takes two arguments from the domain D and returns a d× d real matrix. In the context
where Green’s kernel is applied, κ(s, t) simplifies to κ(s− t), which characterizes a specific instance of this kernel function.

Definition 3 Frequency-Domain Analysis

The convolution theorem, as stated by (Soliman & Srinath, 1990), posits that spatial domain convolution is functionally
analogous to frequency domain multiplication. Hence, for any continuous input X belonging to domain D, the kernel
integration as outlined by (Guibas et al., 2021) can be expressed as:

K(X)(s) = F−1(J (k) · F(X))(s), ∀s ∈ D (32)

Here, the symbol · denotes element-wise multiplication.

To summarize, leveraging computations in the frequency domain to restructure self-attention mechanisms offers a method
that is both effective and theoretically sound. This approach also provides a theoretical foundation for the practicality and
validity of our proposed method.

B. Additional Information of Dataset
B.1. Pre-training Dataset

YFCC15M. RFCC15M (Radford et al., 2021) is a curated subset of YFCC-100M dataset (Thomee et al., 2016). It is
specifically filtered to include only those images that have English titles or descriptions. The dataset comprises 14,829,396
images, each accompanied by natural language captions.

CC3M. The CC3M dataset (Sharma et al., 2018) is a large-scale collection of over 3 million images accompanied by
natural-language captions, providing a diverse resource for automatic image captioning tasks. The images and captions in
CC3M are sourced from the web, particularly from the Alt-text HTML attributes of images, offering a wide array of styles
and contexts.

CC12M. The CC12M dataset (Changpinyo et al., 2021a) is a collection of approximately 12 million image-text pairs,
significantly larger and more diverse than its predecessor, CC3M. Designed specifically for vision-and-language pre-training.

B.2. Downstream Task Dataset

B.2.1. IMAGE CLASSIFICATION

In this section, we detail the ten datasets utilized for the classification task in our experiments, each of which is concisely
summarized in Table 11.

ImageNet. The ImageNet dataset (Deng et al., 2009) consists of millions of labeled images across a wide variety of
categories. It is structured according to the WordNet hierarchy, with each node of the hierarchy represented by hundreds of
images.

Caltech-101. The Caltech 101 dataset (Fei-Fei et al., 2004) consists of approximately 9,000 images divided into 101
distinct object classes, along with an extra category for background/clutter. The dataset encompasses a diverse collection of
objects in each class, with image counts per category ranging roughly from 40 to 800. For oriented items like airplanes and
motorcycles, images have been flipped to align from left to right, and images of vertically structured objects like buildings
have been rotated to be off-axis aligned.

CIFAR-10. The CIFAR-10 (Krizhevsky et al., 2009) dataset is a collection of 60,000 color images, each 32x32 pixels in
size. These images are categorized into 10 different classes, with each class representing distinct objects.
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CIFAR-100. The CIFAR-100 (Krizhevsky et al., 2009) dataset is similar to the CIFAR-10 dataset but with a higher
granularity in classification. It contains 60,000 color images, each 32x32 pixels, divided into 100 classes. Each class has
600 images, providing a more challenging and diverse dataset for image recognition tasks.

Describable Texture. The Describable Textures dataset (Cimpoi et al., 2014) is a specialized collection of images focused
on textures. It consists of texture images that are categorized based on describable attributes, rather than the object or
material they represent. The dataset includes a wide range of textures, such as patterns found in nature, fabrics, or man-made
materials. Each texture is annotated with a set of human-describable attributes, like ”bubbly,” ”cracked,” or ”woven.”. Its
emphasis on describable attributes rather than just material types allows algorithms to better understand and interpret the
various characteristics that make up a texture.

Food-101. The Food-101 dataset (Bossard et al., 2014) is specifically designed for food recognition tasks. It contains
101,000 images, divided into 101 food categories, with each category containing 1,000 images.

Oxford -IIIT Pets. The Oxford -IIIT Pets (Parkhi et al., 2012) dataset contains images of pets, specifically focused on cats
and dogs. It includes 37 different breeds of cats and dogs, with roughly 200 images for each breed, totaling around 7,400
images. The images are varied in terms of scale, pose, and lighting.

Oxford Flowers. The Oxford Flowers dataset (Nilsback & Zisserman, 2008) consists of 8,189 images, each depicting one
of 102 flower species commonly found in the United Kingdom. Each class (flower species) in the dataset is represented by
between 40 and 258 images, ensuring a variety of examples for each type of flower. The images in the dataset vary in terms
of scale, pose, and lighting conditions, which makes the dataset challenging for algorithms to process. In addition, there are
categories that have large variations within the category and several very similar categories. The dataset is visualized using
isomap with shape and color features.

SUN397. The SUN397 dataset (Xiao et al., 2010) is a comprehensive collection of images specifically designed for scene
recognition and classification tasks in computer vision. This dataset is part of the Scene UNderstanding (SUN) database,
which is focused on providing a rich variety of scene categories. The SUN397 dataset contains approximately 108,000
images that span 397 different scene categories, offering a remarkably broad spectrum of environments.

FGVC Aircraft. The FGVC Aircraft dataset (Maji et al., 2013) is a specialized image dataset used in fine-grained visual
categorization (FGVC) tasks, particularly focusing on aircraft recognition and classification. The dataset contains 10,200
images of aircraft, with 100 images for each of 102 different aircraft model variants, most of which are airplanes.

Table 11. Overview of used datasets in our classification experiments.

Dataset Abbreviation Classes Train Size Test Size Evaluation Metric

ImageNet IN 1000 1,281,167 50,000 accuracy
Caltech-101 CAL 102 3,060 6,085 mean per class
CIFAR-10 C10 10 50,000 10,000 accuracy
CIFAR-100 C100 100 50,000 10,000 accuracy
Describable Textures DTD 47 3,760 1,880 accuracy
Food-101 F101 101 75,750 25,250 accuracy
Oxford-IIIT Pets PETS 37 3,680 3,669 mean per class
Oxford Flowers 102 FLOW 102 2,040 6,149 mean per class
SUN397 SUN 397 19,850 19,850 accuracy
FGVC Aircraft AIR 100 6,667 3,333 mean per class

B.2.2. IMAGE-TEXT RETRIEVAL

Flickr30K. The Flickr30K dataset (Hodosh et al., 2013) is mainly used for image captioning and visual question-answering
tasks. This dataset comprises approximately 30,000 images, and each image in the Flickr30k dataset is accompanied by five
different textual descriptions (captions).

MS-COCO. The MS-COCO dataset (Chen et al., 2015) contains over 200,000 images with a diverse set of everyday scenes
that include complex backgrounds and a variety of objects. It is richly annotated with details and multiple object labels.
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C. Additional Information of MLIP Architecher
We follow the same architecture design as CLIP. Table 12 and Table 13 showcase the based and specific structures of the
MLIP series.

Table 12. The architecture parameters for based models of MLIP.

Model Embedding Input Image Encoder Text Encoder
dimension resolution #layers width #heads #layers width #heads

MLIP-ViT-B 512 224× 224 12 768 12 12 512 8
MLIP-ViT-L 512 224× 224 24 1024 16 12 768 12

Table 13. The specific structural parameters of the image encoder in MLIP.

Method Frequency Stage Spatial Stage Acceleration Block Compression rate
MLIP-ViT-B / 32 [1, 2, 3, 4] [5, · · · , 12] [9, 11] [0.7, 0.7]
MLIP-ViT-B / 16 [1, 2, 3, 4] [5, · · · , 12] [9, 11] [0.5, 0.5]
MLIP-ViT-L / 14 [1, · · · , 8] [9, · · · , 24] [13, 16, 19, 22] [0.7, 0.7, 0.65, 0.65]

D. Additional Implementation Details
We used the AdamW optimizer (Loshchilov & Hutter, 2017), with a weight decay rate of 0.1 for pre-training. For the
first 2000 warm-up iterations, the learning rate increases linearly to the peak value, then decays to 0 following a cosine
strategy (Loshchilov & Hutter, 2016). We set the batch size to 4096 and conducted all experiments on 32 V100 GPUs.
Additionally, to save GPU memory, we use automatic mixed-precision (Micikevicius et al., 2017) for training. Unless
specifically stated, ablation studies were conducted with training 25 epochs on CC3M. Moreover, we also briefly tested
the performance of MLIP-L/32 constructed based on the ViT variant of ViT-L/32, but differently, we only trained it on
YFCC15M for 8 epochs.

E. Limitation
Structure limitation. Given that Transformers, as opposed to CNNs, can establish long-range dependencies and dominate
multimodal applications, this paper only investigates MLIP based on the ViT structure.

Experiment limitation. Due to limited computational resources, we are unable to extend MLIP to larger-scale models such
as ViT-Large for complete experimentation. However, similar works (Li et al., 2021; Lee et al., 2022; Gao et al., 2022; 2023;
Geng et al., 2023; Dong et al., 2023; Yang et al., 2023a), have not expanded to ViT-Large either.

Comparison limitation. Since most similar works are not open-source, and downstream tasks, pre-training datasets, and
training strategies vary widely, it is challenging for us to conduct a broader fair comparison.

Performance limitation. To be honest, MLIP approaches but not surpass state-of-the-art (SOTA) performance because we
prioritize a more comprehensive efficiency. Some experiments show that if focusing solely on enhancing performance, with
more refined optimization, it might be possible to achieve SOTA, which we will pursue in our future research.

Transfer limitation. Due to token merging, applying the image encoder of MLIP to other dense vision downstream tasks
such as segmentation poses some challenges. However, studies (Li et al., 2022; Zhang et al., 2022; 2023; Chen et al., 2022;
Wang et al., 2022) demonstrate that for such plain ViT models, modifications can still be made to perform dense downstream
tasks like detection and segmentation.
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