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Abstract

This paper delves into the realm of object detection models, pinpointing challenges posed by inadequate performance in

discerning small objects and the inherent imbalance between positive and negative samples. In response, we introduce the

Multi-Granularity Detector (MgD), a sophisticated fusion of Multi-Granularity Feature Extraction (MFE) and Sequential

Three-Way Selection (S3WS). Within the MFE framework, three multi-granularity customizable deformable convolutions

span three layers of feature maps, meticulously tailored for nuanced object analysis across diverse size spectrums. This

innovative approach notably enhances small object detection accuracy, cascading improvements to overall object detection

efficacy. Simultaneously, the S3WS mechanism is introduced to rectify the imbalance between positive and negative samples.

Within this framework, region proposals undergo scrutiny, with additional positive samples judiciously selected from positive

and boundary regions. This selection process relies on multiple evaluation functions and two dynamic thresholds, strategically

applied layer by layer. Exhaustive experiments on the COCO benchmark unequivocally establish MgD as a superior performer

at the system level. Notably, SwinV2-G, enhanced with MFE and SW3S (AP 63.1→64.0, AP/APs 1.97→1.42), surpasses

prevailing state-of-the-art results. MgD 1 (AP 53.9, AP/APs 1.35) significantly enhances the detection of small objects.

Additionally, MFE and S3WS can be seamlessly integrated into ConvNet detectors and transformer-based detectors, achieving

significant improvements.

Keywords: Computer Vision, Deep Learning, Object Detection, Granular Computing, Three-way Decisions

1. Introduction

Object detection endeavors to identify objects within an image, discerning their respective classes and spatial coordi-

nates. Convolutional neural networks (ConvNets [1]) have been instrumental in propelling advancements in object detection.

The adoption of progressively deeper neural networks and intricate convolutional structures has notably elevated detection
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Table 1: Detection results (%) on MS COCO test-dev set. AP denote the average precision of all categories, APs for small objects, APm for medium objects
and APl for large objects. AP/APs represents the gap between AP and APs. The closer AP/APs(proportion) is to one, the greater the contribution of
APs. Table 1 displays that APs severely restrict AP and representative models ignore this problem.

Method AP APs APm APl AP/APs

anchor-based two-stage
MLKP 28.6 10.8 33.4 45.1 2.65

Soft-NMS 40.8 23.0 43.4 53.2 1.77
SNIP 45.7 29.3 48.8 57.1 1.56

anchor-based one-stage
YOLOv2 21.6 5.0 22.4 35.5 4.32
DSSD513 33.2 13.0 35.4 51.1 2.55
RetinaNet 39.1 21.8 42.7 50.2 1.79

anchor-free keypoint-based
ExtremeNet 40.2 20.4 43.2 53.1 1.97
CenterNet 44.9 25.6 47.4 57.4 1.75
RepPoints 45.0 26.6 48.6 57.5 1.69

anchor-free center-based
GA-RPN 39.8 21.8 42.6 50.7 1.83

FSAF 42.9 26.6 46.2 52.7 1.61
FCOS 43.2 26.5 46.2 53.3 1.63

outcomes in recent times. Nevertheless, scholarly attention has predominantly gravitated towards refining neural network de-5

signs and adjusting convolutional structures, inadvertently leading to suboptimal performance for small objects in comparison

to their medium to large counterparts. This inherent imbalance in focus has, regrettably, impeded the overarching progress

within the realm of object detection.

Generally speaking, the performance of small objects is limited, impacting the overall performance growth. As shown in

Table 1, APs significantly lags behind AP , APm, and APl. Enhancing the performance of small objects, as discussed in [2]10

and [3], can lead to significant progress in general object detection.

The early explicit attempts to address the incongruity in detecting objects of different sizes include SSD [4] and FPN [5].

The use of a single-granularity vanilla convolution kernel (typically 3× 3 or 5× 5 [6, 7]) in the backbone restricts the feature

extraction capability for objects of varying sizes. However, the analysis of datasets and consideration for the characteristics of

different-size objects are often overlooked. There should be a greater focus on the analysis of datasets and the choice of kernel15

sizes for different-size objects in the backbone. To address this issue, we propose the Multi-granularity Detector (MgD),

featuring Multi-granularity Feature Extraction (MFE, or stomach) and Sequential three-way Selection (S3WS). The MgD is

built on a reconstruction of network architectures and a redesign of evaluation functions at the surgical level.

To ameliorate the incongruity in detecting objects of various sizes, the Multi-granularity Feature Extraction (MFE) mod-

ule incorporates customizable deformable convolution kernels tailored to different object sizes. This customization initiates20

with the adaptation of the kernel for small objects based on the backbone. Subsequently, scale factors k1 and k2 influence

the size of deformable convolution kernels for medium and large objects. The MFE module applies three customizable de-

formable convolutions to three feature maps extracted from the backbone. Each feature map, with its associated customizable

deformable convolutions, constitutes a stomach net, and three such stomach nets collectively form a "stomach" module. This

modular approach contributes to a more adaptive and effective feature extraction process for objects of diverse sizes.25

Moreover, addressing the challenge of an imbalance between positive and negative samples is crucial for enhancing de-

tector performance. Achieving a balanced ratio, such as a 1:3 positive-to-negative sample ratio, significantly contributes to
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detector efficacy[8]. In response to this challenge, we introduce the Sequential Three-way Selection (S3WS) module. Region

proposals generated by the neural network undergo scoring by multiple evaluation functions, and these scores are input into

the S3WS module. Region proposals x with an evaluation value IoUi(x) greater than αi are classified as positive samples,30

those less than βi as negative samples, and those falling between αi and βi as the boundary region[9, 10]. Additionally,

region proposals within the boundary region undergo further classification until the stopping criterion is met. Positive samples

are selected from both positive and boundary regions in a layered manner, based on multiple evaluation functions and two

dynamic thresholds. In contrast, the selection of negative samples occurs in only one layer. The dynamic determination of the

two thresholds, αi and βi, is facilitated by the evaluation function and the region proposals within the same batch size. This35

adaptive approach ensures the effective and context-aware selection of positive and negative samples throughout the network.

The primary contributions of this work can be summarized as follows:

• We assert that the detection results of small objects and the imbalance between positive and negative samples signifi-

cantly constrain the overall detector performance.

• The MFE module, comprising multi-granularity deformable convolution kernels, is proposed to enhance the incongruity40

in detecting objects of different sizes. Simultaneously, the S3WS module is introduced to ameliorate the imbalance

between positive and negative samples.

• To this end, the proposed MFE and S3WS modules can be seamlessly integrated into ConvNet detectors [11] and

transformer-based detectors [12], yielding substantial improvements. Notably, SwinV2-G with MFE and SW3S (AP

63.1→64.0, AP/APs 1.97→1.42) surpasses other state-of-the-art results, albeit with a slightly larger model size.45

• Our method, MgD (refer to Table11), outperforms all other state-of-the-art models on MS COCO[13] and enhances the

contribution of small objects.

2. Related Work

Our work builds upon previous efforts in several domains: the analysis of datasets, reevaluation of backbone architectures

and convolution kernels, and the redesigning of evaluation functions.50

2.1. CNN and variant

The R-CNN series and YOLO series stand as archetypal embodiments of the two-stage model [14] and one-stage model [15],

respectively, within the domain of object detection. The inaugural milestone in leveraging deep learning for object detection

was marked by R-CNN [16]. Subsequent advancements, such as Fast R-CNN [16] and Faster R-CNN [17] (illustrated in

Figure 1), laid the foundational framework for applying deep learning to object detection. YOLO introduces a more direct55

approach by regressing the bounding box’s location and determining the bounding box’s associated class, thereby reframing

the object detection problem as a regression problem. Following this paradigm, numerous YOLO models [7, 18, 19] have

been proposed, enhancing not only accuracy but also the computational speed of deep learning networks. However, these

models overlook the nuanced distinctions between large and small objects in the dataset.

3
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Figure 1: The main components of traditional object detection model. Most existing detection models mainly consist of backbone, neck and head. Note that
we only show Faster R-CNN as an example.

2.2. Backbone architectures60

The SSD [4] and FPN [5] are the first explicit attempts to solve the incongruity of different-size object detection results.

These solutions did improve object detection results, however, they still ignored the data characteristics and statistical infor-

mation of large and small objects. Afterwards, scholars prefered to improve the results of object detection by deepening or

widening the neural network backbone (eg. AlexNet, GoogLeNet, and ResNet) without detailed analysis of the differences

between large and small objects [20, 21].65

2.3. Convolution kernels

Simultaneously, advancements in convolutional kernels [22] have unfolded. Notably, deformable convolution [23] intro-

duces an offset variable to each sampled point’s position within the convolution kernel. This innovation facilitates random

sampling around the current position, liberating the convolution process from the constraints of the conventional regular grid

points [24]. Additionally, dilated convolution strategically emphasizes the semantic information of local pixel blocks. By70

allowing each pixel to aggregate information from the surrounding blocks, it profoundly influences the granularity of segmen-

tation outcomes [25].

2.4. Small object detection

Small object detection is a prominent focus in research, with efforts to improve performance. Traditional methods involve

using high-resolution images or feature maps, but they come with substantial computational costs. Recent advancements aim75

to balance performance and efficiency. QueryDet, proposed by Yang et al. in [26], introduces a novel query mechanism to

speed up object detectors based on feature pyramids. The process involves predicting approximate small object locations on

low-resolution features and refining results using high-resolution features guided by coarse positions.

Gong Cheng’s work in [27] conducts a thorough review of small object detection, catalyzing the development of Small

Object Detection (SOD). Two datasets, SODA-D and SODA-A, focusing on driving and aerial scenarios, respectively, are80

introduced to further progress in this area.

Li et al.’s contribution in [28] presents a parallel multi-branch architecture with shared transformation parameters but

different receptive fields. They use a scale-aware training scheme, sampling object instances with appropriate scales for

training, to refine each branch’s specialization. These influential works provide valuable inspiration for overcoming challenges

in small object detection.85
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2.5. Imbalance between positive and negative samples

The escalating issue of imbalanced positive and negative samples, exacerbated by deeper neural networks and intricate

convolutional structures [29], prompts the exploration of solutions from both data and algorithmic standpoints in machine

learning. Techniques such as data augmentation, Online Hard Example Mining (OHEM), and Gradient Harmonizing Mech-

anism (GHM) have been employed. OHEM, as outlined in [30], identifies challenging examples based on input sample loss,90

emphasizing their impact on classification and detection during training with stochastic gradient descent.

Focal Loss [31] addresses sample imbalance by adapting classic cross-entropy loss. However, it relies on two intricate

hyperparameters that demand substantial tuning and remains static, lacking adaptability to changing data distributions during

training. To mitigate this, Li and Liu introduce GHM [32], a novel mechanism that harmonizes gradients to alleviate dishar-

monies. GHM’s philosophy seamlessly integrates into both classification loss functions like cross-entropy (CE) and regression95

loss functions like smooth-L1 (SL1), offering a unique approach compared to Focal Loss, which focuses on confidence to at-

tenuate losses. GHM, instead, mitigates losses based on sample size with a specified confidence level.

In [33], Oksuz and Baris conduct a comprehensive review of imbalance issues in object detection. To present a holistic

perspective, they introduce a taxonomy outlining the problems and corresponding solutions to address them. Their approach

is marked by a commitment to providing a thorough and detailed understanding of the problem landscape. To accomplish100

this, the authors introduce a comprehensive taxonomy that systematically categorizes the various challenges stemming from

imbalance issues in object detection.

3. Methodology

The innovation of MgD are MFE and S3WS models: (1) the cores of MFE are multi-granularity deformable convolution

layers to remedy poor result of small objects; (2) S3WS ameliorates the imbalance of positive and negative samples by105

selecting positive and negative samples in unequivalent way.

3.1. Analysis of the original dataset

Table 1 shows that the general performance of object detection is twice or three times more than that of small objects. In

other words, the detection result of small objects limits the general performance. This is because in object detection, equal

attention was paid to large, medium, and small objects, respectively, which means that researchers overlooked the analysis of110

data characteristics for different-size objects in the same dataset.

For the MS COCO 2017, Table 2 exhibits that the Γ# of small, medium and large objects is almost the same. However,

there are huge gaps between small, medium and large objects in Θ#, Λ#, and Φ#, which also leads to more focus on large

objects. Previous methods prefer to randomly copy and paste small objects in the images to increase the occurrence of small

objects. However, the improvement by this strategy is quite limited.115

3.2. Multi-granularity deformable convolution layers

In this section, we design a Multi-granularity Feature Extraction module (MFE, or called stomach, extracting richer details,

just like the stomach of an animal extracting rich nutrients from food.) by analyzing the origin dataset in detail. The multi-

granularity deformable convolution layers consist of three feature maps released from backbone and the three customizable

deformable convolution kernels. Each customizable deformable convolution kernel has its own modulation mechanism which120
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Table 2: Statistical information on labeled objects on MS COCO. Γ# is the ratio of the number of # objects to the number of all objects, namely, Γ# =
the number of # objects

the number of all objects , where # = small, medium or large. Θ# is the ratio of the total area of # objects to the total area of all objects, namely, Θ# =
the total area of # objects
the total area of all objects , where # = small, medium or large. Λ# is the ratio of the number of images containing # objects to the total number of images, namely,

Λ# = the number of images containing # objects
the total number of images , where # = small, medium or large. Φ# is the average area of # objects (number of pixels), where # = small, medium

or large.

Size Γ# Θ# Λ# Φ#

large 33.97% 93.44% 91.22% 8995.63
medium 34.90% 5.99% 64.72% 3201.15

small 31.13% 0.57% 43.54% 714.23

is realized by a weighted convolution. Meanwhile, the RoI pooling layer changes accordingly due to modulation mechanism.

The deformable convolution is expressed as follows:

y(p) =

K∑
k=1

wk · x (p+ pk +∆pk) ·∆mk, (1)

where ∆pk and ∆mk are the learnable offset and modulation scalar for the k th location, respectively. y(p) represents the

output feature y in the position p. The modulation scalar ∆mk lies in the range [0, 1]. For detailed settings, please refer

to [34].125

Considering the diverse aspect ratios of objects, we use the average area to define the ratio of kernel sizes (k1 and k2). The

following formulas are used to determine the value of k1 and k2 :

KSsmall

KSmedium
=

√
Aasmall

Aamedium
=

1

k1
(2)

KSmedium

KSlarge
=

√
Aamedium

Aalarge
=

1

k2
(3)

where KSsmall means the kernel size of small objects in single dimension, and Aasmall is the average area of small objects. One

has the same explanation for KSmedium, Aamedium, KSlarge and Aalarge. With the information show in Table 2, we calculate

that k1 ≈ 2.11, k2 ≈ 1.45.130

Figure 2 exhibits that in one stomach net, three customizable deformable convolution kernels are utilized to convolute

each feature map obtained from the last three convolution layers in backbone. The size of the deformable convolution kernel

is the key to extract the feature of small objects, which also depends on the specifics of the previous backbone. Generally, the

size of the deformable convolution kernel for small objects cannot be larger than that of the convolution kernel in the last layer

of backbone. In this section, we perform the following settings: KSsmall = 3, KSmedium = 5, KSlarge = 7.135

Three stomach nets form a new module stomach. This new module works like the human stomach, extracting the feature

map from the upstream, and provides neck with more accurate and detailed data according to the size of different objects in

Figure 3.

Deformation convolution is relative to the concept of standard convolution. In the standard convolution operation, the area

of action of the convolution kernel is always a rectangular area with the size of the standard convolution kernel around the140

center point.

6
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Figure 2: Stomach net. Here, we adopt ResNet101 as an example. In con5_x layer of ResNet101, every feature map after kernel 3 × 3 (blue ones in three
blocks) are utilized with multi-granularity kernels (kernel 1, kernel 2, and kernel 3).

Figure 3: Stomach.

These deformable convolutions are fixed in deformable detr. Our deformable convolutions are based on the statistical

characteristics of large, small and medium objects in the dataset, which are customized and varies according to dataset.

Deformable detr innovations focus on combinations of standard deformable convolution and transformer. One of our

innovations is that we propose that the convolution in the backbone should not be static, but should be customized according145

to the statistical information of dataset.

3.3. Sequential three-way selection for region proposals

The prevailing detectors grapple with a pronounced imbalance between positive and negative samples. In this section, we

introduce the Sequential Three-Way Selection (S3WS) module, amalgamating the concept of sequential three-way decision

with a selection module, to rectify the imbalance inherent in positive and negative samples. The sequential three-way decision150

involves a sequence of three-way decisions. The fundamental concept of a three-way decision revolves around partitioning a

set of objects into positive, negative, and boundary regions, guided by evaluation functions and decision parameters α and β.

Objects in the positive and negative regions are subjected to definitive decisionsacceptance and rejection, respectively. Objects

residing in the boundary region undergo an additional iteration of the three-way decision process [9, 10].

Let U be a set of region proposals and I a set of different evaluation functions, i.e., I = {IoU1, IoU2, IoU3, ...}, where155
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,n nIoU 
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POS
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Figure 4: Sequential three-way selection module. POS means positive sample set and NEG means negative sample set. POS = POS (U1) ∪ · · · ∪
POS (Un) and NEG = NEG (U1).

IoUi = tIoU 2, GIoU,CIoU,DIoU, or CDIoU . A S3WS module is shown in Figure 4. At Level-i, we choose a certain IoU

function as the evaluation function. The decision parameters αi and βi are dynamically determined by the following formulas:

αi =
1

m

m∑
j=1

IoUi(x)

βi = αi −

√∑m
j=1 (IoUi(x)− αi)

2

m

i = 1, 2, ...., n− 1

(4)

where i means ith level, while α and β mean positive threshold and negative threshold. And x means region proposals in a

set (eg. U ). m means the number of region proposals in a set.

At the initial level, namely, Level-1, the starting universe U1 is just the whole universal set U . U1 is divided into three160

regions on the basis of the decision function IoU1 and the pair of thresholds (α1, β1):

POS (U1) = {x ∈ U1 | IoU1(x) ≥ α1}

BND(U1) = {x ∈ U1 | β1 < IoU1(x) < α1}

NEG(U1) = {x ∈ U1 | IoU1(x) ≤ β1}

(5)

The boundary region BND(U1) is then regarded as the universe U2 based on which the next stage of three-way selection

proceeds. The universe U2 is then divided into the following three regions:

POS (U2) = {x ∈ U2 | IoU2(x) ≥ α2}

BND(U2) = {x ∈ U2 | β2 < IoU2(x) < α2}

NEG(U2) = {x ∈ U2 | IoU2(x) ≤ β2}

(6)

where IoU2 is a new evaluation function and (α2, β2) is the pair of decision parameters of Level-2.

The boundary region BND(U2) is then regarded as the universe U3. The same procedure goes on for universes U3, U4,165

· · · until Un−1. For the universe Un which is BND(Un−1), a two-way decision strategy is adopted based on IoUn and the

threshold γn :

2tIoU means traditional intersection over union function, namely, tIoU = A∩B
A∪B

. In the experiments, tIoU is expressed as IoU.

8
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POS (Un−1) = {x ∈ Un−1 | IoUn(x) ≥ γn}

NEG(Un−1) = {x ∈ Un−1 | IoUn(x) < γn}
(7)

where γn= 0.5, 0.75, or 0.95 and 0.5 is the most common option. Naturally, the classification loss uses the original function.

Due to our serialized employ of multiple IoUs for regressing, the regression loss function will be expressed as:

Lreg = LIoU1 + LIoU2 + · · ·+ LIoUn . (8)

4. Experiments170

In this section, we commence by delineating the datasets and hardware specifications underpinning our experimentation.

Subsequently, we expound upon the nuanced implementation details of the experiment, incorporating comprehensive ablation

studies on MFE and S3WS modules. Finally, we embark on a discerning comparative analysis, positioning our method against

contemporary state-of-the-art approaches.

Settings. The experimental paradigm unfolds within the realms of MS COCO 2017 and PASCAL VOC 2012 datasets,175

leveraging the computational prowess of 2 GeForce RTX 3090 and 2 Tesla V100 PCIe 32GB. All model implementations

within the PyTorch or TensorFlow frameworks adhere to canonical configurations, devoid of any idiosyncratic embellishments.

Four preeminent object detection frameworksATSS[35], Faster RCNN[17], Swin Transformer[36, 37], and DETRs[38]serve

as benchmarks for ablation studies and comparative evaluations.

Dataset. The experimental purview extends over the COCO 2017 detection datasets, encompassing 118k training images,180

5k validation images, and 20K test-dev images. The validation set facilitates meticulous ablation studies, while the test-dev

set provides the canvas for a comprehensive system-level comparison. Each image is meticulously annotated with bounding

boxes and panoptic segmentation, featuring an average of 7 instances during training, exhibiting a spectrum from diminutive

to expansive dimensions.

PASCAL VOC 2012 furnishes a repository of 17,125 images of varied dimensions, spanning four categories: people,185

animals, vehicles, and indoor furniture, along with subcategories, culminating in a total of 20 distinct image categories. The

training dataset comprises annotated images, each equipped with bounding box annotations and object class labels corre-

sponding to one of the twenty classes. Instances of multiple objects from diverse classes coexisting within a single image

underscore the dataset’s complexity. The dataset is judiciously partitioned, with a 50% allocation for training/validation and

an equivalent 50% for testing, ensuring parity in the distribution of images and objects across sets.190

Training. The training regimen for the MgD model integrates both Adamw and SGD optimizers, transitioning from

Adamw to SGD in the ultimate stages of training. The backbone features EfficientNetD3/D5/D7, and the learning rate for the

backbone is meticulously set at 2−5. The training adheres to the established DETR standards, incorporating the ImageNet-

pretrained model from TORCHVISION for the backbone, with batchnorm layers held constant. Transformer parameters

undergo initialization via the Xavier scheme, accompanied by a weight decay set at 10−4. The configurations of ATSS and195

Faster RCNN align with the specifications detailed in [35]. During training, the infusion of horizontal flipping and scale

jittering [0.1, 2.0] introduces stochasticity, randomly resizing images within the range of 0.1x to 2.0x of the original size

before cropping. The evaluation phase is marked by the application of soft-NMS.

9
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The evaluation of MgD on COCO 2017 detection datasets, featuring 118K training images, unfolds under the aegis of

an SGD optimizer characterized by momentum 0.9 and weight decay 4−5. The learning rate trajectory is characterized by a200

linear ascent from 0 to 0.16 in the inaugural training epoch, subsequently subject to an annealing process via the cosine decay

rule. Synchronized batch norm is strategically introduced post each convolutional operation, featuring a batch norm decay of

0.99 and an epsilon of 1−3.

4.1. Ablation studies on MFE

Naturally, the released feature maps in different positions of backbone have different effects on final performance. Figure 5205

displays the different positions of stomachs. From Tables 3 and 4 , one can conclude that postorder stomach module improves

detection results most effectively. Moreover, along with the movement of stomach to the front of backbone, the detection

results decrease rapidly and reach the lowest for homorder stomach.

Figure 5: Stomaches in different positions. Postorder stomach: stomach in the last three layers of backbone; inorder stomach: in the middle three layers;
preorder stomach: in the first three layers; homorder stomach: stomach nets are homogeneously distributed in backbone.

In previous experiments, we regarded the convolution kernel adapted to small objects as the Basic Convolution Kernel

(BCK), and determined the convolution kernel size of medium-sized and large objects based on BCK. After a number of210

comparative experiments, we repeatedly adjusted BCK , and found the following reasons to explain this decline:

• According to Formula 2 and 3, we determine the convolution kernel size of medium and large objects based on BCK,

which slightly restricts the extraction of large object features in backbone. This influence will be amplified with the

continuous forward movement of stomach module until it moves to the front end of backbone.

• After images are processed by stomach, the feature maps can meet the input requirements of neck only through matching215

operations such as up sampling, down sampling, or deconvolution. This matching operation will gradually split the

semantic information of objects according to the aggravation of size difference between the upstream and downstream

feature maps.

It is clear that MFE shows significant differences for large, medium, and small objects (see Tables 3 and 4). Compared

to AP , APm, and APl, APs gets the maximum gain with Postorder stomach on MS COCO validation or test-dev set. At220

ATSS, APs gain (+5.4) is 3.8 times that of AP gain (FCOS : 3.1 times, Faster RCNN: 4.4 times, and MgD: 2.1 times). The

changes in APm and APl are moderate and understandable (ATSS: APm +2.4, APl +0.1; FCOS: APm +2.7, APl +0.0 ;

Faster RCNN: APm +2.7, APl -0.1; MgD: APm +1.1, APl +0.7), compared to APs. On PASCAL VOC validation or test

set, this improvement of MFE is more pronounced.

10
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Table 3: Detection results (%) with APs, APm, APl on MS COCO validation or test-dev set. All modules are on trainval35k. ATSS backbone: ResNet-101;
FCOS backbone: ResNeXt-64x4d-101; MgD backbone: EfficientNet-2. Origin part is on test-dev set and the other parts are on validation set. The numbers
with + in parentheses indicate the improvement of the results.

Method AP APs APm APl

ATSS

origin 43.6 26.1 47.0 53.6
post 45.0(+1.40) 31.5(+5.4) 49.4 53.7
in 40.5 25.5 46.1 50.6
pre 35.7 18.9 40.5 45.9
home 29.9 12.4 30.4 42.1

FCOS

origin 43.2 26.5 46.2 53.3
post 45.0(+1.8) 32.0(+5.5) 48.9 53.3
in 41.0 25.9 44.7 50.1
pre 38.4 20.4 38.9 48.1
home 30.3 17.6 31.6 41.1

Faster RCNN

origin 36.0 18.2 39.0 48.2
post 37.7(+1.7) 25.7(+7.5) 41.7 48.1
in 33.3 23.4 40.5 45.6
pre 27.0 12.5 28.4 40.0
home 21.0 8.9 22.9 36.7

MgD

origin 40.4 25.7 43.7 50.1
post 42.1(+1.9) 29.7(+4.0) 44.6 50.8
in 40.0 28.4 43.4 47.5
pre 32.1 15.0 33.0 40.1
home 28.0 12.0 29.1 35.4

MFE (with backbone) proposes more feature information of small objects, compared to the original backbone, which225

provides more detailed information for subsequent detection heads. The MFE module significantly improves the performance

of APs without harming AP , APm, and APl.

4.2. Ablation studies on diffusion

For a data acquisition point (or a grid) of a deformable convolution, we call the shifting of the grid sampling locations an

offset. For the overall deformable convolution, the offset of all data acquisition points causes the acquisition area of the overall230

convolution to spread outward. We call this diffusion.

We designed a series of comparative experiments with different diffusion levels shown in Figure 6. Several classical

models run on postorder stomach with diffusion level-1, diffusion level-2, diffusion level-3, and free diffusion, respectively.

Free diffusion means that instead of specifying a hard offset distance for the convolution kernel, the deep learning network

automatically learns the offset distance.235

The detection results were recorded in Figure 7. As the diffusion level increases, the model performance does not increase

but decreases rapidly. The best results were obtained with free diffusion stomach modules, about 1∼2% higher than the

original performance.

In the experiment, we tried several density options. If we set 1 or 2 layers in stomach, the performance cannot be improved

significantly. When we set 3 layers in stomach„ the detection performance has been significantly improved. However, we have240

set more than 3 layers then the results are similar to the detection performance of 3 layers.

4.3. Ablation studies on S3WS module

Regarding to choose the evaluation functions in S3WS, we analyzed and classified the major evaluation functions at first.

We classify evaluation functions into three main categories:
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Table 4: Detection results (%) with APs, APm, APl on PASCAL VOC validation or test set. FCOS backbone: ResNeXt-64x4d-101; MgD backbone:
EfficientNet-2. Origin part is on test-dev set and the other parts are on validation set. The numbers with + in parentheses indicate the improvement of the
results.

Method AP APs APm APl

FCOS

origin 75.2 36.5 79.2 82.4
post 77.6(+2.4) 42.0(+5.5) 78.2 85.6
in 71.3 36.8 74.7 80.1
pre 65.3 32.5 68.2 70.1
home 56.3 25.9 61.5 61.9

Faster RCNN

origin 73.8 38.2 75.0 79.2
post 77.7(+3.9) 45.7(+7.5) 79.7 81.9
in 69.1 33.4 70.5 77.6
pre 62.6 32.5 68.4 72.0
home 58.7 29.5 59.2 63.7

MgD

origin 75.4 35.4 76.9 80.1
post 78.4(+3.0) 38.5(+3.1) 75.6 81.7
in 70.0 34.9 72.0 77.5
pre 62.1 30.0 63.4 65.9
home 58.0 22.9 59.0 55.4

Convolution Kernel
Diffusion level-1
Diffusion level-2
Diffusion level-3

Figure 6: Deformable convolution kernel with different diffusion. The blue
grids represent the deformable convolution kernel. The blue translucent rect-
angular box symbolizes the convolution kernel diffusing outward by one pixel
unit; the green one symbolizes two pixel units; the red one symbolizes three
pixel units.
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Figure 7: Detection results (%) with different diffusion levels on MS
COCO validation set. Level-1 = diffusion level-1; Level-2 = diffusion
level-2; Level-3 = diffusion level-3; Free = free diffusion.
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Table 5: Detection results (%) with different S3WS modules on MS COCO validation set. All modules are on trainval35k. ATSS backbone: ResNet-101;
MgD backbone: EfficientNet-2. IoU-GIoU-CDIoU means that IoU is selected as the evaluation function for Level-1, GIoU for Level-2 and CDIoU for
Level-3. Bold fonts indicate the best performance. AP/APs is proportion.

S3WS combinations ATSS Faster RCNN MgD
AP AP/APs AP AP/APs AP AP/APs

original 43.6 1.67 36.0 1.98 40.4 1.57
IoU-GIoU 43.8 1.56 36.9 1.80 41.0 1.51
IoU-CDIoU 43.9 1.55 36.8 1.88 40.9 1.53
IoU-CIoU 43.8 1.55 36.7 1.85 40.8 1.53
IoU-GIoU-CDIoU 44.0 1.45 37.1 1.65 41.1 1.40
IoU-GIoU-CIoU 43.9 1.44 37.1 1.64 40.9 1.40
IoU-GIoU-DIoU 43.9 1.45 37.0 1.63 40.6 1.39
IoU-GIoU-CIoU-DIoU 43.5 1.42 36.2 1.60 40.4 1.34

Table 6: Detection results (%) with different S3WS modules on PASCAL VOC validation set. MgD backbone: EfficientNet-2. IoU-GIoU-CDIoU means
that IoU is selected as the evaluation function for Level-1, GIoU for Level-2 and CDIoU for Level-3. Bold fonts indicate the best performance. AP/APs is
proportion.

S3WS combinations Faster RCNN MgD
AP AP/APs AP AP/APs

original 73.8 2.18 80.4 1.76
IoU-GIoU 75.9 1.80 81.0 1.51
IoU-CDIoU 76.8 1.88 80.9 1.51
IoU-CIoU 76.7 1.85 81.1 1.52
IoU-GIoU-CDIoU 77.3 1.65 81.1 1.40
IoU-GIoU-CIoU 77.1 1.64 80.7 1.40
IoU-GIoU-DIoU 77.0 1.63 81.0 1.39
IoU-GIoU-CIoU-DIoU 72.0 1.60 79.3 1.33

• Type 1: focusing on the measure overlapping area (eg. IoU);245

• Type 2: focusing on the ratio of overlapping area to unoverlapping area (eg. GIoU);

• Type 3: focusing on a measure of difference, sometimes understood as centroid distance and aspect ratio (eg. CDIoU,

CIoU, DIoU).

Then, in each level of S3WS module, a certain type of evaluation function is applied. Along with the increase of the

level of S3WS, the performance of detectors are continuously improved (see in Table 5 and 6) until 3 levels. The experiments250

testified that the combination IoU-GIoU-CDIoU achieves the best result. The combinations obtain representative results are

exhibited in Table 5 and 6 for different combinations of evaluation functions. The three-level S3WS modules significantly

improve the results of detectors. When S3WS exceeds four levels, it not only brings no improvement in results, but also

leads to extremely slow convergence of loss functions, which will cause runtime more than four-month. The rate of positive

and negative samples decreasing gradually, when the numbers of level go up: ATSS 1:11 (original)→1:9 (2 levels)→1:7 (3255

levels)→1:6(4 levels); Faster RCNN 1:200→1:150→1:120→1:100; MgD 1:20→1:12→1:7→1:6.

Based on the above experiments, we conclude that the same type of evaluation functions form a pairwise antagonistic

relationship within the detection model. The detection models with S3WS modules more than three levels cannot reach the

minimum value of multiple evaluation functions. As a result, the feedback mechanism feeds large values to the backprogration,

which eventually leads to the model failing to converge.260
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4.4. Object Detection on VisDrone

Experimental Configuration. Ensuring a rigorous basis for comparison, we meticulously adhere to a standardized exper-

imental setup across diverse methodologies. This entails the adoption of consistent configurations, encompassing multi-scale

training, the utilization of the AdamW optimizer initialized with a learning rate of 0.00001, and the inclusion of a weight decay

set at 0.05 within the mmdetection framework. Furthermore, our models are initialized with the ImageNet-22K pre-trained265

model, providing a comprehensive foundation for system-level evaluations.

Dataset Details. The VisDrone dataset constitutes a rich repository comprising 400 video clips, totaling 265,228 frames

and 10,209 static images. Captured through an array of drone-mounted cameras, the dataset encapsulates diverse spatial

locales, environmental conditions, and objects classified into 10 distinct categories. Each frame undergoes meticulous manual

annotation, resulting in over 2.6 million precisely delineated bounding boxes or points of interest, characterizing entities270

ranging from pedestrians and cars to bicycles and tricycles.

Visdrone, distinguished as a professional-grade dataset expressly tailored for drone-centric applications, is particularly

noteworthy for its abundance of samples featuring small objects. Remarkably, in tackling the challenges posed by this intricate

dataset, MgD exhibits commendable performance without an unwarranted escalation in computational cost and time.

Table 7 compares our best results with those of previous state-of-the-art models in VisDrone-DET 2020 and 2021 Chal-275

lenge. MgD achieves 41.6AP, 65.5AP50, and 43.4AP75 on VisDrone, surpassing all previous best results in Table 7.

4.5. Comparison

Via the aforementioned ablation studies, we have ascertained the optimal configuration for MFE and S3WS. To corroborate

the efficacy of these modules, we conducted additional comparative experiments on prominent models. The outcomes are

delineated in Table 8. The incremental incorporation of MFE and S3WS consistently yields notable enhancements in the280

detectors’ performance.

From Table 10, we can see that our model MgD has significant advantages in detection performance, FPS, model size, and

testing time. MgD achieves similar detection performance with around 1/10 model size, 7/10 testing time, and 1.5× FPS.

Because various methods also use various non customized convolutional kernels and IoU loss functions. So MFE and SW3S

will not incur any additional computational costs or model size.285

Evaluation against Conventional ConvNets. The performance metrics of ATSS and Faster RCNN with/without the

integration of MFE and SW3S are presented in the left segment of Table 9. Results incorporating MFE and SW3S exhibit

a notable increase of +1.1/+2.0 AP and a decrease of -0.36/-0.55 AP/APs compared to their counterparts without these

modules. Interestingly, the model size and inference speed remain largely unaffected.

Evaluation against Transformer-Based Approaches. The right portion of Table 9 showcases the performance of Swin290

Transformer, Swin Transformer V2, DETR, and UP-DETR with/without MFE and SW3S. It is evident that transformer-based

methodologies encounter challenges related to suboptimal results for small objects and an imbalance between positive and

negative samples. The incorporation of MFE and SW3S yields substantial improvements, with results featuring +1.2/+1.3 AP

and -0.47/-0.49 AP/APs increases/decreases compared to configurations lacking these modules. Notably, SwinV2-G with

MFE and SW3S (AP 63.1→64.0, AP/APs 1.97→1.42) surpasses prevailing state-of-the-art outcomes.295

Evaluation against Prior State-of-the-Art Models. Introducing the novel MgD detector, equipped with MFE and S3WS

modules after the EfficientNet, reveals superior performance on the MS COCO dataset in Table 11. MgD not only outperforms
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Table 7: System-level comparison (%) of MgD on VisDrone-DET 2020[39] and 2021[40].
Method AP AP50 AP75

VisDrone-DET 2020[39]
DroneEye2020 (A.4) 34.57 58.21 35.74
TAUN (A.5) 34.54 59.42 34.97
CDNet (A.6) 34.19 57.52 35.13
CascadeAdapt (A.7) 34.16 58.42 34.5
HR-Cascade++ (A.9) 32.47 55.06 33.34
MSC-CenterNet (A.11) 31.13 54.13 31.41
CenterNet+ (A.12) 30.94 52.82 31.13
ASNet (A.13) 29.57 52.25 29.37
CN-FaDhSa (A.14) 28.52 49.5 28.86
HRNet (A.15) 27.39 49.9 26.71
DMNet (A.16) 27.33 48.44 27.31
HRD-Net (A.17) 26.93 45.45 27.77
PG-YOLO (A.18) 26.05 49.63 24.15
EFPN (A.19) 25.27 48.18 23.37
CRENet (A.20) 25.16 44.38 24.57
Cascade R-CNN++ (A.21) 24.66 43.53 24.71
HR-ATSS (A.22) 24.23 41.84 24.43
CFPN (A.23) 22.85 42.33 21.88
Center-ClusterNet (A.24) 22.72 41.45 22.13
HRC (A.26) 21.23 43.56 18.39
IterDet (A.27) 20.42 36.73 20.25
GabA-Cascade (A.29) 18.85 33.60 18.66

VisDrone-DET 2021 [40]
DBNet 39.4 65.4 41.0
SOLOer 39.4 63.9 40.8
Swin-T 39.4 63.9 40.8
TPH-YOLOv5 39.1 62.8 41.3
VistrongerDet 38.7 64.2 40.2
EfficientDet 38.5 63.2 39.5
DroneEye2020 34.5 58.2 35.7
Cascade R-CNN 16.0 31.9 15.0
DroneEye2020 34.57 58.21 35.74
DPNet-ensemble 37.3 62.0 39.1
MgD (EfficientNet-D3) 41.6 65.5 43.4

Table 8: Detection results (%) on MS COCO test-dev set or validation set. Bold fonts indicate the best performance. Swin Transformer backbone: Swin-
L(HTC++), multi-scale testing. UP-DETR[38] backbone: ResNet50. The numbers with + in parentheses indicate the improvement of the results. The
numbers with - in parenthesess indicate that the contribution of small object detection results is increasing. AP/APs is proportion.

Method MFE S3WS AP (%) AP/APs

ATSS
43.6 1.67

✓ 45.0 1.42
✓ ✓ 45.3(+1.7) 1.40(-0.27)

Faster RCNN
36.0 1.98

✓ 37.7 1.47
✓ ✓ 38.0(+2.0) 1.42(-0.56)

Swin-Transformer
58.7 1.89

✓ 59.4 1.60
✓ ✓ 59.6(+0.9) 1.54(-0.35)

UP-DETR
42.8 2.06

✓ 43.4 1.90
✓ ✓ 43.8(+1.0) 1.81(-0.25)

MgD
40.4 1.57

✓ 42.1 1.41
✓ ✓ 42.5(+2.1) 1.40(-0.17)
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Table 9: Detection results (%) on MS COCO validation set. In w. item, ✓means that with MFE and SW3S modules. Swin-Tran means Swin Transformer
and SwinV2-G (HTC++) with multi-scale testing. DETRs means DETR and UP-DETR with 300 epochs. Table 9 shows detector results from Detectron2
Model Zoo or MMDetection Model Zoo. AP/APs is proportion.

Method Backbone w. AP AP/APs Method Backbone w. AP AP/APs

ATSS

ResNeXt-
32x8d-101

45.1 1.66

Swin-
Tran

Swin-S
(Cascada

Mask)

51.8 1.82
✓ 46.2 1.42 ✓ 52.4 1.60

ResNet-
101-DCN

46.3 1.72 Swin-B
(HTC++)

56.4 1.97
✓ 47.4 1.43 ✓ 57.6 1.50

ResNeXt-
64x4d-101

-DCN

47.7 1.78 SwinV2-G
(HTC++)

63.1 1.97
✓ 48.8 1.42 ✓ 64.0 1.42

Faster
RCNN

VGG-16 36.0 1.98

DETRs

ResNet-50
(Supervision

CNN)

40.8 2.27
✓ 38.0 1.42 ✓ 41.9 1.89

ResNet-50 37.2 2.00 ResNet-50
(SwAV
CNN)

42.1 2.37
✓ 38.4 1.50 ✓ 43.4 2.00

ResNet-101 39.5 2.10 ResNet-50
(UP-DETR)

42.8 2.54
✓ 41.0 1.55 ✓ 43.7 2.11

Table 10: Detection results (%), FPS, model size, and testing time on MS COCO validation set.
Method AP FPS model size time/image

ATSS (ResNet-101) 43.6 9.0 196M 57ms
ATSS (ResNet-101) + MFE & SW3S 45.3 9.0 196M 57ms
FCOS (ResNeXt-64X4d-101) 43.2 – 345M 112ms
FCOS (ResNeXt-64X4d-101)+ MFE 45.0 – 345M 112ms
Faster RCNN (ResNet-50) 36.0 10.7 160M –
Faster RCNN (ResNet-50) + MFE & SW3S 38.0 10.7 160M –
MgD (EfficientNet-2) 40.4 13.4 32.9M 78ms
MgD (EfficientNet-2) + MFE & SW3S 42.5 13.4 32.9M 78ms
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Table 11: Detection results (%) on MS COCO test-dev set or validation set. Bold fonts indicate the best performance. The red font indicates the best AP/APs,
indicating that the contribution of small object detection has significantly improved the results of general object detection. AP/APs is proportion. FCOS +
SaAA means FCOS + Scale-aware AutoAug.

Method Data Backbone AP APs APm APl AP/APs

anchor-based two-stage
MLKP trainval35k ResNet-101 28.6 10.8 33.4 45.1 2.65

R-FCN[14] trainval ResNet-101 29.9 10.8 32.8 45.0 2.76
CoupleNet trainval ResNet-101 34.4 13.4 38.1 50.8 2.57
TDM[41] trainval ResNet-v2-TDM 36.8 16.2 39.8 52.1 2.27

DeepRegionlets trainval35k ResNet-101 39.3 21.7 43.7 50.9 1.84
FitnessNMS trainval DeNet-101 39.5 18.9 43.5 54.1 2.09
DetNet[42] trainval35k DetNet-59 40.3 23.6 42.6 50.0 1.71
soft-NMS trainval ResNet-101 40.8 23.0 43.4 53.2 1.77

SOD-MTGAN[43] trainval35k RerNet-101 41.4 24.7 44.2 52.6 1.68
anchor-based one-stage

YOLOv2[7] trainval35k DarkNet-19 21.6 5.0 22.4 35.5 4.32
SSD512[4] trainval35k VGG-16 28.8 10.9 31.8 43.5 2.64

STDN513[44] trainval DenseNet-169 31.8 14.4 36.1 43.4 2.21
DES512[45] trainval35k VGG-16 32.8 13.9 36.2 47.5 2.36

DSSD513[22] trainval35k ResNet-101 33.2 13.0 35.4 51.1 2.55
RFB512-E[46] trainval35k VGG-16 34.4 17.6 37.0 47.6 1.95
PFPNet-R512 trainval35k VGG-16 35.2 18.7 38.6 45.9 1.88
RefineDet512 trainval35k ResNet-101 36.4 16.6 39.9 51.4 2.19

RetinaNet trainval35k ResNet-101 39.1 21.8 42.7 50.2 1.79
anchor-free center-based

GA-RPN[47] trainval35k ResNet-50 39.8 21.8 42.6 50.7 1.83
FoveaBox[48] trainval35k ResNeXt-101 42.1 24.9 46.8 55.6 1.69

FSAF[49] trainval35k ResNeXt-64x4d-101 42.9 26.6 46.2 52.7 1.61
FCOS[50] trainval35k ResNeXt-64x4d-101 43.2 26.5 46.2 53.3 1.63

anchor-free keypoint-based
ExtremeNet[51] trainval35k Hourglass-104 40.2 20.4 43.2 53.1 1.97

CenterNet-HG[52] trainval35k Hourglass-104 42.1 24.1 45.5 52.8 1.75
Grid R-CNN trainval35k ResNeXt-101 43.2 25.1 46.5 55.2 1.72

CornerNet-Lite trainval35k Hourglass-54 43.2 24.4 44.6 57.3 1.77
CenterNet[53] trainval35k Hourglass-104 44.9 25.6 47.4 57.4 1.75
RepPoints[54] trainval35k ResNeXt-101-DCN 45.0 26.6 48.6 57.5 1.69

recent excellent models
ATSS[35] trainval35k ResNeXt-64x4d-DCN 47.7 29.7 50.8 59.4 1.61

Det-AdvProp(NTG) trainval35k EfficientDet 47.6 - - - -
UP-DETR[38] trainval35k R50 42.8 20.8 47.1 61.7 2.06
FCOS+SaAA - ResNeXt-101-DCN 49.6 35.7 52.5 62.4 1.39

our models
MgD trainval35k EfficientNet-D3 45.6 28.1 49.8 61.1 1.62
MgD trainval35k EfficientNet-D5 50.0 33.5 54.4 64.1 1.49
MgD trainval35k EfficientNet-D7 53.9 39.8 57.5 67.1 1.35

all other state-of-the-art detectors but also significantly enhances the detection of small objects, achieving (AP 53.9, AP/APs

1.35).

5. Conclusion300

In this scholarly endeavor, we discern the deleterious impact of inadequate outcomes in detecting small objects and the

inherent imbalance between positive and negative samples, both of which impede the efficacy of object detectors. To redress

these challenges, we proffer the introduction of Multigranular Detector (MgD), a composite framework comprising Multiscale

Feature Enhancement (MFE) and Statistically Supervised Sample Weighting Strategy (S3WS) modules. Notably, the seamless

integration of both MFE and S3WS modules into existing methodologies is facilitated. Experimental validations corroborate305

a progressive enhancement in the detectors’ performance upon the incorporation of MFE and S3WS, achieved at a reasonable

computational cost. Remarkably, MgD outshines all extant state-of-the-art detectors.

MgD substantiates its efficacy in ameliorating the detection of small objects, a facet underscored by the superior perfor-

mance of SwinV2-G equipped with MFE and SW3S, showcasing notable improvements in average precision (AP 63.1→64.0,

AP/APs 1.97→1.42) compared to its counterparts. MgD, exhibiting an impressive AP of 53.9 and AP/APs of 1.35, dis-310

tinctly excels in enhancing the discernibility of small objects.
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However, the innovative contributions of this study are not without discernible limitations. The MFE module, while profi-

cient in leveraging statistical information from independent datasets, exhibits a conspicuous lack of generalization capability.

Its inflexibility in adapting to diverse task scenarios becomes apparent during task transitions. The S3WS module, while con-

structed with basic Intersection over Union (IoU) functions, falls short in optimizing runtime efficiency and memory utilization315

for each IoU function. Moreover, the efficacy of SW3S is contingent upon the collective performance of several distinct IoUs.

Future endeavors will pivot towards addressing the practical deployment of the MFE module in object detection. Addition-

ally, a concerted focus will be directed towards the nuanced intricacies of multi-scale object detection, necessitating bespoke

strategies for diverse detection scenarios in computer vision. Despite the effective mitigation of sample imbalance achieved

by the S3WS module, efforts will be directed towards optimizing the computational cost and memory footprint of each IoU320

function within SW3S. The overarching goal is to propel our work into a foundational role, fostering an evaluative feedback

mechanism within computer vision subtasks characterized by expedited evaluations and streamlined model dimensions.
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hand gesture recognition based on deep learning yolov3 model, Applied Sciences 11 (9) (2021) 4164.

[19] Z. Huang, J. Wang, X. Fu, T. Yu, Y. Guo, R. Wang, Dc-spp-yolo: Dense connection and spatial pyramid pooling based

yolo for object detection, Information Sciences 522 (2020) 241–258.

[20] D. Yang, Y. Zhou, A. Zhang, X. Sun, D. Wu, W. Wang, Q. Ye, Multi-view correlation distillation for incremental object

detection, Pattern Recognition 131 (2022) 108863.365

[21] L. Wei, G. Zong, Ega-net: Edge feature enhancement and global information attention network for rgb-d salient object

detection, Information Sciences 626 (2023) 223–248.

[22] H. Zhang, X.-g. Hong, L. Zhu, Detecting small objects in thermal images using single-shot detector, Automatic Control

and Computer Sciences 55 (2) (2021) 202–211.

[23] X. Zhu, H. Hu, S. Lin, J. Dai, Deformable convnets v2: More deformable, better results, in: 2019 IEEE/CVF Conference370

on Computer Vision and Pattern Recognition (CVPR), 2019.

[24] Y. Ji, H. Zhang, F. Gao, H. Sun, H. Wei, N. Wang, B. Yang, Lgcnet: A local-to-global context-aware feature augmentation

network for salient object detection, Information Sciences 584 (2022) 399–416.

19

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4682848

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[25] H. Wang, Q. Wang, P. Li, W. Zuo, Multi-scale structural kernel representation for object detection, Pattern Recognition

110 (2021) 107593.375

[26] C. Yang, Z. Huang, N. Wang, Querydet: Cascaded sparse query for accelerating high-resolution small object detection,

in: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2022, pp. 13668–13677.

[27] G. Cheng, X. Yuan, X. Yao, K. Yan, Q. Zeng, X. Xie, J. Han, Towards large-scale small object detection: Survey and

benchmarks, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28] Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object detection, in: Proceedings of the IEEE/CVF380

international conference on computer vision, 2019, pp. 6054–6063.

[29] A. Luque, A. Carrasco, A. Martín, A. de Las Heras, The impact of class imbalance in classification performance metrics

based on the binary confusion matrix, Pattern Recognition 91 (2019) 216–231.

[30] A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in:

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 761–769.385

[31] T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: 2017 IEEE International

Conference on Computer Vision (ICCV), 2017, pp. 2999–3007.

[32] B. Li, Y. Liu, X. Wang, Gradient harmonized single-stage detector, in: Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 33, 2019, pp. 8577–8584.

[33] K. Oksuz, B. C. Cam, S. Kalkan, E. Akbas, Imbalance problems in object detection: A review, IEEE transactions on390

pattern analysis and machine intelligence 43 (10) (2020) 3388–3415.

[34] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the

IEEE international conference on computer vision(ICCV), 2017, pp. 764–773.

[35] S. Zhang, C. Chi, Y. Yao, Z. Lei, S. Z. Li, Bridging the gap between anchor-based and anchor-free detection via adaptive

training sample selection, in: CVPR, 2020.395

[36] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using

shifted windows, arXiv preprint arXiv:2103.14030.

[37] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong, et al., Swin transformer v2: Scaling

up capacity and resolution, arXiv preprint arXiv:2111.09883.

[38] Z. Dai, B. Cai, Y. Lin, J. Chen, Up-detr: Unsupervised pre-training for object detection with transformers, in: Proceed-400

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1601–1610.

[39] D. Du, L. Wen, P. Zhu, H. Fan, Z. Liu, Visdrone-det2020: The vision meets drone object detection in image challenge

results, IEEE.

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4682848

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[40] Y. Cao, Z. He, L. Wang, W. Wang, Y. Yuan, D. Zhang, J. Zhang, P. Zhu, L. Van Gool, J. Han, et al., Visdrone-det2021:

The vision meets drone object detection challenge results, in: Proceedings of the IEEE/CVF International Conference405

on Computer Vision, 2021, pp. 2847–2854.

[41] L. A. Ibrahim, S. Huang, M. Fernandez-Otero, M. Sherer, Y. Qiu, S. Vemuri, Q. Xu, R. Machold, G. Pouchelon, B. Rudy,

et al., Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells,

Neuron 109 (21) (2021) 3473–3485.

[42] K. Pang, D. Ai, H. Fang, J. Fan, H. Song, J. Yang, Stenosis-detnet: Sequence consistency-based stenosis detection for410

x-ray coronary angiography, Computerized Medical Imaging and Graphics 89 (2021) 101900.

[43] Y. Bai, Y. Zhang, M. Ding, B. Ghanem, Sod-mtgan: Small object detection via multi-task generative adversarial network,

in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 206–221.

[44] P. Zhou, B. Ni, C. Geng, J. Hu, Y. Xu, Scale-transferrable object detection, in: proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 528–537.415

[45] Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, A. L. Yuille, Single-shot object detection with enriched semantics, in:

Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5813–5821.

[46] S. Liu, D. Huang, et al., Receptive field block net for accurate and fast object detection, in: Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 385–400.

[47] J. Wang, K. Chen, S. Yang, C. C. Loy, D. Lin, Region proposal by guided anchoring, in: Proceedings of the IEEE/CVF420

Conference on Computer Vision and Pattern Recognition, 2019, pp. 2965–2974.

[48] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, J. Shi, Foveabox: Beyound anchor-based object detection, IEEE Transactions

on Image Processing 29 (2020) 7389–7398.

[49] C. Zhu, Y. He, M. Savvides, Feature selective anchor-free module for single-shot object detection, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 840–849.425

[50] Z. Tian, C. Shen, H. Chen, T. He, Fcos: Fully convolutional one-stage object detection, in: Proceedings of the IEEE/CVF

international conference on computer vision, 2019, pp. 9627–9636.

[51] X. Zhou, J. Zhuo, P. Krahenbuhl, Bottom-up object detection by grouping extreme and center points, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 850–859.

[52] K. Takeuchi, I. Yanokura, Y. Kakiuchi, K. Okada, M. Inaba, Automatic learning system for object function points from430

random shape generation and physical validation, in: 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), IEEE, pp. 2428–2435.

[53] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, Centernet: Keypoint triplets for object detection, in: Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6569–6578.

[54] Z. Yang, S. Liu, H. Hu, L. Wang, S. Lin, Reppoints: Point set representation for object detection, in: Proceedings of the435

IEEE/CVF International Conference on Computer Vision, 2019, pp. 9657–9666.

21

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4682848

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed


	Introduction
	Related Work
	CNN and variant
	Backbone architectures
	Convolution kernels
	Small object detection
	Imbalance between positive and negative samples

	Methodology
	Analysis of the original dataset
	Multi-granularity deformable convolution layers
	Sequential three-way selection for region proposals

	Experiments
	Ablation studies on MFE
	Ablation studies on diffusion
	Ablation studies on S3WS module
	Object Detection on VisDrone
	Comparison

	Conclusion

