IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 21, 2024

4009705

Multigranularity-Aware Network for SAR Ship
Detection in Complex Backgrounds

Li Ying™, Yizhang Liu™, Zhifei Zhang™, Member, IEEE, and Duoqgian Miao

Abstract— Synthetic aperture radar (SAR) is a vital tool for
ship detection, as it acquires high-resolution remote sensing
images when optical images cannot penetrate. However, two
primary challenges confronting SAR ship detection are complex
backgrounds with islands, clutter, and land, as well as diverse
scales of ship targets, particularly small ones, leading to
numerous missed detections and false alarms. To overcome
these challenges, we propose a multigranularity-aware network
(MGA-Net). Specifically, we design a multigranularity hybrid
feature fusion module (MGHF>*M) to extract more representative
local detail and global semantic information, enhancing the
model’s capability to represent ship features to adapt to
complex backgrounds. In addition, we design a multigranularity
feature synergy enhancement module (MGFSEM), which uses
depthwise separable convolutions with different kernel sizes to
extract features at different granularities and retain the original
features, significantly improving the model’s representation of
ship features at different scales. Experimental results show that
our MGA-Net achieves the highest mAP and F1-score, surpassing
eight advanced methods on three public datasets.

Index Terms— Complex backgrounds, multigranularity, ship
detection, synthetic aperture radar (SAR).

I. INTRODUCTION

ITH the continuous development of maritime strategy,

maritime ship targets play a crucial role in marine
monitoring and maritime management. Compared with other
sensors, synthetic aperture radar (SAR) has the advantage
of being all-weather, all-day, and unaffected by natural
factors [1], making it an essential tool for maritime ship
detection.
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(a) (b)
Fig. 1. Examples of SAR images in HRSID include (a) complex backgrounds
and (b) multiscale ship targets. Blue boxes represent ground truth.

However, SAR ship detection mainly faces the challenges of
complex backgrounds and multiscale ship targets [2]. On the
one hand, SAR images often contain substantial noise [see
Fig. 1(a)], such as land, islands, and clutter, especially in
the shore area, which leads to the complex backgrounds
in ship detection. This blurs the details of ships, which
impairs clear recognition and precise localization of ships and
potentially leads to false alarms. On the other hand, SAR
adopts a multiresolution imaging mode, resulting in various
scales of ship targets [see Fig. 1(b)]. Accurate detection
becomes more difficult, particularly for small ships, leading to
missed detections and false alarms, diminishing the detection
performance.

Traditional SAR ship detection methods mainly rely on
CFAR algorithms [3], yet their detection lacks efficiency
and accuracy. Researchers have improved ship detection
performance by introducing CNN-based models [4], [5],
[6], such as Faster R-CNN [7], MSRIHL-CNN [8], Swin-
RetinaNet [9], and GFECSI-Net [10], as well as the attention
mechanism [11].

Researchers have proposed various methods to address
multiscale SAR ship detection in complex backgrounds.
Zhang et al. [12] designed BL-Net, improving the accuracy
of SAR ship detection in imbalanced classes and complex
backgrounds by adjusting sample weights and incorporating
reinforcement learning. Shi et al. [2] proposed ASAFE to
improve accuracy in detecting multiscale SAR ships in
complex backgrounds by combining feature enhancement
and adaptive sample allocation. He et al. [13] designed
CMFT, transferring features from different images to improve
multiscale ship detection in complex backgrounds. Although
these methods make progress in improving SAR ship detection
performance, they either require more computational resources
or lack robustness in complex backgrounds.

To tackle the above challenges, this letter proposes a novel
multigranularity-aware network, MGA-Net. We introduce the
ideas of multigranularity [14] and design two modules to
enhance SAR ship detection. The multigranularity hybrid
feature fusion module (MGHF?M) reduces the interference
of complex backgrounds. Meanwhile, the multigranularity
feature synergy enhancement module (MGFSEM) enhances
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the feature. The primary contributions are outlined in this
letter.

1) For complex backgrounds, MGHF’M is designed and
integrated into the backbone CSPDarknet53, adeptly
merges local attention features of different granularity
with the original feature to obtain stronger semantic
features.

2) For multiscale SAR ship detection, MGFSEM intro-
duces diverse kernel-sized depthwise separable convo-
lutions to capture ship features at various granularities,
enhancing the model’s receptive field. Furthermore,
it adaptively fuses these features with the original ones,
which enriches its representation of multiscale ship
targets and boosts detection accuracy.

II. METHODOLOGY

The framework of the MGA-Net is introduced (see
Fig. 2). We integrate the MGHF’M into the backbone
CSPDarknet53 [1] to form multigranularity CSPDarknet53
(MG-CSPDarknet53) to capture the information of all
ships in complex backgrounds more comprehensively. Next,
the multigranularity feature pyramid network (MG-FPN)
is an enhanced FPN [7], including MGFSEM, to extract
multigranularity context information. Additionally, the BCE
loss [1] for classification and objectness, and the GIloU loss [1]
for regression.

A. Multigranularity Hybrid Feature Fusion Module

Complex backgrounds in SAR images obscure details
and notably affect ship detection accuracy. To tackle this,
we propose an MGHF’M (see Fig. 3), inspired by attention
mechanisms [11], [15], [16]. MGHF*M is designed to focus
on the key channel, spatial, and coordinate information.
It employs local channel, local spatial, and local coordinate
attention to capture local feature information at different
granularities. Simultaneously, it retains the original feature,
which includes the details and global features of the
image. Next, these features are fused using the adaptive
spatial feature fusion module (ASF’M) [17] to enhance
the model’s representation of ship features under complex
backgrounds [18], improving the accuracy of SAR ship
detection. The operation of local attention in MGHF?’M will
be elaborated below.

1) Local Channel Attention: Given an input feature
X e ROXHxW (C, H, and W represent the number of
channels, height, and width, respectively), we use a 1-D
convolution with a k kernel to convolve X to generate a feature
map C 1Dy (X). Next, the sigmoid activation function is applied
to each channel of C1D;(X) to generate channel attention
weights. Thus, the feature map X, is generated, as follows:

wc(X) = o (C1D(X)) (k = |(log,C +b)/y] ) (D
Xo = X © wc(X) 2)

where C1D is 1-D convolution. o is the sigmoid activation
function. b is set to 1, while y is set to 2. |-|o,qg means take
the odd number closest to the operation result. © represents
element-wise multiplication.
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2) Local Spatial Attention: Given an input feature
X € RO*M>*W " we initially conduct average and max-pooling
operations on X to generate two different spatial features.
Then, two features are concatenated along the channel
dimension and undergo a 7 x 7 convolution operation. Finally,
the sigmoid activation function generates spatial attention
weights applied to X, yielding the feature map X, represented
as

M,(X) = o (f7(Concat(MP(X), AP(X)))) (3)
X=X 0O M(X) “4)

where o is the sigmoid activation function. f7*7 performs
convolution with a 7 x 7 kernel. Concat is tensor
concatenation. AP and MP denote average and max-pooling,
respectively. © indicates element-wise multiplication.

3) Local Coordinate Attention: Given an input feature
X € ROMXW two 1-D convolutions with kernels (H, 1)
and (1, W) convolve X along the horizontal and vertical
directions for each channel, yielding two 1-D feature maps
X" e REHX! and X* € RE**W Next, a 1 x 1 pointwise
convolution P; € REX(C/N*1x1 performs shared operations on
X" and X™. Finally, the intermediate features obtained after
the P; operation are processed using two 1 x 1 pointwise
convolutions, P, € RE/MXCxIxl gnq p e RE/NxCxIx
maintaining the same number of channels as X. r is the
channel reduction ratio of 32. The calculation process for
feature map X, by local coordinate attention is below

0"(X)=o (P (3(B(Pi(X"))))) )
0" (X) = o (P,(8(B(P{(X"))))) (6)
X, =X 0 0"(X)® 0"(X) (7)

where B(-) denotes batch normalization. § and o represent
ReLU and sigmoid activation functions, respectively. O" and
O" are the attention weights for local coordinates along
the horizontal and vertical axes, respectively. © represents
element-wise multiplication.

To enhance the model’s representation of ships with
complex backgrounds in SAR images, we employ the ASF>M
to fuse Xy, Xy, X», and X, effectively leveraging both local
and global information. We set X, X, X», and X as levels 0,
1, 2, and 3, respectively. Next, we learn spatial feature weights
from each input layer and perform feature fusion calculations,
yielding the fused feature map X', as follows:

X/ — al 5 XO%] +ﬂl . X1~>l +¢l . X2~>1 + 7']1 . X3~>l (8)

where o, B!, ¢', and n' are weights from different granularity
layers. X0~ x>0 x2=1 and X3~ are outputs from different
granularity layers. The sum of o, B’, ¢', and ' is 1 and
compressed between [0, 1] by Softmax, as follows:

1(e, B, 9", 0" €10,1]) )

e

o+ B+ +n =

OlI:

10
VPV VRNY (10

where Ay, Mg, Ay, and A, are achieved by computing the
Softmax layer’s parameters during network updates with the
backpropagation method.
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Fig. 2. Framework of MGA-Net. The input image is fed into the improved CSPDarknet53 by the designed MGHF?M for feature extraction. Next, the
improved FPN with the proposed MFGSEM extracts multiscale context information. Finally, the ship detection result is output. “Conv”’ denotes convolution.
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Fig. 3. Structural diagram of the MGHF’M. An ASF?M is employed to

merge LCA, LSA, and LCoA features with the original feature, significantly
enhancing the model’s representation of ships in complex backgrounds.
“GAP,” “AP” “MP,)” “H-Convld,” and “V-Convld” refer to global average
pooling, average pooling, max-pooling, 1-D convolution with an (H, 1) kernel,
and 1-D convolution with a (1, W) kernel, respectively.

B. Multigranularity Feature Synergy Enhancement Module

In SAR images, ships vary in scale, posing detection
challenges, especially for small ships. Maximizing multigranu-
larity information is crucial in SAR ship detection. To achieve
this without excessive parameter increase, we design MGF-
SEM (Fig. 4). It uses three parallel branches, each utilizing
depthwise separable convolutions [19] of different kernel
sizes to extract features at various granularities, enriching
the model’s representation of ship targets at different
scales. We also retain original features to counter potential
information loss during extraction. In addition, we adopt an
adaptive spatial feature fusion method to avoid ignoring the
differences between ship features at different scales.

Specifically, given a feature map Y, we apply separate
depthwise convolution to each channel using three different
convolution kernels. Next, a pointwise convolution is per-
formed on each pixel of the feature map after depthwise
convolution, resulting in three feature maps of different
granularities. These operations can be expressed as

Y; = 8(B(PConv;(DConv;(Y)))) (i =0,1,2) (11

where DConv; (i = 0, 1, 2) are depthwise convolutions with
3 x 3,5 x 5,and 7 x 7 kernels, respectively. PConv; is a
1 x 1 pointwise convolution. B(-) and § are batch
normalization and ReLU activation functions, respectively.
To balance the impact of different granularity features
during training, we adopt the ASF’M to fuse representations of

¢
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Fig. 4. Structure diagram of the MGFSEM, comprising three parallel
depthwise separable convolutional layers, along with an original feature map.

each granularity feature. We set Yy, Y1, ¥», and Y as levels 0,
1, 2, and 3, respectively. Similarly, the calculation process of
the fused feature map Y’ is as follows:

Y/ — é] . YO—)] + /J/l . Yl—)l + l)l . Y2—>l +(pl . Y3—>l (12)

where &/, !, V!, and ¢ are weights from different granularity
layers. Y 0=1 yl=l y2=1 and Y3~ are outputs from different
granularity layers. The sum of él, ul, vl, and (pl is 1 and
compressed between [0, 1] by Softmax, as follows:

E+u +v ¢ =108 4 o €10,1])
>\l
e’s

13)

Oll

= 14

N LN b 1 4ot (14)
where the parameters Ag, Ay, Ay, and A, are achieved by
computing the Softmax layer’s parameters during network
updates with the backpropagation method.

III. EXPERIMENTAL RESULTS
A. Implementation Details

1) Datasets: HRSID [20] has 5604 SAR images resized
to 800 x 800, with 65% for training and 35% for testing.
SAR-Ship-Dataset [21] comprises 43819 images sized at
256 x 256, with a ratio of 7:2:1 for training, validation,
and test sets. SSDD [22] has 1160 images with a size of
512 x 512, with those ending in 1 or 9 for testing and the
rest for training.

2) Experimental Settings and Evaluation Metrics: All
experiments use PyTorch on GPU Tesla V100. HRSID is
utilized for ablation study and parameter analysis. We use
the stochastic gradient descent optimizer with an initial
learning rate of 0.01, batch size of 4, momentum value of
0.9, and weight decay of 0.0001. The training epochs are
60 for HRSID, 45 for SAR-Ship-Dataset, and 80 for SSDD.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 24,2024 at 08:54:49 UTC from IEEE Xplore. Restrictions apply.



4009705

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 21, 2024

TABLE I

ABLATION STUDY OF INDIVIDUAL MODULES ON HRSID. v MEANS TO USE THIS MODULE. MGHF2M CONSISTS OF LCA, LSA, LCOA,
AND ASFZM. MGFSEM MEANS MULTIGRANULARITY FEATURE SYNERGY ENHANCEMENT MODULE

LCA LSA LCoA ASF°M MGFSEM P R F1 mAP FPS Param(M) FLOPs(G)

X X X X X 88.83 89.06 8894 89.96 13.67 46.50 36.97

v X X X X 88.95 89.15 89.05 9031 13.65 46.50 37.01

v v X v X 89.84 8943 89.63 90.88 13.34 46.63 37.11

v X v v X 91.01 89.82 9041 9152 1225 47.61 37.89

X v v v X 90.53 89.77 90.15 9144 1227 47.61 37.93

v v v v X 91.23 90.37 90.80 9238 11.82 47.74 38.02

X X X X v 91.93 89.24 90.57 9131 1044 49.33 39.26

v v v v v 9387 91.14 9248 9345 T10.01 50.57 40.25

TABLE I1
COMPARISON OF EVALUATION METRICS FOR VARIOUS METHODS ON HRSID, WITH THE BEST RESULTS IN BOLD
Entire Scenes Inshore Scenes Offshore Scenes
Method p R FI  mAP P R FI mAP P R FI maAp [FPS Param(M)
Faster R-CNN [7] 81.45 81.97 81.71 80.66 6555 6551 6553 60.10 9593 97.17 96.55 97.09 14.05 41.30
Guided Anchoring [4] 9041 84.62 87.42 83.72 8122 70.64 7556 6699 97.82 97.53 97.67 97.46 10.49 41.89
BL-Net [12] 91.58 89.74 90.65 88.67 84.35 8099 82.64 77.71 98.01 9782 9791 97.77 521 47.81
Swin-RetinaNet [9] 69.60 87.10 77.37 8594 50.20 75.00 60.14 6543 9120 96.70 93.87 97.32 12.80 36.82
ASAFE [2] 83.46 86.75 8507 85.18 71.67 7195 71.81 6891 98.67 96.59 97.62 9692 13.68 42.43
Improved FCOS [5] 81.70 90.10 85.69 88.60 67.60 80.90 73.65 75.17 9470 97.30 9598 97.09 10.23 40.60
GFECSI-Net [10] 85.30 89.30 87.25 90.84 72.60 80.40 76.30 79.65 96.50 96.30 9640 97.34 16.10 36.82
CMFT [13] 81.30 91.10 8592 89.60 80.16 86.77 83.33 78.63 9588 98.01 9693 9694 12.58 46.12
MGA-Net (Ours) 93.87 91.14 9248 9345 85.13 87.02 86.06 83.15 9791 98.02 97.96 98.53 10.01 50.57
TABLE III
COMPARISON OF EVALUATION METRICS FOR VARIOUS METHODS ON SAR-SHIP-DATASET, WITH THE BEST RESULTS IN BOLD
Entire Scenes Inshore Scenes Offshore Scenes
Method p R FI mAP P R FI mAP P R FI map [rS Param(M)

Faster R-CNN [7] 86.85 9324 8993 91.73 69.55 8680 77.22 7947 9385 9536 94.60 94.65 23.74 41.30
Guided Anchoring [4] 92.59 93.80 93.19 92.73 8254 86.12 8429 81.74 96.03 9633 96.18 9579 17.41 41.89
BL-Net [12] 91.58 89.74 90.65 9425 8591 91.75 88.73 88.65 9693 9724 97.08 96.67 8.26 47.81
Swin-RetinaNet [9] 86.05 94.10 8990 94.11 70.71 90.25 79.29 8393 95.02 97.33 96.16 9691 20.53 36.82
ASAFE [2] 86.12 9371 89.75 94.01 8093 87.05 83.88 84.77 9693 97.04 9698 96.78 23.11 42.43
Improved FCOS [5] 89.80 9520 9242 94.09 7830 90.20 83.83 8590 9580 97.50 96.64 97.15 12.20 40.60
GFECSI-Net [10] 90.24 93.01 91.60 9433 83.03 9345 8793 88.65 9459 97.07 9581 97.00 26.12 16.08
CMFT [13] 90.07 94.41 92.19 9454 86.03 9245 89.12 89.33 95.02 9731 96.15 97.02 21.26 46.12
MGA-Net (Ours) 92.61 96.73 94.63 96.47 87.65 9384 90.64 91.53 9582 9834 97.06 9821 17.57 50.57

Evaluation metrics include precision (P), recall (R), F1-score,
mean average precision (mAP), frames per second (FPS),
model parameters (Param), and floating point of operations
(FLOPs).

B. Ablation Study

We assess MGHF?>M (including local channel attention
(LCA), local spatial attention (LSA), local coordinate attention
(LCoA), and ASF’M) and MGFSEM by ablation study,
presented in Table I. Compared to the baseline, only the
combined effect of these four submodules increases mAP by
2.42%, adding only 1.05G FLOPs. This combination pays
more attention to local information of different granularities
related to the ship target, thereby reducing interference from
complex backgrounds and improving detection accuracy. After
adding MGFSEM, mAP increases by 1.35% from the baseline
to reach 91.31%, enhancing context information in various
scales. Integrating these modules yields a 93.45% mAP,
achieving the best result.

C. Comparison With the State-of-the-Art

The proposed MGA-Net is validated on HRSID, SAR-
Ship-Dataset, and SSDD, comparing with other state-of-the-art

methods in Tables II-TIV. Table II lists the outcomes of various
methods in various scenes on HRSID. In the entire and inshore
scenes, MGA-Net attains 93.45% mAP and 83.15% mAP,
surpassing the suboptimal GFECSI-Net by 2.61% and 3.5%.
In the offshore scene, MGA-Net achieves a 98.53% mAP,
surpassing the suboptimal BL-Net by 0.76%. Furthermore,
it achieves the highest F1-score of 92.48% (entire), 86.06%
(inshore), and 97.96% (offshore), respectively. Table III shows
the outcomes of diverse methods on SAR-Ship-Dataset. In the
entire and inshore scenes, MGA-Net achieves 96.47% mAP
and 91.53% mAP, surpassing the suboptimal CMFT by 1.93%
and 2.2%. In the offshore scene, MGA-Net achieves 98.21%
mAP, which is 1.06% higher than the suboptimal Improved
FCOS. Moreover, it achieves the highest F'1-score in various
scenes. Similarly, Table IV displays the results of diverse
methods on SSDD. In diverse scenes, MGA-Net achieves the
highest mAP and F1-score. This is due to MGHF’M and
MGFSEM in MGA-Net. MGHF?M extracts local attention
features with different granularities, alleviating the impact
of complex backgrounds on ship detection. Meanwhile,
MGFSEM enriches multigranularity contextual information,
mitigating detection challenges for ships of different scales,
especially for small ones.
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Entire Scenes

Inshore Scenes

Offshore Scenes

Method P R FI  mAP P R FI mAP P R FI map [PS Param(M)
Faster RRCNN [7]  87.08 0044 8873 8974 6398 7500 7186 7139 9603 9758 9680 9737 1187 4130
Guided Anchoring [4] 94.62 9044 9248 90.01 8690 7326 79.50 7159 97.60 9839 97.99 9822 9.64  41.89
BL-Net [12] 9127 9614 93.64 9525 80.00 88.37 8398 8479 9687 9973 9828 99.62 502 4781
Swin-RetinaNet [9]  89.52 95.07 9221 9523 7475 81.19 77.84 8025 97.85 9897 9841 98.84 10.14 3682
ASAFE [2] 88.54 9594 9209 9519 7566 81.01 7824 80.82 97.87 98.89 0838 9878 1155 4243
Improved FCOS [5]  89.05 9673 9273 9501 7327 8721 79.63 8218 9527 9861 9691 9843 815  40.60
GFECSL-Net [10]  93.10 9691 9497 97.18 8921 8042 8459 8575 97.52 9879 9815 99.11 14.02  16.08
CMFT [13] 9240 98.10 9516 9730 90.11 8337 86.61 8723 97.65 99.53 9858 99.63 1063  46.12
MGA-Net (Ours) 9479 99.01 96.85 98.63 0107 8744 89.22 8991 0787 99.56 98.71 99.67 1071  50.57

Fig. 5. Comparison of visualization results from various methods on
HRSID. Each column displays the detection results of ground truth, CMFT,
GFECSI-Net, and MGA-Net. Navy blue, light blue, green, and red boxes
are ground truth, detection results, false alarms, and missed detections,
respectively. (a) Ground truth. (b) CMFT. (c) GFECSI-Net. (d) MGA-Net.

To better showcase the robustness of MGA-Net, we exhibit
the visualization results compared with several methods in
Fig. 5. The first and second rows depict the detection results of
various methods under complex backgrounds and small ship
targets, respectively. Obviously, MGA-Net can detect ships
accurately, minimizing false alarms and missed detections.

IV. CONCLUSION

This letter proposes a novel MGA-Net to tackle challenges
posed by complex backgrounds and multiscale ship targets
in SAR images. MGHF*M is designed to acquire contextual
information ranging from coarse to fine, strengthening the
model’s resistance to interference from complex backgrounds.
Meanwhile, MGFSEM is proposed to enhance the model’s
capability to extract features at different scales and effectively
handle ship targets of different scales in SAR images.
Experimental results indicate that our MGA-Net achieves
superior performance in two SAR ship datasets. Since this
letter uses rectangular bounding boxes, it restricts the precise
localization and classification of SAR ship targets. We plan to
develop an efficient MGA-Net to achieve SAR ship detection
in arbitrary directions.
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