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Abstract— Person re-identification (ReID) typically encounters
varying degrees of occlusion in real-world scenarios. While pre-
vious methods have addressed this using handcrafted partitions
or external cues, they often compromise semantic information
or increase network complexity. In this paper, we propose a
new method from a novel perspective, termed as OAT. Specif-
ically, we first use a Transformer backbone with multiple class
tokens for diverse pedestrian feature learning. Given that the
self-attention mechanism in the Transformer solely focuses on
low-level feature correlations, neglecting higher-order relations
among different body parts or regions. Thus, we propose
the Second-Order Attention (SOA) module to capture more
comprehensive features. To address computational efficiency,
we further derive approximation formulations for implement-
ing second-order attention. Observing that the importance of
semantics associated with different class tokens varies due to
the uncertainty of the location and size of occlusion, we propose
the Entropy Guided Fusion (EGF) module for multiple class
tokens. By conducting uncertainty analysis on each class token,
higher weights are assigned to those with lower information
entropy, while lower weights are assigned to class tokens with
higher entropy. The dynamic weight adjustment can mitigate
the impact of occlusion-induced uncertainty on feature learning,
thereby facilitating the acquisition of discriminative class token
representations. Extensive experiments have been conducted on
occluded and holistic person re-identification datasets, which
demonstrate the effectiveness of our proposed method.

Index Terms— Second-order attention, information entropy,
uncertainty.

I. INTRODUCTION

PERSON Re-identification (ReID) aims to locate and
retrieve the same pedestrian across multiple cameras in

complex environments [1], [2], [3], which has been widely
used in applications such as security monitoring, criminal
investigation, missing persons search, and intelligent traffic
management [4], [5]. In real-world scenarios, occlusion is
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Fig. 1. Examples of occluded person images from two occluded ReID
datasets and two holistic ReID datasets.

often the case, as illustrated in Fig. 1. Pedestrians may be
obstructed by objects such as trees, vehicles, billboards, and
other pedestrians. The diversity in terms of size, shape, color,
and position of occlusions presents a significant challenge for
general holistic person ReID methods in obtaining discrimi-
native pedestrian features [6], [7].

In recent years, many researchers have been delving
into methods for occluded person ReID, with partitioning-
based [8], [9], [10] and external cues-based [11], [12],
[13], [14], [15] methods emerging as two popular solutions.
Although these methods work well by learning well-aligned
part features, they each also come with their inherent draw-
backs. Partitioning pedestrian images or feature maps can to
some extent alleviate the impact of occlusion, but it inevitably
impairs the learning of contextual information among adjacent
parts, hindering the integrity of local semantic information.
External cues typically encompass pose estimation and human
parsing, both of which contribute to the identification of
occlusions. However, the incorporation of external models
increases the overall model complexity, demanding more
training time and computational resources. In addition, within
intricate occlusion scenarios, external cues-based methods are
susceptible to noise interference, resulting in false detections.

In this paper, we propose a novel approach to addressing the
occlusion problem that is designed to operate independently
of handcrafted partitioning and external cues. Specifically,
the Transformer is used as the backbone of the proposed
method due to its superior long-range modeling ability [16],
[17], [18]. Given that the self-attention module in the Trans-
former primarily emphasizes low-level feature correlations,
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it inherently restricts higher-order relations among differ-
ent body parts or regions, which are particularly crucial
for occluded person Re-ID [1], [19]. To address this issue,
we propose the Second-Order Attention (SOA) module to
delve into contextual information within attention weight. This
module utilizes the Laplace matrix in spectral clustering to
extract features and obtains the contextual information of the
attention weights using a series of differentiable operations.
Notably, the attention weights emphasize specific areas of
pedestrian images that may be associated with key features
of the pedestrians. The context of the attention weights high-
lights regions or non-occluded parts with salient relations
across the image, which helps the model to better understand
and differentiate between pedestrians. Meanwhile, considering
computational efficiency, we derive an approximate implemen-
tation for SOA, reducing the computational complexity from
cubic complexity to linear complexity. To fully exploit the
contextual information of both self-attention and the proposed
second-order attention mechanisms, we fuse them using a
summation operation, resulting in a more comprehensive and
discriminative feature representation. Additionally, to render
the model occlusion-aware, we introduce multiple class tokens
to extract pedestrian features from various subspaces (with
distinct semantic information). Observing that some class
tokens learn features of the visible part of the pedestrian, while
others learn the features of occlusions, we propose the Entropy
Guided Fusion (EGF) module to alleviate uncertainties caused
by occlusions. Higher entropy values indicate less valuable
information from class tokens and vice versa. Multiple class
tokens are fused with the guidance of information entropy, i.e.,
higher weights are assigned to those with lower information
entropy, while lower weights are assigned to class tokens
with higher entropy, thus mitigating the issues caused by
occlusions.

The main contributions of our work are as follows:
1) The proposed OAT offers a novel perspective on address-

ing the occlusion challenge in person Re-ID. It is designed
to function autonomously, without relying on handcrafted
partitioning or external cues. Furthermore, it demonstrates
robustness in handling occluded pedestrians.

2) Two novel modules have been devised: SOA is designed
to learn higher-order relations among different body parts or
regions, while EGF is proposed to mitigate the uncertainties
induced by occlusions. With two modules complementing each
other, discriminative pedestrian features can be obtained.

3) Extensive experiments are conducted on both occluded
and holistic datasets, including Occluded-DukeMTMC [20],
Occluded-REID [21], Market-1501 [22], DukeMTMC-reID
[23], CUHK03-NP [24]. The superiority of the proposed
method is verified through ablation experiments and visual-
ization comparisons.

II. RELATED WORK

A. Holistic Person Re-Identification

In recent years, significant progress has been achieved
in holistic person re-identification using deep learning in
conjunction with several well-designed modules, resulting in

a substantial enhancement of recognition performance. For
example, Zheng et al. [25] introduce the ID-discriminative
Embedding (IDE), regarding person ReID as both a clas-
sification and verification task, while simultaneously learn-
ing discriminative embeddings and similarity measurement.
Luo et al. [2] establish a robust baseline by integrating a bag of
tricks to enhance discriminative global feature learning. Build-
ing upon this foundation, Ye et al. [4] propose the AGW model
which includes Non-local Attention (Att) Block, Generalized-
mean (GeM) Pooling, and Weighted Regularization Triplet
(WRT) loss to augment pedestrian feature learning. Moreover,
Zhang et al. [26] cast person ReID as a multi-instance learning
problem to achieve strong spatial misalignment tolerance and
enhanced discriminative capabilities. Quan et al. [27] pro-
pose the Auto-ReID method, an automated neural architecture
search approach tailored for ReID tasks, which integrates
body structure information into the search space by devising
a typical classification search space and a part-aware module.
Wu et al. [28] propose a progressive training framework for
estimating pseudo-labels of unlabeled data, and updating the
CNN model by joint training labeled data, pseudo-labeled
data, and index-labeled data. Similarly, Quan et al. [29]
employ a progressive learning approach to gradually select
unlabeled data with reliable pseudo-labels, thereby enriching
the training data and updating the model to narrow the domain
gap. Lin et al. [30] propose a cross-camera unsupervised
method that iteratively optimizes CNNs and individual sample
relationships to address person ReID, effectively overcoming
challenges of camera variances and identity similarities.

Several methods propose segmenting pedestrian images to
acquire the local features of pedestrians. For instance, PCB [8]
generates multiple local features of pedestrians using a simple
uniform horizontal partitioning strategy, and has been widely
recognized as a strong baseline for learning local features of
pedestrians [9], [31], [32], [33], [34]. MGN [31] partitions
different numbers of horizontal stripes across distinct branches
to acquire multi-granularity local features.

To capture features at different scales and granularities,
numerous studies have introduced pyramid structures for per-
son ReID, such as the coarse-to-fine pyramid model proposed
by [32] and the striped pyramidal pooling block developed
by [35]. Additionally, Chen et al. [36] propose an attention
pyramid structure, which enables the model to focus on salient
cues at different scales like human visual perception. RGA-
SC [37] incorporates relation-aware global attention, stacking
relations, and combining shallow convolutional models for
better fusion of global and local features. Integrating exter-
nal cues as the prior knowledge is also a research hotspot.
Zhang et al. [38] utilize the trained DensePose [39] to
segment the human body into 24 densely semantic regions.
Zhu et al. [11] propose Identity-guided Semantic Parsing
(ISP), identifying body parts and personal belongs at the pixel
level to address misalignment issues.

Recently, investigations have delved into the application
of Vision Transformers [16] in person ReID tasks. Tran-
sReID [17] pioneers Transformer-based person ReID research,
with a specially designed Jigsaw Patch Module (JPM) and
Side Information Embedding (SIE) to enhance robust feature
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learning. AAformer [40] introduces alignment techniques
within the Transformer architecture, enabling automatic
localization of human and non-human parts, coupled with
joint learning of part alignment and feature representation.
HAT [41] leverages the strengths of CNN and Transformers,
effectively mining and merging detailed and semantic informa-
tion from cross-level features to reinforce multi-scale feature
extraction.

While these methods contribute to enhancing feature learn-
ing of holistic pedestrians, their performance tends to decline
when addressing the prevalent issue of occlusion in real-world
scenarios. In such situations, various body parts of pedestrians
are often obstructed by objects or other pedestrians, which can
undermine the effectiveness of the aforementioned approaches.

B. Occluded Person Re-Identification

Occlusion typically results in challenges such as spatial
misalignment and incomplete body information. Currently,
occluded person Re-ID methods can be broadly categorized
into three types: CNN-based methods, external cues-based
methods, and Transformer-based methods.

CNN-based methods predominantly concentrate on specific
designs built on well-performed architectures like ResNet50.
Zhuo et al. [21] systematically define the occlusion problem
in person Re-ID, creating the Attentive Focus on Pedestrian
Body (AFPB) framework that includes an occlusion simu-
lator and a multi-task loss. FPR [42] employs a foreground
probability generator to linearly reconstruct probe spatial fea-
tures by gallery spatial features for facilitating alignment-free
matching. Zhuo et al. [43] devise a Teacher-Student learning
framework to alleviate the deficiency of occluded pedestrian
images. IGOAS [44] combines batch-based incremental gen-
erative occlusion block with a global-adversarial suppression
framework to extract global features and non-occluded body
features. QPM [45] jointly learns part features and part quality
predictions, identifying occlusion scenarios via identity-aware
spatial attention, and generating global features of pedestrians
by an adaptive global feature extraction module. PRE-Net [10]
suppresses occlusion noise and enhances the features of vis-
ible parts through various part partition strategies, partial
relationship aggregation, and inter-part omnibearing fusion
modules. RTGAT [46] jointly reasons about the visible parts
of the human body and compensates for the semantic loss of
the occluded parts to learn complete human representations
in occluded images. Despite their proficiency in capturing
visible part features, the performance of CNN-based methods
is typically inferior to Transformer-based approaches due to
limited long-range modeling dependencies.

External cues-based methods primarily involve integrating
pose estimation or human parsing information into CNN or
Transformer networks. PGFA [20] utilizes pose landmarks
to generate attention maps, divides the global feature into
parts, and uses shared-region features for matching. Build-
ing upon this foundation, Miao et al. [12] introduce a
Pose-Embedded Feature Branch (PEFB) for adaptively adjust-
ing channel-wise feature responses to enhance the learned
features. HOReID [47] leverages CNN and key-point estima-
tion to extract semantic information of local features, employs

adaptive directional graph convolution layers for relation-
ship propagation, and introduces a cross-graph embedded
alignment layer for local feature alignment and similarity
prediction. PVPM [7] jointly learns discriminative features
with pose-guided attention, while automatically mining part
visibility. Yang et al. [48] discretize pose information into
body part visibility labels to suppress the impact of occluded
regions. Xu et al. [15] propose the Feature Recovery Trans-
former (FRT) to solve the visible graph matching and feature
recovery problem. Somers et al. [49] combine identity with
human parsing labels to design a body part attention module
to address the occlusion problem. Dou et al. [14] pro-
pose the Human Co-parsing Guided Alignment (HCGA)
framework for weakly supervised training under the con-
straints of local spatial consistency, semantic consistency,
and background. MSDPA [50] introduces multi-source seman-
tic cues into Transformer, exploring semantic correlations
between body parts using a dynamic attention mechanism.
Ma et al. [51] present a pose-guided intra- and inter-part
relational transformer, improving feature extraction techniques
and bolstering inter-part relationship learning. Although these
methods enhance the discriminative capability of the model,
however, the use of these external cues often relies on addi-
tional models, resulting in high complexity and computational
resource consumption.

Transformer-based approaches perform well in modeling
long-range dependencies of pedestrian features. PAT [52]
reidentifies occluded persons by discovering distinct parts and
introduces effective learning mechanisms to better capture
part prototypes solely with identity labels. DRL-Net [53]
employs local features for global reasoning and integrates
contrastive feature learning techniques along with data
augmentation strategies to mitigate occlusion interference.
Mao et al. [54] develop Attention Map Guided (AMG)
transformer pruning, which weakens redundant attention
heads and parameters through entropy calculation of key
dimensions and token importance estimation. Compared to
existing CNN-based methods, Transformer-based approaches
exhibit stronger robustness against occlusions. In this paper,
building upon the Transformer framework, we propose an
occlusion-aware Transformer method without relying on
external cues. To acquire more distinctive pedestrian features,
we introduce the second-order attention module and the
entropy guided fusion module to enhance the higher-order
relations between different body parts and alleviate the impact
of occlusions, thereby yielding richer and more discriminative
pedestrian features.

III. METHOD

In this section, we first describe the overall network archi-
tecture of the proposed method. Subsequently, we delve into
the details of two novel modules: the Second-Order Atten-
tion Module and the Entropy Guided Fusion Module. Lastly,
we present the objective function of the model.

A. Network Architecture

The overall framework of the proposed method is depicted
in Fig. 2, where ViT [16] is adopted as the backbone. Given
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Fig. 2. The architecture of the proposed OAT framework. Specifically, the input sequence is combined with multiple class tokens and jointly fed into the encoder
of the Transformer, along with learnable position embeddings and camera embeddings. Then, in each Transformer Layer, a Second-Order Attention module
is introduced based on the First-Order Attention (i.e., self-attention) to capture contextual information of attention weight. The output of the Second-Order
Attention and the First-Order Attention are merged to facilitate comprehensive feature learning. In the last Transformer Layer, the features learned from
multiple class tokens are fused by the Entropy Guided Fusion Module, making the fused features robust to occlusions. Moreover, MFA denotes Multilayer
Feature Aggregation that aggregates features from the 2nd, 4th, 10th, and 12th Transformer Layers through convolutional operations. These features constitute
what remains after the class tokens have been excluded from the original features.

an input image X ∈ RH×W×C , where H , W , and C are
the height, width, and channel dimensions of the image,
respectively, we split the image X into N0 patches {xi |i =

1, 2, . . . N0}, and each patch is embedded to R dimensions by
the linear projection function F(·). Multiple class tokens are
attached to the patch embedding to capture diverse semantic
information about pedestrians. In addition, the learnable posi-
tion embedding P ∈ R(N0+M)×R and the camera embedding
C ∈ R(N0+M)×R are added to the patch embedding for pre-
serving the spatial and camera information of the image [17].
The aforementioned process can be formulated as:

Z0 = [x0
cls; x1

cls; . . . ; x M−1
cls ;F(x1);F(x2); . . . ;F(xN0)]

+ P + λC, (1)

where Z0 is the input of the first Transformer Layer;
M denotes the number of class tokens; λ is a hyperparam-
eter used to trade-off the weight of camera embedding. For
simplicity, we will use N to denote N0 + M in the following.

Given that the self-attention mechanism in the Transformer
Layers predominantly highlights low-level feature correlations,
limiting the exploration of higher-order relations among dis-
tinct body parts or regions. To address this issue, in each
Transformer Layer, we introduce the Second-Order Attention
Module and integrate it with the First-Order Attention (i.e.,
self-attention) module to generate attentive features in a hier-
archical approach. In other words, the First-Order Attention
mainly focuses on low-level feature correlations, while the
Second-Order Attention primarily emphasizes higher-order
part or region relations. These two attention mechanisms

complement each other, resulting in more comprehensive
pedestrian features. In addition, to highlight the class tokens
corresponding to the unobstructed human parts, we introduce
the Entropy Guided Fusion Module in the last Transformer
Layer. This module dynamically fuses class tokens based on
calculated entropy value and it can mitigate the impact of
occlusion-induced uncertainty on feature learning, facilitating
the acquisition of discriminative class token representations
and enhancing occlusion-aware capabilities.

Meanwhile, to prevent the features in each Transformer
Layer from being smoothed and becoming similar, we also
utilize a multilayer feature aggregation approach. Specifically,
the features at different Transformer Layers are aggregated
together to fully exploit the contextual information across
hierarchies to capture diverse semantic information. Similar
to [55], [56], we aggregate the features from the 2nd, 4th,
10th, and 12th Transformer Layers through convolutional
operations. The above process can be formulated as:

Fagg = σ(pool(ψ(( f2, f4, f10, f12)))), (2)

where fl = Reshape([x l
1; x l

2; . . . ; x l
N0

]), l ∈ {2, 4, 10, 12};
ψ denotes the spatial convolutional layer; pool(·) and σ

denote the max pooling operation and the sigmoid function,
respectively.

The fused class tokens and the features obtained after MFA
are utilized for the calculation of the loss function, which
supervises the network training. Further details are available
in Section III-D. Next, we provide an in-depth explanation
of the key components of the proposed method, including
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the Second-Order Attention Module in Section III-B and the
Entropy Guided Fusion Module in Section III-C.

B. Second-Order Attention Module

The input sequence Z0 is first mapped into Q, K ,
V ∈ RN×d using different linear transformations, where d
denotes the embedding dimension. The first-order attention
weights that imply low-level feature correlations can be cal-
culated as:

A = so f tmax(
Q × K T

√
d

), A ∈ RN×N , (3)

where 1
√

d
is the scaling factor, and T denotes the transpose

operation.
To learn the higher-order relations between different body

parts or regions, we construct a global graph G = (V, E). Here,
the nodes V encompass attention weights of all class tokens
and patches, while the edges E connect all these attention
weights. The second-order attention module uses the Laplace
matrix in spectral clustering to obtain the contextual infor-
mation of the attention weights using a series of differentiable
operations. Specifically, the second-order attention weights can
be represented as:

W = AT A,W ∈ RN×N , (4)

where wi j =
∑

k aki ak j denotes the similarity of the attention
weights corresponding to the i-th and j-th class tokens or
patches. Therefore, the Laplacian matrix can be formulated as
follows:

L = D − W, (5)

where D denotes the diagonal degree matrix of W . The
straightforward approach to obtain prominent correlations
among attention weights with regard to different class tokens
or patches is to perform singular value decomposition (SVD)
on L . However, the SVD suffers from non-differentiable
and time-consuming drawbacks in network training. Thus,
we propose an approximate and differentiable solution to solve
this problem.

Proposition 1: Let li represent the i-th column vector of L,
The contextual information of the i-th attention weight can be
expressed as:

ei =

√
lT
i li =

√
(
∑
j, j ̸=i

wi j )2 +

∑
j, j ̸=i

w2
i j (6)

≈
√

2(
∑

k

aki −
1
N
(
∑

k

aki )
2). (7)

Proof: According to Cauchy’s Inequality, as wi j > 0, the
following inequality holds:

1
N
(
∑
j, j ̸=i

wi j )
2

≤

∑
j, j ̸=i

w2
i j ≤ (

∑
j, j ̸=i

wi j )
2. (8)

Thus, the upper and lower bounds of ei can be determined by
substituting Eq. 8 into Eq. 6:√

N + 1
N

∑
j, j ̸=i

wi j ≤ ei ≤
√

2
∑
j, j ̸=i

wi j . (9)

For simplicity, we utilized the upper bound of ei as an
approximate formulation to capture contextual information of
the attention weights:

ei =
√

2
∑
j, j ̸=i

wi j

=
√

2
∑

j

wi j −

∑
k

a2
ki

=
√

2(
∑

k

∑
j

aki ak j −

∑
k

a2
ki )

≈
√

2(
∑

k

∑
j

aki ak j −
1
N
(
∑

k

aki )
2). (10)

Since so f tmax() in Eq. 3 leads to
∑

j ak j = 1, we obtain the
approximate solution of ei in Eq. 7.

Accordingly, we can obtain the second-order attention
weights E = {ei |i = 1, 2, . . . , N }. After adjusting the
dimensionality of the second-order attention weights, we add
them to the first-order attention weights, resulting in discrim-
inative pedestrian features from the perspective of low-level
correlations and higher-order relations, respectively:

Fatt = (A + Adaption(sigmoid(E)))× V . (11)

C. Entropy Guided Fusion Module

Generally, the class token serves as a global information
aggregator. Incorporating multiple class tokens is advanta-
geous for capturing diverse semantic information related to
pedestrians. However, simply aggregating the features of mul-
tiple class tokens may lead to the accumulation of redundant
or similar information, thereby limiting the discriminative
feature learning. In real-world scenarios, the diversity in size,
shape, and position of occlusions brings great uncertainty,
which also restricts the feature learning of the unobstructed
human parts. To solve this problem, we introduce informa-
tion entropy to weaken the uncertainty caused by occlusion.
Specifically, given a dataset containing U classes, we denote
the class tokens of the last Transformer Layer as {yi

cls |i =

0, 1, . . . ,M−1}, with yi
cls ∈ R1×R , and yi

cls is then mapped to
a 1 × U vector through linear transform φ(·). Following this,
the softmax function is applied to compute the probability
distribution, denoted as yi , indicating the likelihood of the
class token yi

cls belonging to U classes. The above process
can be formulated as:

yi = so f tmax(φ(yi
cls)). (12)

Consequently, the information entropy value of the class token
yi

cls can be determined by:

si = −

U∑
j

y j
i log(y j

i ), (13)

where y j
i denotes the j-th element in yi .

Accordingly, we obtain the overall information entropy
S = {si |i = 0, 1, . . . ,M − 1}. We argue that a higher
information entropy value of a class token indicates relatively
limited discriminative and deterministic pedestrian features
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have been learned, and vice versa. To obtain class tokens
robust to occlusions, we propose the entropy guided fusion
module. Specifically, the information entropy matrix S is first
normalized as follows:

Snorm =
S − min(S)

max(S)− min(S)
. (14)

Subsequently, the weights of different class tokens are deter-
mined based on the information entropy value. Class tokens
with smaller information entropy values should receive larger
weights, whereas those with larger entropy values should be
assigned smaller weights. The weights for each class token
can be computed as:

Sweight =
1 − Snorm∑

Snorm
. (15)

Finally, the class tokens are fused by weighted summation:

Feg f =

M−1∑
i

yi
cls · Si

weight , (16)

where Si
weight denotes the i-th element in Sweight . The entropy

guided fusion module effectively balances and integrates fea-
tures learned by each class token. By maintaining feature
diversity and richness while avoiding unnecessary feature
redundancy, it produces more comprehensive and complemen-
tary pedestrian features.

D. Objective Function

Person Re-ID is treated as a classification task, thus the
cross-entropy loss is employed for supervised training:

Lce = −

U∑
i=1

pi log( p̂i ), (17)

where p̂i is the predicted label, while pi represents the
ground truth label. To decrease the intra-class distance while
increasing the inter-class distance, we use a triplet loss with
soft-margin function:

Ltr i = log[1 + exp(∥ fa − f p∥
2
2 − ∥ fa − fn∥

2
2)], (18)

where fa refers to the anchor sample; f p is the positive sample
with the same identity as the anchor; fn is the negative sample
with a different identity from the anchor, and ∥·∥2 denotes
L2-norm.

It is worth noting that when computing first-order and
second-order attention within the Transformation Layers,
a multi-head attention strategy can be employed to learn
distinct pedestrian features from different subspaces. To allow
different heads to learn diverse pedestrian features, we impose
an orthogonal loss on the multi-head attention feature map of
the last Transformer Layer A′ as follows:

Lomha = ∥ Â′ Â′
T

− Im∥F , (19)

where Â′ is obtained by performing L2 norm to A′; m
is the number of heads; Im is an m × m identity matrix;
∥·∥F represents the Frobenius norm. Similarly, for the same

purpose, the orthogonal loss is also applied to the class tokens
of the last Transformer Layer:

Lomct = ∥ŷcls ŷT
cls − IM∥F , (20)

where ŷcls is derived by performing L2 norm row-wise to ycls .
Furthermore, we impose a cross-entropy loss on the multilayer
aggregated features. Similar to DPM [55], we introduce an
extra angular margin in softmax function [57] when calculating
the predicted labels:

Lagg = −

U∑
i=1

pi log
eε·cos(θi +b)

eε·cos(θi +b) +
∑U

j=1, j ̸=i eε·cosθ j
, (21)

where θi =< Feg f , ϕ(Fagg)
i >, ϕ denotes the linear trans-

form; b denotes the angular margin and ε is a scaling factor.
Eventually, the overall objective function can be formulated

as follows:

Ltotal =
α

M + 1

M+1∑
i

Li
ce + (1 − α)Lagg +

1
M + 1

M+1∑
i

Li
tr i

+ βLomct +
(1 − β)

M

M∑
j

L j
omha, (22)

where α and β serve as hyper-parameters to balance different
classification losses and orthogonal losses, respectively.

IV. EXPERIMENTS

In this section, we start by introducing the experimental
setups, including the benchmark dataset, evaluation protocols,
and implementation details. Then, a comparative comparison
is conducted between the proposed method and state-of-
the-art methods on both occluded and holistic person ReID
datasets. Finally, we conduct comprehensive ablation studies
and algorithm analysis to demonstrate the effectiveness of the
essential components in our proposed method.

A. Experimental Setups

1) Datasets: We validate our method on occluded and holis-
tic person re-identification datasets. Occluded-DukeMTMC
[20] is derived from DukeMTMC-reID [23], encompassing
15,618 training images with 201 identities, 2,210 query
images with 519 identities, and 17,661 gallery images
with 1,110 identities, where all the query images are
occluded. Occluded-REID [21] contains 100 occluded per-
sons and 100 holistic persons with 200 identities. Two
protocols are employed for this dataset: one using Market-
1501 as the training set and Occluded-REID as the test
set [7], [42], [47], [48], and the other utilizing half of
Occluded-REID for training and the remaining half for testing
[21], [26], [43], [44].

Additionally, Market-1501 [22] comprises 12,936 train-
ing images with 751 identities, 3,368 query images, and
15,913 gallery images with 750 identities. DukeMTMC-reID
[23] consists of 16,522 training images with 702 identities,
2,228 query images, and 17,661 testing images with 702 iden-
tities. CUHK03-NP [24] is divided based on a new testing
protocol [58], including 13,164 images with 1,467 identities,
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of which 767 identities are used for training and the remaining
700 identities for testing. These images are categorized into
manually labeled bounding boxes (Labeled) and automati-
cally detected bounding boxes using a deformable part model
detector [59] (Detected).

2) Evaluation Protocols: Following the standard experi-
mental protocol for person ReID, we employ the Cumulative
Matching Characteristic (CMC) and mean Average Precision
(mAP) as evaluation metrics. The CMC assesses the recogni-
tion accuracy of all query images at various rankings, while
the mAP reflects the average of the mean precision of all
query images, which can comprehensively measure the model
performance.

3) Implementation Details: We adopt the ViT [16] model
pre-trained on the ImageNet as the backbone architecture com-
prising 12 transformer layers. We set the number of patches
N0 to 242, the dimension R to 768, the number of class tokens
M to 5, and the hyper-parameter λ to 3. All input images are
resized to 256×128 and random horizontal flipping, random
cropping, random erasing [60], random grayscale [61], and
padding are applied as data augmentation for training. The
batch size is set to 64, with 16 identities randomly selected
per batch and each identity having 4 images. We use Stochastic
Gradient Descent (SGD) as the optimizer with a momentum
of 0.9, weight decay of 1e-4, an initial learning rate of 0.008,
and apply a cosine learning rate decay strategy. In the objective
function, the hyper-parameter ε and b are set to 30 and 0.5,
respectively. The hyper-parameter α and β are set to 0.5 and
0.9, respectively. All experiments are conducted on a server
with an NVIDIA RTX 4090 GPU.

B. Experimental Results

1) Results on Occluded Datasets: We compare the
proposed method with existing ReID methods on two
occluded datasets: Occluded-DukeMTMC [20] and Occluded-
REID [21]. As shown in Table I and Table II, the comparative
methods consist of 10 methods specially designed for
CNN-based person ReID, independent of supplementary cues:
PCB [8], AFPB [21], FPR [42], Teacher-S [43], IGOAS [44],
QPM [45], NetVLAD-M [26], PRE-Net [10], MHSA-Net [62]
and RTGAT [46],12 methods introducing additional cues
onto CNN or Transformer networks, primarily covering per-
son pose information and semantic parsing: PGFA [20],
PEFB [12], RFCNet [63], HOReID [47], PVPM+Aug [7],
LKWS [48], FRT [15], BPBreID [49], ISP [11], HCGA [14],
MSDPA [50], and Pirt [51], and 6 Transformer-based
approaches: AAformer [40], TransReID [17], PAT [52], DRL-
Net [53], AMG [54], and SCAT [64].

For the Occluded-DukeMTMC dataset, as shown in Table I,
our proposed OAT achieves the best results in terms of
mAP (62.2%), Rank-1 (71.8%), and Rank-10 (87.1%), and
it achieves the second-best results on Rank-5 (83.0%), merely
following behind that of HCGA (83.3%). OAT improves mAP
by 0.5% and Rank-1 by 1.4% compared with the second-best
method MSDPA [50]. Notably, HCGA and MSDPA both
introduce additional cues for network training, while OAT
relies solely on the Transformer architecture and introduces

TABLE I
QUANTITATIVE COMPARISON OF OUR OAT WITH STATE-OF-THE-ART

METHODS ON OCCLUDED-DUKEMTMC (%). THE COMPETITORS
ARE CATEGORIZED INTO THREE TYPES: CNN-BASED, EXTERNAL

CUES-BASED, AND TRANSFORMER-BASED METHODS.
BOLD INDICATES THE BEST RESULTS

TABLE II
QUANTITATIVE COMPARISON OF OUR OAT WITH STATE-OF-THE-ART

METHODS ON OCCLUDED-REID (%). THE COMPARISON REFERS
TO TWO PROTOCOLS. THE FIRST GROUP: METHODS THAT
EMPLOY MARKET-1501 AS THE TRAINING DATASET AND

OCCLUDED-REID AS THE TEST SET. THE SECOND GROUP:
METHODS THAT USE HALF OF THE OCCLUDED-REID

FOR TRAINING AND THE REMAINING HALF FOR
TESTING. BOLD INDICATES THE BEST RESULTS

two novel modules, yielding superior performance. It can also
be observed that the performance of other Transformer-based
methods falls significantly behind our method, demonstrating
the effectiveness of the proposed SOA and EGF modules.

For the Occluded-REID dataset, as shown in Table II, when
adopting Market-1501 as the training set and Occluded-REID
as the test set, OAT achieves the best results in terms of
mAP (78.2%), Rank-1 (82.6%), outperforming the second-best
method MSDPA [50] by 0.7% in both mAP and Rank-1.
Furthermore, when employing half of Occluded-REID for
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TABLE III
QUANTITATIVE COMPARISON OF OUR OAT WITH STATE-OF-THE-ART

METHODS ON MARKET-1501 AND DUKEMTMC-REID (%). THE
FIRST GROUP: HOLISTIC PERSON REID METHODS. THE
SECOND GROUP: OCCLUDED PERSON REID METHODS.

BOLD INDICATES THE BEST RESULTS

training and the remaining half for testing, OAT consistently
outperforms its competitors by a large margin across all
evaluation protocols. It achieves the best performance with an
mAP of 89.3%, a Rank-1 of 94.2%, and a Rank-5 of 97.6%.

The excellent performance of OAT on occluded datasets
demonstrates the effectiveness of the SOA module in estab-
lishing higher-order correlations among different body parts or
regions in pedestrian images. Additionally, the EGF module
effectively mitigates the uncertainty introduced by occlusion
by introducing information entropy.

2) Results on Holistic Datasets: To further validate the
robustness of our method, we also evaluate it on the
holistic datasets, including Market-1501 [22], DukeMTMC-
reID [23], and CUHK03-NP [24]. As shown in Table III and
Table IV, the comparative methods include 12 holistic person
ReID methods: PCB+RPP [8], MGN [31], Auto-ReID [27],
Pyramid [32], DSA-reID [38], PyrAttNet [35], ISP [11], RGA-
SC [37], TransReID [17], HAT [41], AAformer [40], and
NetVLAD-M [26], and 16 state-of-the-art person occluded
ReID methods: PGFA [20], HOReID [47], PAT [52],
IGOAS [44], Pirt [51], PEFB [12], RFCNet [63], MSDPA [50],
FRT [15], BPBreID [49], PRE-Net [10], AMG [54], DRL-
Net [53], HCGA [14], MHSA-Net [62], and SCAT [64].

As indicated in Table III, OAT achieves the best
mAP (89.9%) and Rank-1 (91.2%) on Market-1501 and
DukeMTMC-reID datasets, respectively. While OAT achieves
the second-best mAP and Rank-1 on DukeMTMC-reID and
Market-1501 datasets, it merely slightly falls behind the best

TABLE IV
QUANTITATIVE COMPARISON OF OUR OAT WITH STATE-OF-THE-ART

METHODS ON CUHK03-NP (%). BOLD
INDICATES THE BEST RESULTS

model by a margin of 0.1% and 0.5%, respectively. Notably,
for the CUHK03-NP dataset, it is challenging to train a
stable and effective model due to the limited training samples.
As shown in Table IV, OAT exhibits significant advantages
over its competitors. It achieves the best mAP (81.5%) and
Rank-1 (83.9%) on the Labeled and the best mAP (78.0%) and
Rank-1 (80.6%) on the Detected, surpassing the second-best
model by a margin of 1.5%, 1.3%, 2.5%, and 0.9%,
respectively.

The success on the holistic datasets demonstrates that OAT
can not only alleviate the impact of occlusion but also enhance
the learning of discriminative pedestrian features.

C. Ablation Studies

OAT mainly comprises two novel modules, i.e., the
Second-Order Attention module (SOA) and the Entropy
Guided Fusion module (EGF). To validate the effective-
ness of the components, we conduct ablation experiments
on Occluded-DukeMTMC. As shown in Table V, “EGF:%”
indicates that features learned from multiple class tokens are
directly averaged without incorporating information entropy
to guide feature fusion. “SOA:%” indicates that in the
Transformer Layer, only self-attention (first-order attention) is
utilized to extract feature correlations. It can be observed that
with the addition of these two modules, the performance of the
model is improved. When both the EGF and SOA modules are
removed, the performance drops about 1.5% in mAP and 2.4%
in Rank-1, respectively. Introducing any of them individually
results in performance gains and their collaboration gives the
best performance of the model.

We also provide attention map visualizations to qualitatively
assess the effectiveness of the SOA and EGF modules. From
Fig. 3, it can be observed that while both the first-order and
second-order attention modules can focus on the unobstructed
human body, the latter exhibits larger scope and intensity.
Building on first-order attention, SOA can capture higher-order
correlations between human parts or regions, resulting in more
comprehensive pedestrian features. In addition, as shown in
Fig. 4, simply averaging the multiple class tokens tends to
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TABLE V
ABLATION ANALYSIS OF THE PROPOSED COMPONENTS

ON OCCLUDED-DUKEMTMC (%). BOLD
INDICATES THE BEST RESULTS

TABLE VI
INFERENCE SPEED ON OCCLUDED-DUKEMTMC AND MARKET-1501

Fig. 3. Qualitative comparison of attention map visualizations between
first-order attention and second-order attention. In each group, the 1st image is
the original image, the 2nd image shows the results of the first-order attention
module, and the 3rd image shows the results of the second-order attention
module.

smooth out the attentive features, which inevitably are affected
by occlusions. In contrast, utilizing the entropy-guided fusion
module can highlight the features of visible human body
regions and reduce interference from occlusions. This leads to
attention with a larger scope and intensity on the unobstructed
human body and produces discriminative pedestrian features.

Additionally, we provide the OAT inference speeds (infer-
ence time per image) on the Occluded-DukeMTMC and
Market-1501 datasets. As shown in Table VI, “w/o SOA”
or “w/ SOA” indicates without or with the SOA module,
respectively. We can find that incorporating the SOA module
results in only about a 0.3ms increase in inference time,
while yielding improvements of 0.9% in mAP (61.3% vs
62.2%) and 1.7% in Rank-1 (70.1% vs 71.8%) on Occluded-
DukeMTMC. In summary, the marginal increase in inference
time is outweighed by the notable performance enhancements
with the inclusion of the SOA module.

D. Algorithm Analysis

1) Influence of the Number of Class Tokens: In Fig. 5,
we investigate the impact of varying the number of class
tokens, denoted as M , on the performance of our model using
Occluded-DukeMTMC and CUHK03-NP. M = 1 indicates

Fig. 4. Qualitative comparison of attention map visualizations with diverse
fusion ways for multiple class tokens. In each group, the 1st image is the
original image, the 2nd image shows the results of a simple average of multiple
class tokens, and the 3rd image shows the results of using entropy guided
fusion.

Fig. 5. Ablation analysis of the number of class tokens on
Occluded-DukeMTMC and CUHK03-NP datasets.

that only one class token is used to learn global features, which
manifests relatively poor performance, obtaining 59.7% mAP
and 68.6% Rank-1 respectively on Occluded-DukeMTMC.
The performance of the model exhibits a progressive enhance-
ment as the value of M increases. It reaches its peak
performance when M = 5, achieving 62.2% mAP and 71.8%
Rank-1. This suggests that incorporating multiple class tokens
enables the learning of various pedestrian features. However,
as the value of M further increases, the performance begins
to decline. It is possible that adding too many class tokens
can lead to feature redundancy, which results in increased
difficulty during training, as the model struggles to effectively
differentiate between highly similar class tokens. As a result,
the model’s ability to generalize and discriminate between
different classes diminishes, leading to a decline in overall
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Fig. 6. Ablation analysis of hyper-parameters α and β on Occluded–
DukeMTMC.

TABLE VII
ABLATION ANALYSIS OF THE IMPACT OF EACH LOSS ON

OCCLUDED-DUKEMTMC (%). BOLD INDICATES
THE BEST RESULTS

performance. A similar trend can be observed on CUHK03,
with one exception: the mAP score on CUHK03 Detected is
highest when M = 6. Thus, we choose M = 5 as the default
setting.

2) Influence of hyper-parameters α and β: The objective
function contains two key hyperparameters α and β, which are
utilized to balance different classification losses and different
orthogonal losses, respectively. We conduct experiments on
Occluded-DukeMTMC and show the results in Fig. 6. α = 0
indicates that only the multilayer aggregated features are used
for classification loss, and α = 1 indicates that only the
multiple class tokens are used for classification loss. The per-
formance in both of these cases is not satisfactory. As shown in
Fig. 6(a), by leveraging the complementary effect of these two
classification losses, OAT achieves the optimal performance
when α = 0.5, resulting in 62.2% mAP and 71.8% Rank-
1. We can see a similar trend for parameter β in Fig. 6(b).
Imposing the orthogonal loss on both the multiple class tokens
and the multi-head attention features leads to an improvement
in performance. OAT achieves the peak performance when
β = 0.9.

3) Influence of Different Loss Functions: To thoroughly
investigate the impact of each loss function on the model
performance, we conduct ablation experiments on Occluded-
DukeMTMC. For each loss function, we gradually set its
coefficient to 0 to simulate its removal. As shown in
Table VII, the model performance gradually improves with
the progressive introduction of each loss function. The baseline
model merely employs cross-entropy loss for training, yielding
56.7% mAP and 66.1% Rank-1. Upon integrating the triplet
loss, the performance improves by 2.8% in mAP and 0.9%
in Rank-1. Simultaneous introduction of the orthogonal loss
for learning distinct features among multiple class tokens
and multi-head attention features improves mAP by 1.5%
and Rank-1 by 3.3%. Eventually, incorporating the multi-
layer aggregated features for classification loss further boosts

Fig. 7. Feature correlations between multiple class tokens. (a-b) Training
without/with omct loss.

Fig. 8. Feature correlations between multiple heads. (a-b) Training with-
out/with omha loss.

performance by 1.2% in mAP and 1.5% in Rank-1. This is
because the complementary relationship between multilayer
aggregated features and multiple class tokens enables the
model to capture more discriminative pedestrian features.

To verify the effect of the orthogonal loss more intuitively,
we compare the feature correlations of different class tokens
and heads without and with orthogonal loss. As illustrated
in Fig. 7(a), without using orthogonal loss, there is a high
feature correlation between multiple class tokens, which limits
the diversity of features. Whereas, as shown in Fig. 7(b),
applying orthogonal loss enlarges the dissimilarity of the
features, demonstrating that each class token is capable of
capturing differentiated pedestrian features. Similarly, apply-
ing the orthogonal loss to the multi-head attention features
significantly diminishes the inter-head correlations, as shown
in Fig. 8. In conclusion, the orthogonal loss effectively
enhances diversity between features of multiple class tokens
and multiple heads, enabling the model to acquire richer and
more discriminative pedestrian features.

V. CONCLUSION

In this paper, we propose a novel person ReID method by
incorporating two occlusion-aware modules into Transformer
architecture, named OAT. It does not require handcrafted
partitions or external cues for training, and can deal with
occlusions of diverse types, sizes, etc. The SOA and EGF mod-
ules address occlusion challenges by capturing higher-order
correlations among different body parts or regions, and by
fusing class tokens that are robust to occlusions. Experimental
results demonstrate the efficacy of our proposed method in
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both holistic and occluded person ReID scenarios. Ablation
studies further validate the effectiveness of the component and
other design philosophies.

Although OAT achieves an advanced performance com-
pared with other state-of-the-art algorithms, its performance is
also susceptible to the coefficient of different loss functions.
Besides, the EGF module requires the number of pedestrian
categories in a dataset, which brings difficulties in real-world
scenes. In the future, we will consider optimizing the network
by using adaptive parameter settings.
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