
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Outlier Detection Using Three-Way
Neighborhood Characteristic Regions and

Corresponding Fusion Measurement
Xianyong Zhang, Zhong Yuan, and Duoqian Miao

Abstract—Outliers carry significant information to reflect an anomaly mechanism, so outlier detection facilitates relevant data mining.
In terms of outlier detection, the classical approaches from distances apply to numerical data rather than nominal data, while the recent
methods on basic rough sets deal with nominal data rather than numerical data. Aiming at wide outlier detection on numerical, nominal,
and hybrid data, this paper investigates three-way neighborhood characteristic regions and corresponding fusion measurement to
advance outlier detection. First, neighborhood rough sets are deepened via three-way decision, so they derive three-way neighborhood
structures on model boundaries, inner regions, and characteristic regions. Second, the three-way neighborhood characteristic regions
motivate the information fusion and weight measurement regarding all features, and thus, a multiple neighborhood outlier factor
emerges to establish a new method of outlier detection; furthermore, a relevant outlier detection algorithm (called 3WNCROD) is
designed to comprehensively process numerical, nominal, and mixed data. Finally, the 3WNCROD algorithm is experimentally
validated, and it generally outperforms 13 contrast algorithms to perform better for outlier detection.

Index Terms—Outlier detection, neighborhood rough sets, three-way decision, uncertainty measurement, data mining.
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1 INTRODUCTION

DATA mining underlies knowledge discovery and e-
merging applications. In contrast to most data mining

tasks, outlier detection finds rare data whose behavior is ex-
ceptional when compared with other mass data. As defined
by Hawkins, an outlier is an observation that deviates so
much from other observations to arouse suspicions that it is
generated by a different mechanism [1]. Therefore, outliers
usually adhere to a new perspective or a specific mecha-
nism, and they can become more appealing than normal
instances in data mining. Recently, outlier detection has
been extensively studied [2]–[13]. Its applications include
intrusion detection, image processing, medical treatment,
and public security.

Regarding outlier detection, the traditional distance
methods depend on object measures, and thus, they mainly
apply to numerical data rather than categorical data. For
this issue, some methods based on rough sets have been in-
troduced to handle categorical data [14]–[18]. However, the
classical rough set-based detection methods consider only
the equivalent relation and classification, so they directly
apply to categorical/nominal data (rather than numerical
data). If these rough set methods are utilized for numerical
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data, then discretization is needed; however, the related pro-
cessing usually causes a time increase and information loss.
In the real world, numerical and categorical data are usually
accompanied by their combination type, and the latter con-
tains heterogeneous data. Hybrid data-driven research on
outlier detection is required and challenging; however, its
potential complexity causes only a small number of reports
[19]–[21].

Neighborhood rough sets (NRSs) extend and improve
classical rough sets, and they adopt the neighborhood and
covering to effectively apply to multiple data types. They
have already built a powerful platform for feature selection,
pattern classification, and uncertainty reasoning [22]–[25].
NRSs and their robustness have also been introduced into
outlier detection, especially for numerical and mixed data
[19], [21], [26], [27]. Although NRS-based outlier detection
methods have undergone some gradual development, they
are worth deep exploration and efficient enhancement.

Outlier detection usually resorts to outlier factors; the
corresponding detection measurement depends on the in-
herent characteristic structures of the related concepts. To
promote outlier factors, we investigate structuring features
via three-way decision (3WD). In particular, 3WD addresses
structure cognition and partition processing, and it advo-
cates three-way structuring and actions to effectively com-
plete the trisecting-acting-outcome [28]. 3WD has become
an important methodology for uncertainty measurement
and data processing, thus encouraging popular studies [29]–
[32]. Considering the underlying correlations of structural
characterization and uncertainty measurement, 3WD tech-
nology for structurization and characterization is worth
introducing into outlier detection to pursue development
and achievement; however, there are few related reports.

Aiming at multiple data types (especially mixed data),
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this paper utilizes NRSs to establish a novel approach for
outlier detection based on 3WD. The relevant processes and
contents are presented as follows.

1) Three-way boundaries and three-way inner regions
are proposed in NRSs.

2) Three-way neighborhood characteristic regions are
constructed to motivate the multiple neighborhood
outlier factor (MNOF). The latter generates a de-
tection method, simply called 3WNCROD (three-
way neighborhood characteristic region-based outli-
er detection). A relevant example and corresponding
algorithm are provided.

3) The new detection approach is experimentally com-
pared to 13 existing methods via 10 real outlier
datasets (with 30 outlier data subsets). The superi-
ority of 3WNCROD is eventually validated.

3WNCROD benefits from both the neighborhood extension
and region structuring, so it applies to categorical, numer-
ical, and hybrid data to acquire improvements. Categorical
and numerical data have qualitative and quantitative na-
tures, respectively, while hybrid data have a mixed feature;
fortunately, all data associations of qualitative, quantitative,
and heterogeneous mining can be uniformly realized via
neighborhood construction and granulation. In 3WNCROD
processing, a general measure is utilized to characterize the
object distance regarding categorical, numerical, or mixed
data, and robust neighborhood granulation further facil-
itates outlier detection. Overall, 3WNCROD depends on
systematic three-way neighborhood characteristic regions;
it adopts a regional integration measure: MNOF, which ap-
plies to diverse data. Therefore, 3WNCROD is effective for
the three data detection cases, and its relevant complexity is
related to distance measurement.

This study has the research novelty of neighborhood
rough computation, three-way structuring measurement,
and outlier detection construction; thus, it makes two con-
tributions. In terms of theory, multiple three-way region
structures of NRSs are deeply constructed to accelerate the
feature extraction and outlier measurement. In terms of
applications, a new outlier detection method is effectively
proposed for categorical, numerical, and hybrid data detec-
tion to achieve better performances.

The remainder of this paper is organized as follows.
Section 2 introduces the related work. Section 3 reviews
NRSs. Section 4 studies three-way boundaries and three-
way inner regions of NRSs. Section 5 establishes outlier
detection based on three-way neighborhood characteristic
regions and also provides the relevant example and algo-
rithm. Section 6 conducts data experiments and comparison
analyses. Finally, Section 7 presents the conclusion.

2 RELATED WORK

Recently, outlier detection has attracted much attention from
scholars. Over time, a large number of outlier detection
algorithms have emerged in multiple research areas. In this
section, only some outlier detection work relevant to this
paper is reviewed. More details can be found in some good
surveys, such as overviews [33]–[35] and their references.

Outlier detection first appeared in the statistics field and
then entered the data mining field. It has four traditional
methods: the statistical method [36], proximity approach
[37]–[39], clustering method [40], and neural network-based
method [41]–[43]. The statistical method assures that normal
data objects are generated by a statistical model, and thus,
abnormal points that never obey the model become outliers.
This approach applies to data with known distributions and
simple attributes. To improve the statistical method, the
proximity approach adopts two basic strategies: distance-
based and density-based detection. Moreover, the cluster-
ing method utilizes different clustering methods to exhibit
distinctive effects, while the neural network-based method
adheres to the advancement to generate satisfactory perfor-
mances. Overall, most of these methods implement outlier
detection via deterministic strategies, and corresponding
treatments for uncertain information can be further devel-
oped.

Rough set theory is useful for data mining with impre-
cise, inconsistent, and incomplete information. This uncer-
tainty methodology has been successfully utilized in outlier
detection. For example, Jiang et al. [14] presented a detection
method by adopting rough membership functions; Chen
et al. [15] proposed a granular computing-based detection
approach by relying on roughness granulation. Shaari et
al. [16] studied a new detection method by proposing the
nonreduction of rough sets. Jiang et al. [17] designed a
detection algorithm by combining rough boundary-based
and usual distance-based methods. Albanese et al. [44] used
a new rough set approach to extend outlier detection to
spatiotemporal data. Jiang et al. [18] implemented outlier
detection based on rough approximation accuracy. By sur-
vey, these outlier detection studies all embrace the rough
set theory, but they mainly resort to the equivalent relation
and classified granulation in the classical case. Hence, these
relevant detection treatments directly apply to only nominal
data.

As extension models, NRSs have a robust description
and broad applicability to support outlier detection, espe-
cially for numerical and mixed data mining. Chen et al. [19]
proposed a neighborhood-based outlier detection algorithm
for numerical data. Yuan et al. [21] investigated hybrid data-
driven outlier detection based on neighborhood information
entropy. Goh et al. [26] used NRSs to detect prototype
outliers. Wang and Li [27] designed a detection method
based on a weighted neighborhood information network for
mixed-value datasets.

In this paper, 3WNCROD promotes NRS-based out-
lier detection and pursues good learning performances.
This new method adheres to the uncertainty theory and
3WD structuring to differ from usual detection methods
on deterministic methodologies and NRSs (or rough sets).
Thus, 3WNCROD offers better semantic interpretations of
uncertainty measurement and structuring decision, such as
when comparing neural network-based methods. Regard-
ing the technical contribution, 3WNCROD combines NRSs
and 3WD to contain advanced structures and measures,
so relevant mechanisms bring both the good theoretical
interpretability of uncertainty information processing and
the practical applicability of mixed data learning.
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3 NEIGHBORHOOD ROUGH SETS

Rough set theory provides an effective method for data
mining and knowledge discovery. Its NRS model is recalled
by [45], [46]. As a preparation, the main notations of this
paper are shown in Table 1.

TABLE 1: Main notations of this paper

Symbol Meaning

NRSs Neighborhood rough sets
3WD Three-way decision

3WNCROD The newly proposed method of outlier detection
B Condition attribute subset

HEOM Heterogeneous Euclidean-overlap metric
nB(x), nrB Neighborhood of x, neighborhood relation

X Target concept
POS,NEG,BND Positive and negative regions, boundary

NIB,NOB Neighborhood inner and outer boundaries
NEB,NPB Neighborhood exceptional, principal boundaries

NOM Neighborhood overlap metric
NDF Neighborhood deviation factor
MNOF Multiple neighborhood outlier factor
ωXnr{cj}

(x) Integration weight for outlier factor

ROC AUC Receiver operating characteristic Area under curve
AP Average precision

τF , τχ2 Friedman’s test item
CDα Nemenyi’s test item

Data granulation offers basic knowledge blocks; thus, a
concept can be represented by its double approximations
or three-way classified regions. The granular membership
description for a concept establishes a cognitive mechanism
for outlier detection because outliers closely adhere to a
sort of statistical belongingness for an observed concept. By
virtue of rough set theory, there are some outlier detection
discussions [14]–[21], [44].

Classical rough sets strictly adopt equivalence classes
and their classification, while NRSs flexibly consider neigh-
borhoods and their coverage. NRSs make distance measure-
ment more applicable and are fully utilized for our detection
construction.

An information system implies IS = (U,A, V, f). U =
{x1, x2, · · · , xn} is the finite universe with object x, A is
the finite attribute set with attribute a, V =

⋃
a∈A Va is the

union of domain Va of attribute a, and f : U × A → V
denotes an information function with f(x, a) ∈ Va, ∀x ∈ U ,
∀a ∈ A. The information system can be specialized into
a decision table via A = C ∪ D and C ∩ D = ∅; here,
C = {c1, c2, · · · , cm} = {cj | j = 1, · · · ,m} and D denote
the conditional and decisional attribute sets, respectively.

There are multiple distance types, such as the Minkowski
distance, heterogeneous Euclidean-overlap metric (HEOM),
value difference metric (VDM), and heterogeneous value
difference metric (HVDM) [47]. For a distance function
d : U × U → R+ ∪ {0}, its measurement is usually
constructed by attribute subset B = {cj1 , · · · , cjk} =
{cjh | h = 1, · · · , k} (1 ≤ k ≤ m), and thus, it is rep-
resented by dB . The distance and its threshold induce the
neighborhood system, and the neighborhood radius ε ≥ 0
is next utilized. The neighborhood of object x on subset
B is nB(x) = {y ∈ U | dB(x, y) ≤ ε}, and there are
two matching notions, i.e., neighborhood relation nrB =
{(x, y) ∈ U × U | dB(x, y) ≤ ε} and neighborhood covering
{nB(x)| x ∈ U}. Let NRC = {nrB | B ⊆ C} denote all

neighborhood relations on U . Thus, NIS = (U,NRC , V, f)
constitutes a neighborhood information system for appli-
cations, and it degenerates into the classical information
system if ε = 0. Moreover, a target concept ∅ 6= X ⊆ U ,
which can be a decision class for pattern recognition, is
given to produce structural regions.

Definition 1 ( [45], [46]). The lower and upper approxima-
tions of X on nrB are defined by{

nrB(X) = {x ∈ U | nB(x) ⊆ X},
nrB(X) = {x ∈ U | nB(x) ∩X 6= ∅}.

The positive region, negative region, and boundary of X
on nrB are defined by
POSnrB (X) = {x ∈ U | nB(x) ⊆ X},
NEGnrB (X) = {x ∈ U | nB(x) ∩X = ∅},
BNDnrB (X) = {x ∈ U | nB(x) ∩X,¬X 6= ∅}.

(1)

Dual approximations and three-way regions are basic
notions with clear semantics that can be mutually derived
to exhibit equivalency. The two types of model notions
are illustrated in detail in Example 1. The former notions
focus on the lower and upper bounds to bidirectionally
approximate the central concept. The latter regions highlight
the classified structure around the target pattern. Clearly,
three-way regions are related to 3WD to promote the struc-
turing and certainty/uncertainty. They constitute a universe
partition, as shown in Fig. 1 with degenerate granules. They
represent positive/negative certainty and uncertainty for
concept cognition. In later studies, three-way regions and
their further partition are utilized for outlier detection, and
detection learning usually needs a rational division strategy.

4 THREE-WAY BOUNDARIES AND THREE-WAY IN-
NER REGIONS OF NEIGHBORHOOD ROUGH SETS

The boundary BNDnrB (X) collects such objects that can-
not be precisely classified into concept X (or complement
¬X) via granulation covering {nB(x)| x ∈ U}. The bound-
ary contains the margin objects and uncertainty information,
so it is essentially linked to outlier detection. In fact, outlier
detection aims to determine a small number of objects with
unexpected behaviors or abnormal properties, so it needs
in-depth descriptions, especially from the boundary. In this
section, the boundary is divided into a two-partition first
and a tripartition subsequently; thus, the constructional
three-way boundaries further induce three-way inner re-
gions, which finally underlie our latter outlier detection.

Definition 2. The neighborhood inner and outer boundaries
of X on nrB are defined by{
NIBnrB (X) = {x ∈ X| nB(x) ∩X,¬X 6= ∅},
NOBnrB (X) = {x ∈ ¬X| nB(x) ∩X,¬X 6= ∅}.

(2)

Proposition 1. NIBnrB (X), NOBnrB (X) have properties:

1) NIBnrB (X) = BNDnrB (X) ∩X ⊆ X ,
NOBnrB (X) = BNDnrB (X) ∩ ¬X ⊆ ¬X ;

2) NIBnrB (X) = X − POSnrB (X),
NOBnrB (X) = ¬X −NEGnrB (X);
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3) NIBnrB (X) = {x ∈ X| nB(x) * X},
NOBnrB (X) = {x ∈ ¬X| nB(x) * ¬X}.

BNDnrB (X) includes all elements whose neighbor-
hoods exhibit nonempty intersections with X and ¬X , and
it induces a two-way partition around concept X . Specif-
ically, NIBnrB (X) and NOBnrB (X) classify boundary
BNDnrB (X); they are inside and outside X , respectively.
The two-way boundaries have similar boundary connota-
tions but different concept extensions, and they contain clear
semantics and offer more exact uncertainty descriptions.
They have the basic properties in Proposition 1, as shown in
Fig. 1. Their relevant cases are described in Example 1. The
two boundaries obey the symmetry; the inner NIBnrB (X)
adheres to outlier detection of target X and, thus, is the
focus.
Proposition 2. NIBnrB (X) has the infimum NIBnrC (X),

where ∀B ⊆ C . That is, there exists the monotonicity:
∀B ⊆ C ⇒ NIBnrB (X) ⊇ NIBnrC (X).

Proposition 3. NIBnrB (X) has a two-way classification on
NIBnrC (X), i.e.,{
NIB◦(X) = NIBnrC (X) ⊆ X,
NIB∗nrB (X) = NIBnrB (X)−NIBnrC (X) ⊆ X.

Regarding attribute subsets, constant NIBnrC (X) is in-
cluded in an arbitrary neighborhood inner boundary to sup-
port variational NIBnrB (X). By virtue of NIBnrC (X), the
notion NIBnrB (X) further produces a two-way partition.
NIB◦(X) = NIBnrC (X) corresponds to the infimum of
inner boundaries to express a fixed feature of concept X ,
while NIB∗nrB (X) collects the remaining part. Propositions
1–3 can be directly or further proven, and their correctness
is shown in Fig. 1.

NIBnrC (X) exists in m high-dimensional space, so a
modified feature in low-dimensional space is worth mining
to make a similar but efficient division, especially when
facing complex data. Since the entire attribute set C car-
ries m single attributes with constant properties, the inner
boundaries of all single attributes and their integration can
be considered. Single attributes induce a family of neigh-
borhood inner boundaries: NIBnr{cj}(X) (j = 1, · · · ,m).
These inner boundaries act as constants and concern only
one dimension, so their system information is worth extract-
ing. Next, their intersection integration is adopted.
Definition 3. The neighborhood exceptional boundary of X

is defined as NEB(X) =
⋂m
j=1NIBnr{cj}(X).

NEB(X) utilizes the basic constant NIBnr{cj}(X) and
logical intersection, implying an inclusion relationship:
NEB(X) ⊆ NIBnr{cj}(X) ⊆ X (∀j = 1, · · · ,m). There-
fore, NEB(X) becomes an inherent feature in concept X .
Specifically, the neighborhood exceptional boundary acts as
the common region of all neighborhood inner boundaries
on single attributes, so it represents the abnormality and
becomes the core. This new notion is worth utilizing for
outlier detection. Next, NEB(X) first generates a kind of
new boundary to divide the neighborhood inner boundary,
mainly aiming at arbitrary subset B.
Definition 4. The neighborhood principal boundary of X on

nrB refers to NPBnrB (X) = NIBnrB (X)−NEB(X).

The neighborhood principal boundary acts as the differ-
ence between neighborhood inner and exceptional bound-
aries, so it has the logical difference semantics of the two.
NIBnrB (X) and NEB(X) do not necessarily have an
inclusion relationship, and the noninclusion NIBnrB (X) +
NEB(X) can exist. Thus, the neighborhood exception-
al and principal boundaries help the neighborhood inner
boundary to form a two-way division, i.e., NIBnrB (X) is
classified into NEB(X) ∩ NIBnrB (X) and NPBnrB (X).
In particular, if B = {cj}, then NEB(X) ⊆ NIBnr{cj}(X)

denotes that NEB(X) and NPBnr{cj}(X) completely clas-
sify NPBnr{cj}(X). The degeneration will come into play
in later outlier factors and detection experiments, which
concern only single attributes and relevant integrations.

Universe U

Neighborhood 
principal 
boundary

Positive region

Neighborhood 
exceptional 
boundary

Set X

Boundary

Neighborhood
inner boundary

Negative region

Neighborhood
outer boundary

Three-way 
regions

Three-way 
boundaries

Three-way 
inner regions

Fig. 1: Structural schematic diagram of three-way regions,
three-way boundaries, three-way inner regions, as well as
relevant parts

Thus far, there are three types of boundaries. The bound-
ary BNDnrB (X) is first divided into the neighborhood in-
ner and outer boundaries: NIBnrB (X), NOBnrB (X); fur-
thermore, the former NIBnrB (X) is divided into the ex-
ceptional boundaryNEB(X)(i.e.,NEB(X)∩NIBnrB (X))
and the principal boundary NPBnrB (X). According-
ly, three-way boundaries NEB(X), NPBnrB (X), and
NOBnrB (X) emerge, and they imply uncertainty seman-
tics, concept belongingness, and boundary division. Ex-
cept for the boundaries, we now consider the inner re-
gions inside the concept. Concept X is first divided into
the positive region POSnrB (X) and neighborhood inner
boundary NIBnrB (X), while the latter is further related
to the neighborhood exceptional and principal boundaries:
NEB(X), NPBnrB (X). Accordingly, three-way inner re-
gions POSnrB (X), NEB(X), NPBnrB (X) emerge, and
their semantics and structure can also be clarified by Fig.
1. These features in X become fundamental for our next
construction of outlier factors and detection algorithms.

5 OUTLIER DETECTION BASED ON THREE-WAY
NEIGHBORHOOD CHARACTERISTIC REGIONS

Three-way inner regions are formed above based on NRSs,
and here, they are utilized to produce three-way neighbor-
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hood characteristic regions. Furthermore, three-way neigh-
borhood characteristic regions gain their fusion measure-
ment to motivate outlier detection. Next, the relevant
method, example, and algorithm are stated in three subsec-
tions.

5.1 Basic method of outlier detection
Herein, we propose a basic detection method based on
three-way inner regions, where a restriction x ∈ X is
needed. First, we provide general discussions, including
the three-way neighborhood characteristic regions, devia-
tion/outlier factors, and detection discrimination. Then, we
concretize the distance, weight, and parameter for further
implementation.
Definition 5. Given distance measure distC(x, y) and its

thresholds d1, d2, d3. Three-way neighborhood charac-
teristic regions of x on X are defined by
NEBX(x) = {y ∈ NEB(X)| distC(x, y) ≤ d1},
NPBXnrB (x) = {y ∈ NPBnrB (X)| distC(x, y) ≥ d2},
POSXnrB (x) = {y ∈ POSnrB (X)| distC(x, y) ≥ d3}.

(3)

Eq. (3) concerns an interaction framework of distances
and regions. distC(x, y) represents the distance degree be-
tween objects x and y in concept X , and d1, d2, and d3
limit the outlier features for NEB(X), NPBnrB (X), and
POSnrB (X), respectively. Thus, three-way neighborhood
characteristic regions can be explained by three-way in-
ner regions and underlying distance degrees. 1) Objects in
NEB(X) have the greatest possibility of being outliers, so
NEB(X) is chosen as a positive direction to estimate the
outlier belongingness of object x. By measuring distC , the
greater number of object y in NEB(X), where y has a
shorter distance from object x (i.e., distC(x, y) ≤ d1), will
lead to a greater possibility of x for outliers. 2) Objects in
POSnrB (X) have the least possibility of being outliers, so
POSnrB (X) is chosen as a negative direction to value the
outlier belongingness of object x. The greater number of
object y in POSnrB (X), where y has a greater distance from
object x (i.e., distC(x, y) ≥ d3), will cause a greater outlier
possibility for x. 3) Similarly, objects in NPBnrB (X) have
a moderate possibility of being outliers, and the negative
direction can be chosen because of outlier sparseness. The
greater number of object y in NPBnrB (X), where y has a
longer distance from object x (i.e., distC(x, y) ≥ d2), will
induce a greater outlier possibility for x. In short, when
determining outliers in X , three-way notions NEBX(x),
NPBXnrB (x), POS

X
nrB (x) adopt both the distinctive qual-

itative attitudes for three-way inner regions and different
parametric discriminations for measure distances, so they
become three-way neighborhood characteristic regions for
x’s deviation detection around X . The definition construc-
tion follows the 3WD mechanism [28], and it underlies the
next measurement development based on regional cardi-
nalities. For convenience, d2 < d3 is set when considering
that objects inNPBnrB (X) have a greater outlier possibility
than objects in POSnrB (X); moreover, d1 < d2 is similarly
required due to the greatest outlier possibility of objects in
NEBX(x); hence, in practice, d1 < d2 < d3 can be adopted
for better operability.

Definition 6. The neighborhood deviation factor of x on X
is defined as

NDFXnrB (x)

=
|NEBX(x)|+ |NPBXnrB (x)|+ |POS

X
nrB (x)|

|X|
.

(4)

Deviation factors act as a tool for outlier detection, and
they are usually constructed by traditional distances. In
contrast, the neighborhood deviation factor comes from the
cardinality fusion of three-way neighborhood characteris-
tic regions. Three-way neighborhood characteristic regions
describe the outlier features of x in terms of X’s interior,
and thus, NDFXnrB (x) adopts the ratio between the regional
cardinality sum and concept cardinality. NDFXnrB (x) rep-
resents the likelihood that object x becomes an outlier for
concept X , and its greater value corresponds to the more
maximal deviation. Hence, it becomes a basic measure to
characterize and underlie the next outlier detection.

For deviation factors, NDFXnrB (x) refers to subset B
to become high-dimensional, so concrete attribute cj in
one-dimensional space is worth utilizing for simplicity. By
setting B = {cj} (j ∈ {1, · · · ,m}), multiple and specific
neighborhood deviation factors emerge, i.e., NDFXnr{cj}(x)
(j ∈ {1, · · · ,m}), and they can be systematically integrated
into a discrimination measure.
Definition 7. The multiple neighborhood outlier factor (M-

NOF) of x on X is defined as

MNOFX(x) =
m∑
j=1

NDFXnr{cj}
(x)× ωXnr{cj}(x), (5)

where ωXnr{cj}(x) ∈ [0, 1] (j ∈ {1, · · · ,m}) are weights.

MNOFX(x) adopts the weighted summation to
integrate characteristic constants NDFXnr{cj}

(x) (j ∈
{1, · · · ,m}), and weight ωXnr{cj}

(x) can be empirical-

ly determined to appropriately extract NDFXnr{cj}
(x).

NDFX(x) exhibits systematicness and stability, and it be-
comes our eventual measure for outlier detection. Based
on NDFX(x), we provide a formal outlier definition for
illustration, but our later algorithm design and experiment
evaluation consider only factor values and their sorting.
Definition 8. If MNOFX(x) > µ, then x is viewed as an

outlier on concept X . The set of all outliers is OS(X).

Thus far, we established a new method of outlier de-
tection, i.e., 3WNCROD (three-way neighborhood charac-
teristic region-based outlier detection). The related devel-
opment comprises five parts: 1) three-way inner regions
NEB(X), NPBnrB (X), POSnrB (X), 2) three-way neigh-
borhood characteristic regions NEBX(x), NPBXnrB (x),
POSXnrB (x), 3) neighborhood deviation factor NDFXnrB (x),
4) multiple neighborhood outlier factorMNOFX(x) (based
on the single-attribute integration, where B = {cj} (j =
1, · · · ,m)), and 5) outlier detection MNOFX(x) > µ.
3WNCROD has powerful generalization because its rel-
evant distance, weight, and parameter are general. The
notion concretization includes four parts: 1) neighborhood
distance dB and its radius ε, 2) distance measure distB and
its thresholds d1, d2, d3, 3) weights ωX{cj}(x) (1 ≤ j ≤ m),
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and 4) detection threshold µ. Next, these notions dB , ε,
distB , d1, d2, d3, ωX{cj}(x), and µ are realized or analyzed,
and concrete parameter values will be given in later exam-
ples and experiments.

First, data preprocessing on IS = (U,A, V, f) uses min-
max normalization:

f(xi, cj)←
f(xi, cj)−min{cj}

max{cj}−min{cj}
∈ [0, 1]

(1 ≤ i ≤ n, 1 ≤ j ≤ m).

(6)

Other normalization approaches can be consulted [48], [49].
The neighborhood distance resorts to the heterogeneous

Euclidean-overlap metric (HEOM) [47]:

∀x, y ∈ X,HEOMB(x, y) =

√√√√ k∑
h=1

dcjh (x, y)
2
, (7)

where dcjh (x, y) =

1, if attribute values of x and y
are unknown on attribute cjh ;

0, if cjh is a categorical attribute
and f(x, cjh) = f(y, cjh);

1, if cjh is a categorical attribute
and f(x, cjh) 6= f(y, cjh);

|f(x, cjh)− f(y, cjh)|, if cjh is a numerical attribute.

The single case B = {cj} offers HEOM{cj}(x, y) =
d{cj}(x, y). HEOM can deal with not only numerical data
but also hybrid or complex data, and it also considers
unknown attribute values; hence, HEOM is effective for
extensive outlier detection. Moreover, HEOM is a piece-
wise function that contains a core numerical part on the
Euclidean distance, so other distances can be introduced to
produce more heterogeneous metrics.

Neighborhood radii can be given by expert experience
[19], but this method easily causes more subjectivity and
sensitivity. By the statistical strategy [50], we determine an
adaptive neighborhood threshold on attribute cj :

εcj =

{
0, if cj is a categorical attribute,
std(cj)
λ , if cj is a numerical atttibute.

(8)

In Eq. (8), std(cj) is the standard deviation of attribute
values on numerical cj . λ is a given parameter for radius ad-
justments. 1) The standard deviation represents the degree
of data dispersion, and a smaller value of std(cj) implies
that the data are closer to the average, so the statistics endow
the neighborhood radii with objectivity and reasonability. 2)
λ adjusts neighborhood sizes in terms of data granulation
accuracy, and neighborhood radii with λ < 1, λ = 1, and
λ > 1 are more than, equal to, or less than the standard
deviation of attribute values, respectively.

Next, measure distC (Definition 5) is considered. The tra-
ditional distances cannot process categorical data, while the
classical rough set-based distances easily lose efficiency for
numerical or mixed data. To solve this issue, we define the
neighborhood overlap metric (NOM), which can generate
an effective heterogeneous measure in NRSs.

Definition 9. The neighborhood overlap metric (NOM) of x
and y in concept X is defined as

NOM(x, y) = |{c ∈ C|(x, y) /∈ nr{c}}|. (9)

NOM = (NOM(x, y))|X|×|X| (∀x, y ∈ X) is the related
and symmetrical NOM matrix, and its upper-triangular
form (with zero principal diagonal) is directly used.

Function NOM introduces and improves the basic mea-
sure OM (i.e., the overlap metric) into NRSs to deal with
broader data. The NOM matrix saves all NOM information
to underlie the distance measurement of distC .

Furthermore, the weight coefficient regarding attribute
cj (Definition 7) is realized. The weight determines outlier
factors and detection results, but it tends to be an empirical
function. Through theoretical analyses and practical experi-
ments, the specific weight is constructed by

ωXnr{cj}
(x) =

1

|C|

1 −

√
|n{cj}(x) ∩X|

|X|

 . (10)

This weight setting abides by the basic idea that outlier
detection always considers the minority group in datasets.
Objects in the minority group are more likely to become
outliers, so they should have higher weights. In Eq. (10),
if the objects in both x’s neighborhood and concept X are
few, then x has a small percentage in X to correspond to a
minority group and a high weight.

Finally, the detection parameter µ (Definition 8) and its
case are clarified. In terms of outlier factors of 3WNCROD,
µ denotes the cut threshold, and thus, it can be considered
by expert experience or the actual situation. Fortunately,
parameter µ is not needed in later experiments, and the or-
dering of outlier factors is sufficient for detection estimation.

In summary, 3WNCROD benefits from three-way re-
gion structuring and single-attribute information integra-
tion, while its universality and effectiveness are also related
to the above concretization. Furthermore, there are only
two groups of required parameters, i.e., λ and d1, d2, d3. In
contrast, d1, d2, d3 can be considered for settings, and their
stationarity implies complexity reduction to support main
effect analyses of fundamental neighborhood parameter λ.
By Definition 5 and its explanation, d1 < d2 < d3 is rational;
meanwhile, d1, d2, d3 adhere to the distance distC(x, y), so
their values can be connected with attribute number |C|.
Based on procedural simulations and experimental obser-
vations, we adopt

d1 = |C|/3 < d2 = |C|/2 < d3 = 0.9|C|. (11)

This result is related to the relevant approach and empirical
assignment in [51]. As shown by experiments, d1, d2, d3 may
impact the outlier factor and detection result to different
degrees, but their settings in Eq. (11) can induce satisfying
performances for 3WNCROD improvements.

5.2 Illustrative example of outlier detection
Example 1. 3WNCROD and its basic notions are illustrated
by an example. An information system IS = (U,A, V, f)
with hybrid data is provided on the left of Table 2.

In Table 2, the 5th column concerns categorical data;
the 6th and 7th columns embody numerical data from

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3312108

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on September 07,2023 at 02:11:17 UTC from IEEE Xplore.  Restrictions apply. 



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

TABLE 4: Multiple regions on single attributes

cj POSnr{cj}
(X) NEGnr{cj}

(X) BNDnr{cj}
(X) NOBnr{cj}

(X) NIBnr{cj}
(X) NEB(X) NPBnr{cj}

(X)

c1 {x6} ∅ {x1, · · · , x5} {x3, x4} {x1, x2, x5} {x1} {x2, x5}
c2 {x2, x5, x6} ∅ {x1, x3, x4} {x3, x4} {x1} {x1} ∅
c3 {x6} ∅ {x1, · · · , x5} {x3, x4} {x1, x2, x5} {x1} {x2, x5}

TABLE 2: Initial and standard information systems

U c1 c2 c3 c1 c2 c3
x1 D 4 0.7 D 1/3 4/5
x2 B 7 0.4 B 2/3 1/5
x3 D 1 0.6 D 0 3/5
x4 B 2 0.3 B 1/9 0
x5 B 8 0.5 B 7/9 2/5
x6 C 10 0.8 C 1 1

TABLE 3: Neighborhoods on all single attributes

U c1 c2 c3
x1 {x1, x3} {x1, x2, x3, x4} {x1, x3, x6}
x2 {x2, x4, x5} {x1, x2, x5, x6} {x2, x4, x5}
x3 {x1, x3} {x1, x3, x4} {x1, x3, x5}
x4 {x2, x4, x5} {x1, x3, x4} {x2, x4}
x5 {x2, x4, x5} {x2, x5, x6} {x2, x3, x5}
x6 {x6} {x2, x5, x6} {x1, x6}

standardized Eq. (6), and they produce standard deviation-
s std(c2) ≈ 0.3610, std(c3) ≈ 0.3416. Consider Eq. (8)
and let λ = 1, and then we obtain neighborhood radii
εc1 = 0, εc2 ≈ 0.3610, εc3 ≈ 0.3416. By HEOM (Eq. (7)),
the neighborhood granulation is established, and neighbor-
hoods of single attributes c1, c2, c3 are given in Table 3.

Next, concept X = {x1, x2, x5, x6} is given to illustrate
three-way regions and outlier detection. Multiple regions
of single attributes are given in Table 4, and they offer the
following partitions. 1) Three-way regions POSnr{cj}(X),
NEGnr{cj}(X), BNDnr{cj}

(X) divide universe U . 2)
For boundaries, internal NIBnr{cj}(X) and external
NOBnr{cj}(X) divide the entire BNDnr{cj}

(X); further-
more, exceptional NEB(X) and principal NPBnr{cj}(X)

divide the inner NIBnr{cj}(X). Hence, NEB(X),
NPBnr{cj}(X), and NOBnr{cj}(X) constitute three-
way classified boundaries. 3) POSnr{cj}(X), NEB(X),
NPBnr{cj}(X) constitute three-way inner regions to divide
concept X .

The NOM matrix is computed to yield 0 2 3 2
0 0 2

0 2
0

 .
For Eq. (11), we have d1 = 1, d2 = 1.5, and d3 = 2.7, so
three-way neighborhood characteristic regions (Definition 5)
are obtained. The measure MNOF (Definition 7) with
weights (Eq. (10)) can be calculated. Let MNOF threshold
µ = 0.13, so final outliers (Definition 8) are gained.
The processing of object x1 is offered as a case. 1) For
{c1}, three-way neighborhood characteristic regions
exhibit (NEBX(x1), NPB

X
nr{c1}

(x1), POS
X
nr{c1}

(x1)) =

({x1}, {x2, x5}, ∅), and their cardinalities induce
NDFXnr{c1}

(x1) =
|{x1}|+|{x2,x5}|+|∅|

|X| = 3
4 . Furthermore, we

gain NDFXnr{c2}
(x1) = 2

4 and NDFXnr{c3}
(x1) = 3

4 , so the
factor vector is ( 34 ,

2
4 ,

3
4 ). 2) The weight vector is

(ωXnr{c1}(x1), ω
X
nr{c2}(x1), ω

X
nr{c3}(x1)) =

1
3

(
1−

√
1
4
, 1−

√
2
4
, 1−

√
2
4

)
= ( 1

6
,
√
2−1

3
√
2
,
√
2−1

3
√
2
).

The detection factor concerns MNOFX(x1) = ( 34 ,
2
4 ,

3
4 ) ·

( 16 ,
√
2−1
3
√
2
,
√
2−1
3
√
2
) ≈ 0.2470 > 0.13 = µ, so x1 is an outlier

of X . Similarly, the remaining objects x2, x5, x6 ∈ X are
accompanied by MNOFX(x2) ≈ 0 ≈ MNOFX(x5),
MNOFX(x6) ≈ 0.1321, so we obtain x6 ∈ OS(X) =
{x1, x6}. Outlier factors offer an X-object order: x1 � x6 �
x2 � x5.

Algorithm 1: One-attribute-based three-way inner re-
gions calculation (1A3WIRC)

Input: Information system IS = (U,C, V, f) (with
|U | = n and |C| = m), concept X , and
threshold λ.

Output: Three-way inner regions POSnr{cj}(X),
NEB(X), NPBnr{cj}(X) (j = 1, · · · ,m).

1 NEB(X)← X ;
2 for j ← 1 to m do
3 Determine the covering {n{cj}(x)| x ∈ U};
4 POSnr{cj}(X)← ∅;
5 for i← 1 to n do
6 if nε{cj}(xi) ⊆ X then
7 POSnr{cj}(X)← POSnr{cj}(X) ∪ {xi};
8 end
9 continue;

10 end
11 NIBnr{cj}(X)← X − POSnr{cj}(X);
12 NEB(X)← NEB(X) ∩NIBnr{cj}(X);
13 end
14 for j ← 1 to m do
15 NPBnr{cj}(X)← NIBnr{cj}(X)−NEB(X);
16 end
17 Return POSnr{cj}(X), NEB(X), NPBnr{cj}(X)

(j = 1, · · · ,m).

5.3 Corresponding algorithm of outlier detection
Algorithm 1 calculates the family of three-way inner re-
gions based on single attributes, and three “for” loops are
considered. In the outside loop, Step 3 provides the initial
covering. Steps 5-10 use an inside loop to offer the positive
region, and Step 7 implements the cycle collection. Step 11
uses the basic formula to yield the inner boundary. Step
12 makes the cycle intersection to present the exceptional
boundary. After the two loops, Steps 1–13 obtain the posi-
tive regions POSnr{cj}(X) (j = 1, · · · ,m) and integrated
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Algorithm 2: Three-way neighborhood characteristic
regions-based outlier detection (3WNCROD)

Input: Information system IS = (U,C, V, f) (with
|U | = n and |C| = m), concept X , parameter λ.

Output: Multiple neighborhood outlier factors
MNOFX(x) (x ∈ X).

1 Obtain three-way inner regions POSnr{cj}(X),
NEB(X), NPBnr{cj}(X) (j = 1, · · · ,m) by
Algorithm 1;

2 for x ∈ X do
3 MNOFX(x)← 0;
4 for j ← 1 to m do
5 |NEBX(x)| ← 0, |NPBXnr{cj}(x)| ← 0,

|POSXnr{cj}(x)| ← 0;
6 for y ∈ X do
7 Calculate NOM(x, y);
8 if NOM(x, y) ≤ d1 and y ∈ NEB(X) then
9 |NEBX(x)| ← |NEBX(x)|+ 1;

10 end
11 if NOM(x, y) ≥ d2 and y ∈ NPBnr{cj}(X)

then
12 |NPBXnr{cj}(x)| ← |NPB

X
nr{cj}

(x)|+ 1;
13 end
14 if NOM(x, y) ≥ d3 and y ∈ POSnr{cj}(X)

then
15 |POSXnr{cj}(x)| ← |POS

X
nr{cj}

(x)|+ 1;
16 end
17 end
18 By referring to Eq. (4), NDFXnr{cj}(x) =

|NEBX(x)|+|NPBX
nr{cj}

(x)|+|POSX
nr{cj}

(x)|

|X| ;

19 Assign weight ωXnr{cj}(x)← 1−
√
|n{cj}(x)∩X|

|X| ;

20 According to Eq. (5), MNOFX(x)←
MNOFX(x) + ωXnr{cj}

(x)×NDFXnr{cj}(x);
21 end
22 end
23 Return MNOFX(x) (x ∈ X).

feature NEB(X). The last loop calculates all neighborhood
principle boundaries NPBnr{cj}(X) (j = 1, · · · ,m), and
they are finally returned in Step 17.

Algorithm 2 extracts the outlier factor MONF by three
“for” loops. 1) Step 1 invokes Algorithm 1 and offers three-
inner regions of all single attributes. 2) Steps 6–17 concern
the core loop, and they fix x and cj to count characteristic re-
gional cardinalities on y ∈ X . Specifically, Step 7 calculates
distance NOM(x, y), and Steps 8-16 use three conditional
judgments to extract cardinalities of three-way neighbor-
hood characteristic regions. 3) The middle loop continuous-
ly uses Steps 18 and 19 to calculate factor NDFXnr{cj}(x)

and weight ωXnr{cj}(x). Thus, Step 20 circularly computes

detection factor MNOFX(x) (Eq. (5)). 4) The outside loop
(embracing Steps 2 and 22) mainly moves object x in X . 5)
Finally, Step 23 returns outlier factors of all objects in X .

Now focus on the algorithmic complexity analysis. For

Algorithm 1, Step 3 uses the single-attribute neighborhood
covering (SANC) algorithm proposed by [21], so it has the
time complexity O(n log n). In addition, the frequency of
Steps 2-13 is m, the frequency of Steps 5-10 is n, and the fre-
quency of Steps 14-16 is m, so the total frequency becomes
m× (n× log n+ n) +m. Therefore, the time complexity of
Algorithm 1 is O(mn log n). For Algorithm 2, Step 1 invokes
Algorithm 1 to concern the time complexity O(mn log n),
and its total frequency is m×n× log n+m× |X|2. Accord-
ingly, the time complexity of Algorithm 2 eventually yields
O(mn log n+m|X|2).

By single attributes, Algorithms 1 and 2 focus on the
attribute family and integration, respectively. Their sym-
bols of POS,NEB,NPB correspond to three-way inner
regions and three-way characteristic regions, respectively,
and the latter regions related to Eq. (3) become pivotal for
detection construction. Algorithm 2 invokes Algorithm 1
for three-way integration, and it realizes the 3WNCROD
strategy, thus becoming effective and feasible. A diagram of
the algorithmic framework is depicted in Fig. 2 to helpfully
capture the relevant idea and flow.

6 OUTLIER DETECTION DATA EXPERIMENTS

6.1 Experimental settings

The effectiveness, superiority, and adaptability of 3WN-
CROD are next verified by data experiments and compar-
ison analyses. For this purpose, 3WNCROD is compared
with 13 existing methods of outlier detection, and we uti-
lize 13 algorithmic abbreviations: DIS, RMF, GrC, ITB, BD,
ODGrCR, VOS, POD, WNINOD, MIX, WFRDA, AE, VAE,
which respectively imply the distance (DIS) algorithm [52],
rough membership function (RMF)-based algorithm [14],
granular computing (GrC)-based algorithm [15], informa-
tion theory-based (ITB) algorithm [5], boundary and dis-
tance (BD)-based algorithm [51], outlier detection based on
granular computing and rough set (ODGrCR) [18], virtual
outlier score (VOS) [53], practical outlier detection (POD)
[54], weighted neighborhood information network-based
outlier detection (WNINOD) [27], joint learning framework
for outlier detection in MIXed-type (MIX) data [41], weight-
ed fuzzy-rough density-based anomaly (WFRDA) [55], au-
toencoder (AE) [42], and variational autoencoder (VAE) [43].
Among the 14 algorithms, RMF, GrC, ITB, BD, and ODGrCR
are suitable for nominal data; DIS, VOS, AE, and VAE
are suitable for numerical data; and POD, WNINOD, MIX,
WFRDA, and 3WNCROD are suitable for mixed data.

Experimental datasets are downloaded from relevant
websites of outlier detection 1 2. Specifically, there are 10
public datasets recorded in Table 5, and they have been ex-
tensively utilized for outlier detection [53], [55]–[57], where
the outlier determination follows the random downsam-
pling method [58]. Among them, five datasets are numerical,
two datasets are nominal, and the remaining three are
mixed. Furthermore, they are imported into information
systems ISA, ISC , ISG, ISH , ISL, ISM , ISMa, ISMu, IST ,
and ISW . Some data subsets can be selected as detection
units from each outlier dataset, and this strategy facilitates

1. http://odds.cs.stonybrook.edu
2. https://github.com/BElloney/Outlier-detection
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Fig. 2: Framework diagram of proposed algorithms

TABLE 5: Basic information of experimental data subsets

No. Original dataset Data
subset Selection criteria Number of condition attributes Number

of objects
Number

of outliers
Numeric Nominal

1
Annthyroid

A1 A1 = {x ∈ UA|fA(x, c3) ∈ [0, 0.025]}
6 0

6355 513
2 A2 A2 = {x ∈ UA|fA(x, c4) ∈ [0, 0.12]} 5094 485
3 A3 A3 = {x ∈ UA|fA(x, c5) ∈ [0, 0.1]} 4643 303

4
CreditA plus 42 variant1

C1 C1 = {x ∈ UC |fC(x, c10) =′ f ′}
6 9

307 10
5 C2 C2 = {x ∈ UC |fC(x, c12) =′ f ′} 229 16
6 C3 C3 = {x ∈ UC |fC(x, c13) =′ g′} 375 37

7
German 1 14 variant1

G1 G1 = {x ∈ UG|fG(x, c18) = 1}
7 13

600 9
8 G2 G2 = {x ∈ UG|fG(x, c20) =′ A201′} 680 13
9 G3 G3 = {x ∈ UG|fG(x, c14) =′ A143′} 594 4

10
Heart 2 16 variant1

H1 H1 = {x ∈ UH |fH(x, c2) = 2}
6 7

91 8
11 H2 H2 = {x ∈ UH |fH(x, c6) = 1} 137 10
12 H3 H3 = {x ∈ UH |fH(x, c9) = 1} 131 4

13
Lymphography

L1 L1 = {x ∈ UL|fL(x, c3) =′ no′}
0 18

122 4
14 L2 L2 = {x ∈ UL|fL(x, c2) =′ no′} 66 4
15 L3 L3 = {x ∈ UL|fL(x, c13) =′ yes′ ∨ fL(x, c18) =′ no′} 85 4

16
Mammography

MA1 MA1 = {x ∈ UMA|fMA(x, c4) ∈ [−0.9, 2]}
6 0

10951 204
17 MA2 MA2 = {x ∈ UMA|fMA(x, c5) ∈ [−0.4, 1]} 10098 76
18 MA3 MA3 = {x ∈ UMA|fMA(x, c6) ∈ [−1, 1]} 8263 54

19
Mushroom p 221 variant1

M1 M1 = {x ∈ UM |fM (x, c4) = 2}
0 22

1649 193
20 M2 M2 = {x ∈ UM |fM (x, c7) = 1} 3218 210
21 M3 M3 = {x ∈ UM |fM (x, c7) = 2} 1211 11

22
Musk

MU1 MU1 = {x ∈ UMU |fMU (x, c1) ∈ [28, 60]} 166 0 2963 78
23 MU2 MU2 = {x ∈ UMU |fMU (x, c4) ∈ [−200, 0]} 2348 85
24 MU3 MU3 = {x ∈ UMU |fMU (x, c9) ∈ [−165, 20]} 2260 97

25
Thyroid

T1 T1 = {x ∈ UT |fT (x, c2) ∈ [0, 0.5]}
6 0

3766 87
26 T2 T2 = {x ∈ UT |fT (x, c6) ∈ [0, 0.3]} 3676 93
27 T3 T3 = {x ∈ UT |fT (x, c5) ∈ [0, 0.5]} 3530 83

28
Wdbc M 39 variant1

W1 W1 = {x ∈ UW |fW (x, c4) = 2}
9 0

42 5
29 W2 W2 = {x ∈ UW |fW (x, c3) = 6 ∨ fW (x, c5) = 2} 363 7
30 W3 W3 = {x ∈ UW |fW (x, c1) = 5 ∨ fW (x, c7) = 3} 194 12

experiments and comparisons [18]. Although outlier de-
termination may be a practical problem, our data subsets
consider the outlier settings and use cases in the detection
field [53], [55]–[58], and their relevant information is shown
in Table 5.

The algorithm settings and dataset treatments refer to
corresponding references. For example, the parameter val-
ues of GrC and BD come from the initial settings in [15]
and [51], respectively, and the min-max normalization in

Eq. (6) is uniformly used. Here, some cases are generally
explained. The 3WNCROD parameter λ changes in [0.1, 2]
with step length 0.1. The WFRDA [55] parameter similarly
changes in [0.1, 2] with length 0.1. The WNINOD [27]
parameter varies in [1, 10] with length 1. For DIS [52],
the Euclidean distance is used, and all different nominal
attribute values are replaced with different integer values.
Rough set-based methods RMF, GrC, BD, ODGrCR and
information-theoretical ITB require data discretization, and
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TABLE 6: ROC AUC values of comparison experiments

Data subset DIS RMF GrC ITB BD ODGrCR VOS POD WNINOD MIX WFRDA AE VAE 3WNCROD

A1 0.600 0.471 0.661 0.659 0.315 0.658 0.729 0.672 0.682 0.646 0.674 0.680 0.679 0.732
A2 0.602 0.358 0.655 0.669 0.297 0.660 0.747 0.711 0.696 0.699 0.704 0.682 0.680 0.692
A3 0.545 0.480 0.636 0.619 0.423 0.618 0.744 0.625 0.633 0.612 0.618 0.716 0.693 0.775
C1 0.901 0.982 0.864 0.980 0.975 0.987 0.897 0.591 0.970 0.932 0.978 0.973 0.975 0.990
C2 0.986 0.999 0.995 0.999 0.999 0.999 0.987 0.910 0.988 0.824 0.995 0.979 0.981 0.999
C3 0.977 0.996 0.990 0.995 0.992 0.996 0.978 0.771 0.971 0.934 0.990 0.983 0.983 0.997
G1 0.960 0.980 0.980 0.968 0.031 0.980 0.970 0.537 0.982 0.899 0.984 0.957 0.963 0.987
G2 0.950 0.981 0.975 0.969 0.979 0.979 0.964 0.500 0.981 0.885 0.983 0.950 0.954 0.986
G3 0.947 0.992 0.986 0.978 0.994 0.992 0.981 0.475 0.992 0.977 0.993 0.947 0.953 0.996
H1 0.956 0.949 0.953 0.967 0.955 0.971 0.953 0.811 0.976 0.938 0.985 0.973 0.991 0.989
H2 0.979 0.992 0.982 0.991 0.989 0.991 0.968 0.847 0.996 0.972 0.997 0.985 0.988 0.998
H3 0.967 0.972 0.953 0.963 0.970 0.970 0.990 0.766 0.982 0.951 0.986 0.984 0.990 0.988
L1 1.000 0.998 0.998 0.994 0.998 1.000 0.985 0.636 0.998 0.996 1.000 0.994 0.987 1.000
L2 1.000 0.992 0.992 0.988 1.000 1.000 0.984 0.619 1.000 0.996 1.000 0.996 0.992 1.000
L3 0.997 0.994 1.000 1.000 1.000 1.000 0.985 0.745 0.997 1.000 1.000 1.000 0.997 1.000

MA1 0.847 0.833 0.817 0.816 0.845 0.813 0.803 0.769 0.853 0.812 0.836 0.875 0.874 0.893
MA2 0.745 0.681 0.667 0.668 0.651 0.673 0.672 0.664 0.742 0.720 0.738 0.748 0.752 0.775
MA3 0.744 0.735 0.663 0.752 0.694 0.749 0.840 0.645 0.770 0.729 0.763 0.790 0.783 0.788
M1 0.822 0.937 0.987 0.967 0.999 0.985 0.403 0.798 0.976 0.983 0.991 0.863 0.864 0.985
M2 0.918 0.976 0.962 0.977 0.919 0.983 0.421 0.672 0.969 0.980 0.973 0.916 0.918 0.939
M3 1.000 0.993 0.992 1.000 0.975 1.000 1.000 0.980 0.996 1.000 0.999 0.992 0.993 0.978

MU1 0.883 0.318 0.771 0.897 0.999 0.774 0.697 0.897 0.986 1.000 1.000 1.000 1.000 1.000
MU2 0.856 0.343 0.649 0.764 0.984 0.656 0.674 0.918 0.918 0.785 0.999 0.999 0.999 1.000
MU3 0.791 0.332 0.683 0.714 0.886 0.666 0.650 0.917 0.854 0.753 0.996 0.998 0.998 1.000
TH1 0.853 0.838 0.854 0.824 0.697 0.819 0.975 0.976 0.939 0.934 0.954 0.963 0.963 0.985
TH2 0.869 0.830 0.852 0.838 0.836 0.836 0.953 0.993 0.952 0.950 0.963 0.969 0.968 0.985
TH3 0.878 0.847 0.852 0.836 0.827 0.839 0.961 0.977 0.958 0.961 0.970 0.968 0.967 0.992
W1 1.000 0.984 0.984 0.995 0.995 0.995 0.914 0.749 1.000 1.000 1.000 0.995 0.995 1.000
W2 1.000 0.999 0.999 1.000 0.998 1.000 1.000 0.560 1.000 1.000 1.000 0.998 0.998 1.000
W3 0.989 0.993 0.993 0.995 0.993 0.992 0.987 0.658 0.995 0.992 0.997 0.991 0.991 0.995

Average 0.885 0.826 0.878 0.893 0.841 0.886 0.860 0.746 0.925 0.895 0.936 0.929 0.929 0.948

TABLE 7: AP values of comparison experiments

Data subset DIS RMF GrC ITB BD ODGrCR VOS POD WNINOD MIX WFRDA AE VAE 3WNCROD

A1 0.150 0.076 0.170 0.248 0.054 0.230 0.284 0.201 0.252 0.193 0.272 0.275 0.274 0.437
A2 0.190 0.068 0.192 0.278 0.062 0.243 0.313 0.274 0.330 0.309 0.334 0.343 0.341 0.427
A3 0.075 0.058 0.106 0.130 0.052 0.095 0.209 0.122 0.121 0.096 0.117 0.193 0.167 0.278
C1 0.608 0.825 0.597 0.790 0.705 0.834 0.329 0.424 0.654 0.668 0.689 0.597 0.610 0.800
C2 0.837 0.988 0.914 0.992 0.990 0.984 0.886 0.714 0.879 0.212 0.942 0.721 0.742 0.993
C3 0.826 0.973 0.889 0.971 0.958 0.969 0.867 0.549 0.809 0.453 0.928 0.804 0.808 0.978
G1 0.398 0.374 0.388 0.309 0.009 0.372 0.459 0.031 0.485 0.315 0.402 0.335 0.389 0.561
G2 0.279 0.396 0.359 0.337 0.397 0.371 0.362 0.028 0.479 0.372 0.452 0.278 0.288 0.543
G3 0.148 0.399 0.222 0.243 0.408 0.346 0.352 0.011 0.417 0.360 0.406 0.148 0.152 0.501
H1 0.811 0.774 0.692 0.854 0.762 0.846 0.780 0.238 0.903 0.667 0.900 0.777 0.896 0.931
H2 0.837 0.925 0.887 0.932 0.902 0.919 0.819 0.266 0.967 0.843 0.962 0.763 0.791 0.973
H3 0.681 0.679 0.358 0.541 0.592 0.540 0.861 0.105 0.771 0.641 0.788 0.678 0.793 0.817
L1 1.000 0.950 0.950 0.893 0.950 1.000 0.787 0.067 0.950 0.888 1.000 0.893 0.799 1.000
L2 1.000 0.917 0.917 0.893 1.000 1.000 0.817 0.137 1.000 0.950 1.000 0.950 0.888 1.000
L3 0.950 0.917 1.000 1.000 1.000 1.000 0.759 0.238 0.950 1.000 1.000 1.000 0.950 1.000

MA1 0.073 0.098 0.065 0.094 0.087 0.067 0.165 0.058 0.077 0.052 0.075 0.141 0.141 0.355
MA2 0.027 0.042 0.012 0.028 0.015 0.030 0.076 0.021 0.027 0.015 0.065 0.025 0.025 0.073
MA3 0.024 0.022 0.011 0.149 0.048 0.144 0.181 0.012 0.065 0.024 0.213 0.145 0.149 0.187
M1 0.420 0.684 0.918 0.819 0.988 0.905 0.156 0.278 0.875 0.853 0.933 0.464 0.465 0.920
M2 0.429 0.915 0.893 0.844 0.874 0.920 0.228 0.086 0.907 0.871 0.898 0.416 0.417 0.898
M3 1.000 0.796 0.848 1.000 0.750 0.960 1.000 0.129 0.827 1.000 0.896 0.791 0.797 0.753

MU1 0.130 0.018 0.074 0.113 0.976 0.052 1.000 0.667 0.653 1.000 1.000 1.000 1.000 1.000
MU2 0.117 0.025 0.049 0.067 0.923 0.047 1.000 0.668 0.227 0.073 0.977 0.982 0.982 1.000
MU3 0.088 0.030 0.065 0.067 0.236 0.059 1.000 0.708 0.131 0.075 0.943 0.951 0.948 1.000
TH1 0.091 0.174 0.159 0.363 0.320 0.136 0.600 0.341 0.241 0.161 0.296 0.402 0.397 0.716
TH2 0.196 0.092 0.115 0.426 0.168 0.158 0.328 0.807 0.375 0.334 0.424 0.506 0.499 0.761
TH3 0.168 0.119 0.108 0.425 0.147 0.134 0.339 0.361 0.371 0.331 0.412 0.413 0.409 0.852
W1 1.000 0.925 0.925 0.967 0.967 0.967 0.563 0.527 1.000 1.000 1.000 0.967 0.967 1.000
W2 1.000 0.957 0.938 1.000 0.924 0.982 1.000 0.081 1.000 1.000 1.000 0.874 0.874 1.000
W3 0.864 0.884 0.889 0.941 0.884 0.877 0.832 0.369 0.933 0.910 0.961 0.881 0.881 0.921

Average 0.481 0.503 0.490 0.557 0.572 0.540 0.578 0.284 0.589 0.522 0.676 0.590 0.595 0.756

the discretization intervals concern number 3. The Fuzzy C-
Means (FCM) discretization method [56] is used for datasets
containing numeric attributes. Note that MIX, AE, and VAE
imply neural network-based methods.

These detection algorithms finally output outlier mea-

sures, such as outlier factors. A greater measurement value
implies a higher outlier possibility, and thus, the value
ordering of data samples is usually utilized. Based on algo-
rithmic results, we need scientific indices for performance
estimation and algorithm comparison. Since ROC AUC has
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TABLE 8: Running times of comparison experiments (unit: seconds)

Data subset DIS RMF GrC ITB BD ODGrCR VOS POD WNINOD MIX WFRDA AE VAE 3WNCROD

A1 0.104 2988.470 48.847 1.039 12.845 27.792 267.953 0.956 1409.919 0.646 77.312 19.283 42.090 15.748
A2 0.075 2398.664 25.973 0.704 14.333 17.231 1047.051 0.814 720.456 0.699 37.998 38.429 35.648 19.689
A3 0.049 2186.457 20.660 0.580 12.938 13.722 873.156 0.622 547.306 0.612 28.184 15.041 32.573 18.799
C1 0.001 2.076 0.064 0.008 0.094 0.366 2.970 0.015 0.050 0.932 0.020 3.727 5.035 0.219
C2 0.001 1.539 0.042 0.008 0.086 0.267 1.641 0.010 0.020 0.824 0.010 3.522 4.483 0.084
C3 0.001 2.520 0.102 0.012 0.112 0.937 5.987 0.017 0.079 0.934 0.032 3.979 4.911 0.467
G1 0.001 12.201 0.342 0.034 0.325 3.066 7.416 0.001 0.453 0.899 0.120 4.644 6.140 0.831
G2 0.002 14.004 0.435 0.040 0.355 3.481 23.579 0.029 0.651 0.885 0.162 7.540 6.186 0.398
G3 0.002 12.124 0.339 0.037 0.311 2.913 13.842 0.001 0.457 0.977 0.118 4.909 6.018 0.393
H1 0.001 0.074 0.010 0.002 0.012 0.096 0.067 0.001 0.031 0.938 0.002 3.343 3.998 0.009
H2 0.000 0.109 0.014 0.002 0.015 0.124 0.185 0.001 0.537 0.972 0.004 4.474 4.061 0.012
H3 0.000 0.119 0.014 0.002 0.015 0.121 0.196 0.001 0.018 0.951 0.003 4.857 4.428 0.011
L1 0.000 0.135 0.022 0.003 0.018 0.235 0.168 0.001 0.366 0.996 0.003 3.392 4.125 0.040
L2 0.000 0.066 0.015 0.001 0.012 0.180 0.050 0.001 0.003 0.996 0.001 5.428 3.841 0.011
L3 0.001 0.089 0.017 0.002 0.020 0.204 0.382 0.001 0.004 1.000 0.002 5.801 3.929 0.013

MA1 0.292 28525.475 219.932 3.265 78.064 111.549 4763.525 1.891 7356.592 0.812 873.601 36.074 39.793 45.042
MA2 0.215 30285.588 179.618 2.668 78.844 90.787 4224.372 1.689 5147.417 0.720 765.326 28.005 31.748 61.293
MA3 0.136 26352.883 121.187 1.724 42.370 55.840 886.872 1.008 2890.884 0.729 354.858 26.219 31.378 53.314
M1 0.006 1716.268 4.000 0.172 20.982 94.616 35.113 0.003 13.762 0.983 2.416 7.966 9.868 18.533
M2 0.036 3421.398 25.108 0.937 37.800 335.407 127.146 0.014 333.273 0.980 29.838 12.877 15.721 26.294
M3 0.005 1268.725 1.761 0.089 14.901 34.214 13.557 0.002 5.774 1.000 0.855 6.753 8.640 17.812

MU1 0.059 3152.342 165.241 16.646 169.528 28772.884 138.263 0.329 2015.849 1.000 59.462 18.350 21.225 110.730
MU2 0.042 2457.401 82.942 10.097 119.508 27402.444 82.141 0.138 912.274 0.785 32.760 15.413 17.340 93.271
MU3 0.037 2411.021 75.341 9.660 115.532 24754.673 94.666 0.142 800.720 0.753 31.636 14.717 17.668 101.388
TH1 0.030 1252.493 13.672 1.184 6.367 31.484 152.053 0.354 153.390 0.934 27.168 13.223 15.865 3.940
TH2 0.033 1117.679 12.146 0.396 3.723 27.587 152.539 0.353 140.150 0.950 24.787 13.175 15.992 6.714
TH3 0.041 719.030 11.093 0.383 7.743 23.409 128.135 0.332 125.913 0.961 16.954 13.077 15.182 6.941
W1 0.000 0.268 0.036 0.001 0.079 0.131 0.012 0.003 0.001 1.000 0.001 3.108 3.682 0.064
W2 0.001 2.219 0.131 0.004 0.121 0.774 2.827 0.024 0.437 1.000 0.026 4.334 5.088 0.131
W3 0.001 1.175 0.054 0.002 0.077 0.264 0.558 0.009 0.009 0.992 0.005 3.522 4.206 0.061

Average 0.039 3676.754 33.639 1.657 24.571 2726.893 434.881 0.292 752.560 0.895 78.789 11.506 14.029 20.075

already become a very effective and popular evaluation
indicator for outlier detection [52], [55], [57]–[59], it is used
to evaluate algorithm performances here; moreover, we add
average precision (AP) [58] as an auxiliary index to more
fully complete the algorithmic comparison and assessment.
Greater values of ROC AUC and AP imply better detection
performances for outlier algorithms, and the main case of
ROC AUC will be emphatically analyzed.

6.2 Experimental results

In terms of ROC AUC, the experimental results of 14 al-
gorithms on 10 datasets (with 30 outlier data subsets) are
shown in Table 6, where the bold labels optimal values on
data subsets. Table 6 fully reflects the detection performance
and comparison superiority of 3WNCROD. Clearly, 3WN-
CROD achieves better ROC AUC values in most cases. For
example, on data subset C1, 3WNCROD reaches the optimal
value of 0.990, while the other 13 algorithms exhibit lower
values of 0.901, 0.982, 0.864, 0.980, 0.975, 0.987, 0.897, 0.591,
0.970, 0.932, 0.978, 0.973, and 0.975. From the frequency
statistics, 3WNCROD achieves the best detection result on
22 data subsets, whose proportion is 22/30 ≈ 73.33%; in
contrast, the other 13 algorithms achieve subset numbers of
maximum effects: 5, 0, 1, 3, 3, 5, 3, 1, 3, 5, 7, 2, and 3, cor-
responding to lower percentages of 16.67%, 0.00%, 3.33%,
10.00%, 10.00%, 16.67%, 10.00%, 3.33%, 10.00%, 16.67%,
23.33%, 6.67%, and 10.00%, respectively. Final arithmetic
averages of ROC AUC can better reveal and validate con-
trast performances. The 14 algorithms correspond to 0.885,
0.826, 0.878, 0.893, 0.841, 0.886, 0.860, 0.756, 0.925, 0.895,
0.936, 0.929, 0.929, and 0.948. Hence, 3WNCROD achieves
the optimal value of 0.948, and this value is greater than the
suboptimal 0.936 reached by the recent WFRDA [55]. If con-
cerning only mixed data subsets (C1–C3, G1–G3, H1–H3),

actual algorithms for mixed features may not function well
even in contrast to some other algorithms, but 3WNCROD
never follows this case. Moreover, for AP, the algorithmic
results are recorded in Table 7, and 3WNCROD still obtains
the optimal performance based on similar analyses. For
example, 3WNCROD obtains the optimal average 0.756 to
surpass the suboptimal mean of 0.676 reached by WFRDA.

The running times of all comparison experiments are
reported in Table 8. By Table 8, 3WNCROD has a moder-
ate running time, and its temporal cost is also less than
that of WFRDA. Thus, it is feasible and effective in prac-
tical applications. For 3WNCROD, its experimental time
accords with and validates its theoretical complexity, i.e.,
O(mn log n+m|X|2) of Algorithm 2.

Since these experiments concern three data types, 3WN-
CROD can effectively process categorical, numerical, and
mixed attribute data. It acquires comparatively optimal per-
formances for outlier detection. Note that the effectiveness
and superiority of 3WNCROD are derived by concrete
observations and general analyses from Tables 6, 7, 8. In
the later induction of statistical analysis on ROC AUC,
3 approaches, 3WNCROD, WFRDA, and WNINOD, are
located in the first echelon, while 3WNCROD significantly
outperforms the other 11 contrast algorithms. Therefore,
3WNCROD truly improves multiple existing algorithms,
and its advancement benefits from the neighborhood rough
computation, three-way structuring measurement, and ro-
bust hybrid processing.

6.3 Statistical test analysis
Friedman’s test [60] and Nemenyi’s post hoc test [61] are
adopted here to evaluate the statistical significance, mainly
in terms of the index ROC AUC.

First, the ROC AUC values of each algorithm on all
datasets are sorted from low to high, and the sequence
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numbers are (1, 2, · · · ). If the ROC AUC values of the two
algorithms are the same, the ordinal values are equally
divided. Then, Friedman’s test is used to determine whether
these algorithms have the same performance. Assume we
compare M algorithms on N datasets, and Friedman’s test
is calculated by τF , τχ2 [60], where τF obeys the F distri-
bution with (M − 1) and (M − 1)(N − 1) degrees of free-
dom. If the null hypothesis “all algorithms have the same
performance” is rejected, then the algorithmic performances
are significantly different. At this time, Nemenyi’s post hoc
test is needed to further distinguish these algorithms. Thus,
the critical difference (CD) of the average ordinal value is

calculated by CDα = qα

√
M(M+1)

6N [61], where qα is the
critical value of Tukey’s distribution. Note that Nemenyi’s
test figure intuitively represents the significant differences
between two algorithms or among multiple algorithms.

Our experimental cases involve M = 14, N = 30, and
τF follows 13 and 377 degrees of freedom. According to
Friedman’s test, when α = 0.05, the value 10.0433 of τF
is greater than the critical value 1.7462. Therefore, the null
hypothesis “all algorithms have the same performance” is
rejected, and the detection performances of all outlier algo-
rithms are significantly different.

CD=3.6227

14 13 12 11 10 9 8 7 6 5 4 3 2 1

POD
GrC
RMF
DIS
VOS
MIX
BDITB

ODGrCR
AE

VAE
WNINOD
WFRDA

3WNCROD

Fig. 3: Nemenyi’s test figure on ROC AUC

For significance level α = 0.05, the corresponding crit-
ical distance CD0.05 = 3.6227 is obtained, and Nemeny-
i’s test figure on ROC AUC is shown in Fig. 3. Thus,
3WNCROD is significantly different from 11 algorithms:
DIS, RMF, GrC, ITB, BD, ODGrCR, VOS, POD, MIX, AE,
and VAE; meanwhile, there is no consistent evidences to
indicate 3WNCROD’s significant difference from WFRDA
and WNINOD, but the three algorithms actually exhibit an
optimal ordering: 3WNCROD�WFRDA�WNINOD. From
the statistical perspective, 3WNCROD has the main devel-
opment and specific advantage for outlier detection.

6.4 Parametric sensitivity analysis
Finally, 3WNCROD is the focus of the parameter analyses.
In our experiments, only λ is variable, and it determines
neighborhood radii to impact detection effects. λ-based
change curves of ROC AUC are depicted in Fig. 4, and its
eight subfigures correspond to eight datasets (each one con-
tains three distinctive data subsets). The remaining datasets
Lymphography and Mushroom (with L1–L3 and M1–M3,
respectively) are categorical to never consider λ. Fig. 4 can
uncover the change association between parameter λ and
ROC AUC result, and the corresponding sensitivity.

By Fig. 4, three subset-based ROC AUC lines of each
dataset/subfigure exhibit generally similar trends when λ

increases, so they have roughly coincident data distribu-
tions. For the dataset system, eight subfigures can be clas-
sified into three categories. 1) In subfigures (b) (c) (d) (g),
ROC RUC first rapidly increases and then tends to a sta-
ble maximum. This monotonic phenomenon facilitates the
optimization selection of λ because only the segment point
is basically needed. 2) In subfigures (a) (f) (h), ROC AUC
first rapidly increases, then suddenly decreases, and finally
increases (may reach stable maximums). Although complex
fluctuations emerge, the result optimization tends to the
large parametric value (such as λ = 2). 3) In subfigure
(e), ROC AUC lines become convex, and the vertex reaches
the optimal. In summary, the optimal ROC RUC may be
reached by great λ values, while the latter are multiple
in most datasets; moreover, the optimal may be acquired
by the peak value, such as in Mammography’s MA1-MA3
(subfigure (e)). By the above analyses, most data subsets are
generally sensitive to the parameter change in λ, and thus,
λ is effective for 3WNCROD. λ’s optimization requires in-
depth discussions to further promote 3WNCROD.

7 CONCLUSION

In this paper, an outlier detection strategy – 3WNCROD – is
established via several three-way structures and measures,
mainly based on NRSs and 3WD. First, three-way inner
regions have specific semantics to divide detection set X ,
and they resort to distance measure distC(x, y) to induce
three-way neighborhood characteristic regions. Then, char-
acteristic cardinalities of single attributes are utilized, neigh-
borhood deviation factors NDFXnr{cj}(x) (j = 1, · · · ,m) are
calculated, and they are integrated into the outlier degree
MNOFX(x) via adjustable weight coefficients. Further-
more, MNOF is sorted in decreasing order, and instances
with greater values tend to be outliers. Finally, 3WNCROD
is realized by Algorithm 2 and is validated by examples and
experiments. As a result, 3WNCROD effectively applies to
outlier detection of categorical, numerical, and hybrid data.
Its improvement leads to better performances. 3WNCROD
also has good generalization on measures and parameter-
s. However, 3WNCROD only considers the integration of
neighborhood deviation factors of all single attributes, and
this treatment may cause some measurement limitations.
The 3WNCROD processing time is feasible, but its relevant
optimization is also a new issue.

In the future, 3WNCROD needs in-depth comparisons
with other outlier detection methods, and its scalability is
worth further verification by using larger datasets. Regard-
ing outlier detection, multiple cases in existing studies, such
as unsupervised learning in [2], imperfect data labels in
[3], data streams in [4], large-scale categorical data in [5],
and temporal data in [6], are worth extensively considering
to further develop 3WNCROD. Moreover, 3WNCROD and
its underlying neighborhood structure and measure can be
combined with other uncertainty methodologies (such as
fuzzy sets and soft sets) so that relevant studies come into
play in data mining and knowledge discovery.
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Fig. 4: Variation curve of ROC AUC with parameter λ regarding algorithm 3WNCROD
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