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Multi-label learning (MLL) suffers from the high-dimensional feature space teeming with 
irrelevant and redundant features. To tackle this, several multi-label feature selection (MLFS) 
algorithms have emerged as vital preprocessing steps. Nonetheless, existing MLFS methods 
have their shortcomings. Primarily, while they excel at harnessing label-feature relationships, 
they often struggle to leverage inter-feature information effectively. Secondly, numerous MLFS 
approaches overlook the uncertainty in the boundary domain, despite its critical role in 
identifying high-quality features. To address these issues, this paper introduces a novel MLFS 
algorithm, named VMFS. It innovatively integrates multi-granulation rough sets with three-

way decision, leveraging multi-granularity decision-theoretic rough sets (MGDRS) with variable 
degrees for optimal performance. Initially, we construct coarse decision (RDC), fine decision 
(RDF), and uncertainty decision (RDU) functions for each object based on MGDRS with variable 
degrees. These decision functions then quantify the dependence of attribute subsets, considering 
both deterministic and uncertain aspects. Finally, we employ the dependency to assess attribute 
importance and rank them accordingly. Our proposed method has undergone rigorous evaluation 
on various standard multi-label datasets, demonstrating its superiority. Experimental results 
consistently show that VMFS significantly outperforms other algorithms on most datasets, 
underscoring its effectiveness and reliability in multi-label learning tasks.

1. Introduction

In the traditional machine learning tasks, it is often assumed that each object is given only one category label, which is referred to 
as single-label learning. However, in reality an object may be associated with multiple labels. For example, a patient may be related 
to multiple diseases in medical diagnosis. In video classification, a video may belong to multiple categories, such as horror, action 
and romance. In automatic image annotation, an image can simultaneously have multiple labels, such as blue sky, white clouds and 
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Fig. 1. Images with one object.

green water. Traditional methods can no longer be employed to deal with such multi-semantic objects, which led to the emergence 
of numerous multi-label learning (MLL) algorithms [1–4].

Similar to traditional single-label learning, multi-label learning also suffers from the curse of dimensionality, which not only 
increases the computational complexity, but also increases the difficulty of modelling and decision making. Additionally, the high-

dimensional feature space of multi-label learning also introduces a significant amount of redundant and noisy information, which 
can adversely impact the performance of classifiers. Consequently, in order to improve the efficiency of the multi-label algorithm 
and reduce the impact of redundancy and noise, it is necessary to propose effective methods that can reduce the dimensionality of 
high-dimensional multi-label data.

One way to deal with the high-dimensional feature problems is multi-label feature extraction, the main idea of which is to 
transform the original high-dimensional feature space into a lower-dimensional feature space that preserves as much information 
as possible from the original features. For example, the MDDM algorithm proposed by Zhang [5] utilizes the mapping space and 
subspace for dimensionality reduction, using two strategies, linear kernel and nonlinear kernel, respectively. The LDA algorithm 
proposed by Sun [6] utilizes the idea of problem transformation to convert a multi-label problem into a single-label problem and 
then uses the single-label method for feature reduction. However, the LDA algorithm does not take into account the relationship or 
interdependence between the labels.

Another way to deal with high-dimensional feature spaces is multi-label feature selection (MLFS) [7,8]. Compared with feature 
extraction, feature selection can retain the physical meaning of the features themselves and has perfect interpretability, so it has 
received more extensive attention from researchers. In the field of machine learning, feature selection methods are commonly 
categorized into three types: wrapper [9,10], filter [11,12], and embedded [13] algorithms. As a subfield of machine learning, multi-

label learning similarly adopts these methods to classify multi-label feature selection algorithms. Among them, filter algorithms are 
the most commonly used for the multi-label feature selection due to their relative independence from specific classifiers, their low 
computational effort, and their high generalization capability. The commonly used measures for filter strategies include distance 
measure, dependency measure, mutual information measure, and consistency measure.

Due to the multi-semantic nature of multi-label objects, there is a significant amount of uncertainty or ambiguity in multi-label 
data. Taking Fig. 1 as an example, these two images containing only one object, sharing similar visual features such as texture and 
contour, yet their semantic labels are completely different. The image on the right is labelled as “woman”, while the one on the left 
is labelled as “dog”. Due to the similarity in features, it is easy to confuse them during recognition. Such images with only one label 
are typically referred to as single-label images, which can be seen as a special case of multi-label images. Since single-label images 
generally contain only one object, the recognition is simpler compared to multi-label images. As the number of objects in the images 
increases, the number of semantic labels also increase, making the problem more complex. Furthermore, as illustrated in Fig. 2, the 
scale of objects in the image varies significantly. For instance, individuals positioned far from the camera or small-sized backpacks 
may be prone to misidentification due to limited pixels or insufficient clarity within the image, leading to significant uncertainty 
in the recognition results. In a medical diagnosis, a doctor would base his or her diagnosis on the patient’s symptoms. If a patient 
has vomiting, dizziness, or other symptoms, the doctor may decide that the patient has a cold, heat stroke, high blood pressure, 
or a combination of these. The uncertainty in diagnosis primarily stems from incomplete information regarding the symptoms. It is 
evident that uncertainty or ambiguity is prevalent in multi-label data.

Feature selection has gained wider recognition for its unique advantages, which has prompted scholars to design multi-label 
feature selection algorithms from different perspectives. Zhang et al. [14] introduced MLNB, seeking the optimal features by using 
principal component analysis and genetic algorithm. Lin et al. [15] proposed a norm regularization-based method, which considers 
label correlations and achieves embedded multi-label feature selection through low-dimensional compression. Fan et al. [16] pre-

sented LCIFS, utilizing a manifold framework and a regression model to fit feature space-label distribution relationships. Although 
the above algorithms have achieved some success, there are still great challenges in analyzing uncertainties such as ambiguities or 
2

inconsistencies in multi-label data.
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Fig. 2. Images with diverse objects.

Rough sets theory [17] is an effective tool for dealing with uncertainty problems, which does not require any prior information 
other than the data. It was proposed by Polish scientist Pawlak and is widely applied in single-label feature selection algorithms [18,

19]. Recently, many researchers have also extended rough set theory for MLFS [20–22]. For example, Duan [23] used neighbourhood

rough sets to build upper and lower neighbourhood approximations and proposed an MLFS algorithm based on neighbourhood

rough sets (MNRS). Lin [24] used neighbourhood rough sets to calculate the neighbourhood mutual information between labels 
and features, and proposed an MLFS algorithm based on neighbourhood mutual information which considers uncertainty. Li [25]

proposed an MLFS algorithm based on variable precision rough sets, which can accurately catch the implied uncertainty associated 
with labels. Liang [26] proposed an MLFS algorithm based on optimal granulation selection, which fully considers the uncertainty 
implied by labels. However, in multi-label data there are correlations not only between features and labels, but also between labels. 
Therefore, inter-label correlation needs to be taken into account for feature selection. Xu [27] proposed an MLFS algorithm (MFSFN) 
based on fuzzy neighbourhood rough sets by combining fuzzy sets and neighbourhood rough sets and proposed a hybrid measurement 
tactic by combining fuzzy neighbourhood conditional entropy and fuzzy neighbourhood approximation accuracy. The multi-label 
feature selection algorithm LDRS proposed by Liu [21] integrates label distribution and neighbourhood rough sets to solve the 
problem of significant label differences among instances, achieving excellent performance on both public and real-world datasets. 
Although these rough set-based multi-label feature selection algorithms have achieved some improvements in considering correlation 
and uncertainty, most of them measure the importance of features in a single granularity space. However, there may exist complex 
correlations between features and labels, features and features, or labels and labels in multi-label data, which require a comprehensive 
description through multi-granularity spaces.

In the view of granular computing, the classical rough set theory is established through a single granulation, where the up-

per/lower approximations of the target concepts are approximated via single relations on the universe. However, in some practical 
situations, it is necessary to describe a target concept simultaneously through multiple binary relations on the universe. In order to 
apply rough set theory more widely to practical issues, Qian [28] proposed multi-granulation decision-theoretic rough sets (MGDRS) 
which incorporates three-way decision theory [29] into multi-granulation rough sets and solves the problem by transforming a large 
feature space into multiple smaller granular spaces through a partition-like operation. MGDRS is an effective data modelling theory 
based on multiple granularity spaces. Similar to weakly supervised learning, and especially to superset learning [30,31], it defines 
both optimistic and pessimistic models. The “optimistic” one interprets uncertain data in a way that is most favorable for candidate 
models, resulting in loosely defined upper and lower approximations in the optimistic MGDRS model. Conversely, the “pessimistic” 
one guides model selection with the least favorable interpretation, leading to overly strict upper and lower approximations in the 
pessimistic MGDRS model. Both models exhibit extreme tendencies and struggle to adapt flexibly to the requirements of multi-label 
feature selection.

To enhance the flexibility of MGDRS for MLFS tasks, we introduce a variable degree to the MGDRS model, aiming to strike a 
balance between the pessimistic and optimistic models. Consequently, we propose a variable-degree MGDRS-based MLFS algorithm 
(VMFS) falling under the filter type. The proposed algorithm integrates the concepts of multi-granulation rough sets and three-

way decision, thereby rendering the feature selection process more adaptable and interpretable. In summary, the article’s primary 
contributions can be outlined as follows:

- The fine decision function, the uncertain decision function and the coarse decision function are defined based on the multi-

granulation decision-theoretic rough sets with the variable degree to fully analyze the certain and uncertain information of the 
data.

- The variable degree parameter 𝑣 between pessimistic and optimistic degree of MDGRS was dynamically adjusted to accommodate 
different types of multi-label datasets.

-To quantify the dependency and uncertainty of features on labels for feature selection purposes, we have developed an label 
approximate accuracy function by leveraging the coarse decision function and the fine decision function. During the construction of 
the label approximate accuracy function, we adopt a multi-granularity approach to fully exploit the information encapsulated within 
the features and analyze the correlation information among them.
3

-The proposed MLFS algorithm based on the variable degree MGDRS achieves good results on most datasets.
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2. Preliminaries

2.1. Three-way decision

The three-way decision [29] is a decision-making model that mimics human cognition. In the process of decision-making, people 
make immediate judgements of acceptance or rejection for things that they are sufficiently sure of, while they tend to use delayed 
decision-making for things that they cannot immediately judge. Unlike the traditional binary decision-making framework, three-way 
decision provides three decision outcomes with higher degrees of freedom and fault tolerance.

In a straightforward knowledge representation scheme, a finite set of objects is characterized by a finite set of attributes. This 
scheme can be formally defined using an information table 𝑆 , expressed as a tuple.

𝑆 =
(
𝑈,𝐴𝑡,

{
𝑉𝑎|𝑎 ∈ 𝐴𝑡

}
,
{
𝐼𝑎|𝑎 ∈ 𝐴𝑡

})
, (1)

where 𝑈 is a finite nonempty set of objects, 𝐴𝑡 is a finite nonempty set of attributes, 𝑉𝑎 is a nonempty set of values for an attribute 
𝑎 ∈ 𝐴𝑡, and 𝐼𝑎 ∶ 𝑈 → 𝑉𝑎 is an information or description function. It is assumed that the mapping 𝐼𝑎 is single-valued. In this scenario, 
the value of an object 𝑥 ∈ 𝑈 for an attribute 𝑎 ∈ 𝐴𝑡 is represented by 𝐼𝑎(𝑥).

For any subset of attributes 𝐴 ⊆ 𝐴𝑡, an equivalence relation 𝐼𝑛𝑑(𝐴) on 𝑈 can be defined as follows:

𝑥1 𝐼𝑛𝑑(𝐴) 𝑥2 ⟺ ∀𝑎 ∈ 𝐴[𝐼𝑎(𝑥1) = 𝐼𝑎(𝑥2)]. (2)

In other words, two objects 𝑥1 and 𝑥2 possess identical attribute values for every attribute defined in 𝐴, then they are characterized 
as being indistinguishable with respect to 𝐴. The equivalence class containing object 𝑥 is denoted [𝑥]𝐴 or [𝑥].

The attribute set can be divided into two subsets, namely the set of condition attributes 𝐶 and the set of decision attributes 𝐷, 
denoted as 𝐴𝑡 = 𝐶 ∪𝐷, where 𝐶 and 𝐷 are non-overlapping subsets and 𝐶 ∩𝐷 = ∅. For simplicity, Let 𝜋𝐶 = {𝑐1, 𝑐2, …, 𝑐𝑚} represent 
𝑚 disjoint condition classes defined by the condition attribute set 𝐶 , and 𝜋𝐷 = {𝑑1, 𝑑2, ...𝑑𝑛} represent 𝑛 disjoint decision classes 
defined by the decision attribute set 𝐷.

In the Pawlak[13] approximation space, the object 𝑥 is usually represented by the equivalence class [𝑥]. Since inconsistent data 
often occur in practice, an object [𝑥]𝐴 is usually classified as correctly as possible into the positive region 𝑃𝑂𝑆(𝑋), the boundary 
region 𝐵𝑁𝐷(𝑋), and the negative region 𝑁𝐸𝐺(𝑋), where 𝑋 ⊆ 𝑈 . Based on Bayesian theory and the minimum risk criterion, there 
is a special case where the loss function has to meet certain conditions 𝜉𝑝𝑝 ⩽ 𝜉𝑏𝑝 < 𝜉𝑛𝑝 and 𝜉𝑛𝑛 ⩽ 𝜉𝑏𝑛 < 𝜉𝑝𝑛. Thus, two thresholds and 
can be calculated (0⩽𝛽 < 𝛼⩽1), namely:

𝛼 =
(
𝜉𝑝𝑛 − 𝜉𝑏𝑛

)(
𝜉𝑝𝑛 − 𝜉𝑏𝑛

)
+
(
𝜉𝑏𝑝 − 𝜉𝑝𝑝

) , 𝛽 =
(
𝜉𝑏𝑛 − 𝜉𝑛𝑛

)(
𝜉𝑏𝑛 − 𝜉𝑛𝑛

)
+
(
𝜉𝑛𝑝 − 𝜉𝑏𝑝

) , (3)

where 𝜉𝑝𝑝, 𝜉𝑏𝑝, 𝜉𝑛𝑝, 𝜉𝑛𝑛, 𝜉𝑏𝑛, 𝜉𝑝𝑛 denote the losses incurred for taking actions 𝑃 , 𝐵 and 𝑁 when 𝑥 belong to 𝑋 or not. In the decision 
table 𝑆 , for a decision class 𝑑𝑗 ∈ 𝜋𝐷 , the probabilistic lower approximation set and probabilistic upper approximation set relative to 
are defined as follows:

𝐶 (𝛼,𝛽)(𝑑𝑗 ) =
⋃

𝑥∈𝑈
{𝑥|Pr(𝑑𝑗 |[𝑥]𝐶 ) ⩾ 𝛼}, (4)

𝐶 (𝛼,𝛽)(𝑑𝑗 ) =
⋃

𝑥∈𝑈
{𝑥|Pr(𝑑𝑗 |[𝑥]𝐶 ) > 𝛽}, (5)

Pr
(
𝑑𝑗 |[𝑥]𝐴) = |||𝑑𝑗 ∩ [𝑥]𝐶

|||||[𝑥]𝐶 || , (6)

where Pr
(
𝑑𝑗 |[𝑥]𝐶) denotes the conditional probability that an object 𝑥 belonging to a decision class 𝑑𝑗 . Thus in decision rough set 

model 𝜋𝐷 , the three probability regions can be expressed as:

𝑃𝑂𝑆(𝛼,𝛽) (𝜋𝐷 ∣ 𝜋𝐶

)
=
⋃

𝑥∈𝑈
{𝑥|Pr (𝑑max

(
[𝑥]𝐶

) |[𝑥]𝐶)⩾𝛼}, (7)

𝑁𝐸𝐺(𝛼,𝛽) (𝜋𝐷 ∣ 𝜋𝐶

)
=
⋃

𝑥∈𝑈
{𝑥|Pr (𝑑max

(
[𝑥]𝐶

) |[𝑥]𝐶) ⩽ 𝛽}, (8)

𝐵𝑁𝐷(𝛼,𝛽) (𝜋𝐷 ∣ 𝜋𝐶

)
=
⋃

𝑥∈𝑈

{
𝑥|𝛽 < Pr

(
𝑑max

(
[𝑥]𝐶

) |[𝑥]𝐶) < 𝛼
}
, (9)

where 𝑑max
(
[𝑥]𝐶

)
= argmax𝑑𝑗∈𝜋𝐷

{
|||[𝑥]𝐶∩𝑑𝑗

||||[𝑥]𝐶 | } denotes the most dominant decision class in the equivalence class [𝑥]𝐶 .

The three-way decision has also been widely applied to multi-label learning tasks. For instance, Zhang [32] proposed a multi-label 
classification algorithm based on granular structure using the concept of three-way decision and obtained better classification results 
on several multi-label datasets. Zhao [33] proposed an intuitionistic fuzzy set-based label enhancement algorithm for multi-label 
4

classification by combining three-way decision-making and fuzzy sets, which performs well in terms of accuracy.
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Table 1

Multi-label decision table.

𝐶1 𝐶2 𝐶3 𝐶4 𝑙1 𝑙2 𝑙3

𝑥1 1 2 1 2 1 0 1

𝑥2 2 2 2 3 0 1 0

𝑥3 1 2 1 2 1 0 1

𝑥4 2 3 1 3 1 1 1

𝑥5 2 3 1 3 0 0 1

𝑥6 1 2 2 3 0 0 0

𝑥7 2 3 1 3 1 1 1

𝑥8 1 2 2 1 1 1 0

𝑥9 1 2 2 1 0 0 0

𝑥10 3 2 2 3 1 1 1

𝑥11 1 1 2 2 1 1 0

2.2. Multi-granulation decision-theoretic rough sets

Suppose there is a decision table 𝑆 , 𝐶 =
{
𝐶1,𝐶2,⋯ ,𝐶𝑚

}
is a set of attribute subsets. Then the lower and upper approximations 

of the optimistic MGRDS model of decision class 𝑑𝑗 ∈ 𝜋𝐷 with the attribute subsets 𝐶1, 𝐶2, ⋯ , 𝐶𝑚 can be defined as follows:

𝑚∑
𝑖=1

𝐶𝑖

𝑜,(𝛼,𝛽) (
𝑑𝑗

)
=
⋃

𝑥∈𝑈

{
𝑥|Pr (𝑑𝑗 |[𝑥]𝐶1

)
⩾ 𝛼 ∪⋯Pr

(
𝑑𝑗 |[𝑥]𝐶𝑚

)
⩾ 𝛼

}
, (10)

𝑚∑
𝑖=1

𝐶
𝑜,(𝛼,𝛽)
𝑖

(
𝑑𝑗

)
= 𝑈 −

⋃
𝑥∈𝑈

{
𝑥 ∣ Pr

(
𝑑𝑗 ∣ [𝑥]𝐶1

)
⩽𝛽 ∩⋯Pr

(
𝑑𝑗 ∣ [𝑥]𝐶𝑚

)
⩽𝛽

}
=

⋃
𝑥∈𝑈

{𝑥 ∣ Pr
(
𝑑𝑗 ∣ [𝑥]𝐶1

)
> 𝛽 ∪⋯Pr

(
𝑑𝑗 ∣ [𝑥]𝐶𝑚

)
> 𝛽,

(11)

where 𝛼 and 𝛽 is two thresholds of three-way decision. Then the lower and upper approximations of the pessimistic MGRDS model 
of decision class 𝑑𝑗 ∈ 𝜋𝐷 with the attribute subsets 𝐶1, 𝐶2, ⋯ , 𝐶𝑚 can be defined as follows:

𝑚∑
𝑖=1

𝐶𝑖

𝑝,(𝛼,𝛽) (
𝑑𝑗

)
=
⋃

𝑥∈𝑈

{
𝑥 ∣ Pr

(
𝑑𝑗 |[𝑥]𝐶1

)
⩾ 𝛼 ∩⋯Pr

(
𝑑𝑗 |[𝑥]𝐶𝑚

)
⩾ 𝛼

}
. (12)

𝑚∑
𝑖=1

𝐶
𝑝,(𝑎,𝛽)
𝑖

(
𝑑𝑗

)
= 𝑈 −

⋃
𝑥∈𝑈

{
𝑥|Pr (𝑑𝑗 |[𝑥]𝐶1

)
⩾ 𝛽 ∪⋯Pr

(
𝑑𝑗 |[𝑥]𝐶𝑚

)
⩾ 𝛽

}
=

⋃
𝑥∈𝑈

{
𝑥 ∣ Pr

(
𝑑𝑗 ∣ [𝑥]𝐶1

)
> 𝛽 ∩⋯Pr

(
𝑑𝑗 ∣ [𝑥]𝐶𝑚

)
> 𝛽

}
.

(13)

3. Proposed approaches

In this section, we first analyze the shortcomings of traditional pessimistic and optimistic multi-granulation decision-theoretic 
rough sets in constructing multi-label decision systems. Then, we delve into the construction of a multi-label decision system using 
variable-degree MGDRS, and provide a detailed description of implementing multi-label feature selection based on variable-degree 
MGDRS.

3.1. Description of notations

The multi-label information system can be denoted by a multi-label decision table 𝑆 = (𝑈, 𝐴 = 𝐶 ∪ 𝐿, 𝑉 ), where universe of 
discourse 𝑈 = {𝑥1, 𝑥2, ...𝑥𝑛} is a set of objects, 𝐶 = {𝑐1, 𝑐2, ...𝑐𝑚} represents a feature set and the label set is 𝐿 =

{
𝑙1, 𝑙2,… 𝑙𝑞

}
. For 

any 𝑙 ∈ 𝐿, 𝑙 takes a value between 0 and 1. For any attribute 𝑎∈ 𝐴, whether it is a conditional attribute or a decision attribute, it is 
assumed that the set of all possible values corresponding to 𝑎 is 𝑉𝑎. Then, 𝑉 represents the union of all 𝑉𝑎, denoted by 𝑉 =

⋃
𝑎∈𝐴{𝑉𝑎}.

To simplify the problem, a simple multi-label data decision table is constructed as shown in Table 1, containing a total of 11 
objects, with each object having four attributes and three category labels.

3.2. Multi-label decision function based on pessimistic and optimistic decision-theoretic rough sets

Define 1. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐿, 𝑉 ) be a multi-label decision table, 𝐶 = {𝑐1, 𝑐2, ...𝑐𝑚}, and 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑞}. For any 𝑙𝑖 ∈ 𝐿, an object 
5

belonging to the set of class 𝑙𝑖 is defined as follows:
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𝐸𝑖 =
⋃
𝑥∈𝑈

{
𝑥 ∣ 𝑙𝑖(𝑥) = 1

}
, 𝑙𝑖 ∈ 𝐿, (14)

𝐸 = {𝐸1,𝐸2,… ,𝐸𝑞}, (15)

where 𝑙𝑖(𝑥) = 1 represents 𝑥 having 𝑙𝑖 and 𝑙𝑖(𝑥) = 0 means having no label 𝑙𝑖. Since each label is associated with at least one object 
in MLL, the following relationship can be proven:

𝑞∑
𝑖=𝟏

𝐸𝑖 = 𝑈. (16)

Define 2. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐿, 𝑉 ) be a multi-label decision table, 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑗} is a set of 𝑗 granules, 𝐵𝑘 ⊆ 𝐶 , 𝑘 ∈ {1, ..., 𝑗}. 
The fine decision function 𝑅𝐷𝐹 ◦

{𝛼,𝛽}(𝑥), the coarse decision function 𝑅𝐷𝐶𝑜
(𝛼,𝛽)(𝑥) and the uncertainty decision function 𝑅𝐷𝑈◦

(𝛼,𝛽)(𝑥)
based on the optimistic MGDRS[27] are given as follows:

𝑅𝐷𝐹 ◦
{𝛼,𝛽}(𝑥) =

𝑞⋃
𝑖=1

⋃
𝐵𝑘∈𝐵

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) ≥ 𝛼} =

𝑞⋃
𝑖=1

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵1
) ≥ 𝛼 ∪ ...⋯Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘

) ≥ 𝛼}, (17)

𝑅𝐷𝐶𝑜
(𝛼,𝛽)(𝑥) =

𝑞⋃
𝑖=1

⋃
𝐵𝑘∈𝐵

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) > 𝛽 =

𝑞⋃
𝑖=1

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵1
) > 𝛽 ∪ ...Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘

) > 𝛽}, (18)

𝑅𝐷𝑈◦
(𝛼,𝛽)(𝑥) = 𝑅𝐷𝐹 ◦

(𝛼,𝛽) −𝑅𝐷𝐶◦
(𝛼,𝛽), (19)

Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) =

‖‖‖𝐸𝑖 ∩ [𝑥]𝐵𝑘

‖‖‖‖‖‖[𝑥]𝐵𝑘

‖‖‖ , (20)

where 𝛼 and 𝛽 are two thresholds in the three-way decision that satisfies 𝛼 > 𝛽. Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) represents the conditional probability 

of 𝐸𝑖 under [𝑥]𝐵𝑘
conditions. For each label 𝑙𝑖 in the collection that generated by the coarse decision function 𝑅𝐷𝐶 , there exists 

at least one granule 𝐵𝑘 such that the conditional probability Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) is greater than 𝛽. For each label 𝑙𝑖 in the collection that 

generated by the fine decision function 𝑅𝐷𝐹 , there exists at least one granules 𝐵𝑘 such that the conditional probability Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
)

is greater than or equal to 𝛼. The labels generated by the coarse decision function 𝑅𝐷𝐶 are considered to be potentially related to 
the object 𝑥, while the labels generated by the fine decision function 𝑅𝐷𝐹 are considered to be closely related to the object 𝑥. Those 
labels obtained by the uncertainty decision function 𝑅𝐷𝑈 cannot be determined whether it is related to the object 𝑥 or not.

Define 3. Let 𝑆 = (𝑈, 𝐶 ∪𝐿, 𝑉 ) be a multi-label decision table, 𝐵 = {𝐵1, 𝐵2, ..., 𝐵𝑗} is a set of 𝑗 granules, 𝐵𝑘 ⊆ 𝐶 , 𝑘 ∈ {1, ..., 𝑗}. The 
fine decision function 𝑅𝐷𝐹

𝑝

(𝛼,𝛽)(𝑥), the coarse decision function 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥) and the uncertainty decision function 𝑅𝐷𝑈
𝑝

(𝛼,𝛽)(𝑥) based 
on the pessimistic MGDRS[27] are given as follows:

𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥) =
𝑞⋃

𝑖=1

⋂
𝐵𝑘∈𝐵

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) ≥ 𝛼} =

𝑞⋃
𝑖=1

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵1
) ≥ 𝛼 ∩ ...Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘

) ≥ 𝛼}, (21)

𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥) =
𝑞⋃

𝑖=1

⋂
𝐵𝑘∈𝐵

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) > 𝛽} =

𝑞⋃
𝑖=1

{𝑙𝑖 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵1
) > 𝛽 ∩ ..Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘

) > 𝛽} , (22)

𝑅𝐷𝑈
𝑝

(𝛼,𝛽)(𝑥) = 𝑅𝐷𝐹
𝑝

(𝛼,𝛽) −𝑅𝐷𝐶
𝑝

(𝛼,𝛽), (23)

Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) =

‖‖‖𝐸𝑖 ∩ [𝑥]𝐵𝑘

‖‖‖‖‖‖[𝑥]𝐵𝑘

‖‖‖ . (24)

For each label 𝑙𝑖 in the collection that generated by the coarse decision function 𝑅𝐷𝐶 , the conditional probability Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
)

corresponding to all granules 𝐵𝑘 must be greater than 𝛽. For each label 𝑙𝑖 in the collection that generated by the fine decision function 
𝑅𝐷𝐹 , the conditional probability Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘

) corresponding to all granules 𝐵𝑘 must be greater than 𝛼. Similar to the optimistic 
multi-granulation decision, the labels generated by the coarse decision function 𝑅𝐷𝐶 are considered to maybe have correlation with 
the object 𝑥. The labels generated by the fine decision function 𝑅𝐷𝐹 are considered to have a strong correlation with object 𝑥, while 
the labels generated by the uncertainty decision function 𝑅𝐷𝑈 function cannot determine whether it is related to the object 𝑥 or 
not.

Example 1. According to the multi-label decision table 𝑆 = (𝑈, 𝐶 ∪ 𝐿, 𝑉 ) given in Table 1, the 𝑅𝐷𝐹 function and 𝑅𝐷𝐶 function 
based on optimistic condition and pessimistic condition are calculated as Table 2 shown, where 𝛼 = 0.6, 𝛽 = 0.4.

From the above calculation results, it can be seen that under the optimistic condition, the 𝑅𝐷𝐶 function and the 𝑅𝐷𝐹 function 
generate many values, the decision boundary is not obvious, and the uncertainty cannot be well measured. Under the pessimistic 
6

condition, the 𝑅𝐷𝐶 functions contain so few values, and some 𝑅𝐷𝐹 functions even generate null values. Thus, the optimistic 
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Table 2

The calculation result for Example 1.

Optimistic condition Pessimistic condition

𝑅𝐷𝐶𝑜
(𝛼,𝛽)(𝑥1) = 𝑅𝐷𝐶𝑜(𝑥3) = {𝑙1 , 𝑙2 , 𝑙3} 𝑅𝐷𝐶

𝑝

(𝛼,𝛽)(𝑥1) = 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥3) = {𝑙1}
𝑅𝐷𝐶◦

(𝛼,𝛽)(𝑥2) = 𝑅𝐷𝐶◦(𝑥10) = {𝑙1 , 𝑙2, 𝑙3} 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥2) = 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥10) = {𝑙1, 𝑙2}
𝑅𝐷𝐶𝑜

(𝛼,𝛽)(𝑥4) = 𝑅𝐷𝐶𝑜(𝑥5) = 𝑅𝐷𝐶𝑜(𝑥7) = {𝑙1 , 𝑙2, 𝑙3} 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥4) = 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥5) = 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥7) = {𝑙1 , 𝑙2, 𝑙3}
𝑅𝐷𝐶𝑜

(𝛼,𝛽)(𝑥6) = {𝑙1 , 𝑙2, 𝑙3} 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥6) = {𝑙1}
𝑅𝐷𝐶𝑜

(𝛼,𝛽)(𝑥8) = {𝑙1 , 𝑙2, 𝑙3} 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥8) = {𝑙1}
𝑅𝐷𝐶𝑜

(𝛼,𝛽)(𝑥9) = {𝑙1 , 𝑙2} 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥9) = {𝑙1}
𝑅𝐷𝐶𝑜

(𝛼,𝛽)(𝑥11) = {𝑙1 , 𝑙2 , 𝑙3} 𝑅𝐷𝐶
𝑝

(𝛼,𝛽)(𝑥11) = {𝑙1}
𝑅𝐷𝐹 𝑜

(𝛼,𝛽)(𝑥1) = 𝑅𝐷𝐹 𝑜
(𝛼,𝛽)(𝑥3) = {𝑙1 , 𝑙3} 𝑅𝐷𝐹

𝑝

(𝛼,𝛽)(𝑥1) = 𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥3) = {𝑙1}
𝑅𝐷𝐹 ◦

(𝛼,𝛽)(𝑥2) = 𝑅𝐷𝐹 ◦
(𝛼,𝛽)(𝑥10) = {𝑙1 , 𝑙2, 𝑙3} 𝑅𝐷𝐹

𝑝

(𝛼,𝛽)(𝑥2) = 𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥10) = {}
𝑅𝐷𝐹 ◦

(𝛼,𝛽)(𝑥4) = 𝑅𝐷𝐹 ◦
(𝛼,𝛽)(𝑥5) = 𝑅𝐷𝐹 ◦

(𝛼,𝛽)(𝑥7) = {𝑙1, 𝑙2 , 𝑙3} 𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥4) = 𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥5) = 𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥7) = {𝑙2}
𝑅𝐷𝐹 𝑜

(𝛼,𝛽)(𝑥6) = {𝑙1 , 𝑙2} 𝑅𝐷𝐹 𝑝
(
𝑥6
)
= {}

𝑅𝐷𝐹 𝑜
(𝛼,𝛽)(𝑥8) = {𝑙1 , 𝑙2} 𝑅𝐷𝐹

𝑝

(𝛼,𝛽)(𝑥8) = {}
𝑅𝐷𝐹 𝑜

(𝛼,𝛽)(𝑥9) = {𝑙1 , 𝑙2} 𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥9) = {}
𝑅𝐷𝐹 𝑜

(𝛼,𝛽)(𝑥11) = {𝑙1 , 𝑙2} 𝑅𝐷𝐹
𝑝

(𝛼,𝛽)(𝑥11) = {}

condition is too loose, while the pessimistic condition is too strict. So neither the optimistic MGDRS nor the pessimistic MGDRS can 
effectively characterize the objects in the multi-label decision table accurately.

3.3. Multi-label decision function based on variable-degree multi-granulation decision-theoretic rough sets

Based on the previous section’s discussion, it can be inferred that the conventional approaches of creating decision system via 
pessimistic and optimistic MGDRS have certain limitations. To better construct a multi-label decision system, a variable-degree 
MGDRS is proposed. It enables the decision stringency to vary between pessimistic and optimistic, which can be better adapted to 
different multi-label data.

Define 4. Let 𝑆 = (𝑈, 𝐶 ∪𝐿, 𝑉 ) be a multi-label decision table, 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑗} is a set of 𝑗 granules, 𝐵𝑘 ⊆ 𝐶 , 𝑘 ∈ {1, ..., 𝑗}. The 
coarse decision operator 𝑟1

𝑖
and the fine decision operator 𝑟2

𝑖
are defined as follows:

𝑟1
𝑖
(𝑥) =

𝑗⋃
𝑘=1

{𝐵𝑘 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) > 𝛽},𝐸𝑖 ∈ 𝐸, (25)

𝑟2
𝑖
(𝑥) =

𝑗⋃
𝑘=1

{
𝐵𝑘 ∣ Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘

) ≥ 𝛼

}
,𝐸𝑖 ∈ 𝐸, (26)

𝑃𝑟(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) =

𝐸𝑖

⋂
[𝑥]𝐵𝑘

[𝑥]𝐵𝑘

, (27)

where 𝛼 and 𝛽 represents two thresholds in the three-way decision. 𝑟1
𝑖

represents the set of all granules 𝐵𝑘 that satisfy Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) >

𝛽. 𝑟2
𝑖

represents the set of all granules 𝐵𝑘 that satisfy Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) ≥ 𝛼.

Define 5. Let 𝑆 = (𝑈, 𝐶 ∪𝐿, 𝑉 ) be a multi-label decision table. The coarse decision function 𝑅𝐷𝐶𝜈
(𝛼,𝛽)(𝑥), the fine decision function 

𝑅𝐷𝐹 𝜈
(𝛼,𝛽)(𝑥), and the uncertainty decision function 𝑅𝐷𝑈𝜈

(𝛼,𝛽)(𝑥) are defined as follows:

𝑅𝐷𝐶𝑣
(𝛼,𝛽)(𝑥) =

𝑞⋃
𝑖=1

{𝑙𝑖|𝜌1𝑖 ⩾ 𝑣}, 𝑙𝑖 ∈ 𝐿, (28)

𝑅𝐷𝐹 𝑣
(𝛼,𝛽)(𝑥) =

𝑞⋃
𝑖=1

{𝑙𝑖|𝜌2𝑖 ⩾ 𝑣}, 𝑙𝑖 ∈ 𝐿, (29)

𝑅𝐷𝑈𝜈
(𝛼,𝛽)(𝑥) = 𝑅𝐷𝐶𝜈

(𝛼,𝛽)(𝑥) −𝑅𝐷𝐹 𝜈
(𝛼,𝛽)(𝑥), (30)

𝜌1
𝑖
=

∣ 𝑟1
𝑖
(𝑥) ∣
𝑚

, 𝜌2
𝑖
=

∣ 𝑟2
𝑖
(𝑥) ∣
𝑚

, (31)

where 𝑣 represents the variable degree, 0 ≤ 𝜈 ≤ 1. 𝑚 is the total number of features. 𝜌1
𝑖

denotes the proportion of all granules 
satisfying Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘

) > 𝛽 to all features. 𝜌2
𝑖

represents the proportion of all granules satisfying Pr(𝐸𝑖 ∣ [𝑥]𝐵𝑘
) ≥ 𝛼 to all features.

For any 𝑥 ∈ 𝑈 , the 𝑅𝐷𝐶 function represents the set of all labels that satisfy 𝜌1
𝑖

> 𝜈 and the 𝑅𝐷𝐹 function represents the set of 
7

all labels that satisfy 𝜌2
𝑖

> 𝜈. The 𝑅𝐷𝐹 function is the set of labels that contain a strong correlation with the object 𝑥. The 𝑅𝐷𝐶
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Table 3

The calculation result of Example 2.

𝑣 = 0.25 𝑣 = 0.5

𝑅𝐷𝐶0.25
(𝛼,𝛽)(𝑥1) = {𝑙1 , 𝑙2 , 𝑙3} 𝑅𝐷𝐶0.50

(𝛼,𝛽)(𝑥1) = {𝑙1 , 𝑙2 , 𝑙3}
𝑅𝐷𝐶0.25

(𝛼,𝛽)(𝑥2) = {𝑙1 , 𝑙2 , 𝑙3} 𝑅𝐷𝐶0.50
(𝛼,𝛽)(𝑥2) = {𝑙1 , 𝑙2 , 𝑙3}

𝑅𝐷𝐹 0.25
(𝛼,𝛽)(𝑥1) = {𝑙1, 𝑙2} 𝑅𝐷𝐹

0.50

(𝛼,𝛽)(𝑥1) = {𝑙1}
𝑅𝐷𝐹 0.25

(𝛼,𝛽)(𝑥2) = {𝑙1, 𝑙2 , 𝑙3} 𝑅𝐷𝐹 0.50
(𝛼,𝛽)(𝑥2) = {𝑙2}

𝑣 = 0.75 𝑣 = 1

𝑅𝐷𝐶0.75
(𝛼,𝛽)(𝑥1) = {𝑙1 , 𝑙3} 𝑅𝐷𝐶1

(𝛼,𝛽)(𝑥1) = {𝑙1}
𝑅𝐷𝐶0.75

(𝛼,𝛽)(𝑥2) = {𝑙1 , 𝑙2 , 𝑙3} 𝑅𝐷𝐶1
(𝛼,𝛽)(𝑥2) = {𝑙1 , 𝑙2}

𝑅𝐷𝐹 0.75
(𝛼,𝛽)(𝑥1) = {𝑙1} 𝑅𝐷𝐹 1

(𝛼,𝛽)(𝑥1) = {𝑙1}
𝑅𝐷𝐹 0.75

(𝛼,𝛽)(𝑥2) = {𝑙2} 𝑅𝐷𝐹 1
(𝛼,𝛽)(𝑥2) = {}

function is the set of labels that may correlate with the object 𝑥. The set of labels that is generated by the 𝑅𝐷𝑈 function represents 
the uncertainty that the object 𝑥 has. The labels in this set cannot be determined whether they are necessarily related to the object 
𝑥 or not.

A higher value of 𝑣 indicates a more stringent condition for the decision and a greater degree of pessimism. As the value of 𝑣
increases, the labels generated by the 𝑅𝐷𝐹 function gradually flow into the set generated by the 𝑅𝐷𝑈 function, and the labels 
generated by the 𝑅𝐷𝑈 function flow into the set of irrelevant labels. The model degenerates to an optimistic MGDRS for 𝑣 = 0 and 
to a pessimistic MGDRS for 𝑣 = 𝑗∕𝑚.

In this context, we consider each feature as a granularity space. It is a common approach in constructing granularity spaces, 
where each feature is treated as an independent space, and the different values of the feature represent different states or variations 
of that feature within the data. By modelling each feature as a granularity space, we can better analyze the relationships between 
features. Specifically, if two features are associated with the same label or if they belong to the same 𝑅𝐷𝐶 or 𝑅𝐷𝐹 function, then 
these two features are considered to be correlated.

Example 2. According to the multi-label decision table given in Table 1, we calculate the 𝑅𝐷𝐶 function and the 𝑅𝐷𝐹 function for 
object 𝑥1 and 𝑥2 under different degree 𝑣, and the results are shown as Table 3, where 𝛼 = 0.6, 𝛽 = 0.4.

From Table 3, it can be seen that both the 𝑅𝐷𝐶 function and the 𝑅𝐷𝐹 function show a decreasing tend as the value of 𝑣 increases 
and the retained labels correlate more strongly with the object 𝑥. As the value of 𝑣 increases, for the 𝑅𝐷𝐶 function, the labels need 
to be correlated with more features in order to satisfy the conditions of the 𝑅𝐷𝐶 function, whereas for the 𝑅𝐷𝐹 function, the 
labels need to be strongly correlated with more features in order to satisfy the conditions of the 𝑅𝐷𝐹 function. Therefore, Setting a 
reasonable value for the hyperparameter 𝑣 is the key to the success of the proposed algorithm. A high value of 𝑣 can lead to decision 
condition that is too pessimistic, causing some relevant features to be treated as irrelevant and eliminated, while a low value of 𝑣
can result in overly optimistic decision conditions, causing many redundant features to be selected without achieving the goal of 
dimensionality reduction.

This can also result in the retention of some redundant features if the value of 𝑣 is inappropriate. As the above calculation results 
shown, when 𝑣 is taken as 0.5 or 0.75, it is obvious that both the 𝑅𝐷𝐹 function and 𝑅𝐷𝐶 function contain values, and there are 
obvious boundaries between them, which portray the certainty and uncertainty more clearly. Therefore, the appropriate value of 𝑣
can better characterize each object.

Define 6. Let 𝑆 = (𝑈, 𝐶 ∪𝐿, 𝑉 ) be a multi-label decision table, For an arbitrary 𝑋 ⊆ 𝑈 , we can define the label-upper approximation 
𝑅𝐷𝑃𝐿

𝜈

(𝛼,𝛽)(𝑋), the label-down approximation 𝑅𝐷𝑃𝐿𝜈
(𝛼,𝛽)(𝑋) and the label boundary 𝐵𝐴𝑁𝐷𝜈

(𝛼,𝛽)(𝑋) of 𝑆 as follows:

𝑅𝐷𝑃𝐿
𝜈

(𝛼,𝛽)(𝑋) =
⋃
𝑥∈𝑋

𝑅𝐷𝐶𝜈(𝑥), (32)

𝑅𝐷𝑃𝐿𝜈
(𝑥,𝛽)(𝑋) =

⋂
𝑥∈𝑋

𝑅𝐷𝐹 𝜈(𝑥), (33)

𝐵𝐴𝑁𝐷𝜈
(𝛼,𝛽)(𝑋) = 𝑅𝐷𝑃𝐿

𝜈
(𝑋) −𝑅𝐷𝑃𝐿𝜈(𝑋). (34)

The label-upper approximation is the set of labels that correlate with some of the objects, while the label-down approximation 
is the set of labels that are strongly correlated with all of the objects, and the label boundary is the set of labels that represents the 
uncertainty of the labels between the label-upper approximation and the label-down approximation.

Theorem 1. Let 𝑆 = (𝑈, 𝐶 ∪𝐿, 𝑉 ) be a multi-label decision table, for arbitrary 𝑋 ⊆ 𝑈 and 𝐵 ⊆ 𝐶 , some theorems can be derived as follows:

1. ∀𝑥 ∈ 𝑈, 𝑅𝐷𝐹 𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐶𝜈

(𝛼,𝛽),𝐵(𝑥), 𝑅𝐷𝑈𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐶𝜈

(𝛼,𝛽),𝐵(𝑥).
8

2. ∀𝑥 ∈ 𝑈, 𝑅𝐷𝐶𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐶𝜈

(𝛼,𝛽),𝐶 (𝑥).
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3. ∀𝑥 ∈ 𝑈, 𝑅𝐷𝐹 𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐹 𝜈

(𝛼,𝛽),𝐶 (𝑥).

4. 𝑅𝐷𝑃𝐿𝜈
(𝛼,𝛽),𝐵(𝑋) ≤ 𝑅𝐷𝑃𝐿

𝜈

(𝛼,𝛽),𝐵(𝑋).

5. 𝑅𝐷𝑃𝐿𝜈
(𝛼,𝛽),𝐵(𝜙) = 𝑅𝐷𝑃𝐿

𝜈

(𝛼,𝛽),𝐵(𝜙) = 𝜙.

Proof 1.

1. From the fundamental theorem, it can be concluded that 𝑅𝐷𝐹 𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐶𝜈

(𝛼,𝛽),𝐵(𝑥),𝑅𝐷𝑈𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐶𝜈

(𝛼,𝛽),𝐵(𝑥).
2. Since 𝐵 ⊆ 𝐶 , the attribute set 𝐶 has more features to satisfy the 𝑅𝐷𝐶 function than attribute set 𝐵. Thus, it is proved that 

𝑅𝐷𝐶𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐶𝜈

(𝛼,𝛽),𝐶 (𝑥).
3. The reasoning is similar to that of item 2.

4. According to the previous derivation of 𝑅𝐷𝐹 𝜈
(𝛼,𝛽),𝐵(𝑥) ≤ 𝑅𝐷𝐶𝜈

(𝛼,𝛽),𝐵(𝑥) and the definition of label-upper approximation and 

label-down approximation, it can be proved that 𝑅𝐷𝑃𝐿𝜈
(𝛼,𝛽),𝐵(𝑋) ≤ 𝑅𝐷𝑃𝐿

𝜈

(𝛼,𝛽),𝐵(𝑋).

5. When 𝑋 = 𝜙, it can be proved that 𝑅𝐷𝑃𝐿𝜈
(𝛼,𝛽),𝐵(𝜙) = 𝑅𝐷𝑃𝐿

𝜈

(𝛼,𝛽),𝐵(𝜙) = 𝜙 according to the definition of label-upper approxima-

tion and label-down approximation.

3.4. VMFS: variable-degree MGDRS-based multi-label feature selection

In this subsection we discuss how to use variable-degree multi-granulation decision-theoretic rough sets for MLFS.

Define 7. Let 𝑆 = (𝑈, 𝐶 ∪𝐿, 𝑉 ) be a multi-label decision table, For any feature subset 𝐵, 𝐵 ⊆ 𝐶 , the importance of the feature subset 
𝐵 to all objects is denoted by using label approximate accuracy as follows:

𝐼𝑀𝑃𝐵 =

∑
𝑈 𝑐𝑎𝑟𝑑𝐵

(
𝑅𝐷𝐹 𝜈

𝐵,(𝑥,𝛽)(𝑥)
)
+𝜑(𝐵)∑

𝑈 𝑐𝑎𝑟𝑑𝐵

(
𝑅𝐷𝐶𝜈

𝐵,(𝑥,𝛽)(𝑥)
)
+Φ(𝐵)

, (35)

𝜑(𝐵) =
⎧⎪⎨⎪⎩

𝜆1, ∀𝑥 ∈ 𝑈,
∑
𝑈

𝑐𝑎𝑟𝑑(RDF∨
𝐵,(𝑎,𝜃)(𝑥)) = 0

0, ∃𝑥 ∈ 𝑈,
∑
𝑈

𝑐𝑎𝑟𝑑(RDF∨
𝐵,(𝑎,𝜃)(𝑥)) > 0.

, (36)

Φ(𝐵) =
⎧⎪⎨⎪⎩

𝜆2, ∀𝑥 ∈ 𝑈,
∑
𝑈

𝑐𝑎𝑟𝑑(RDC∨
𝐵,(𝑎,𝜃)(𝑥)) = 0

0, ∃𝑥 ∈ 𝑈,
∑
𝑈

𝑐𝑎𝑟𝑑(RDC∨
𝐵,(𝑎,𝜃)(𝑥)) > 0

, (37)

where 𝜆1 and 𝜆2 are two constants and 𝜆1 ≤ 𝜆2. In this paper, 𝜆1 is set to 0.1 and 𝜆2 is set to 0.11 respectively. 𝑐𝑎𝑟𝑑(∙) is a cardinality 
function representing the number of sets. The label approximation accuracy reflects the dependency and uncertainty of the label set 
𝐿 on the feature subset 𝐵.

Define 8. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐿, 𝑉 ) be a multi-label decision table. For any feature 𝑐 ∈ 𝐶 , the dependency of that attribute denoted as 
follows:

𝑅(𝑐) = 𝐼𝑀𝑃𝐶 − 𝐼𝑀𝑃𝐶−{𝑐}. (38)

If 𝑅(𝑐) > 0, it means that the deletion of feature 𝑐 would lead to the loss of strong relation information between objects and 
labels within the 𝑅𝐷𝐹 function, so the feature 𝑐 should be retained. If 𝑅(𝑐) < 0, it means that removing of feature 𝑐 would result 
in the loss of the relation information between objects and labels within the 𝑅𝐷𝑈 function, the feature 𝑐 should also be kept. 
Whether there is information loss in 𝑅𝐷𝑈 or 𝑅𝐷𝐹 functions, the remaining subset of features still cannot accurately induce the 
equivalence relationships within the multi-label data, resulting in the inability to select useful features. Consequently, features that 
satisfy |𝑅(𝑐)| > 0 are retained.

The algorithm of multi-label feature selection based on variable-degree MGDRS is denoted as Algorithm 1. This algorithm can 
be divided into two primary phases. In the first phase, it calculates the dependencies between different features. Then, in the 
subsequent phase, the features which fulfil the specific criteria are selected and merged into the selected feature set. The time 
complexity of the first phase is 𝑂(|𝑈 | ∙ |𝐶| ∙ |𝐿|). For the second phase, it is 𝑂(|𝐶|). So, the overall time complexity of the algorithm 
9

is 𝑂(|𝑈 | ∙ |𝐶| ∙ |𝐿| + |𝐶|).
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Algorithm 1: Multi-label feature selection based on variable-degree MGDRS(VMFS).

Input: 𝛼, 𝛽, 𝑣, 𝑆 = (𝑈, 𝐶 ∪𝐿, 𝑉 ). //𝛼 and 𝛽 are two thresholds for three-way decisions. 𝑣 is a variable degree. //𝑆 is a multi-label decision table

Output: 𝑟𝑒𝑑𝑢𝑐𝑡. //𝑟𝑒𝑑𝑢𝑐𝑡 is the result of feature selection

Step 1: //compute the dependency of each 𝑐 ∈ 𝐶

compute 𝐼𝑀𝑃𝐶 =
∑

𝑈 𝑐𝑎𝑟𝑑𝐶

(
𝑅𝐷𝐹 𝜈

𝐶,(𝑥,𝛽) (𝑥)
)
+𝜑(𝐶)∑

𝑈 𝑐𝑎𝑟𝑑𝐶

(
𝑅𝐷𝐶𝜈

𝐶,(𝑥,𝛽) (𝑥)
)
+Φ(𝐶)

;

foreach 𝑐 in 𝐶 do

compute 𝐼𝑀𝑃𝐶−{𝑐} =
∑

𝑈 𝑐𝑎𝑟𝑑𝐶−{𝑐}

(
𝑅𝐷𝐹 𝜈

𝐶−{𝑐},(𝑥,𝛽) (𝑥)
)
+𝜑(𝐶−{𝑐})∑

𝑈 𝑐𝑎𝑟𝑑𝐶−{𝑐}

(
𝑅𝐷𝐶𝜈

𝐶−{𝑐},(𝑥,𝛽) (𝑥)
)
+Φ(𝐶−{𝑐})

;

compute 𝑅(𝑐) = 𝐼𝑀𝑃𝐶 − 𝐼𝑀𝑃𝐶−{𝑐} ;

Step 2: //Calculate the 𝑟𝑒𝑑𝑢𝑐𝑡 obtained from feature selection

𝑟𝑒𝑑𝑢𝑐𝑡 = 𝜙;

foreach 𝑐 in 𝐶 do

if |𝑅(𝑐)| > 0 then

𝑟𝑒𝑑𝑢𝑐𝑡
⋃

𝑐 → 𝑟𝑒𝑑𝑢𝑐𝑡;

return 𝑟𝑒𝑑𝑢𝑐𝑡;

Table 4

Multi-label datasets.

Name Instances Attribute Label Train Test

emotion 592 72 6 391 202

birds 645 260 19 322 323

yeast 2417 103 14 1499 918

CHD_49 555 68 6 333 222

CAL500 502 59 174 251 251

flag 194 19 7 129 65

image 2000 294 5 1000 1000

4. Experiments

4.1. Experimental preparation

In order to validate the effectiveness of the proposed algorithm, experiments were conducted on six multi-label datasets from 
diverse fields, all of which could be obtained from the Mulan Library, and their details are shown in Table 4.

The 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 dataset is a small collection of music that categorises the emotions expressed by music according to the Tellegen-

Watson-Clark emotion model. The 𝑏𝑖𝑟𝑑 dataset aims to identify different bird species. The 𝑦𝑒𝑎𝑠𝑡 dataset comprises microarray 
expression and phylogenetic profiles for 2417 yeast genes, and each gene is labelled based on its functional category. The 𝐶𝐻𝐷_49
dataset contains information on coronary heart disease from traditional Chinese medicine, with 49 features filtered and selected 
by experts. The 𝐶𝐴𝐿500 dataset involves 502 songs annotated by the annotators according to various semantic categories such as 
instrumentation, vocal characteristics, genres, emotions, acoustic quality, etc., with a total of 174 labels. The 𝑓𝑙𝑎𝑔 dataset focuses on 
the flags of various countries and related information with the objective of predicting certain attributes. The 𝑖𝑚𝑎𝑔𝑒 dataset contains 
2000 images with 294 features extracted by experts and a total of five possible category labels.

Five evaluation metrics [34] for multi-label algorithms are employed for the experiments, namely Average Precision, Hamming 
Loss, Coverage, One-error and Ranking Loss. Let 𝑇 = {(𝑥𝑖, 𝑌 ∗

𝑖
) ∣ 1 < 𝑖 < 𝑛} is a testing set and 𝑦𝑖 = {𝑦𝑖1, 𝑦𝑖2, … 𝑦𝑖𝑞} represents the label 

matrix of the predicted results for each object 𝑥𝑖. 𝑦𝑖𝑗 is the 𝑗th label of the 𝑖th instance. If 𝑦𝑖𝑗 = 1, it means that the category label 
𝑗 of object 𝑖 is positive, while if 𝑦𝑖𝑗 = 0, it means that the category label 𝑗 of object 𝑖 is negative. All multi-label evaluation metrics 
appearing in this paper are represented as follows:

Average Precision (AP): This metric evaluates situations where the category labels appearing before the relevant labels in the 
sorted sequence of category labels for a particular are still considered relevant.

𝐴𝑃 = 1
𝑛

𝑛∑
𝑖=1

1|||𝑌 ∗
𝑖

|||
∑

𝑦𝑖∈𝑌 ∗
𝑖

|||{𝑦′
𝑖
∣ 𝑅𝑗

(
𝑥𝑖, 𝑦

′
𝑖

)
≤ 𝑅𝑓

(
𝑥𝑖, 𝑦𝑖

)
, 𝑦′

𝑖
∈ 𝑌 ∗

𝑖

}|||
𝑅𝑓

(
𝑥𝑖, 𝑦𝑖

) , (39)

where 𝑅𝑓 (∙, ∙) is a ranking function. The larger the metric is the better. The optimal value is 𝐴𝑃 = 1.

Hamming Loss (HL): This evaluation measure assesses the incorrect assignment of objects. In other words, relevant labels not 
appearing in the predicted set of labels or irrelevant labels appear in the predicted set of labels.

𝐻𝐿 = 1
𝑛

𝑛∑
𝑖=1

1
𝑞
||𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟(𝑥𝑖)∇𝑌 ∗

𝑖
||, (40)

where 𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟(∙) represents a multi-label classifier. ∇ used to calculate the difference between two sets (symmetric difference). 
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The smaller the metric is the better. The optimal value is 𝐻𝐿 = 0.

https://mulan.sourceforge.net/index.html
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Coverage (CV): This evaluation metric is used to measure the depth of search required to cover all relevant labels in the sorted 
sequence of category labels of an instance.

𝐶𝑉 = 1
𝑛

𝑛∑
𝑖=1

𝑀𝐴𝑋
𝑦𝑖∈𝑌 ∗𝑅𝑓

(
𝑥𝑖,𝑦𝑖

)
−1, (41)

where 𝑅𝑓 (∙, ∙) is a ranking function. The smaller the value of the metric is the better.

One-error (OE): This evaluation metric is used to examine the case where the label at the top of the sequence does not belong to 
the set of relevant labels in the sorted sequence of category labels of the instance.

𝑂𝐸 = 1
𝑛

𝑛∑
𝑖=1

II
[
(𝐴𝑅𝐺𝑀𝐴𝑋𝑦𝑖∈𝐿𝑓

(
𝑥𝑖, 𝑦𝑖

)
) ∉ 𝑌 ∗

𝑖

]
, (42)

where II[∙] indicates a judgement. It is 1 if the condition in the symbol is satisfied and 0 if it is not. The smaller the value of the 
metric is the better, with an optimal value of 𝑂𝐸 = 0.

Ranking Loss (RL): This evaluation metric is utilized to assess the presence of label misplacement in the sorted sequence of 
category labels for an instance, where irrelevant labels precede relevant ones.

𝑅𝐿 = 1
𝑁

𝑁∑
𝑖=1

1|||𝑌 ∗
𝑖

||| |||𝑌 ∗
𝑖

|||
|||{(𝑦𝑖

′, 𝑦𝑖
′′) ∣ 𝑓 (

𝑥𝑖, 𝑦𝑖
′)
≥ 𝑓

(
𝑥𝑖, 𝑦𝑖

′′)}||| ,(𝑦′, 𝑦′′) ∈ 𝑌𝑖 × 𝑌 ∗
𝑖

, (43)

where 𝑌
∗
𝑖

is the complement of the set 𝑌 ∗
𝑖

in the label space. The system’s performance improves as the metric value decreases, and 
the optimal value is 𝑅𝐿 = 0.

For all features with values not in the range [0,1], they are normalized to between [0,1] and then the continuous values are 
discretized into triples. The data used for the classification test are only normalized, but not discretized. The multi-label classifier 
used in all experiments is ML𝑘NN, which has a smoothing parameter 𝑠 = 1 and a neighbourhood granularity 𝑘 = 10. The operating 
environment for the experiment is Windows 10 with a 4-core 3.5 GHz Intel E5-1600 v3 CPU and 16 GB RAM.

4.2. Experimental results and discussion

Before conducting the experiments, some key parameters involved in the proposed algorithm need to be clarified. Firstly, it is 
important to determine several three-way decision thresholds for the variable degree MGDRS. They can be calculated by Equation 
(3), but here they are set to constant values, 𝛼 = 0.6, 𝛽 = 0.4. Then, the other parameter, namely the variable degree 𝑣, needs to 
be determined. In order to specify the optimal value of the parameter 𝑣, we discuss the impact of the variable degree 𝑣 on the 
performance of the proposed algorithm on two datasets, the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 and the 𝐶𝐻𝐷_49, using the ML𝑘NN as the basic multi-label 
classifier. The smothing covariance 𝑠 of ML𝑘NN algorithm is set to 1, and the neighbourhood granularity 𝑘 is set to 10. Then, 𝑣 takes 
a value between 0 and 1, while five evaluation metrics as well as the selected feature number 𝑛 are varied with 𝑣. The results of the 
experiments are shown in Fig. 3 and Fig. 4.

The blue curve represents the results of the original features without feature selection, while the red curve represents the results 
of feature selection at different variable degree 𝑣. By comparing the experimental results in Fig. 3, it can be determined that the 
optimal value of 𝑣 for the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 dataset should be between 0.1 and 0.2, as this is when AP performs best, with relatively small 
values of HL, OE, RL and CV and a relatively small number of selected features. Here we decide on the value of 𝑣 for 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 dataset 
is 0.17. For the 𝐶𝐻𝐷_49 dataset, we compare the experimental results of Fig. 4 and conclude that the optimal value of 𝑣 is in the 
range of 0.12-0.2. The value of AP in this range is the highest. In this range, we want to keep the HL, RL, OE, and CV as low as 
possible and the number of selected features as low as possible. We finally decided on a suitable value of 𝑣 is 0.12. The remaining 
datasets 𝑦𝑒𝑎𝑠𝑡, 𝑓𝑙𝑎𝑔𝑠, 𝑐𝑎𝑙500, 𝑏𝑖𝑟𝑑𝑠, and 𝑖𝑚𝑎𝑔𝑒 can be used in the same way to derive the appropriate 𝑣 values, which are 0.02, 
0.68, 0.35, 0.12, and 0.02, respectively.

After determining the values of the parameters, the optimal feature selection results could be obtained on each dataset with 
VMFS. We sort the feature selection results by the magnitude of the absolute value of the dependency and then add two features 
to the classifier for classification in order each time. And the change of each evaluation metric (AP, HL, CV, RL, OE) is plotted as a 
curve. Taking three datasets 𝑒𝑚𝑜𝑡𝑖𝑜𝑛, 𝑏𝑖𝑟𝑑 and 𝑦𝑒𝑎𝑠𝑡 as examples, the change of each evaluation index is shown in Fig. 5.

By analysing the results of the feature selection experiments on three multi-label datasets, as shown in Fig. 5, it can be seen that 
five performance metrics of the multi-label classification algorithm improve to varying degrees as the number of selected features 
increases. Among them, the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 dataset exhibits the most obvious change, with the average precision (AP) increasing from 
around 0.58 to around 0.80. Additionally, the Hamming Loss (HL), the Overall Error (OE), the Ranking Loss (RL), and the Coverage 
(CV) all decrease significantly, with HL decreasing from about 0.32 to about 0.23, OE decreasing from about 0.58 to about 0.23, 
RL decreasing from about 0.44 to about 0.17, and CV decreasing from about 3.2 to about 1.2. The performance metrics on the 𝑏𝑖𝑟𝑑
dataset varies less significantly, yet still achieves notable improvements, except for HL due to its initially small value. The 𝑦𝑒𝑎𝑠𝑡

dataset exhibits the smallest changes on three datasets, with minimal and incremental effects on each metric as features are added.

In order to further validate the effectiveness of the VMFS algorithm, we compare it with some classical multi-label feature selection 
algorithms on seven datasets, including MDDM_proj [5], MLNB [14] MDDM_spc [5], PMU [35], RF-ML [36], and the experimental 
11

results are shown in Tables 5–11. The parameter 𝜇 of MDDM_proj and MDDM_spc is set to 0.5. MLNB selects 30% of the original 
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Fig. 3. The metrics change on the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 dataset. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
12
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Fig. 4. The metrics change on the 𝐶𝐻𝐷_49 dataset.
13
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Fig. 5. The metrics change of three datasets with different selected feature number.
14
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Table 5

Comparison of algorithm performance on 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 dataset.

Num Method AP(↑) CV(↓) HL(↓) RL(↓) OE(↓)

64 VMFS 0.800 1.842 0.209 0.158 0.287

22 MLNB 0.784 1.975 0.245 0.179 0.302

3 MDDM_proj 0.782 1.970 0.278 0.185 0.317

6 MDDM_spc 0.761 2.020 0.247 0.195 0.357

64 PMU 0.788 1.906 0.204 0.174 0.312

43 RF-ML 0.736 2.213 0.267 0.230 0.381

Table 6

Comparison of algorithm performance on 𝑦𝑒𝑎𝑠𝑡 dataset.

Num Method AP(↑) CV(↓) HL(↓) RL(↓) OE(↓)

55 VMFS 0.757 6.387 0.202 0.174 0.234

31 MLNB 0.734 6.715 0.221 0.19 0.255

14 MDDM_proj 0.746 6.486 0.204 0.181 0.262

14 MDDM_spc 0.744 6.438 0.219 0.184 0.248

55 PMU 0.739 6.580 0.211 0.188 0.255

61 RF-ML 0.748 6.649 0.202 0.178 0.256

Table 7

Comparison of algorithm performance on 𝑓𝑙𝑎𝑔 dataset.

Num Method AP(↑) CV(↓) HL(↓) RL(↓) OE(↓)

13 VMFS 0.825 3.708 0.279 0.205 0.185

6 MLNB 0.809 3.769 0.290 0.231 0.211

3 MDDM_proj 0.800 3.831 0.321 0.223 0.246

4 MDDM_spc 0.815 3.723 0.301 0.214 0.169

13 PMU 0.797 3.815 0.325 0.250 0.215

11 RF-ML 0.800 3.846 0.268 0.221 0.246

Table 8

Comparison of algorithm performance on 𝐶𝐻𝐷_49 dataset.

Num Method AP(↑) CV(↓) HL(↓) RL(↓) OE(↓)

9 VMFS 0.781 2.761 0.321 0.218 0.240

15 MLNB 0.777 2.806 0.306 0.229 0.244

2 MDDM_proj 0.782 2.842 0.318 0.226 0.249

5 MDDM_spc 0.765 2.815 0.339 0.247 0.272

9 PMU 0.760 2.910 0.307 0.245 0.262

29 RF-ML 0.767 2.905 0.318 0.238 0.258

Table 9

Comparison of algorithm performance on 𝐶𝐴𝐿500 dataset.

Num Method AP(↑) CV(↓) HL(↓) RL(↓) OE(↓)

62 VMFS 0.492 129.11 0.138 0.184 0.116

21 MLNB 0.411 130.21 0.138 0.180 0.116

2 MDDM_proj 0.485 132.06 0.138 0.190 0.143

5 MDDM_spc 0.491 129.50 0.139 0.185 0.120

62 PMU 0.493 129.25 0.138 0.182 0.124

40 RF-ML 0.484 131.25 0.140 0.185 0.116

feature dimension as the number of retained features. The number of features returned by PMU is the same as our algorithm VMFS. 
RF-ML returns the top 60% features of the feature ranking results as the feature selection result. For each evaluation metric, a “↑” 
symbol indicates that a higher value is better, while a “↓” symbol indicates that a lower value is better. The optimal value of each 
evaluation metric is shown in bold form and the Num represents the number of remain features.

As shown in Tables 5–11, the proposed multi-label feature selection algorithm VMFS significantly outperforms other compared 
algorithms in general. On some datasets, such as the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 and 𝑦𝑒𝑎𝑠𝑡, the proposed algorithm VMFS achieves optimal experimental 
results on all evaluation metrics compared to other algorithms. On the other datasets, VMFS does not achieve optimal performance 
on all evaluation metrics, but it still performs well on most of the metrics, with only some metrics falling slightly below the optimal 
algorithm. For example, on the 𝑓𝑙𝑎𝑔 dataset, VMFS excels in AP, CV, and RL metrics, while its HL value (0.278) is slightly lower 
15

than the top RF-ML (0.268) and the OE value (0.185) is slightly lower than the top MDDM_spc (0.169). Similarly, on the 𝐶𝐴𝐿500, 
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Table 10

Comparison of algorithm performance on 𝑏𝑖𝑟𝑑𝑠 dataset.

Num Method AP(↑) CV(↓) HL(↓) RL(↓) OE(↓)

56 VMFS 0.706 3.603 0.053 0.130 0.341

78 MLNB 0.649 3.796 0.078 0.145 0.440

13 MDDM_proj 0.707 3.433 0.056 0.123 0.359

19 MDDM_spc 0.708 3.598 0.062 0.128 0.350

56 PMU 0.649 3.468 0.061 0.128 0.477

156 RF-ML 0.677 3.811 0.056 0.141 0.409

Table 11

Comparison of algorithm performance on 𝑖𝑚𝑎𝑔𝑒 dataset.

Num Method AP(↑) CV(↓) HL(↓) RL(↓) OE(↓)

163 VMFS 0.781 1.023 0.178 0.186 0.338

89 MLNB 0.738 1.186 0.208 0.223 0.401

25 MDDM_proj 0.787 0.989 0.178 0.176 0.333

30 MDDM_spc 0.773 1.069 0.180 0.195 0.344

163 PMU 0.778 1.280 0.187 0.185 0.339

176 RF-ML 0.751 1.146 0.199 0.317 0.381

Table 12

The values of evaluation metrics.

AP CV HL RL OE

𝜏𝑥2 10.816 15.163 6.795 6.367 9.698

𝜏𝐹 2.684 4.586 1.446 1.334 2.300

Table 13

p-value and correction p-value.

AP CV HL RL OE

p-value 0.055 0.010 0.236 0.272 0.084

correction p-value 0.1375 0.005 0.272 0.272 0.140

𝐶𝐻𝐷_500, and 𝑏𝑖𝑟𝑑𝑠 datasets, VMFS performs optimally or sub-optimally depending on the specific metrics, but there is no signif-

icant difference between the compared algorithms on some metrics. Overall, the VMFS algorithm generally outperforms the other 
comparative algorithms.

The proposed algorithm achieves relatively mediocre results on a few datasets, such as the 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 dataset. This is due to the fact 
that different datasets have different influences on the performance of the algorithm. However, an algorithm cannot achieve the best 
result in all datasets. However, although only one of the evaluation metrics HL achieves the best result, the rest of the evaluation 
metrics also get the second-best result, which is also a relatively good result.

When we propose a new algorithm and want to know whether the proposed algorithm performs better compared to existing 
algorithms, we usually utilize the model performance evaluation method. Friedman test [37] is a widely used statistical test method 
for comparing the overall effectiveness of 𝑘 algorithms across 𝑛 datasets. The calculation formula is as follows:

𝜏𝑥2 =
12𝑛

𝑘(𝑘+ 1)

(
𝑘∑

𝑖=1
𝑟2
𝑖
− 𝑘(𝑘+ 1)2

4

)
, 𝜏𝐹 =

(𝑛− 1)𝜏𝑥2

𝑛(𝑘− 1) − 𝜏𝑥2
, (44)

where 𝑟𝑖 represents the average ranking result of the 𝑖th algorithm, 𝑛 represents the number of datasets, and 𝑘 represents the 
number of algorithms. In this experiment the significance level 𝛼 is set to 0.1 and 𝜏𝜒2 satisfies the 𝑘 − 1 and (𝑘 − 1)(𝑛 − 1) degree of 
freedom distributions. The values of five evaluation indicators values are shown in Table 12. When 𝛼 = 0.1, 𝐹 (5, 30) = 2.05, it can be 
indicated from Table 12 that the proposed algorithm ranks slightly higher than other algorithms in two metrics HL and RL, and the 
performance gap is not significant. Therefore, in these two evaluation metrics, we cannot reject the null hypothesis that all algorithms 
are equal. For the evaluation metrics AP, CV, and OE, under the Friedman test [37], the null hypothesis of the same performance of 
six algorithms is rejected, which indicates that there is a difference in the performance. P-values are calculated from the results in 
Table 12, and used to assess the probability of observing the data or more extreme situations under the given hypothesis. To mitigate 
the risk of inflated false positive rates, a subsequent correction was applied using the Benjamini-Hochberg FDR correction [38], as 
shown in Table 13, with FDR=0.15. Based on the results presented in Table 13, it is evident that the outcomes of the Friedman test 
are consistent.

In order to further analyze the differences between six algorithms, a post-hoc test such as the Bonferroni-Dunn [39] test is 
16

required. It is a statistical method which is designed to determine if there is a significant difference in the performance of the 
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Fig. 6. CD bar of metrics.

evaluated algorithm compared to the remaining 𝑘 − 1 algorithms. It first calculates the difference in mean ranks between the 
algorithms, and then determines whether this difference is statistically significant. 𝐶𝐷 stands for the critical difference, which is 
expressed as follows:

𝐶𝐷 = 𝑞𝛼

√
𝑘(𝑘+ 1)

6𝑛
, (45)

where 𝑞𝛼 is the critical table value for the test and 𝛼 is the significance level which is from reference [40]. For the Bonferroni-Dunn 
test, we have 𝑞𝛼 = 2.326 and 𝐶𝐷(𝑘 = 6, 𝑛 = 7) = 2.326. We visualize the results of the three parameters (AP, CV, RL) using a CD 
value chart, as shown in Fig. 6. The mean position of each algorithm in the ranking is displayed on the axes of the graph, where 
the ranking values increase progressively from left to right. When the average rank difference between the VMFS algorithm and the 
comparison algorithm is within one CD value, they are connected with a bold line, indicating that the comparison algorithm performs 
for different evaluation value metrics. If any algorithm is connected, it means that there is no significant difference between them, 
otherwise, it means that they are significantly different from each other.

From Fig. 6, it can be seen that for the evaluation metric AP, the performance gap between the three algorithms, VMFS, 
MDDM_proj and MDDM_spc, is within the value of one 𝐶𝐷 while the performance gap between the five algorithms, PMU, RF-

ML, MLNB, MDDM_proj and MDDM_spc, is within the value of one 𝐶𝐷. For the evaluation metric CV, the performance gap between 
the four algorithms, VMFS, MLNB, MDDM_proj, and MDDM_spc, is within one 𝐶𝐷 value while the performance gap between the 
five algorithms, PMU, RF-ML, MLNB, MDDM_proj, and MDDM_spc, is within one 𝐶𝐷 value. For the evaluation metric OE, the per-

formance gap between each algorithm is similar to the metric AP. Overall, the performance of VMFS is relatively similar to that of 
MDDM_proj and MDDM_spc.

5. Conclusions

In order to flexibly deal with the uncertainty involved in the multi-labelled data, we introduce a variable degree for MGDRS and 
define coarse decision function, fine decision function and uncertainty decision function for multi-label learning. Then we define 
the upper and lower approximation of labels based on these decision functions and propose a MLFS algorithm based on variable 
degree MGDRS. Finally, we verified the effectiveness of the proposed algorithm through a series of comparison tests. However, we 
still encountered some problems in our experiments. First, the performance of feature selection in high-dimensional feature space is 
still poor, and the time to select features is too long. Second, the interdependence between labels is not fully considered in this paper. 
Therefore, we will continue to improve these aspects in our future work.

CRediT authorship contribution statement

Ying Yu: Conceptualization, Funding acquisition, Methodology, Project administration, Writing – review & editing. Ming Wan:

Validation, Writing – original draft. Jin Qian: Writing – review & editing. Duoqian Miao: Conceptualization, Supervision. Zhiqiang 
Zhang: Data curation. Pengfei Zhao: Data curation.

Declaration of competing interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence 
17

the work reported in this paper.



International Journal of Approximate Reasoning 169 (2024) 109181Y. Yu, M. Wan, J. Qian et al.

Data availability

Data will be made available on request.

Acknowledgements

The authors would like to thank the Editors for their kindly help and the anonymous referees for their valuable comments and 
helpful suggestions. The work is partially supported by the National Natural Science Foundation of China (Serial No. 62163016, 
62066014), the Natural Science Foundation of Jiangxi Provincial (Serial No. 20212ACB202001), the open project of State Key 
Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure (Grant No. HJGZ2023203), the foreign expert 
project of Ministry of Science and Technology (No. G2023022005L), and the Jiangxi Double Thousand Plan (No. JSXQ2019102088).

References

[1] Weiwei Liu, Haobo Wang, Xiaobo Shen, Ivor W. Tsang, The emerging trends of multi-label learning, IEEE Trans. Pattern Anal. Mach. Intell. 44 (11) (2021) 
7955–7974.

[2] Gengyu Lyu, Songhe Feng, Yidong Li, Noisy label tolerance: a new perspective of partial multi-label learning, Inf. Sci. 543 (2021) 454–466.

[3] Wenbin Qian, Jintao Huang, Fankang Xu, Wenhao Shu, Weiping Ding, A survey on multi-label feature selection from perspectives of label fusion, Inf. Fusion 
100 (2023) 101948.

[4] Wenbin Qian, Yanqiang Tu, Jin Qian, Wenhao Shu, Partial multi-label learning via three-way decision-based tri-training, Knowl.-Based Syst. 276 (2023) 110743.

[5] Yin Zhang, Zhi-Hua Zhou, Multilabel dimensionality reduction via dependence maximization, ACM Trans. Knowl. Discov. Data 4 (3) (2010) 1–21.

[6] Liang Sun, Shuiwang Ji, Jieping Ye, Multi-Label Dimensionality Reduction, CRC Press, 2013.

[7] Ping Zhang, Wanfu Gao, Juncheng Hu, Yonghao Li, Multi-label feature selection based on the division of label topics, Inf. Sci. 553 (2021) 129–153.

[8] Yuling Fan, Jinghua Liu, Wei Weng, Baihua Chen, Yannan Chen, Shunxiang Wu, Multi-label feature selection with local discriminant model and label correlations, 
Neurocomputing 442 (2021) 98–115.

[9] Weiping Ding, Chin-Teng Lin, Zehong Cao, Deep neuro-cognitive co-evolution for fuzzy attribute reduction by quantum leaping pso with nearest-neighbor 
memeplexes, IEEE Trans. Cybern. 49 (7) (2018) 2744–2757.

[10] An-Da Li, Bing Xue, Mengjie Zhang, Improved binary particle swarm optimization for feature selection with new initialization and search space reduction 
strategies, Appl. Soft Comput. 106 (2021) 107302.

[11] Hongbin Dong, Jing Sun, Tao Li, Rui Ding, Xiaohang Sun, A multi-objective algorithm for multi-label filter feature selection problem, Appl. Intell. 50 (2020) 
3748–3774.

[12] Lin Sun, Lanying Wang, Weiping Ding, Yuhua Qian, Jiucheng Xu, Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy 
neighborhood multigranulation rough sets, IEEE Trans. Fuzzy Syst. 29 (1) (2020) 19–33.

[13] Jia Zhang, Zhiming Luo, Candong Li, Changen Zhou, Shaozi Li, Manifold regularized discriminative feature selection for multi-label learning, Pattern Recognit. 
95 (2019) 136–150.

[14] Min-Ling Zhang, José M. Peña, Victor Robles, Feature selection for multi-label naive Bayes classification, Inf. Sci. 179 (19) (2009) 3218–3229.

[15] Yaojin Lin, Qinghua Hu, Jinghua Liu, Jie Duan, Multi-label feature selection based on max-dependency and min-redundancy, Neurocomputing 168 (2015) 
92–103.

[16] Yuling Fan, Jinghua Liu, Jianeng Tang, Peizhong Liu, Yaojin Lin, Yongzhao Du, Learning correlation information for multi-label feature selection, Pattern 
Recognit. 145 (2024) 109899.

[17] Zdzislaw Pawlak, Rough sets and decision tables, in: Symposium on Computation Theory, Springer, 1984, pp. 187–196.

[18] Andrea Campagner, Davide Ciucci, Eyke Hüllermeier, Rough set-based feature selection for weakly labeled data, Int. J. Approx. Reason. 136 (2021) 150–167.

[19] Lin Sun, Shanshan Si, Weiping Ding, Xinya Wang, Jiucheng Xu. Tfsfb, Two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary 
whale optimization for imbalanced data, Inf. Fusion 95 (2023) 91–108.

[20] Yi Kou, Guoping Lin, Yuhua Qian, Shujiao Liao, A novel multi-label feature selection method with association rules and rough set, Inf. Sci. 624 (2023) 299–323.

[21] Jinghua Liu, Yaojin Lin, Weiping Ding, Hongbo Zhang, Cheng Wang, Jixiang Du, Multi-label feature selection based on label distribution and neighborhood 
rough set, Neurocomputing 524 (2023) 142–157.

[22] Wenbin Qian, Jintao Huang, Yinglong Wang, Yonghong Xie, Label distribution feature selection for multi-label classification with rough set, Int. J. Approx. 
Reason. 128 (2021) 32–55.

[23] Jie Duan, Q.H. Hu, L.J. Zhang, Y.H. Qian, D.Y. Li, Feature selection for multi-label classification based on neighborhood rough sets, J. Comput. Res. Dev. 52 (1) 
(2015) 56–65.

[24] Yaojin Lin, Qinghua Hu, Jinghua Liu, Jinkun Chen, Jie Duan, Multi-label feature selection based on neighborhood mutual information, Appl. Soft Comput. 38 
(2016) 244–256.

[25] Hua Li, Deyu Li, Yanhui Zhai, Suge Wang, Jing Zhang, et al., A variable precision attribute reduction approach in multilabel decision tables, Sci. World J. (2014) 
2014.

[26] Meishe Liang, Jusheng Mi, Tao Feng, Optimal granulation selection for multi-label data based on multi-granulation rough sets, Granul. Comput. 4 (2019) 
323–335.

[27] Jiucheng Xu, Kaili Shen, Lin Sun, Multi-label feature selection based on fuzzy neighborhood rough sets, Complex Intell. Syst. 8 (3) (2022) 2105–2129.

[28] Yuhua Qian, Hu Zhang, Yanli Sang, Jiye Liang, Multigranulation decision-theoretic rough sets, Int. J. Approx. Reason. 55 (1) (2014) 225–237.

[29] Yiyu Yao, Three-way decision and granular computing, Int. J. Approx. Reason. 103 (2018) 107–123.

[30] Eyke Hüllermeier, Sébastien Destercke, Ines Couso, Learning from imprecise data: adjustments of optimistic and pessimistic variants, in: Scalable Uncertainty 
Management: 13th International Conference, SUM 2019, Compiègne, France, December 16–18, 2019, Proceedings 13, Springer, 2019, pp. 266–279.

[31] Andrea Campagner, et al., Credal learning: weakly supervised learning from credal sets, Front. Artif. Intell. Appl. 372 (2023) 327–334.

[32] Yuanjian Zhang, Duoqian Miao, Witold Pedrycz, Tianna Zhao, Jianfeng Xu, Ying Yu, Granular structure-based incremental updating for multi-label classification, 
Knowl.-Based Syst. 189 (2020) 105066.

[33] Tianna Zhao, Yuanjian Zhang, Duoqian Miao, Intuitionistic fuzzy-based three-way label enhancement for multi-label classification, Mathematics 10 (11) (2022) 
1847.

[34] Min-Ling Zhang, Zhi-Hua Zhou, A review on multi-label learning algorithms, IEEE Trans. Knowl. Data Eng. 26 (8) (2014) 1819–1837.

[35] Jaesung Lee, Dae-Won Kim, Feature selection for multi-label classification using multivariate mutual information, Pattern Recognit. Lett. 34 (3) (2013) 349–357.

[36] Newton Spolaôr, Everton Alvares Cherman, Maria Carolina Monard, Huei Diana Lee, Relieff for multi-label feature selection, in: 2013 Brazilian Conference on 
18

Intelligent Systems, IEEE, 2013, pp. 6–11.

http://refhub.elsevier.com/S0888-613X(24)00068-9/bibD129A04F9061BDE44B85F423EAAC1276s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibD129A04F9061BDE44B85F423EAAC1276s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibD126955F7A88A6573701FE1D05EDCA45s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib460AFB14A283A802B725D7FFADC50246s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib460AFB14A283A802B725D7FFADC50246s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibB2BE4A7B150414D7458DA3591A9E2CEAs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibE134B5B80F0B75F45A5BCDD9CBAAC169s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib4AE1B672F6EA392FA8A9F7B52BA6961Bs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib00CCCDAB0FDB8970AB0FF5C0282127BBs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib830B4FC3263885AEBDA4EBC48DF8E46Ds1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib830B4FC3263885AEBDA4EBC48DF8E46Ds1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib4D04CDA1773958C14572FF8DD0D26922s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib4D04CDA1773958C14572FF8DD0D26922s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib6D72DE5BC9B85EE5CEB823C2AA68CB00s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib6D72DE5BC9B85EE5CEB823C2AA68CB00s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib062685D38822D03BD8943EF0778DE761s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib062685D38822D03BD8943EF0778DE761s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibB2C1CF66B43312260BAF07F17DFFEAC3s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibB2C1CF66B43312260BAF07F17DFFEAC3s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib9578CCDCB74610C72966A3F663D1EA7Es1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib9578CCDCB74610C72966A3F663D1EA7Es1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib9B913307F5E0B5AF0412EBD50BAB30F7s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib95521DCB9075C2E4AACC0CE5C86326DFs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib95521DCB9075C2E4AACC0CE5C86326DFs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibBE975F59FC63B3AA1F3E87367C63E0DAs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibBE975F59FC63B3AA1F3E87367C63E0DAs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib65CF70E814EC17FE8B0D691B429B6DD2s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib43DE56FFF93541FF634E609A3669FC20s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibCAE6184971117A61DBD9D40A67D193D4s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibCAE6184971117A61DBD9D40A67D193D4s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib8B483BE42943A4E1B204CFA78CDCAF99s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib8A9895B6E1A299BCBF1566449B43A1C5s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib8A9895B6E1A299BCBF1566449B43A1C5s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibFD12E331CB96E8137DEA3A2511A7585Bs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibFD12E331CB96E8137DEA3A2511A7585Bs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib1455EA137246B76CB74A0B2C92B1146Ds1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib1455EA137246B76CB74A0B2C92B1146Ds1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib4EEC8F29F84E1C25A9B40E7FD8138BC6s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib4EEC8F29F84E1C25A9B40E7FD8138BC6s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibD9C781566CC36B803A05F9FA6F4AFE05s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibD9C781566CC36B803A05F9FA6F4AFE05s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib9A4E403EDA9B239D744F854E0BD25724s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib9A4E403EDA9B239D744F854E0BD25724s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibAD8319C5791F99CB98E251AD55FD9E27s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibAEE0E5BC43AA942D41AF0A189CD6A17Es1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibF74183527E1475C3620FD9187E968EE4s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib4D491A3BFC9E103C8309795692CD822Bs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib4D491A3BFC9E103C8309795692CD822Bs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib818A274EBC5D021EF63B6F8A937A00DEs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib499359AC965642E0EBA4C3634372CC2Cs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib499359AC965642E0EBA4C3634372CC2Cs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibC5C5454B8007449BC0964309113334DDs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibC5C5454B8007449BC0964309113334DDs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibFD985F36F7A791B9A05983F1C022252Ds1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib80EAB0A744354087FE91B476858C0A6As1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibF7007A33DA619DE60A11E6A64159B0C6s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bibF7007A33DA619DE60A11E6A64159B0C6s1


International Journal of Approximate Reasoning 169 (2024) 109181Y. Yu, M. Wan, J. Qian et al.

[37] Milton Friedman, A comparison of alternative tests of significance for the problem of m rankings, Ann. Math. Stat. 11 (1) (1940) 86–92.

[38] Yoav Benjamini, Yosef Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., Ser. B, Methodol. 
57 (1) (1995) 289–300.

[39] Olive Jean Dunn, Multiple comparisons among means, J. Am. Stat. Assoc. 56 (293) (1961) 52–64.
19

[40] Janez Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30.

http://refhub.elsevier.com/S0888-613X(24)00068-9/bib153184B8F6295AC061E1051054138121s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib736313D3755ED41FD45F327DD058D2FEs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib736313D3755ED41FD45F327DD058D2FEs1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib922A4E00284C42F132DC77898AC59752s1
http://refhub.elsevier.com/S0888-613X(24)00068-9/bib058B1FA057EA1118F48FCB865BB848ADs1

	Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets
	1 Introduction
	2 Preliminaries
	2.1 Three-way decision
	2.2 Multi-granulation decision-theoretic rough sets

	3 Proposed approaches
	3.1 Description of notations
	3.2 Multi-label decision function based on pessimistic and optimistic decision-theoretic rough sets
	3.3 Multi-label decision function based on variable-degree multi-granulation decision-theoretic rough sets
	3.4 VMFS: variable-degree MGDRS-based multi-label feature selection

	4 Experiments
	4.1 Experimental preparation
	4.2 Experimental results and discussion

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


