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Abstract

Vision Transformer (ViT) faces obstacles in wide application due to its huge
computational cost. Almost all existing studies on compressing ViT adopt the
manner of splitting an image with a single granularity, with very few exploration of
splitting an image with multi-granularity. As we know, important information often
randomly concentrate in few regions of an image, necessitating multi-granularity
attention allocation to an image. Enlightened by this, we introduce the multi-
granularity strategy to compress ViT, which is simple but effective. We propose a
two-stage multi-granularity framework, MG-ViT, to balance ViT’s performance
and computational cost. In single-granularity inference stage, an input image is
split into a small number of patches for simple inference. If necessary, multi-
granularity inference stage will be instigated, where the important patches are
further subsplit into multi-finer-grained patches for subsequent inference. Moreover,
prior studies on compression only for classification, while we extend the multi-
granularity strategy to hierarchical ViT for downstream tasks such as detection
and segmentation. Extensive experiments Prove the effectiveness of the multi-
granularity strategy. For instance, on ImageNet, without any loss of performance,
MG-ViT reduces 47% FLOPs of LV-ViT-S and 56% FLOPs of DeiT-S.

1 Introduction

Transformer [1] has gained tremendous achievements in computer vision. Despite the excellent
performance of Convolutional Neural Networks (CNN) in computer vision tasks [2; 3; 4; 5], due to
ViT’s superior ability to capture global information and long-range interactions, ViT [6] outperforms
CNN in various tasks [7; 8; 9; 10; 11]. However, the impressive performance of ViT comes at the
cost of its huge computational overhead. Therefore, more researches focus on ViT compression for
greater efficiency. Since the computational cost of ViT increases quadratically with the number of
tokens, minimizing the number of tokens is crucial in compressing ViT.

Notable investigations have adopted various methods to compress ViT. DynamicViT [12] reduces
token number by pruning redundant tokens, EViT [13] merges redundant tokens into one token.
DVT [14] utilizes the particular and dynamic patch splitting manner (e.g., 4×4, 7×7, etc.) for each
image, based on its complexity, rather than following the official manner of 14×14. Although DVT
innovatively considers the differences in complexity between images, it still uses single granularity to
split one image. As we all know, images often contain a lot of redundancy, with important semantic
information randomly concentrated in a few regions. Therefore, it is imperative to consider the
complexity and semantic density diversities across various regions of the image: different regions
of an image should be assigned attention with multiple granularities. We initiate our exploration by
observing the foundational task, classification, and we have 3 intriguing observations:
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Table 1: Accuracy and FLOPs of DeiT-S
on ImageNet in different splitting manner.

Manner 14× 14 7× 7 4× 4

Accuracy 79.8% 73.2% 63.4%
FLOPs 4.60G 1.10G 0.45G

Observation 1: Most images can be correctly recognized by
splitting them into a small number of patches, as has been
analogously observed in research [14]. Training a DeiT-
S [15] with the 4 × 4 patch splitting manner can achieve
63.4% accuracy at a computational cost of 0.45G FLOPs.
Although splitting an image to 7 × 7 patches and 14 × 14
patches can enhance the accuracy by 9.8% and 16.4%, the computation cost will also increase by
2.4× and 10.2×. How to substantially improve the accuracy with a low growth rate of FLOPs is a
subject worth contemplating.

Observation 2: The classification accuracy is mainly affected by the several critical tokens, and
subsplitting patches into finer patches is more beneficial to classification. We split each image into
14 × 14 patches and rank tokens from high to low based on their class attention scores. The 196
tokens (patches) are equally divided into head, middle, and tail groups, and respectively input into
DeiT-S to measure the accuracy of each group (Fig.1(a)). Then, subsplitting the patches in the head
group expands the quantity to 4× and 9×, their accuracy is measured (Fig.1(b)). It is illustrated that
head tokens ensure the base of classification accuracy, and finer tokens lead to higher accuracy.

(a) (b) (c)
Figure 1: The classification accuracy of the tokens from different groups in each layer of DeiT-S. (c) 4 input
groups: 1#: Only higher IIC tokens (top50%). 2#: Merging lower IIC tokens into one token and together with
higher IIC tokens. 3#: According to CASR, merging every 50% of lower IIC tokens into one token (2 in total)
and together with higher IIC tokens, 4#: According to CASR, merging every 25% of lower IIC tokens into one
token (4 in total) and together with higher IIC tokens.

Observation 3: All information matters, and proper handling of tokens with low important informa-
tion content (IIC) contributes to avoiding partial loss of accuracy. We treat the bottom 50% tokens as
lower IIC tokens based on class attention score rank (CASR), and create 4 input groups for all tokens.
The results in Fig.1(c) suggest that retaining lower IIC tokens can maintain accuracy. This is because
lower IIC tokens contain complementary information to higher IIC tokens, which helps bridge the
accuracy gap with the baseline. The dissimilarities among lower IIC tokens should be considered,
necessitating a hierarchical processing. Performance improvement is from complementary informa-
tion, certain lower IIC tokens make the higher contribution. If they are merged with other lower IIC
tokens, the gain of performance improvement may be diluted.

Thus far, we can identify two sound reasons for utilizing the multi-granularity strategy to compress
ViT. Firstly, as aforementioned, due to the distinctiveness of important information distribution in
images, it is imperative to assign multi-granular attention to an image. Secondly, guided by our
observations, we can consider multi-granularity as an intermediate state between full fine-grained and
full coarse-grained. Full fine-grained stage represents stronger performance, while full coarse-grained
stage represents less computation. Therefore, multi-granularity can naturally be used to balance
performance and computational cost.

Figure 2: Example for MG-ViT.

We propose MG-ViT: a multi-granularity frame-
work for compressing ViT, which automatically
splits an image into multi-granularity patches, as
shown in Figure 2. MG-ViT consists of two parts:
Single-Granularity Inference Stage (SGIS) and
Multi-Granularity Inference Stage (MGIS), related
to Observation 1. In SGIS, a small number of to-
kens are used for classification inference. Should
a prediction confident enough ensue, the inference
terminates immediately; otherwise, MGIS will be
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triggered. In MGIS, We put forward three innovative methods. The first is multi-granularity patch
subsplitting, related to Observation 2. All patches are divided into head, middle and tail groups
based on CASR in SGIS, head and middle patches are subsplit, resulting in tokens with multiple
information granularity that are input into ViT. The second is the three-way decision slimming, which
can streamline ViT softly. Simply put, based on CASR, tokens are divided into three groups: positive,
boundary, and negative. Boundary and negative tokens are respectively merged by different rules
to reduce their numbers. The third is the token match-merge scheme for boundary tokens, related
to Observation 3. The second and third methods are packaged as Plug-and-Play Slimming Module
(PPSM) against the huge increase in computational cost caused by patch subsplitting. After PPSM,
all tokens are fed into the next layer of ViT to continue inference.

Due to that ViT only outputs a single-scale feature representation and lacks the capability to handle
multi-scale variations, it possesses significant deficiencies in downstream tasks. In order to adapt
multi-granularity strategy to various downstream tasks, we extend the MG-ViT framework to hi-
erarchical ViT. Unlike ViT, hierarchical ViT aggregates tokens within rectangular areas. However,
patch subsplitting results in patches (tokens) with multiple scales interleaved in the image, making
it challenging to seamlessly enclose them within regular rectangular areas. To address this issue,
we introduce a proxy token of the same scale for each head or middle patch to represent itself.
Additionally, each proxy token engages in attention calculations with its corresponding fine tokens or
medium tokens to represent the subsplitting of the head or middle patch it stands for. Following the
aggregation methodology of PVT [16], Hierarchical MG-ViT can perform downstream tasks.

MG-ViT is a dynamic and versatile framework that can be applied to most ViT models. We select
LV-ViT [17] and DeiT [15] to assess the performance of MG-ViT on ImageNet [18]. The experiments
demonstrate that MG-ViT can balance performance and computation cost greatly, thereby signifi-
cantly improving the efficiency of ViT. Moreover, while ensuring performance, MG-ViT reduces
47% FLOPs of LV-ViT and 56% FLOPs of DeiT. We also conduct simple experiments in object
detection and semantic segmentation on the MS-COCO [19] and ADE20K [20] datasets, respectively.
The results show that Hierarchical MG-ViT effectively reduces computational overhead without
significant performance loss, demonstrating the feasibility of extending multi-granularity strategy to
the Hierarchical ViT structure.

2 Related Work

Vision Transformer. ViT [6] achieves a great breakthrough in the image classification task by
redesigning the Transformer structure, completely igniting researchers’ passion for exploring the ViT
further. Later on, ViT is modified to hierarchical structure for various downstream tasks [21; 8; 22; 23].

ViT and Hierarchical ViT. ViT is a series of ViT models that adhere to the vanilla ViT design prin-
ciples,such as DeiT [15] and LV-ViT[17]. They only output a single-scale feature representation and
lack the capability to handle multi-scale variations, making them typically suitable for classification
tasks. Hierarchical ViT is a series of ViT models that incorporate a hierarchical structure to aggregate
tokens layer by layer, enabling them to better handle multi-scale information and well-suited for
various downstream tasks. Swin-Transformer [24] and PVT [16; 25] are representative architectures
of hierarchical ViT.

ViT compression. ViT and hierarchical ViT can both enhance efficiency. Hierarchical ViT primarily
achieves efficiency by improving interaction rules among tokens, whereas ViT mainly relies on
compression. ViT compression primarily aims to optimize ViT structures in a flexible and automated
manner, developing a dynamic and efficient ViT where each image undergoes an individual com-
putational process based on its unique features, all while minimizing computational costs without
sacrificing performance. There are many classic ViT compression works, such as DynamicViT [12],
PS-ViT [26], Evo-ViT [27], and so on [13; 14; 28; 29; 30; 31; 32; 33].

3 Multi-Granularity Vision Transformer

3.1 Overview

Figure 3 illustrates the overall framework of MG-ViT. For each image, SGIS must be executed. In
SGIS, the image is split into a small number of patches. These 2D patches are embedded into 1D
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Figure 3: The overall framework of MG-ViT.

tokens and fed into ViT for straightforward inference. The obtained class prediction will be evaluated
against predetermined criteria (threshold). If the class prediction is acceptable, the inference can be
terminated immediately, and the class prediction can be output as the final classification result. If the
class prediction is unacceptable, MGIS will be executed.

In MGIS, according to the IIC of each patch (referring to CASR), all patches are proportionally
divided into three groups: head, middle and tail. Head and middle patches are further subsplit. As
head patches with high IIC are the most crucial for classification, they require subsplitting with
fine granularity, and eventually are subsplit into fine patches with fine-grained information. Middle
patches with middle IIC are more crucial for classification but less than head patches. Whence, they
require subsplitting with medium granularity, being subsplit into medium patches with medium-
grained information. Tail patches, maintain their coarse granularity and serve as coarse patches.
All patches undergo patch embedding and feature reuse to generate multi-granularity tokens which
are input into ViT for inference, prediction, and output. Considering that patch subsplitting leads
to a huge increase in computational cost, Plug-and-Play Slimming Module (PPSM) is introduced
in certain layers of ViT to reduce computational cost. The three-way decision slimming lies here.
According to CASR, we divide all tokens into three groups: positive, boundary and negative, aiming
to realize soft slimming of ViT. Positive tokens remain unchanged. Among boundary tokens, similar
tokens are matched and merged based on our proposed token match-marge scheme (more details in
Section 3.3.2), resulting in fewer new tokens. Negative tokens are merged into one token by weights.
In this way, the number of tokens is reduced, accomplishing ViT soft slimming.

3.2 Single-Granularity Inference Stage (SGIS)

In SGIS, the standard ViT is employed. Formally, for an input image ℵ, it is first split into patches
P = [p1, p2, ..., pN ] where N is the number of patches. In patch embedding, patches are mapped
into C-dimension token embeddings via linear projection. Additionally, a learnable token embedding
x0, referred to as a class token, is appended to the sequence of token embeddings to represent image
ℵ for class prediction. After position embedding Epos, the input token sequence for ViT in SGIS is:

X = [x0, x1, ..., xN ] + Epos (1)

where xi ∈ RC , present a token embedding of the i-th patch if i > 0, and Epos ∈ R(N+1)×C .

A ViT consists of L layers, each layer comprises a self-attention (SA) module and a feed-forward
network (FFN). In SA of the l-th layer, the self-attention Attention(Ql,Kl, Vl) is computed as follows:

Al = softmax(
QlK

T
l√

C
) = [a0l , a

1
l , ..., a

N
l ], Attention(Ql,Kl, Vl) = AlVl, (2)

where Ql,Kl, Vl ∈ R(N+1)×C , are query, key and value matrices of l-th layer respectively and
obtained through linear projection for Xl−1. Al is attention map of l-th layer, and the first row of
attention map a0l represent class attention in l-th layer.

Ulteriorly, the processes of SA and FFN in the l-th layer are as follows:

X
′

l−1 = SA(Xl−1) +Xl−1, Xl = FFN(X
′

l−1) +X
′

l−1. (3)
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After consecutive computation of L layers, class token x0
L from the L-th layer is input into the

classifier C to obtain class prediction distribution DS :

DS = C(x0
L) = [dS1 , d

S
2 , ..., d

S
M ], (4)

where S indicates SGIS, M denotes the class number, up to this point, the class prediction of image
ℵ is the largest entry of DS , i.e., argmaxjd

S
j .

Threshold for judgment. If the value of maxjd
S
j for input image ℵ is large enough, it indicates that

the class prediction in SGIS is acceptable, and the classification result can be generated. Therefore,
the inference can be terminated immediately, saving computational cost. In order to use maxjd

S
j

to determine whether to terminate the inference, we introduce a threshold ϵ: if maxjd
S
j > ϵ, the

inference is terminated immediately, and the class prediction is output as the classification result. If
maxjd

S
j < ϵ, The image is transitioned to MGIS for consecutive inference.

3.3 Multi-Granularity Inference Stage (MGIS)

3.3.1 Generation of Multi-Granularity Tokens

To bridge the ViTs of two stages, we perform multi-granularity patch subsplitting and feature reuse
to generate tokens with multi-grained information as the input for the ViT in MGIS.

Multi-granularity patch subsplitting. Since maxjd
S
j of image ℵ is less than ϵ, further inference

is required. As mentioned above, in MGIS, image ℵ needs to be subsplit with multiple different
granularities, and features of patches in SGIS need to be reused. These operations require to be
instructed by IIC of patches (tokens) in SGIS, as patches with different IIC will be divided into
different groups. Thus, the key now lies in how to identify the IIC of patches.

According to Equation 2, class token y0 can be represented by class attention a0 ∈ A as:

y0 = softmax(
q0KT

√
C

) = a0 · V, (5)

as we all known, class token y0 represents the entire image ℵ as input to produce the class prediction
in classifier C. As V = [v0, v1, ..., vN ], where vi is the value of the i-th token if i > 0. The class
token y0 is obtained by integrating the value of each token using a0 as the corresponding weights. In
other words, a0 determines the amount of information from each token that enters the class token
y0 for classification. Therefore, we can use class attention a0 to measure the contribution of each
token to the class prediction, thence, we identify IIC according to CASR. However, if we only use
CASR originating from the class attention of a certain layer to divide patches, patches of each group
will be more random and unfixed, lacking overall consistency. Therefore, the flow of information
across layers must also be considered. Thus, we come up with the global class attention instead of
only using class attention of a certain layer to identify IIC of patches. The global class attention âl in
the l-th block is as following:

âl = λ · âl−1 + (1− λ) · al (6)

where λ = 0.98. In Fig.1(a), we can observe that the classification accuracy of all groups exhibits
intense fluctuation in shallow layers. It is evident that class attention is unstable in shallow layers.
Therefore, the global class attention calculation starts from the 3-rd layer. We use CASR rooted from
global class attention in the last layer âL to identify IIC of patches.

According to âL, all patches are divided into three groups: head, middle, and tail. The numbers of
head, tail and middle patches, denoted by Nh, Nt, and Nm are given by:

Nh = ⌊N · rh + 0.5⌋, Nt = ⌊N · rt + 0.5⌋, Nm = N −Nh −Nt, (7)

where rh and rt represent the number rate of head and tail patches respectively.

Head and middle patches need to be subsplit. Since head patches have high IIC, each is subsplit into
3× 3 fine patches. Middle patches with middle IIC, each is subsplit into 2× 2 medium patches. Each
tail patch is considered as a coarse patch and remains unchanged. After patch subsplitting, the input
token sequence is denoted as follows:

X̄ = [x̄0, x̄1, ..., x̄K ] + Ēpos, (8)
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where K represents the total number of patches after patch subsplitting.

Feature reuse. Patch subsplitting disrupts the integrity of head and middle patches, resulting in a
lack of correlation among fine or medium patches which are severally subsplit from the same head
or middle patch. To address this issue, we incorporate Feature Reuse module from DVT [14] to
inject the original information of head or middle patches into new fine or medium patches. It is
advantageous to enhance feature representation of each patch and strengthen the interconnectivity
among them.

Figure 4: Feature Reuse module.

Figure 4 demonstrates the Feature Reuse module. Tokens (except
class token) output by the ViT of SGIS are taken as input and divided
based on their IIC. As head and middle patches need to be subsplit
in MGIS, we individually upsample head and middle tokens, so that
the number of new tokens obtained by upsampling is the same as the
number of new patches obtained by subsplitting. Different from the
module in DVT [14], considering that tail tokens remain unchanged
in MGIS, we utilize zero padding to handle them. Finally, all tokens
are flattened and sorted according to their position in image ℵ. The
token sequence XFR output by Feature Reuse is obtained as follows:

XFR = FR(x1
L, ..., x

N
L ). (9)

Specially, XFR ∈ RN×C′
. Due to concatenation expanding the dimension of multi-granularity

tokens to 2×, resulting in a 4× increase in computational cost (detailed analysis in Appendix), we
set a MLP in the module to realize dimension reduction: MLP (RC ⇒ RC′

). The value of C ′ is
small, thereby increasing the dimension of multi-granularity tokens from C to C +C ′, but still much
smaller than 2C, which helps save computational cost.

The generated multi-granularity token sequence X̃ ∈ R(N+1)×(C′+C), which is input to ViT in
MGIS for inference, slimming and output, is denoted as:

X̃ = Concat(X̄,XFR) = [x̄0, x̃1, ..., x̃N ] (10)

3.3.2 Plug-and-Play Slimming Module (PPSM)

Most existing ViT slimming methods, such as DynamicViT, PS-ViT, adopt token pruning, undermin-
ing the information integrity of the image and is not beneficial for classification. Therefore, we select
token merging, which diminishes the number of tokens while preserving information.

Three-way decision slimming. Most existing ViT slimming methods belong to hard slimming,
which divides tokens into non-redundant and redundant groups based on a certain criterion and
reduces the number of redundant tokens to streamline ViT. Nevertheless, tokens in the middle part of
CASR are arduous to distinguish as non-redundant or redundant during the inference. Mistakenly
identifying non-redundant tokens as redundant and performing slimming will lead to a degradation
of ViT’s performance. Considering that three-way decision model establishes a buffer zone, i.e.,
boundary, between positive and negative, it can aid in more appropriately handling tokens situated in
the middle position of CASR. Therefore, we employ three-way decision mechanism to realize soft
slimming for ViT.

Figure 5: The process of token match-merge.

Three-way decision [34] is a decision mechanism in rough
set [35; 36] that partitions a set into positive, negative, and
boundary domains, with elements in each domain subject
to positive, negative, and boundary rules, respectively. By
setting the proportion of elements in positive and nega-
tive domains to rpos and rneg, all tokens inputted into
PPSM are divided into positive, negative and boundary
domains. Positive tokens adhere to the positive rule: main-
tain unchanged. Boundary tokens adhere to boundary rule,
which refers to the token match-merge scheme we pro-
posed. Negative tokens adhere to the negative rule: all are
merged into one token by weights.

Token match-merge scheme. As discussed in Observation 3, dissimilarities among lower IIC
tokens should be considered, necessitating a hierarchical processing. Thus, we employ the token
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match-merge scheme among boundary tokens to guide the match-merge process of similar boundary
tokens, aiming to reduce the number of tokens while maintaining accuracy to the best possible extent.
We measure the similarity between two tokens by computing the cosine similarity of their value
vectors. va, vb ∈ RC , present the value vectors of tokens a and b, and the cosine similarity cos(θ) is
expressed as follows:

cos(θ) =

∑C+C′

i=1 (vai × vbi )√∑C+C′

i=1 (vai )
2 ×

√∑C+C′

i=1 (vbi )
2

(11)

The token match-merge scheme is demonstrated in Figure 5. Step1. Divide tokens at odd positions in
CASR into Group A and those at even positions into Group B. Step2. Find the most similar token in
set B for each token in set A by calculating cosine similarity. Step3. Put similar tokens together to
complete the match. Step4. Merge the similar tokens by weights to reduce the number of tokens.

3.4 Training Mehtod

During the training of MG-ViT, setting ϵ = 1 makes MGIS be executed for every input image. Like
knowledge distillation [37], our goal is to make the outputs of SGIS more similar to MGIS. Thus ViT
in SGIS can have a stronger ability in classification. The training loss about ground-truth label gt is:

loss = CE(DM , gt) +KL(DS , DM ), (12)

where CE(·, ·) and KL(·, ·) represent cross entropy loss and Kullback-Leibler divergence.

4 Hierachical Multi-Granularity Vision Transformer

Figure 6: The overall framework of Hierarchical MG-ViT.

4.1 Key Issue of Extension

Almost all classic ViT compression works, such as Dynamic ViT [12], PS-ViT [26], EViT [13], only
focus on classification. Why not extend their methods to hierachical ViT to execute downstream tasks
like detection and segmentation? We analyze two reasons. The first reason is structural limitation.
For instance, plain ViT only provides a single-scale feature representation, lacks the ability to handle
multi-scale variation, and lacks image-related priors. While there are a few works that still employ
plain ViT for downstream tasks, such as ViTDet [38], ViT-Adapter [39], SegViT [40; 41], they
achieve this by integrating well-designed modules, which could be considered as individual research
contributions. The second reason is method challenges. Most classic ViT compressions, as mentioned
above, heavily rely on pruning or merging, which can be challenging to adapt to downstream tasks.
Although we also employ pruning and merging methods, they serve as auxiliary means to reduce
computational costs. The core of this paper - multi-granularity strategy - can be applied in hierarchical
ViT for downstream tasks.

The key to extending multi-granularity strategy to hierarchical ViT lies in addressing the non-uniform
issue of multi-grained patch scales. Subsplitting head and middle patches into 3 × 3 fine patches
and 2× 2 medium patches results in patches with multiple scales interweaving in an image, making
it difficult to seamlessly enclose patches in a conventional window when using Swin Transformer.
Therefore, in this paper, we propose proxy tokens to unify scales.

4.2 Introducing Proxy Tokens for Unifying Scales

Similar to MG-ViT, Hierarchical MG-ViT also employs a two-stage framework. In SGIS, 2D image
ℵ ∈ RH×W is split into patches P ∈ RH

s ×W
s ×s2 , where (H,W ) donates the resolution of image ℵ,
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and s presents the patch size. The token sequence generated by P embedding is:

Tori = [t1ori, t
2
ori, ..., t

H
s ×W

s
ori ], (13)

where Tori ∈ R
HW
s2

×C1 , ori is a simplified representation of "origin". IIC of P is identified in SGIS.

In MGIS, we assume that P i ∈ Rs×s is a patch that requires subsplitting, which will be subsplit into
ℓ× ℓ fine patches:

P i = [pi,1, pi,2, ..., pi,ℓ
2

], (14)
where ℓ× ℓ is the manner of subsplitting (3× 3 or 2× 2), pi,j present the j-th fine or medium patch
subsplit from the i-th head or middle patch if i > 0, and j > 0.

Then the finer token sequence T i
ori ∈ Rℓ2×C1 originated from the embedding of these finer patches

is denoted as:
T i
ori = [ti,1ori, t

i,2
ori, ..., t

i,ℓ2

ori ]. (15)

We introduce a proxy token tipro ∈ RC1 for this group of finer tokens to compose the new sequence
T i = [T i

ori, t
i
pro]. The computing procedure of a Transformer layer for this group can be summarized

as follows:
T i′ = SA(T i) + T i, T i′ = MLP (T i′) + T i′ . (16)

To generalization, We provide an optional proxy token set Tpro and its mask vector m for each image,
where Tpro ∈ R

HW
s2

×C1 and m ∈ R
HW
s2 . Thus, the unified scale token sequence T

′
before feature

reuse can be denoted as:
T

′
= (−m)× Tori +m× T

′

pro. (17)

After feature reuse, the token sequence is input into the pyramid-structured hierarchical ViT, through
PVT stages 2, 3, and 4, feature maps reshape to H

2s ×
W
2s × C2, H

4s ×
W
4s × C3 and H

8s ×
W
8s × C4. In

this way, various downstream tasks can be performed.

4.3 Architectural Details

We develop two variants of Hierarchical MG-ViT based on PVT-Small: Hierarchical MG-ViT-A
and Hierarchical MG-ViT-R. Hierarchical MG-ViT-A adds a Transformer layer with proxy tokens
between stage 1 and stage 2 of PVT-Small. Hierarchical MG-ViT-R maintains the same capacity as
PVT-Small but replaces one of the original Transformer layers in stage 1 with a Transformer layer
introducing proxy tokens. Please refer to the appendix for architectural details.

4.4 Discussions

Performance upgrade. Since our proposed method is plug-and-play and does not significantly alter
the structure of the hierarchical ViT, methods aimed at improving the performance of hierarchical ViT,
such as using relative position biases and overlapping patch embedding, are all effective. However,
we haven’t optimize Hierarchical MG-ViT for the best performance, as our goal was to explore the
potential of extending the multi-granularity strategy from compressing plain ViT to hierarchical ViT
for various downstream tasks. In the future, we will delve deeper into performance enhancements for
Hierarchical MG-ViT.

Plain ViT vs. hierarchical ViT. Which ViT structure is superior? Plain ViT inherently has limitations
when it comes to handling dense tasks. In order to utilize a general ViT for a variety of tasks, many
new ViTs are designed based on hierarchical structures. However, we do not consider hierarchical
ViT to be superior; both plain ViT and hierarchical ViT have their strengths and weaknesses. As
for detection tasks, a multitude of ViTs built upon the hierarchical structure continue to remain the
most competitively poised model. However, models like ViTDet [38], which are based on plain ViT,
also demonstrate that hierarchical ViTs such as Swin-T and PVT are not the only efficient ways to
accomplish visual tasks. As for segmentation tasks, what surprised us is that SegViTv2 [41], built
upon the Plain ViT, has achieved state-of-the-art results. As for classification tasks, a variety of plain
ViT models, with MG-ViT as a representative, exhibit a big performance advantage over hierarchical
ViT. Moreover, multi-granularity strategy boost performance more effectively in plain structures
than in hierarchical structures. This is because hierarchical ViT involves token merging, which
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significantly diminishes the advantages of multi-granularity in feature representation. Regarding the
question of which ViT structure is superior, we believe that it necessitates deliberation in the context
of varying tasks and distinct constraints.

5 Experiments

5.1 Backbones, Datasets and Evaluation Metrics.

We built MG-ViT based on DeiT-S and LV-ViT-S and evaluated its performance on the benchmark
ImageNet [18]. To quantitatively compare performance, we report the Top-1 accuracy (Acc.),
the number of floating-point operations (FLOPs), and throughput (TP). Moreover, we developed
Hierarchical MG-ViT based on PVT-Small and evaluated its performance in object detection and
semantic segmentation on the benchmark datasets MS-COCO2017 [19] and ADE20K [20]. We
reported metrics such as box average precision (AP b), mean intersection over union (mIoU) and the
number of parameters (#Params). All metrics are measured on a single NVIDIA RTX 3090 GPU.

5.2 Main Results
Comparison to backbones. Table 2 presents the comparison results between MG-ViT and backbones
with different values of threshold ϵ. It can be observed that Without any performance degradation, the
computational cost of MG-ViT is significantly reduced. Moreover, when all images execute MGIS,
the performance of ViT is improved, which can be attributed to subsplitting patches with multiple
different granularities.

Table 2: Comparison between MG-ViT and backbones

Model ϵ Acc.(%) FLOPs(G) TP(img./s)

DeiT-S - 79.8 4.6 1341

MG-ViT 0.49 79.8(+0.0) 2.0(-56%) 2404(+1.79×)
MG-ViT 0.73 80.8(+1.0) 2.4(-48%) 2054(+1.53×)
MG-ViT 1 81.0(+1.2) 3.9(-15%) 1591(+1.11 ×)

LV-ViT-S - 83.3 6.6 989

MG-ViT 0.60 83.3(+0.0) 3.5(-47%) 1749(+1.77×)
MG-ViT 0.73 83.7(+0.4) 3.8(-42%) 1683(+1.70×)
MG-ViT 1 83.8(+0.5) 5.6(-15%) 1233(+1.25×)

Comparison to baselines. In Figure 7, we compare MG-ViT with 3 baselines: DynamicViT, EViT,
and DVT. These models are chosen as representatives of 3 type methods: token pruning, token
merging, and dynamic design of token format. With the same setting, MG-ViT outperforms baselines.

Comparison to other ViT compressing methods. In order to demonstrate the effectiveness of
our dynamic framework, MG-ViT, in compressing ViT, we present a comparison of MG-ViT with
various ViT compressing methods in Table 3. We visualize their accuracy, FLOPs, and throughput
in Appendix. The results show that our method for compressing ViT based on the multi-granularity
strategy, MG-ViT, is highly competitive when using DeiT-S and LV-ViT-S as backbones.

Table 3: Comparison between MG-ViT and other ViT compressing methods.

LV-ViT-S DeiT-S

Model FLOPs(G) Acc.(%) TP(img/s) Model FLOPs(G) Acc.(%) TP(img/s)

Baseline[17] 6.6 83.3 989 Baseline[15] 4.6 79.8 1341
PS-ViT[26] 4.7 82.4 - IA-RED²[29] 3.3 79.1 1597
eTPS[42] 3.8 82.5 1665 DVT[14] 2.4 79.3 1485
EViT[13] 4.7 83.0 1447 DynamicViT[12] 2.9 79.3 1774

DynamicViT[12] 4.6 83.0 1302 Evo-ViT[27] 2.9 79.4 1863
SPViT[32] 4.3 83.1 1518 ATS[43] 2.9 79.7 1531

SiT[30] 4.0 83.4 1280 STViT[33] 3.2 80.6 1928
CF-ViT[28] 4.0 83.5 1711 CF-ViT[28] 2.6 80.7 2096

MG-ViT 3.8 83.7 1683 MG-ViT 2.4 80.8 2054

Comparison to other efficient ViTs. In Figure 8, we compare MG-ViT and various efficient
ViTs [44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 25; 54; 55; 56; 57; 58; 59; 60; 61; 62; 63; 64]. It can be
observed that MG-ViT is competitive even among different backbones and other ViT variants.
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Figure 7: Comparison
with baselines.

Figure 8: Comparison MG-ViT between and static efficient ViT methods.

Object detection and semantic segmentation. We adopt the same implementation details as
PVT-Small and conduct preliminary experiments on Hierarchical MG-ViT’s performance in object
detection and semantic segmentation tasks to represent its capability for executing downstream tasks.
As shown in Table 4 and Table 5, extending the multi-granularity strategy to the hierarchical structure
is beneficial for enhancing ViT’s performance and serves as a nice attempt to slim hierarchical ViT.

Table 4: Object detection with Mask R-CNN 1× schedule.

Method #Params(M) FLOPs(G) APb APb
50 APb

75

PVT-Small [16] 44.1 245 40.4 62.9 43.8
Hierarchical MG-ViT-A 46.5 258 40.9 63.2 44.2
Hierarchical MG-ViT-R 41.9 227 40.3 62.7 43.6

Table 5: semantic segmentation with semantic FPN head.

Method #Params(M) FLOPs(G) mIoU

PVT-Small [16] 28.2 44.5 39.8
Hierarchical MG-ViT-A 29.3 46.4 40.1
Hierarchical MG-ViT-R 27.1 41.3 39.7

6 Conclusion

MG-ViT, the two-stage dynamic framework based on the strategy we proposed, achieves a well-
balanced trade-off between performance and computational cost. Within this novel framework,
we contribute four new methods. Firstly, we subsplit patches with multiple different granularities,
resulting in generating multi-granularity tokens with various levels of information, which enhances
the capacity of ViT in feature representation, leading to performance improvement. Secondly, we
introduce a three-way decision mechanism to achieve soft slimming of ViT. Thirdly, we propose the
token match-merge scheme to guide the match-merge of boundary tokens, reducing their quantity. The
second and third methods are reflected in our proposed PPSM. Fourthly, we extend multi-granularity
strategy to hierarchical ViT for various downstream tasks, demonstrating that our method can also be
applied to hierarchical structures for compressing, and we will explore this further in the future.
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7 Appendix

7.1 Hierarchical MG-ViT Architectural Details

We present two variants of the Hierarchical MG-ViT designed based on PVT-Small, as shown in
Table 6. The relevant hyper parameters are listed as follows: Pi: the patch size of Stage i; Ci: the
channel number of the output of Stage i; Ri: the reduction ratio of the spatial-reduction attention in
Stage i; Ni: the head number of the spatial-reduction attention in Stage i; Ei: the expansion ratio of
the feed-forward layer in Stage i; Hi: the head number of the multi-head attention in Stage i.

Table 6: Architectural details of Hierarchical MG-ViT and PVT-Small

Output Size Layer Name PVT-Small Hierarchical
MG-ViT-A

Hierarchical
MG-ViT-R

Stage 1 H
4
× H

4

Patch
Embedding P1 = 4;C1 = 64

Transformer
Encoder

R1 = 8
N1 = 1
E1 = 8

× 3

R1 = 8
N1 = 1
E1 = 8

× 3

R1 = 8
N1 = 1
E1 = 8

× 2

Stage MG H
4
× H

4

MG
Transformer -

[
HMG = 8
EMG = 8

]
× 1

[
HMG = 8
EMG = 8

]
× 1

Stage 2 H
8
× H

8

Patch
Embedding P2 = 2;C2 = 128

Transformer
Encoder

R2 = 4
N2 = 2
E2 = 8

× 3

R2 = 4
N2 = 2
E2 = 8

× 3

R2 = 4
N2 = 2
E2 = 8

× 3

Stage 3 H
16

× H
16

Patch
Embedding P3 = 2;C3 = 320

Transformer
Encoder

R3 = 2
N3 = 5
E3 = 4

× 6

R3 = 2
N3 = 5
E3 = 4

× 6

R3 = 2
N3 = 5
E3 = 4

× 6

Stage 4 H
32

× H
32

Patch
Embedding P4 = 2;C4 = 512

Transformer
Encoder

R4 = 1
N4 = 8
E4 = 4

× 3

R4 = 1
N4 = 8
E4 = 4

× 3

R4 = 1
N4 = 8
E4 = 4

× 3

7.2 Implementation Details

The resolution of input images in our experiments is 224× 224. In SGIS, we split each image into
7× 7 patches. rh and rt are set to 0.1 and 0.4, respectively. Therefore, each image is subsplit into
161 patches in MGIS. For DeiT-S, we inserted a total of three PPSM modules in the 3rd, 7th, and
10th layers. Similarly, for LV-ViT-S, we inserted a total of four PPSM modules in the 4th, 7th, 9th,
and 12th layers. For conducting the training process, we set the batch size to 256 and use AdamW
optimizer to train all models for 300 epochs.

In terms of training strategies and optimization methods, our training closely follows the original
methods proposed in the studies conducted by DeiT and LV-ViT, but do not employ any knowledge
distillation algorithms in our experiments. Throughout the training phase, we observed the impact
on convergence when subsplitting was applied solely to the head and middle patches. To enhance
the speed of model convergence, we adopted subsplitting specifically targeting the head and middle
patches for the initial 200 epochs. Subsequently, for the following 100 epochs, we applied subsplitting
to the head and tail patches. The training was performed on a workstation equipped with 8 RTX 3090
GPUs.
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7.3 Visualization Result

In Figure 9, we specifically demonstrate the images that can be well recognized by MG-ViT (LV-
ViT-S) in SGIS and MGIS. As observed, the images on the left are "simple," usually occupying a
significant portion of the image pixels, with typically complete and clear contours. While the images
on the right are “complex”, containing intricate scenes and non-prominent objects or only include a
small part of the objects, requiring multi-granularity representations through additional tokens.

Figure 9: Example of images well recognized in SGIS and MGIS. To provide clarity, we use unfilled, semi-white,
and semi-black boxes to represent the head, middle, and tail patches in MGIS, respectively.

Figure 10 visualizes the token slimming comparison between token merging (MG-ViT) and token
pruning (DynamicViT). The result shows, the information loss caused by token pruning may result in
incorrect slimming decisions, leading to a decrease in classification accuracy. However, the adoption
of token merging in PPSM alleviates this situation.

Figure 10: Visual comparison between token merging and pruning. The boxes with the same color represent a
merged token.
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Figure 11: Comparison between MG-ViT and existing efficient ViT methods. The size of represents the
computational cost required for each image (FLOPs).It can be observed that MG-ViT achieves a good balance in
terms of accuracy, FLOPs, and throughput, demonstrating its overall competitiveness.

Table 8: Ablation experiment on global
class attention.

Scheme
Acc.(%)

SGIS MGIS

Random division 75.0 78.9
Random CASR 75.3 79.8

Last CASR 75.5 80.5

Ours 75.6 80.8

Table 9: Ablation experiment on Feature
Reuse module.

Scheme
Acc.(%)

SGIS MGIS

w/o Feature Reuse 75.0 79.9
Ours + Class Token 75.4 80.1
w/o Zero-Padding 75.5 80.7

Concat→add 75.4 80.7

Ours 75.6 80.8

7.4 More Experiments and Ablation Analysis

Table 7: Accuracy with different values of λ.

λ 0 0.5 0.9 0.95 0.98 0.99 0.999
Acc.(%) 80.3 80.5 80.7 80.7 80.8 80.7 80.7

Necessity of global class attention.
We designed two experiments based
on backbone DeiT-S to investigate
the necessity of global class attention.
Table 8 shows the gain of the proposed global attention class on model performance, compared
to random division, which involves randomly dividing patches into three groups, random CASR,
which divides patches according to CASR in a random layer of ViT, and last CASR, which divides
patches based on CASR in the last layer. As we can see, the global attention class achieves the best
performance improvement. Table 7 compares the contribution of the global attention class to model
performance with different values of λ. When λ = 0, it represents the last CASR scheme. We set the
default value of λ as 0.98.

Applicability of Feature Reuse. We introduce the Feature Reuse module from DVT[14] to enhance
the feature representation of patches, and also explore its applicability in our model. Specially, we do
not reuse the class tokens and apply zero padding to the tail tokens (i.e., not reusing the information
from tail tokens). Table9 demonstrates the effective integration of the Feature Reuse module into our
model, and indicates the effectiveness of our improvements.

Effect of token match-merge scheme. We conduct ablation experiments to investigate the effort of
our proposed token match-merge scheme and establish three control schemes for comparison: token
pruning, token clustering (K-means), and merging tokens into one. Especially, by employing our
token match-merge scheme on boundary tokens, we achieved the best trade-off between accuracy
and speed, as shown in Table 10. This result also supports the rationality of merging all negative
tokens into one, because we need to process the tokens with low IIC in the most computationally
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Table 10: Ablation experiment on the
token match-marge scheme.

Scheme Acc.(%) SPD(img./s)

Token pruning 79.5 188
Token clustering 79.8 173

Merging tokens into 1 80.4 183

Match-marge (ours) 80.8 180

Table 11: Comparison among
various merging approaches.

Approach Acc.(%)

Keep one 80.3
Max pool 80.4
Avg pool 80.6

weighted avg(ours) 80.8

economical manner. Regarding the approach of generating new tokens by merging, the results in
Table 11 demonstrate that the weighted average method performs best in maintaining accuracy.

Token merging vs. token pruning. Table 12 displays the performance of token pruning and
token merging under two types of slimming, namely the hard slimming type (dividing tokens into
two groups) and the soft slimming type (dividing tokens into three groups). It is observed that
utilizing three-way decision mechanism for token merging (i.e., our proposed PPSM) achieves the
best performance. This is attributed to assigning tokens located in the middle part of CASR to
the boundary domain within three-way decision model, where the tokens adhere to boundary rules,
resembling a "delayed processing".

Table 12: Comparison between
hard and soft slimming.

Type Method Acc.(%)

Hard Pruning 79.8
Merging 80.3

Soft Pruning 80.2
Merging 80.8

Table 13: Experiments fine-tuned and evaluated with a resolution of 384.

Model ϵ Acc.(%) FLOPs(G) TP(img./s)

LV-ViT-S ↑ 384 - 84.4 22.2 303

MG-ViT ↑ 384 0.66 84.4(+0.0) 10.7(−52%) 515(+1.70×)
MG-ViT ↑ 384 1 85.5(+0.7) 16.9(−24%) 345(+1.14×)

Effectiveness of PPSM. We integrate the two methods, three-way decision slimming and token
match-merge scheme, into our proposed PPSM module. Table 14 compares the performance of MG-
ViT (PPSM) with existing methods of hard slimming and soft slimming, as well as the performance
between MG-ViT with and without PPSM. The results demonstrate that our proposed PPSM module
effectively streamlines the model while maintaining performance.

Table 14: Comparison between MG-ViT and the existing soft and hard slimming methods for ViT

Type Method Model Acc.(%) FLOPs(G)
Origin - MG-ViT(w/o PPSM) 80.8 3.7

Baseline - DeiT 79.8 4.6

Hard
slimming

Pruning
PS-ViT 79.8(−0.0) 3.8(−1.2)

DynamicViT 79.3(−0.5) 2.9(−1.7)

IA-RED² 79.1(−0.7) 3.3(−1.3)

Merging EViT 79.5(−0.3) 3.0(−1.6)

Soft
slimming

Pruning SiT 79.8(−0.0) 2.3(−2.3)

Merging
Evo-ViT 79.4(−0.4) 2.9(−1.7)

MG-ViT 80.8(+1.0) 2.4(−2.2)

Experiment on images with higher resolution. We conduct experiments on higher resolution images,
as shown in Table 13, demonstrating the continued effectiveness of our proposed multi-granularity
strategy on higher resolution images.

18



7.5 Computational Complexity Analysis

In this discussion, we disregard the patch embedding block. The computational complexity of a
transformer layer responsible for processing tokens can be calculated as follows:

Ω(SA(tokens)) = 4NC2 + 2N2C,

Ω(FFN(tokens)) = 8NC2.
(18)

Based on provided equations, it can be observed that increasing the dimension C leads to a quadratic
growth in computational complexity. Therefore, if the dimension C is expanded to 2×, the computa-
tional cost will approximately increase by 4×, as discussed in the feature reuse part.

In the PPSM of MG-ViT, we introduce the three-way decision slimming to reduce the number of
tokens. Specifically, based ratios rpos and rneg, all tokens are divided into positive, negative, and
boundary tokens. Positive tokens remain unchanged. Boundary tokens are merged to the half of
their original quantity following the guidance of the token match-merge scheme. Negative tokens
are merged into a single token, and their quantity can be neglected. Therefore, the computational
complexity in the transformer layer following the first PPSM can be described as follows:

N ′ = rposN +
1− rpos − rneg

2
N

Ω(PPSM1st) = 12N ′C2 + 2N ′2C.
(19)

We employ DeiT-S as the backbone and insert PPSM before the self-attention (SA) layers in the 4th,
7th, and 10th layers. The positive, boundary, and negative tokens are divided according to a ratio of
5:4:1. The computational complexity of DeiT-S and our MG-ViT are:

Ω(DeiT ) = 144NC2 + 24N2C,

Ω(STV iT ) = 91.2NC2 + 11.1N2C.
(20)

7.6 Discussion of Ratio r

rh and rt. Each head patch is subsplit into 9 fine patches, while each middle patch is subsplit into
4 medium patches. The majority of important information is concentrated in a few head patches,
partially distributed among middle patches, and only a small portion exists in tail patches. Conse-
quently, we mandate that the count of middle patches exceeds half of the total number. Additionally,
as our aim is to develop an efficient ViT framework, we strive to minimize the total number of
patches obtained after subsplitting compared to the 196 tokens (the official splitting method 14×14).
Considering these factors, we set rh < 0.2. Furthermore, based on the results presented in Fig.1(a)
and Fig.1(c), we set 0.3 < rh < 0.5. We conducted experiments on the origin MG-ViT (without
PPSM) and selected several competitive control group results to showcase in table 15.

Table 15: Accuracy and FLOPs with different values of rh and rt.

rh\rt 0.05\0.3 0.05\0.4 0.1\0.3 0.1\0.4 0.15\0.35

Acc.(%) 80.7 80.5 81.0 81.0 81.1

FLOPs(G) 3.6 3.5 4.1 3.9 4.2

rpos and rneg . According to the discussion in Section 6.3, we exclude the match-merge of boundary
tokens and only consider the merging of negative tokens. When rneg = 0.2, the number of tokens in
the last layer of MG-ViT decreases to 51.2% of the original count. Therefore, the quantity of negative
tokens should be relatively small, and we set rneg < 0.2. On the other hand, if rpos = 0.5, the
minimum number of tokens in the last layer of MG-ViT should be 12.5% of the original count, which
serves as the lowest limit for normal operation of MG-ViT. As a result, we set 0.5 ≤ rpos ≤ 0.7. Our
experimental findings, as presented in Table 16, include several competitive control group results.

Taking all aspects into consideration, we set rh = 0.1, rt = 0.4, rpos = 0.5 and rneg = 0.1.

7.7 Three-Way Decision

Three-way decision is a decision mechanism in rough set theory. Let U be the set of all tokens, and
given a pair of thresholds rpos and rneg. Let e(x) denote the rank of token x based on CASR, and
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Table 16: Accuracy and FLOPs with different values of rpos and rneg .

rpos\rneg 0.5\0.1 0.5\0.15 0.6\0.05 0.6\0.1 0.7\0.05

Acc.(%) 80.8 80.6 81.0 81.0 81.1

FLOPs(G) 2.4 2.3 2.9 2.8 3.2

num represent the total number of tokens in the PPSM. We can describe the positive, negative, and
boundary domains as follows:

Pos = {x ∈ U | e(x) ≤ num · rpos},
Neg = {x ∈ U | e(x) ≥ num · (1− rneg)},

Bdy = {x ∈ U | num · rpos < e(x) < num · (1− rneg)}.
(21)

For tokens in the positive and negative domains, we employ deterministic operations to either maintain
them unchanged or merge them into one token. This is because we have determined their redundancy
status. For tokens in the boundary domain whose redundancy status has not been determined, we
employ undeterministic operation, token match-merge. Token match-merge strikes a balance between
maintaining and merging, representing a form of slow merge that only merges similar tokens. If the
newly generated boundary tokens are subsequently divided into the positive and negative domains in
the next PPSM, they will undergo deterministic operations.
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