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Small object detection, 

a b s t r a c t 

Limited by the size, location, number of samples and other factors of the small object itself, the small 

object is usually insufficient, which degrades the performance of the small object detection algorithms. 

To address this issue, we construct a novel Feature Enhancement Network (FENet) to improve the per- 

formance of small object detection. Firstly, an improved data augmentation method based on collision 

detection and spatial context extension (CDCI) is proposed to effectively expand the possibility of small 

object detection. Then, based on the idea of Granular Computing, a multi-granular deformable convolu- 

tion network is constructed to acquire the offset feature representation at the different granularity lev- 

els. Finally, we design a high-resolution block (HR block) and build High-Resolution Block-based Feature 

Pyramid by parallel embedding HR block in FPN (HR-FPN) to make full use different granularity and res- 

olution features. By above strategies, FENet can acquire sufficient feature information of small objects. 

In this paper, we firstly applied the multi-granularity deformable convolution to feature extraction of 

small objects. Meanwhile, a new feature fusion module is constructed by optimizing feature pyramid to 

maintain the detailed features and enrich the semantic information of small objects. Experiments show 

that FENet achieves excellent performance compared with performance of other methods when applied 

to the publicly available COCO dataset, VisDrone dataset and TinyPerson dataset. The code is available at 

https://github.com/cowarder/FENet . 

© 2023 Elsevier Ltd. All rights reserved. 

1

d

t

i

t

a

l

c

o

s

v

u

F

R

t

i

3

j

w

t

e

t

r

p

o

a

h

0

. Inroduction 

Object detection technology based on deep learning has been 

eveloped rapidly and comes with improved accuracy. Although 

he accuracy of object detection has considerably improved on var- 

ous large-scale datasets, there is still a significant discrepancy be- 

ween the detection of small and large objects. Existing models 

re relatively inefficient to detect small objects, especially both the 

ocalization and classification accuracy of small objects are lower 

ompared to the one when dealing with large ones. However, small 

bject detection is a common problem in numerous application 

cenarios, such as UAV aerial photography [1] , face detection [2] , 

ideo surveillance [3] , and action recognition [4,5] etc. Currently, 
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here are two main definitions of the small object [6] : (i) expressed 

n terms of pixel size. An object with a resolution lower than 32 ×
2 pixels is considered small; (ii) in terms of relative size. An ob- 

ect with both width and height less than 0.1 of the size of the 

hole image is called small. 

In recent years, there have been proposed different solutions to 

he challenges in detecting small objects. On the one hand, some 

ffort s attempt to extend small object dataset by data augmenta- 

ion, which is the simplest and effective way to enhance the rep- 

esentability of small objects by the techniques such as oversam- 

ling and image processing. One common practice of these meth- 

ds [7] rotate small objects to improve the diversity of dataset 

nd others [8] copied and pasted existing small objects in original 

ataset to expand the data. On the other hand, feature represen- 

ation in the algorithms plays an important role in improving the 

etection performance. A straight forward idea is to design a dif- 

erent convolution network to learn feature representation of small 

bjects such as the methods of adjusting receptive fields [9] and 

he dilated or deformable convolution [10] . Besides, the feature 

epresentation with different resolution is also the focus of small 

https://doi.org/10.1016/j.patcog.2023.109801
http://www.ScienceDirect.com
http://www.elsevier.com/locate/pr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109801&domain=pdf
https://github.com/cowarder/FENet
https://doi.org/10.13039/501100001809
mailto:zhanghongyun@tongji.edu.cn
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Table 1 

MS COCO 2017 Labeling object information. 

Object Proportion of objects Area Proportion 

Small objects 31.13 % 0.58 % 43.54 % 

Medium objects 34.90 % 5.99 % 64.72 % 

Large objects 33.97 % 93.44 % 91.22 % 
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bject detection. There are some studies to obtain enhanced fea- 

ure representations from existing neural networks models (such 

s VGG-Net [11] , Recurrent Neural Networks [12] ) by using high- 

esolution features fused with high-dimensional features of low- 

esolution images. In addition, Feature pyramid network [13] is the 

ost popular method which can make full use of different reso- 

ution features. However, there are still some shortcomings in the 

xiting methods. Data augmentation methods that have been pro- 

osed based on random copy-paste algorithm can easy lead to the 

cclusions between objects and incorrect context information. The 

eature extraction methods combined FPN [13] with single gran- 

larity CNN have good performance in normal-scale object detec- 

ion, but the results for small object are not satisfactory. 

In our study, a new small object detection method called FENet 

s proposed, whose main objective is to study, implement and im- 

rove the small object detection task by performing data augmen- 

ation and feature representation enhancement to construct a more 

obust small object detector. First of all, collision detection and 

patial context extension are introduced to improve current data 

ugmentation methods based on copy-paste. Collision detection 

nd spatial context extension solve the problems of object collision 

nd incorrect context information caused by random copy-paste. 

hen, aiming at the problem that the small objects are vulnerable 

o scale variation, combined with the ideas of Granular Computing, 

 multi-granular deformable convolution network is constructed to 

cquire offset feature representation in different granularity lev- 

ls by granulating and fusing the offset features, which allows the 

odel not only to learn the changes in the shape of the object, 

ut also to capture the changes in the scale of the object. Finally, 

o deal with the low resolution of small objects, we design a high- 

esolution block (HR block) that can bring more semantics and de- 

ailed information by maintaining high resolution features through 

he whole process and fusing the feature of different resolution. To 

ully utilize different levels of granularity and resolution features, 

e build High-Resolution Block-based Feature Pyramid by parallel 

mbedding HR block in FPN. The application of above strategies 

an reduce the loss of small object information and acquire more 

ufficient feature information. The main contributions of this paper 

re as follows: 

• To more effectively expand the possibility of small objects ap- 

pearing, we improve current copy-paste based data augmenta- 

tion method by introducing collision detection and spatial con- 

text position extension to avoid object collision and incorrect 

context information caused by random copy-paste. 
• To solve the problem that the small objects are vulnerable to 

scale variation, we construct a multi-granular deformable con- 

volution network to learn and capture the changes in the shape 

and scale of the object, and offset feature representations in dif- 

ferent granularity are acquire by granulating and fusing the off- 

set features. 
• A high-resolution block (HR-block) is designed to bring more 

semantics while maintaining high-resolution features, and 

high-resolution block-based Feature Pyramid is built by parallel 

embedding HR block in FPN to further enhancing the feature 

representation. 
• A large number of experiments are reported to demonstrate the 

effectiveness of the proposed method. At the same time, we set 

up ablation experiments to analyze the rationality of proposed 

different strategies. 

In summary, a novel small object detector is proposed, which 

ses improved data augmentation, multi-granularity deformable 

onvolution and optimized feature pyramid with designed high- 

esolution blocks to obtain richer semantic information and more 

recise detailed features of small objects. 
2

The study is organized as follows. Section 2 introduces the fun- 

amentals of related research. Proposed method is described in 

ection 3 . Section 4 reports on the experiments compared with 

ther methods and the ablation experiments. Parameter analysis 

re given in Section 5 . 

. Related works 

.1. Data augmentation methods 

There are many data augmentation methods in object detection, 

uch as random cropping, random flipping, Gaussian noise, etc. 

hese augmentation methods are inherently more general and well 

uited for vision tasks by encoding the invariance of data transfor- 

ations. 

Since small objects are intrinsically small in size, the corre- 

ponding area they cover is also relatively small, which means that 

he locations of small objects lack diversity. By summarizing vari- 

us information in the MS COCO2017 dataset in Table 1 , we can 

ee that although there is small difference in the number of large 

nd small objects, the area occupied by small objects is only 0.58 % 

f the total area for all images, which is almost negligible com- 

ared to 93.44 % of are occupied by large objects (resolution higher 

han 96 × 96). 

From the aspect of the number of included samples, the num- 

er of images containing small objects is only 43.54 % , much lower 

han that of medium-sized (64.72 % ) and large objects (91.22 % ). 

able 1 points at significant differences in the number and area 

roportion of small objects compared to medium and large objects. 

It is crucial to enhance the diversity of small objects in the 

ataset through data augmentation. A simple approach of copy- 

ng instances of objects from one image and pasting them onto 

nother is called the copy-paste algorithm. Deng et al. [14] con- 

ider the spatial context information of the objective image and 

he current instance when pasting, making the final generated im- 

ge more reasonable. Fang et al. [15] extracted the instances in 

he images and blends them into different contextual images to 

rain on the enhanced images outside the original dataset. Kisan- 

al et al. [16] firstly oversample the small object images and then 

aste them in the image multiple times at any position. Lee and 

ae [17] build a GAN-based object generator to improve feature in- 

erpolation of feature pyramid networks. 

.2. Feature extraction methods for small object 

Feature extraction is an import part in small object detection. 

here are many implementation methods. One of them is to use 

he transformable convolution kernels to obtain different receptive 

led. Dai et al. [10] first used deformable convolution for object 

etection to adjust receptive fields by learning the offset informa- 

ion of the convolution kernel. Yang et al. [18] introduced the form 

f point sets to represent the objects by using the deformable con- 

olution network. 

On the other hand, the multi-scale learning based on differ- 

nt resolutions can also produce the feature information. Liu et al. 

uilt a single shot multibox detector (SSD) [9] that is able to 

earn features of different resolutions obtained by normal con- 

olution neural network to detect small objects. Different from 
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Fig. 1. The structure of proposed model. 
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SD, feature pyramid network (FPN) by Lin et al. [13] established 

 top-down architecture with lateral connection to extract high- 

evel feature maps at different scales. The feature representations 

f different resolution are obtained by FPN to detect objects. Xia 

t al. [19] et al. proposed a TRAN-based self-supervised model 

nd designed a deformable attention converter to achieve tar- 

et recognition. In recent years, Sun et al. [20] provides a new 

tructure (HRNetV1), which maintains the high-resolution repre- 

ent of the feature in the whole model. Based on HRNetV1, Wang 

t al. [21] extended the model into four-resolution representations 

nd connected the high-to-low resolution convolution stream in 

arallel to exchange the information of the features in different 

esolutions. 

However, most data augmentation methods based on copy- 

aste are random, which causes objects to collide with each other. 

n addition, unreasonable pasting position can result in incorrect 

ontext information. The receptive field of deformable convolu- 

ion is not sufficient due to the single level of granularity. Mean- 

hile, the feature pyramid network cannot make full use of the 

eature information under high resolution. To solve these prob- 

ems, A Feature Enhancement Network (FENet) is proposed in our 

tudy. 

. Proposed method 

In this section, we construct the Feature Enhancement Network 

FENet) and propose a small object detection algorithm to improve 

ts performance. FENet mainly consists of three parts: data pro- 

essing part, backbone part and neck part. Fig. 1 shows the overall 

tructure of the proposed algorithm. 

In Fig. 1 , the first part on the left side of the figure is data

ugmentation method named CDCI, aiming to expand small ob- 

ects while preserving them context. The second part composed 

f triple multi-granularity deformable convolution networks is a 

ackbone, whose purpose is to extract the features of small object 

etter. The last part is a neck combining FPN with high-resolution 

lock (HR Block), which is used to fuse features obtained in differ- 

nt granularities and resolutions.In what follows, Section 3.1 intro- 

uces the CDCI method, Section 3.2 introduces the middle part of 

ig. 1 , which called backbone, and Section 3.3 introduces the neck 

odule based on FPN. 
3 
.1. Data augmentation method based on collision detection and 

patial context location expansion (CDCI) 

.1.1. Problems with the random copy-paste method 

To solve the problems of the limitation of the location of small 

bjects, most of the previous methods use the strategy of random 

opy-paste objects. However, there are usually the following two 

roblems. 

Object collision. The positions of the pasted small objects are 

ntirely random, and this may lead to overlapping objects. This 

eans that the covered objects cannot correspond to the annota- 

ions, which reduces the performance of the detector. 

Object location irrationality. The increase of position diversity 

eans that the unreasonableness of position also increases. For a 

asted position, the pasted object should probably not be present 

t that position at all, which destroys the semantic information in 

he image and causes the detector to get the wrong information 

bout location of small objects. 

.1.2. CDCI data augmentation algorithm 

Because the algorithm [8] was the state-of-the-art and strong 

opy-paste method for data augmentation, we choose it as the 

aseline data augmentation method. The CDCI consists of two main 

arts. 

Object collision detection. The collision detection means de- 

ermining whether the pasted object will overlap with original ob- 

ects in the image. The proposed method utilizes Intersection over 

nion (IOU) as a measure of the degree of collision. 

To speed up processing, the objects are directly judged to be in 

on-collision state when the value of IOU is zero. Assuming that 

ox small = 

(
x s 

1 
, y s 

1 
, x s 

2 
, y s 

2 

)
represents the bounding box of the small 

bject to be pasted, where 
(
x s 

1 
, y s 

1 

)
represents the coordinates of 

he top-left vertex of the bounding box and 

(
x s 

2 
, y s 

2 

)
shows coordi- 

ates of the bottom-right vertex of the bounding box. box other = 

x o 
1 
, y o 

1 
, x o 

2 
, y o 

2 

)
represents the bounding box of the object to be 

ompared for the existence of collision. According to Eq. 1 , the top- 

eft vertex 
(
x i 

1 
, y i 

1 

)
and the bottom-right vertex 

(
x i 

2 
, y i 

2 

)
of the in- 

ersecting region can be determined. 
 

 

 

 

 

 

 

x i 1 = max 
(
x s 1 , x 

o 
1 

)
, 

y i 1 = max 
(
y s 1 , y 

o 
1 

)
, 

x i 2 = min 

(
x s 2 , x 

o 
2 

)
, 

y i 2 = min 

(
y s 2 , y 

o 
2 

)
. (1) 
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Fig. 2. A small copied object with context information. 
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Table 2 

Algorithm 1. CDCI data augmentation (pseudo code). 

Input: original dataset SI = I1, I2, I3,...,IM, the number 

of images in the target dataset N, the empty set 

used to store the enhanced images SAUG = 

Output: enhanced dataset SAUG = IA1, IA2, IA3,..., IAN 

1 . For i : = 1:N 

2 . Randomly select images IA and IB from SI 

3 . Do random scaling dithering on IA and IB 

4 . Do a random horizontal flip on IA and IB 

5 . Extract instances from IA and IB and extend the 

spatial context location of the instances to form 

the set SIA, SIB 

6 . Extract a random subset of ST from SIA or SIB 

7 . Paste ST into another image, then do collision 

detection when pasting, update annotation to 

generate enhanced image IAi 

8 . SAUG ← AUG+IAi 

9 . END FOR 

10 . RETURN SAUG 

e

c

d

i

3

l
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t
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The formula to determine if there is a collision between two 

ounding boxes is expressed as: 

a v e _ col l ision = 

(
x i 1 < x i 2 && y i 1 < y i 2 

)
, (2) 

f have collision is True, a collision occurs and one needs to find a 

ew paste position, otherwise, paste the object directly. 

Location extension based on spatial context. Unlike the pre- 

ious method of only pasting small objects, we paste the infor- 

ation around the small objects to the new location together to 

reserve the scene information to a certain extent. This method 

ot only reduces the possibility of unreasonable positions of ob- 

ects after pasting, but also preserves the spatial context informa- 

ion of small objects as much as possible. When performing the 

opy-paste operation, we add equally spaced padding around the 

ounding box to expand the pixel value of the scene around ob- 

ect. Suppose that box small = 

(
x s 

1 
, y s 

1 
, x s 

2 
, y s 

2 

)
is the original bounding 

ox of an object, and after adding padding, the copied area be- 

omes box copied = 

(
x s 

1 
− pd, y s 

1 
− pd, x s 

2 
+ pd, y s 

2 
+ pd 

)
, where pd is 

he pixel value expanded in all directions. As shown in Fig. 2 , the

ed box is the genuine bounding box. We extend the bounding box 

f the object to a larger scene, and then the extended box area is 

asted to the new area. 

Fig. 3 shows the results of adding contextual information to 

mall objects in different images, where the red boxes represent 

he real bounding boxes and the brown boxes indicate the ex- 

ended areas after adding padding. In Fig. 3 , we can see that pasted

argets contain more effective contextual information by adding 

adding, such as the grass in Fig. 3 (a), the human face in Fig. 3 (b),

he sky and the ocean in Fig. 3 (c), and the light line in Fig. 3 (d).

he introduction of these contextual information enhanced the in- 

ormation of the objects in the original bounding box and was 

ore beneficial to the understanding of the objects. 

.1.3. CDCI data augmentation algorithm flow 

The CDCI is implemented based on the current mainstream 

opy-paste algorithm. Assuming that it needs to generate N en- 

anced images from the original dataset SI, two images IA and IB 

re first randomly selected from this dataset. The datasets of in- 

tances in images IA and IB are represented by SIA and SIB, re- 

pectively, and the two images are randomly scaled and dithered. 

ompared with the traditional random copy-paste algorithm, the 

lgorithm [8] uses a larger dithering scale (the range extends from 

0.8,1.24] to [0.1, 2.0]) while performing a random horizontal flip- 

ing operation on each of these two images, and then randomly 

electing a subset ST from the set of instances SIA or SIB of one 

mage. To retain more spatial context information of the objects, 

DCI adds a padding of the corresponding size when extracting 

he instances and pastes this subset of instances ST into another 

mage, and collision detection is performed at the same time. 
4 
Finally, the annotation of the pasted instance is updated to gen- 

rate the enhanced image IAUG. then we repeat the above pro- 

ess N times, and form the SAUG which contains a collection of N 

ata-enhanced images. The specific improved algorithm is shown 

n Table 2 . 

.2. Deformable convolution network based on multi-granularity 

In traditional convolutional neural networks (CNN), the convo- 

ution kernels are often the same size (e.g., 3 × 3 ). For small ob- 

ects, due to their inherently small scale, a slight scale change can 

ave drastic changes in feature extraction. Therefore, we introduce 

he deformable convolution instead of traditional CNN to obtain 

he representation of offset under different granularity. 

.2.1. Offset feature learning of the sampling locations 

As shown in Fig. 4 and Fig. 5 , the traditional convolution can 

nly focus on a fixed square region, and deformable convolution 

10] can make the network more adaptable to the changes of the 

ampling locations by learning the offset of each location of the 

onvolution kernel. 

The single deformable convolution is shown in Fig. 6 . The in- 

ut feature is denoted as f in = [ C, H, W ] , where C is the number of

hannels of the input feature map, H and W are the height and 

idth of the input feature map, respectively. 

In Fig. 6 , the proposed method can obtain the offset feature 

ap f of f set _ f ield = [2 C, H, W ] of the input feature map, and the

umber of channels is changed to twice as much as the original, 

t represents the offset of each pixel in two directions (horizontal 
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Fig. 3. Adding context information to small objects in different scenarios. 

Fig. 4. Various deformable convolution kernels. 

d

p  

r

(

f

t

v

t  

w

e

t

a

t

m

b

t

3

o

s

p

T

t

U

o

l

l

m

irection X and vertical direction Y). By adding the index of the 

osition (in f in ) and the corresponding offset in the x and y di-

ections (in f of f set _ f ield ), we obtain the new index for each pixel 

it is necessary to ensure that the index is within the range of 

eature map). However, the predicted offset is a real number, but 

he value of new index is not necessarily an integer. For the index 

alue P = ( x, y ) of the new index, we get the four integers nearest 

o P: P 11 = ( x 1 , y 1 ) , P 12 = ( x 1 , y 2 ) , P 21 = ( x 2 , y 1 ) , and P 22 = ( x 2 , y 2 ) ,

here x 1 = f loor(x ) , x 2 = ceil(x ) , y 1 = f loor(x ) , and y 2 = ceil(x ) . 

Fig. 7 shows the process of bilinear interpolation. We obtain the 

igenvalues of R 1 and R 2 by interpolating among the x-coordinate. 

f ( R 1 ) = 

x 2 − x 

x 2 − x 1 
f ( P 11 ) + 

x − x 1 
x 2 − x 1 

f ( P 21 ) , (3) 

f ( R 2 ) = 

x 2 − x 

x 2 − x 1 
f ( P 12 ) + 

x − x 1 
x 2 − x 1 

f ( P 22 ) . (4) 

Then we obtain the eigenvalues of f(P) by interpolating among 

he y-coordinate. 

f (P ) = 

y 2 − y 

y − y 
f ( R 1 ) + 

y − y 1 
y − y 

f ( R 2 ) . (5) 

2 1 2 1 

5 
After calculating the eigenvalues of all new index points, we get 

 new feature map f of f set = [ C, H, W ] , each eigenvalue in f of f set is 

he value after the offset. Finally, we get the final output feature 

ap f out = [ C out , H out , W out ] , where C out , H out and W out are the num- 

er of channels, height and width of the output feature respec- 

ively. 

.2.2. Multi-granularity deformable convolution design 

Granular Computing is a new computing paradigm in the field 

f artificial intelligence to simulate human way of thinking and 

olve complex problems by reducing the problem to some smaller 

roblems occurring at different levels of abstraction (granularity). 

he most important step in the multi-granularity theory is to de- 

ermine the granulation object of the problem. 

In our research, the granulation object is the offset feature map. 

sually, a 3 × 3 convolutional kernel can be employed to learn the 

ffsets of each point on the feature map in the Deformable convo- 

ution [10] . We granulate the offsets learning into three different 

evels of abstraction to gain the representation of offsets feature in 

ulti-granularity. Fig. 8 shows the multi-granularity offsets. 
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Fig. 5. Comparison of traditional and deformable convolution. 

Fig. 6. Single deformable convolution. 
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Low-rank granule learning: The offset field can be learned from 

he input feature map by 1 × 1 convolution. Under this granularity, 

e learn the offset information of each sampling point separately, 

ithout their surrounding information. 

Middle-rank granule learning: 3 × 3 convolution is utilized for 

ffset field learning. Here, offsets of each point are learned using a 

orresponding 3 × 3 grid area in the input feature map, which has 

 higher spatial perception range than the low-rank learning. 

High-rank granule learning: 5 × 5 convolution is utilized for 

ffset field learning. Offsets of each point are learned from a cor- 

esponding 5 × 5 grid, which has the largest receptive field com- 

ared with low-rank and middle-rank counterpart. 

After obtaining multi-granularity representation of location off- 

ets, these feature maps coming at different level of granularity 

eed to be fused. In this way, we can get an integrated represen- 

ation from input feature map. 

Generally, there are two ways of fusing feature maps. One is 

lement-wise, which adds or multiplies the corresponding loca- 
6 
ions of different feature maps in different levels, and the number 

f channels are kept the same after fusing. The second is channel- 

ise, meaning that the obtained multi-level feature map is con- 

atenated along the channel dimension to form a new feature map 

ith two times the number of channels. However, it is difficult 

or element-wise to determine the offsets in fusion under different 

ranularities. Correspondingly, the channel-wise method can com- 

letely preserve the offsets of all granularity levels. 

Fig. 9 shows the detailed process of multi-granularity de- 

ormable convolution (MGDC). Input feature map can be repre- 

ented as f in = [ C, H, W ] , and then the maps are fed into three 

ranches to get the offset information from three different gran- 

larity, and the value of the offset is expressed as f i 
of f set _ f ield 

= 

 

2 C, H, W ] ( i = 1 , 2 , 3 ) . Subsequently, the multi-granularity offset 

an be generated by using bilinear interpolation, and then we use 

 × 3 convolution to extract features to obtain multi-granularity 

eature maps. Lastly, the fused feature map is obtained by concate- 

ating these three levels of feature maps. 



H. Zhang, M. Li, D. Miao et al. Pattern Recognition 143 (2023) 109801 

Fig. 7. Bilinear interpolation method. 
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.3. High resolution block-based feature pyramid 

Now, we build High Resolution Block (HR Block) and combine 

t with FPN to propose the HR-FPN with richer information repre- 

entation. 

.3.1. High resolution block design 

To maintain high resolution, inspired by HRNet [21] , the pro- 

osed HR-Block contains multiple parallel features maps of differ- 

nt resolutions, whose combination makes up the final output fea- 
Fig. 8. A multi-granularity re

7 
ure maps. The HR Block in the Fig. 1 shows the structure of a 

ingle HR Block. 

High-resolution features contain a lot of detail, and low- 

esolution features have richer semantic information. Based on 

hese advantages, every layer of HR-Block uses high-resolution to 

aintain the feature information of small object, at the same time, 

R-Block also combine low-resolution features to better extract the 

nformation of small objects. 

In the HR Block of Fig. 1 , the cube whose size indicates the 

ifference of resolution represents the feature map, and the hor- 

zontal arrow represents the convolution. The down arrow means 

hat 3 × 3 convolution with stride of 2, 3, or 4 (gradually increas- 

ng according to the number of vertically parallel feature maps). 

fter these convolutions, the resolution of feature map is reduced, 

ut semantic information will be richer. Considering the loss of in- 

ormation in the dimensionality reduction, we use the convolution 

ith 3 × 3 stride instead of pooling layers to minimize the loss of 

nformation. The arrow pointing up represents bilinear interpola- 

ion. We use the 1 × 1 convolution to change the number of chan- 

els for the convenience of subsequent feature fusion. 

Fig. 10 shows the part framed by a dashed line in HR Block, 

hich is located at the lower-right corner of Fig. 1 . For feature 

aps A and B, different colors indicate convolution with differ- 

nt parameters in Fig. 10 . Next, element-wise addition is utilized 

o fuse the feature maps with same resolution in the same vertical 

evel. 

.3.2. Embedding high resolution block in FPN 

The reasons why the FPN structure can promote small object 

etection are two-fold. First, FPN increases the resolution of the 

eature of the small object, and can retain more effective informa- 

ion of the object. Second, FPN captures more contextual informa- 

ion to small objects, due to the existence of top-down path, the 
presentation of offset. 
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Fig. 9. Multi-granularity deformable convolution. 

Fig. 10. The feature fusion of HR-Block. 

Fig. 11. The feature fusion of HR-Block. 
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emantic information at the top level can be transmitted to the 

ottom level. 

We introduced the HR block in FPN to improve the ability 

f small object detection. As shown in Fig. 11 , we use multi- 

ayer downsampling to obtain feature maps at different resolu- 

ions, these feature maps are sent to HR blocks and the out- 

ut of each HR block is fused along the top-down path. Specif- 

cally, the top-level feature map is upsampled to obtain a new 

igh-resolution feature map. Finally, the subsequent classifica- 
R

8 
ion and regression tasks are performed on the fused feature 

aps. 

. Experimental studies 

.1. Experiment setup 

We adopted Cascade R-CNN [22] as the baseline with Triple- 

esNext152 for backbone. The experimental results are all obtained 
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Fig. 12. Comparison of subjective performance. 
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n the MS COCO 2017 dataset [6] . We used the Adam optimizer 

ith an initial learning rate of 1e-3. We used the computer equip- 

ent with 128G RAM, Tesla V100GPU × 8, and Intel(R) Xeon(R) 

ilver 4114 CPU. 

.2. Comparison of subjective performance 

To fully represent the detection capability of the proposed 

odel, we compare the FENet proposed in this paper with Reti- 

aNet [23] , ATSS, and YOLOv5. We specifically select the sam- 

les with relatively small objects present in the images. Fig. 12 

hows the detection results: FENet has better performance for 

mall object detection in the practical detection results, and both 

he missed and false objects are less than the other three compar- 

son models. 

For the number of boxes selected in the detection results, there 

s little difference between YOLOv5 and FENet, but the degree of 

onfidence of the objects boxed by YOLOv5 is generally lower than 

ENet. This indicates that it has insufficient discriminatively ability 

or the attributes of the objects. Meanwhile, the second image in 

ig. 12 (d) also shows that there are missed objects in the FENet in

he case of more pedestrians and covered persons. Currently, the 

roblem of missed and false detection is also one of the difficulties 

n object detection, and the method proposed in this paper still has 

ome limitations in solving the occlusion problem. 

.3. Comparison of objective performance 

.3.1. Algorithm performance comparison on small object detection 

atasets 

The VisDrone detection dataset [24] consists of UAV vision im- 

ges designed for small object detection, in which the objects are 

mall in size and large in number, VisDrone can effectively ver- 

fy the performance of the network model for small object detec- 

ion. Although the TinyPerson dataset [25] has only human an- 

otation information, the object size is relatively smaller and the 

esolution is lower, and it is more difficult to detect. We tested 

he FENet with other models on the VisDrone and the TinyPer- 

on dataset. Table 3 shows the detection results on the VisDrone 

ataset, and Table 4 shows the results on the TinyPerson dataset. 

n Table 3 , the detection accuracy of FENet is only slightly lower 

han that of DroneEye2020 and TAUN, while Table 4 shows that 
9 
ENet is only marginally lower than the method in the litera- 

ure [25] on the TinyPerson dataset. The experimental results fur- 

her demonstrate the effectiveness of FENet on the small object 

etection. 

.3.2. Comparison with mainstream methods 

For a fair comparison with other methods, MS COCO test-dev 

017 is also selected as the test dataset, which is the most au- 

horitative and challenging dataset in object detection. Table 5 

hows the experimental results. We divided the various algorithms 

nto two categories: one-stage and two-stage methods, the method 

ith 

∗ indicate a multi-scale approach is used. This paper directly 

dopts the source code and pre-trained models provided by the au- 

hors, and we only use the multi-scale testing method in the test- 

ng phase to ensure the fairness of the experiments. 

In Table 5 , FENet is relatively advanced among the mainstream 

bject detection models both in overall detection accuracy and 

mall object detection accuracy. By adopting a multi-granularity 

eformable convolution and high-resolution feature pyramid net- 

ork, the overall detection accuracy and small-object detection ac- 

uracy of baseline improved to 54.6 and 37.2. With the addition 

f the pre-processed data augmentation method CDCI, the overall 

etection accuracy of FENet improves from 54.6 to 55.5, and the 

mall object detection accuracy improves from 37.2 to 38.0. It illus- 

rates that the CDCI algorithm proposed in this paper has improved 

oth the overall detection accuracy and the effectiveness for small 

bject detection. In addition, FENet reaches the optimal accuracy in 

he series of Cascade Mask RCNN-based detection algorithms. Al- 

hough the CenterNet2 methods in Table 5 is superior than FENet 

n accuracy, CenterNet2 uses higher resolution input images in the 

esting phase. 

.3.3. Model efficiency 

Here we use Cascade Mask R-CNN [22] as a baseline model. We 

ropose the FENet (Feature Enhancement Networks) by applying 

DCI (Collision Detection and Contextual Information based aug- 

entation), MGDC (Multi-Granular Deformable Convolution) and 

R-FPN (High Resolution block-based Feature Pyramid Networks) 

o the baseline. The FPS (Frame Per Second) metric is utilized to 

valuate model efficiency. Under the proposed experimental condi- 

ions, the baseline model runs at 23 FPS, and the proposed FENet 

uns at 15 FPS. The inference efficiency of FENet is 30 % lower than

he baseline. 
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Table 3 

Performance comparison of the proposed method on dataset VisDrone. 

Methods Model AP AP50 AP75 AR1 AR10 AR100 AR500 

DroneEye2020 Cascade RCNN 34.57 58.21 35.74 0.28 1.92 6.93 52.37 

TAUN ATSS [26] 34.54 59.42 34.97 0.14 0.72 12.81 49.80 

CDNet Cascade RCNN 34.19 57.52 35.13 0.80 8.12 39.39 52.62 

CascadeAdapt Cascade RCNN 34.16 58.42 34.50 0.84 8.17 39.96 47.86 

HR-Cascade + Cascade RCNN 32.47 55.06 33.34 0.94 7.81 37.93 50.65 

MSC-CenterNet CenterNet [27] 31.13 54.13 31.41 0.27 1.85 6.12 50.48 

Proposed Cascade RCNN 34.50 59.73 32.31 0.57 1.20 35.70 51.55 

Table 4 

Performance comparison of the proposed method on dataset TinyPerson. 

Detector AP tiny 
50 

AP tiny1 
50 

AP tiny2 
50 

AP tiny3 
50 

AP small 
50 AP tiny 

25 
AP tiny 

75 

FCOS [28] 17.90 2.88 12.95 31.15 40.54 41.95 1.50 

RetinaNet [23] 33.53 12.24 38.79 47.38 48.26 61.51 2.28 

FreeAnchor [29] 44.26 25.99 49.37 55.34 60.28 67.06 4.35 

Libra RCNN [30] 44.68 27.08 49.27 55.21 62.65 64.77 6.26 

Grid RCNN 47.14 30.65 52.21 57.21 62.48 68.89 6.38 

Faster RCNN-FPN 47.35 30.25 51.58 58.95 63.18 68.43 5.83 

RCNN-FPNMSM 50.89 33.79 55.55 61.29 65.76 71.28 6.66 

RCNN-FPNMSM + 52.61 34.20 57.60 63.61 67.37 72.54 6.72 

Proposed 51.33 37.02 55.03 62.44 66.92 72.81 6.20 

Table 5 

Quantitative assessment comparison of different methods applied to COCO test-dev2017 dataset. 

Method Backbone AP AP 50 AP 75 AP S AP M AP L 

One-stage methods: 

ATSS [26] ResNetXt10 + DCN 

∗ 50.7 68.9 56.3 33.2 52.9 62.4 

PAA [31] ResNext152 + DCN 

∗ 53.5 71.6 59.1 36.0 56.3 66.9 

EfficientDet + DI [32] Efficient-B7 53.6 71.8 57.0 32.2 51.3 56.8 

EFPN [33] ResNeXt-101 44.6 64.7 49.4 28.0 47.5 54.2 

M2YOLOF [34] ResNet-101 42.6 62.3 46.2 24.3 47.3 57.8 

OTA [35] ResNext-101-DCN 51.5 68.6 57.1 34.1 53.7 64.1 

AFI-GAN [17] ResNext-50 43.8 61.7 47.6 26.9 46.6 53.4 

AugFCOS [36] ResNext-152-DCN 53.5 71.6 59.1 36.0 56.3 66.9 

Object [37] ResNet-50-FPN 42.3 60.3 46.0 24.9 46.0 55.9 

UniverseNet [38] ResNext-101 54.1 71.6 59.9 35.8 57.2 67.4 

DAT [19] Transformer 47.9 69.6 51.2 32.3 51.8 63.4 

Two-stage methods: 

Faster RCNN [13] ResNet101 + FPN 36.2 59.1 39.0 18.2 39.0 48.2 

Sparse RCNN [39] ResNeXt101-DCN 43.5 62.1 47.2 26.1 46.3 59.7 

TridentNet [40] ResNet101-Deformable 48.4 69.7 53.5 31.8 51.3 60.3 

Cascade Mask RCNN [22] Triple-ResNeXt152 ∗ 53.3 71.9 58.5 35.5 55.8 66.7 

CenterNet2 [41] Res2Net-101-DCN 56.4 74.0 61.6 38.7 59.7 68.6 

Proposed method: 

FENet ResNet101 

(without pre-processing) + MGDC-v2 ∗ 52.0 71.0 58.1 35.6 56.3 66.2 

FENet ResNet101 

(with pre-processing) + MGDC-v2 ∗ 53.4 72.0 58.8 36.8 57.0 65.8 

FENet Triple-ResNext152 

(without pre-processing) + MGDC-v2 ∗ 54.6 73.3 60.2 37.2 57.1 67.3 

FENet Triple-ResNext152 

(with pre-processing) + MGDC-v2 ∗ 55.5 73.4 60.7 38.0 58.6 67.9 
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Table 6 

Impact of different padding size on performance. 

Methods AP AP 50 AP 75 AP S AP M AP L 

no padding 53.4 71.2 58.0 35.3 55.7 66.2 

padding = 1 53.4 71.7 58.2 35.6 55.5 66.6 

padding = 2 53.6 72.1 58.1 35.8 55.9 66.5 

padding = 3 53.8 72.4 58.4 36.0 55.9 66.8 

padding = 4 53.7 72.3 58.1 35.7 55.7 66.9 

a

j

i

c

a

. Ablation studies and analysis 

.1. Evaluation on data augmentation strategies 

The experiments explore the effect of different padding sizes 

n the expansion of spatial contextual information and compare 

he proposed data augmentation algorithm CDCI with two conven- 

ional copy-paste algorithms to verify the effectiveness of the im- 

roved method in this paper. 

.1.1. Effect of different padding size 

Table 6 shows the impact of adding padding to small objects 

n the model performance, and the collision detection is used in 

ll models. When the padding is too small, the performance de- 

rades because small edges affect the characteristics of the object 
10 
nd add some redundant information to the feature of small ob- 

ects. When the padding becomes larger, the surrounding context 

nformation can improve the performance. When the padding size 

ontinues to increase, the detection performance for small objects 

lso decreases slightly. 
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Table 7 

Performance comparison of different copy-paste methods. 

Methods base-method AP AP 50 AP 75 AP S AP M AP L 

base ∗ - 52.4 71.2 57.4 34.6 55.3 65.7 

w/o Col base ∗+ cp2 52.8 71.6 57.7 34.9 55.8 66.0 

w Col base ∗+ cp2 52.6 71.8 57.6 35.0 55.9 65.9 

w Col base ∗+ cp2+padding 53.1 71.9 58.0 35.2 55.6 66.2 

w/o Col base ∗+ cp1 53.5 72.0 58.1 35.5 55.4 67.0 

w Col base ∗+ cp1 53.4 71.2 58.0 35.3 55.7 66.2 

w Col base ∗+ cp1+padding 53.8 72.4 58.4 36.0 55.9 66.8 

Table 8 

Effect of granulation mode on the performance of multi-granularity 

deformable convolution.. 

Methods AP AP 50 AP 75 AP S AP M AP L 

baseline [22] 53.3 71.9 58.5 35.5 55.8 66.7 

baseline ∗ 52.4 71.2 57.4 34.6 55.3 65.7 

DCN 53.2 72.0 58.2 35.5 56.0 66.6 

MGDC-v1 53.7 72.4 58.7 36.3 56.5 67.2 

MGDC-v2 54.0 72.8 59.0 36.6 56.7 67.7 

MGDC-v3 54.2 73.0 59.0 36.4 56.6 67.9 

MGDC-v4 54.3 73.1 58.8 36.1 56.5 68.1 

MGDC-v5 54.0 72.7 58.5 35.8 56.3 68.1 
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.1.2. Performance comparison of data augmentation algorithm 

This paper proposes two improved methods for copy-paste. 

o verify the effectiveness of these methods, we apply them to 

wo mainstream copy-paste algorithms and compare them. Table 7 

hows the experimental results, where cp1 is proposed in ref. 

8] , cp2 is proposed in ref. [16] , Col represents collision detection, 

adding represents Spatial context extension. For small objects, it 

s not easy for them to collide with each other during data aug- 

entation, so the effect improvement brought by single collision 

etection is small or even performance degradation. Compared to 

p2, cp1 randomly resize and rotate images to increase the num- 

er of targets (especially small object because of the reduction of 

he size). Therefore, in Table 6 , using cp2 (without padding) can 

ring some performance improvement (APm: 55.9 vs 55.8 and APs: 

5.0 vs 34.9), while cp1 does not significantly depend on a sin- 

le collision detection. According to Table 6 and Table 7 , it is con-

luded that using Spatial context extension and collision detec- 

ion simultaneously can effectively im prove the performance of the 

odel. 

.2. Evaluation on feature augmentation methods 

.2.1. Effect of different granulation methods 

The size of the granularity is decisive to the multi-granularity 

eformable convolution. Different numbers of granularities are 

sed in experiments for comparison. Table 8 shows the experimen- 

al results. DCN is the deformable convolution network chosen as 

he base in this paper. MGDC-v1 represents the proposed multi- 

ranularity deformable convolution, which use two kinds of con- 

olution kernels 1 × 1 and 3 × 3 to obtain the offsets of differ- 

nt levels. MGDC-v2 adds additional 5 × 5 granularity compared 

o MGDC-v1. MGDC-v3 adds 7 × 7 to v2. MGDC-v4 adds 9 × 9 

ranularity to v3, while MGDC-v5 adds 11 × 11 granularity to v4. 

According to the results (baseline ∗ represents the implementa- 

ion of mmdetection), from DCN to MDGC-v1, we can see that dou- 

le granularities significantly improve the detection performance 

35.5 to 36.3) in comparison to single granularity, and the overall 

etection performance has also been improved (53.2 to 53.7). From 

DGC-v1 to MDGC-v2, the model obtains a performance increase 

f 0.3 for small objects and overall performance with three lev- 

ls of granularity, respectively. When the granularity continues in- 
11
reasing to 4, MGDC-v3 could improve the overall detection perfor- 

ance by 0.2, but its performance for small objects is worse than 

GDC-v2. In addition, the training process of MGDC-v3 is more 

ime-consuming due to its complicated model structure, so the 

mprovement of overall detection performance in MGDC-v3 is not 

nough to compensate for the extra training time. When MGDC-v4 

ontinues to add 9 × 9 granularity, the overall detection accuracy 

lightly increases, but the small object detection accuracy contin- 

es to decline. When MGDC-v5 adds 11 × 11 granularity, both the 

verall detection accuracy and the small object detection accuracy 

how decreasing trends, and the computational overhead will also 

ncrease significantly. 

.2.2. Visualization of multi-granularity deformable convolution 

According to the conclusion of previous subsection, we compare 

he difference between deformable convolution with granularity of 

 × 1, 3 × 3 and 5 × 5. Taking ResNet50 as an example, we ex- 

ract a point (the blue point shown in Fig. 13 ) on the output fea-

ure map of the 4th convolutional block in the network. This point 

an theoretically get the corresponding ( 1 × 1 ) 2 = 1 , ( 3 × 3 ) 2 = 

1 , ( 5 × 5 ) 2 = 625 feature points (the red point shown in Fig. 13 )

nder low-rank, middle-rank, and high-rank granules, these fea- 

ure points are used to learn the offset information of the blue 

oint. The number may be lower than the calculated value because 

ome points are out of the bounds. 

In the overall view, when the blue feature point belongs to an 

bject, this means that the object is needed to be detected (the 

ed ones almost cover the entire object and can adaptively be ad- 

usted according to different sizes of objects). When the blue fea- 

ure point falls on the background, the red points will expand out- 

ards constantly to find and determine whether the next point 

s still a background point. For the different levels of granularity, 

he higher the rank of offset granule, the wider the coverage area 

f corresponding red points, and the more the information used 

or learning offsets. Low-rank offset granule only needs one fea- 

ure point to learn offsets, middle-rank utilizes a small local area 

round the feature point, and high-rank granule uses a large area 

round the feature point for learning. 

.3. Evaluation on high resolution block FPN 

The baseline uses the conventional FPN, we add HR Block on 

ts basis directly. Fig. 14 shows the experimental results, which 

how that the detection performance of the HR-FPN proposed in 

his paper is significantly better than that of the ordinary FPN for 

mall and medium-sized objects, while the detection performance 

or large objects is close to that of the ordinary FPN. On the one 

and, high-resolution feature maps from the HR-FPN can provide 

xtra rich information about the details of image for small and 

edium size objects, it is important for the model to distinguish 

hese objects from the background. On the other hand, since FPN 

as already represented the multi-layer features of large objects, 

R-FPN use the high-resolution module again may lead to the gen- 

ration of redundant information. Hence, the detection accuracy of 

R-FPN is improved by about 0.7, it shows that HR-FPN can bring 
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Fig. 13. The feature fusion of HR-Block. 

Fig. 14. The feature fusion of HR-Block. 
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Table 9 

The results of feature enhancement ablation experiments. 

MGDC HR AP AP 50 AP 75 AP S AP M AP L 
colrule × × 52.4 71.2 57.4 34.6 55.3 65.7 

� × 54.0 72.8 59.0 36.6 56.7 67.7 

× � 53.1 71.7 57.8 35.3 55.7 65.8 

� � 54.6 73.3 60.2 37.2 5 7.1 67.3 

f

r

 certain degree of improvement to the overall detection effect of 

he model. 

.4. FENet Feature-enhanced ablation experiment 

We performed ablation experiments on the MGDC-v2 and HR- 

PN. As displayed in Table 9 , the model leads to a certain degree

f improvement by using MGDC-v2 and HR-FPN alone, respectively. 

GDC-v2 can improve the performance of the baseline model by 

.0 for small object detection and 1.6 on the overall performance, 

his indicates that both small and large object detection benefit 
12 
rom multi-granularity deformable convolution. HR-FPN brings a 

elatively small improvement of 0.7 on small objects and 0.7 over- 
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ll, which also shows the effectiveness of HR-FPN. The ablation ex- 

eriments in Table 9 show that both the proposed multi-grain de- 

ormable convolution and the high-resolution feature pyramid net- 

ork can improve the overall detection accuracy of the model as 

ell as the small object detection accuracy. The multi-granularity 

eformable convolution improves the small object detection accu- 

acy of baseline from 34.6 to 36.6, while the high-resolution fea- 

ure pyramid improves the small object detection accuracy of base- 

ine from 34.6 to 35.3. The combined application makes the accu- 

acy for small object detection finally reaching 37.2. 

. Conclusion 

This paper presents the design of the detection network FENet 

Feature Enhancement Network) based on collision detection, spa- 

ial context information, multi-granularity deformable convolution, 

nd high-resolution feature pyramids, which can generate multi- 

ose, multi-scale and robust feature representations for small ob- 

ects. In this study, a new data augmentation strategy, a novel 

odule combining idea of multi-Granularity and deformable con- 

olution network and a optimized HR-FPN are proposed to im- 

rove the performance of small object detection. Ablation exper- 

ments show that proposed modules can improve the ability of the 

mall object detector, and the subjective and objective experiments 

emonstrate that our FENet can perform better in the overall de- 

ection capability compared with the current mainstream detection 

ethods. 

In future, FENet can be switched to different applications by 

hanging head part, such as Swin, SSD and DETR. FENet has strong 

obustness and can be easily applied to multipli CNN and trans- 

ormer module. However, there are also some weaknesses in this 

aper such as lightness of the model, performance of the object 

etection in scenes of occlusion (the objects are obscured by the 

bstacle) or crowd (the objects cover each other). Future studies 

re focused on the object detection in a crowd or occlusion, and 

y improving the proposed FENet, we will construct a new model 

hich can detect the objects by using only a part of the object. 

At the same time, small object detection plays an important 

ole in the field of intelligent medical, aerial detection, mechani- 

al defect detection and other tasks. The proposed method could 

ffer some inspiration in the future studies of small object track- 

ng, aerial object detection, which is also one of our next major 

orks. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

ata availability 

Data will be made available on request. 

eferences 

[1] Z. Wu, K. Suresh, P. Narayanan, H. Xu, H. Kwon, Z. Wang, Delving into robust
object detection from unmanned aerial vehicles: A deep nuisance disentangle- 

ment approach, in: Proceedings of the IEEE/CVF International Conference on 
Computer Vision, 2019, pp. 1201–1210 . 

[2] P. Hu, D. Ramanan, Finding tiny faces, in: Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, 2017, pp. 951–959 . 

[3] Z. Yang, X. Wang, J. Wu, Y. Zhao, Q. Ma, X. Miao, L. Zhang, Z. Zhou, Edge-

duet: tiling small object detection for edge assisted autonomous mobile vision, 
IEEE/ACM Trans. Networking (2022) . 

[4] Z. Tu, H. Li, D. Zhang, J. Dauwels, B. Li, J. Yuan, Action-stage emphasized spa-
tiotemporal VLAD for video action recognition, IEEE Trans. Image Process. 28 

(6) (2019) 2799–2812 . 
13 
[5] Z. Tu, W. Xie, Q. Qin, R. Poppe, R.C. Veltkamp, B. Li, J. Yuan, Multi-stream CNN:
learning representations based on human-related regions for action recogni- 

tion, Pattern Recognit 79 (2018) 32–43 . 
[6] T.Y. Lin, M. Maire, S.J. Belongie, J. Hays, et al., Microsoft COCO: common ob- 

jects in context, in: Computer Vision - ECCV 2014 - 13th European Confer- 
ence, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V, in: Lec- 

ture Notes in Computer Science, volume 8693, Springer, 2014, pp. 740–755 . 
[7] J. Xu, W. Wang, H. Wang, J. Guo, Multi-model ensemble with rich spatial in- 

formation for object detection, Pattern Recognit 99 (2020) 107098 . 

[8] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.Y. Lin, E.D. Cubuk, Q.V. Le, B. Zoph, Sim-
ple copy-paste is a strong data augmentation method for instance segmenta- 

tion, in: IEEE Conference on Computer Vision and Pattern Recognition, Com- 
puter Vision Foundation / IEEE, 2021, pp. 2918–2928 . 

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, C. B. Alexander, Ssd:
Single shot multibox detector, in: European Conference on Computer Vision, 

2016 . 

[10] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional
networks, in: IEEE International Conference on Computer Vision, IEEE Com- 

puter Society, 2017, pp. 764–773 . 
[11] W.i. Ma, Y. Wu, F. Cen, G. Wang, MDFN: multi-scale deep feature learning net- 

work for object detection, Pattern Recognit 100 (2020) 107149 . 
12] S. He, L. Schomaker, GR-RNN: global-context residual recurrent neural net- 

works for writer identification, Pattern Recognit 117 (2021) 107975 . 

[13] T. Lin, P. Doll, R.B. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid
networks for object detection, in: IEEE Conference on Computer Vision and 

Pattern Recognition, IEEE Computer Society, 2017, pp. 936–944 . 
[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, et al., Imagenet large 

scale visual recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252 . 
[15] H. Fang, J. Sun, R. Wang, M. Gou, Y. Li, C. Lu, InstaBoost: boosting instance

segmentation via probability map guided copy-pasting, in: IEEE International 

Conference on Computer Vision, IEEE, 2019, pp. 682–691 . 
[16] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small 

object detection, IEEE Conference on Computer Vision and Pattern Recognition 
abs/1902.07296 (2019) . 

[17] S.-H. Lee, S.-H. Bae, AFI-GAN: improving feature interpolation of feature pyra- 
mid networks via adversarial training for object detection, Pattern Recognit 

138 (2023) 109365 . 

[18] Z. Yang, S. Liu, H. Hu, L. Wang, S. Lin, Reppoints: Point set representation for
object detection, in: IEEE International Conference on Computer Vision, IEEE, 

2019, pp. 9656–9665 . 
[19] Z. Xia, X. Pan, S. Song, L.E. Li, G. Huang, Vision transformer with deformable

attention, in: Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition, 2022, pp. 4794–4803 . 

20] K. Sun, B. Xiao, D. Liu, J. Wang, Deep high-resolution representation learning 

for human pose estimation, in: IEEE Conference on Computer Vision and Pat- 
tern Recognition, Computer Vision Foundation / IEEE, 2019, pp. 5693–5703 . 

21] J. Wang, K. Sun, T. Cheng, B. Jiang, et al., Deep high-resolution representation 
learning for visual recognition, IEEE Trans. Pattern Anal. Mach. Intell. 43 (10) 

(2021) 3349–3364 . 
22] Z. Cai, N. Vasconcelos, Cascade R-CNN: delving into high quality object de- 

tection, in: CVPR, Computer Vision Foundation / IEEE Computer Society, 2018, 
pp. 6154–6162 . 

23] T. Lin, P. Goyal, R.B. Girshick, K. He, P. Doll, Focal loss for dense object de-

tection, in: IEEE International Conference on Computer Vision, IEEE Computer 
Society, 2017, pp. 2999–3007 . 

24] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, H. Ling, Detection and tracking
meet drones challenge, IEEE Trans Pattern Anal Mach Intell (2021) . 1–1 

25] N. Jiang, X. Yu, X. Peng, Y. Gong, Z. Han, SM+: refined scale match for tiny
person detection, in: ICASSP, IEEE, 2021, pp. 1815–1819 . 

26] S. Zhang, C. Chi, Y. Yao, Z. Lei, S.Z. Li, Bridging the gap between anchor-based

and anchor-free detection via adaptive training sample selection, in: IEEE Con- 
ference on Computer Vision and Pattern Recognition, Computer Vision Foun- 

dation / IEEE, 2020, pp. 9756–9765 . 
27] T. Yin, X. Zhou, P. Krähenbühl, Center-based 3D object detection and tracking, 

CVPR (2021) . 
28] T. Wang, X. Zhu, J. Pang, D. Lin, FCOS3D: fully convolutional one-stage monoc- 

ular 3d object detection, in: ICCVW, IEEE, 2021, pp. 913–922 . 

29] X. Zhang, F. Wan, C. Liu, R. Ji, Q. Ye, FreeAnchor: learning to match anchors for
visual object detection, Neural Information Processing Systems, 2019 . 

30] J. Pang, K. Chen, Q. Li, Z. Xu, H. Feng, J. Shi, W. Ouyang, D. Lin, Towards
balanced learning for instance recognition, Int J Comput Vis 129 (5) (2021) 

1376–1393 . 
31] K. Kim, H.S. Lee, Probabilistic anchor assignment with iou prediction for object 

detection, in: European Conference on Computer Vision, in: Lecture Notes in 

Computer Science, volume 12370, Springer, 2020, pp. 355–371 . 
32] G. Tian, J. Liu, H. Zhao, W. Yang, Small object detection via dual inspection 

mechanism for UAV visual images, Appl. Intell. 52 (4) (2022) 4244–4257 . 
33] C. Deng, M. Wang, L. Liu, Y. Liu, Y. Jiang, Extended feature pyramid network 

for small object detection, IEEE Trans. Multim. 24 (2022) 1968–1979 . 
34] Q. Wang, Y. Qian, Y. Hu, C. Wang, X. Ye, H. Wang, M2YOLOF: Based on effective

receptive fields and multiple-in-single-out encoder for object detection, Expert 

Syst Appl 213 (2023) 118928 . 
35] none 

36] X. Zhang, W. Guo, Y. Xing, W. Wang, H. Yin, Y. Zhang, AugFCOS: augmented
fully convolutional one-stage object detection network, Pattern Recognit 134 

(2023) 109098 . 

http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0001
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0002
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0003
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0004
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0005
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0006
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0007
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0008
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0009
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0010
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0011
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0012
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0013
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0014
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0015
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0016
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0017
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0018
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0019
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0020
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0021
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0022
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0023
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0025
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0026
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0027
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0028
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0029
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0030
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0031
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0032
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0033
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0034
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0035


H. Zhang, M. Li, D. Miao et al. Pattern Recognition 143 (2023) 109801 

[  

[

[

[

[
r
w

37] Y. Song, P. Zhang, W. Huang, Y. Zha, T. You, Y. Zhang, Object detection based
on cortex hierarchical activation in border sensitive mechanism and classifica- 

tion-GIou joint representation, Pattern Recognit 137 (2023) 109278 . 
38] Y. Shinya, Usb: Universal-scale object detection benchmark, in: 33rd British 

Machine Vision Conference 2022, BMVC 2022, London, UK, November 21–24, 
2022, BMVA Press, 2022 . 

39] P. Sun, R. Zhang, Y. Jiang, et al., Sparse R-CNN: end-to-end object detection 
with learnable proposals, in: IEEE Conference on Computer Vision and Pattern 

Recognition, Computer Vision Foundation / IEEE, 2021, pp. 14454–14463 . 

40] Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object 
detection, in: IEEE International Conference on Computer Vision, IEEE, 2019, 

pp. 6053–6062 . 
41] X. Zhou, V. Koltun, P. Krähenbühl, Probabilistic two-stage detection, arXiv 

preprint arXiv:2103.07461, 2021 . 

Hongyun Zhang received the Ph.D. degree in pattern 

recognition and intelligence system from Tongji Univer- 
sity, Shanghai, China, in 2005. She is doctoral supervi- 

sor and currently an Associate Professor at Tongji Univer- 
sity. She is the author or co-author of nearly 70 journal 

papers and conference proceedings in principal curves, 

pattern recognition, machine learning granular comput- 
ing, and rough set Her current research interests include 

computer vision and pattern recognition, principal curves, 
data mining, rough set theory, and granular computing. E- 

mail: zhanghongyun@tongji.edu.cn. 

Miao Li is currently pursuing his Ph.D. in Computer Sci- 
ences at Tongji University, Shanghai, China. He received 

his master’s degree from School of Information science 
and Engineering, Yunnan University in 2022. His research 

interests include computer vision and pattern recognition, 

image enhancement, object detection and image segmen- 
tation. E-mail: lmiao@tongji.edu.cn. 

Duoqian Miao is professor of College of Electronics and 

Information Engineering of Tongji University, Fellow of In- 
ternational Rough Set Society (IRSS), Fellow of Chinese 

Association for Artificial Intelligence (CAAI). Prof. Miao 

works in Department of Computer Science and Technol- 
ogy of Tongji University. Prof. Miao’s research interests 

include Artificial Intelligence, Machine Learning, Big Data 
Analysis, Granular Computing and Rough Sets, etc. He has 

published more than 160 papers in this area, more than 
nine books and academic works, and nine national inven- 

tion patents. E-mail: dqmiao@tongji.edu.cn. 
14 
Witold Pedrycz is a professor and Canada Research Chair 

in the Department of Electrical and Computer Engi- 
neering, University of Alberta, Edmonton, Canada. He is 

also with the Systems Research Institute of the Polish 
Academy of Sciences. He is actively pursuing research 

in Computational Intelligence, fuzzy modeling, pattern 

recognition, knowledge discovery, neural networks, gran- 
ular computing and software engineering. Dr. Pedrycz is 

also an Editor-in-Chief of Information Sciences and IEEE 
Transactions on Systems, Man, and Cybernetics part A. 

He is the past president of IFSA and NAFIPS. He currently 
serves as an Associate Editor of the IEEE Transactions on 

Fuzzy Systems and is a member of a number of edito- 

ial boards of other international journals. He is a Fellow of the IEEE. E-mail: 
pedrycz@ualberta.ca. 

Zhaoguo Wang received his master’s degree from De- 

partment of Electronic and Information Engineering, 
Tongji University, China, in 2022. His research interests 

include computer vision and pattern recognition, object 

detection. E-mail: 1930806@tongji.edu.cn. 

Minghui Jiang received his master’s degree from of 
Department of Electronic and Information Engineering, 

Tongji University, Shanghai, China. His research interests 

include computer vision and pattern recognition, object 
detection. E-mail: 604235572@qq.com. 

http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0036
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0037
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0038
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0039
http://refhub.elsevier.com/S0031-3203(23)00499-5/sbref0040

	Construction of a feature enhancement network for small object detection
	1 Inroduction
	2 Related works
	2.1 Data augmentation methods
	2.2 Feature extraction methods for small object

	3 Proposed method
	3.1 Data augmentation method based on collision detection and spatial context location expansion (CDCI)
	3.1.1 Problems with the random copy-paste method
	3.1.2 CDCI data augmentation algorithm
	3.1.3 CDCI data augmentation algorithm flow

	3.2 Deformable convolution network based on multi-granularity
	3.2.1 Offset feature learning of the sampling locations
	3.2.2 Multi-granularity deformable convolution design

	3.3 High resolution block-based feature pyramid
	3.3.1 High resolution block design
	3.3.2 Embedding high resolution block in FPN


	4 Experimental studies
	4.1 Experiment setup
	4.2 Comparison of subjective performance
	4.3 Comparison of objective performance
	4.3.1 Algorithm performance comparison on small object detection datasets
	4.3.2 Comparison with mainstream methods
	4.3.3 Model efficiency


	5 Ablation studies and analysis
	5.1 Evaluation on data augmentation strategies
	5.1.1 Effect of different padding size
	5.1.2 Performance comparison of data augmentation algorithm

	5.2 Evaluation on feature augmentation methods
	5.2.1 Effect of different granulation methods
	5.2.2 Visualization of multi-granularity deformable convolution

	5.3 Evaluation on high resolution block FPN
	5.4 FENet Feature-enhanced ablation experiment

	6 Conclusion
	Declaration of Competing Interest
	References


