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Abstract
As an effective extension of rough set theory, the variable precision neighborhood rough set model has been applied to the
attribute dependency-based improvement of decision tree algorithm of the solution concerning continuous data. However, the
boundary region, as an effective description of the uncertainty of knowledge, has not been taken into account in the existing
algorithms. In this paper, we define a novel decision rule based on boundary region and attribute dependency, and construct
a decision tree algorithm via this decision rule. First, we define a measure called boundary coefficient based on the boundary
region, which can be used for comparative quantitative analysis. Second, we define the boundary mixed attribute dependency
by combining the boundary coefficient and the attribute dependency, which can consider both the boundary case of the target
set and the attribute dependency. Finally, a novel decision tree algorithm is proposed by using the boundary mixed attribute
dependency as the decision rule. The experimental results show that with a slight increase in leaf nodes, the total running
time decreases and the maximum accuracy increases to 0.9518, which indicates the effectiveness of the proposed algorithm.

Keywords Decision tree algorithm · Neighborhood similarity · Variable precision neighborhood rough sets ·
Boundary coefficient · Boundary mixed attribute dependency

1 Introduction

Classification problems exist widely in people’s daily lives.
In the field of artificial intelligence, how to effectively tackle
classification problems for humans by the application of
classification algorithms has become an important research
direction. Among all kinds of classification algorithms, the
decision tree algorithm is considered as one of the key algo-
rithms to solve classification problems, due to its high-quality
classification results and convincing classification process.
As the name suggests, the decision tree algorithm is a tree
classifier based on some decision rules, and the construction
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of a decision tree can be summarized into the following two
parts: (1) create a split node using decision rules; (2) create a
branch and a leaf node [21].According to the above twoparts,
one can notice that there exist two popular research directions
in decision tree learning, that is, the decision rule (also known
as the partition measure) and the structure of tree classifiers.
In this paper, we concentrate on the issue of decision rule.
Generally speaking, the issue of decision rule exists widely
in various theories. However, for a decision tree algorithm,
the selection of a specific decision rule depends on whether
it can construct the correct decision logic. Therefore, finding
the most appropriate decision rule among various theories
has become an important research direction in decision tree
learning.

As well known, the representative decision tree algo-
rithms include: Iterative Dichotomiser 3(ID3) [24], Clas-
sifier 4.5(C4.5) [25] and Classification And Regression
Tree(CART) [1], where ID3 uses the information gain in
information theory as the decision rule, C4.5 uses the infor-
mation gain ratio in information theory as the decision rule,
and CART uses the Gini index in probability theory as the
decision rule. On the basis of the above three algorithms,
many researchers attempted to construct novel decision tree
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algorithms based on different theories [6]. Laber et al. [11]
proposed an efficient algorithm with a penalty term in loss
function to support the construction of shallow decision
trees. Klaus et al. [2] proposed a gradient-based model
tree algorithm which improves classification accuracy while
maintaining the interpretability. In order to deal with the con-
tinuous data, the classical decision tree algorithms usually
adopt the strategy of discretization. However, discretization
always causes the loss of information structure, which may
affect the results of classification. As a result, researchers
turn to other theories with more adaptability.

Rough set theory proposed byPawlak [23] is awidely used
tool in feature selection [3, 5, 10, 20, 32, 35]. After several
years of development, various variants of rough set theory
have been proposed for handling complex data environments
[31, 36]. For example, in order to avoid the problems caused
by the rigorous equivalence relation, Ziarko proposed the
variable precision rough set model, which introduced the
perspective of variable precision. In order to deal with the
continuous data, Lin et al. [12, 13] proposed the neighbor-
hood rough set model, which introduced the neighborhood
structure into rough sets. The neighborhood rough set model
is the most commonly used method for handling continu-
ous data in rough sets. Therefore, rough set theory, a theory
with powerful generalizability, is very suitable for decision
tree learning [9]. For instance, Wang et al. [27] proposed a
method that combines ordinal decision trees and fuzzy rough
set-based attribute reduction. Yao et al. [33] introduced the
notion of attribute purity degree and proposed a decision
tree algorithm based on attribute dependency and this notion.
Zhai et al. [34] proposed an algorithmcalled “tolerance rough
fuzzy decision tree”, which is based on tolerance rough fuzzy
set.

Asmentioned above, the neighborhood rough set model is
an effective extension of Pawlak rough set model to the solu-
tion of continuous data [16, 30]. It can deal with continuous
data without discretization, thus avoiding the loss of infor-
mation structure caused by discretization. Plenty of scholars
have explored the improved desicion algorithms based on
neighborhood rough set model. Xie et al. [28] proposed the
neighborhood equivalence granule structure by neighbor-
hood algebraic similarity and variable precision threshold.
Moreover, they introduced the notion of neighborhood Gini
index and proposed a neighborhood decision tree algorithm
based on variable-precision neighborhood equivalence gran-
ules. Liu et al. [15] proposed an improved ID3 algorithm
(called DIGGI) based on variable precision neighborhood
rough sets. The experimental results show that the DIGGI
is effective and its accuracy is greatly improved. Liu et al.
[14] pointed out that there exists a neighborhood geometric
structure in neighborhood system, and proposed the notion
of neighborhood geometric similarity to avoid the contra-
diction in the transitivity of equivalence relation caused by

taking into account the neighborhood algebraic similarity
only. Finally, they proposed an improved decision tree algo-
rithm by using the attribute dependency in variable precision
neighborhood rough set induced by a novel neighborhood
similarity as the decision rule. However, it should be noted
that the boundary region is not considered in both of the
above two algorithms.

In rough set theory, the boundary region is composed of
those elements which cannot be described precisely by exist-
ing knowledge when approximating a target set. Therefore,
the boundary region is always considered as one of the critical
clues to the uncertainty of knowledge. In fact, the boundary
region can not only serve as an important explanation for
the uncertainty of knowledge, but also be regarded as an
essential description for the inherent extent of uncertainty of
knowledge. When describing the relationship between two
specific concepts in the content of the existing knowledge,
the boundary region may be an appropriate option [18].

The application of the boundary region can be divided
into the following two parts [19]. First, the computation of the
boundary region can be used tomeasurewhether the target set
can be represented precisely by the existing knowledge, that
is, the problem of whether there exists the boundary region.
Second, the boundary region can also reflect the degree of
difficulty that apply the existing knowledge to the concept
approximation representation, that is, the problem of the size
of the boundary region. Therefore, the boundary region can
be used not only for the qualitative analysis of the uncertainty
of knowledge, but also for the quantitative analysis.

However, there exist some problems when we attempt to
apply the boundary region to the comparative quantitative
analysis of multiple attributes. For instance, the computation
of the boundary region involves a set of elements, which can-
not be in a direct comparison. Even though the purpose of
quantification can be achieved by computing the cardinality
of the set of elements, since there is no limitation on the range
of the boundary region, this comparison seems unconvinc-
ing. Since this comparative quantitative analysis is a novel
exploration of the relationship among multiple attributes
in addition to attribute dependency, it is worth studying.
Furthermore, if this comparative quantitative analysis is
used to describe the relationship between different condition
attributes and decision attribute, we can derive the degree of
difficulty when the decision attribute is approximately rep-
resented by different condition attributes respectively, that
is, the influence from different condition attributes to deci-
sion respectively.Hence, the obtainedboundary region-based
decision rules may be suitable for decision tree learning. For
instance, Luo et al. [17] proposed a new feature evaluation
criterion via the combination of the dependency measure
defined in the positive region and the class separability degree
of the boundary region. Parthaláin et al. [22] examine a rough
set-based feature selection technique that considers the num-
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ber of objects in the boundary region and the distance of those
objects from the lower approximation. But all of those refer-
ences are the applications of specific samples in the boundary
region, rather than a direct application of the boundary region
itself. Therefore, in this paper, we focus on the direct appli-
cation of the boundary region.

At present, there are some problems with the applica-
tion of a single decision rule, even though the boundary
region-based measure is used, for example, the equivalent
computation results in different attributes by the single deci-
sion rule may cause the situation that the algorithm needs to
select an attribute randomly, the inability to comprehensively
examine attributes, and so on. Therefore, in order to avoid
the equivalent computation results in different attributes, it
is necessary to introduce multiple decision rules.

Hence, in order to construct the boundary region-based
measure, several parts are considered. First, the boundary
region-based measure should cause the same influence as the
attribute dependency in mixed measure. The diverse influ-
ence may result in the preference to one of the measures in
mixed measure for the attribute calculation of the result. Sec-
ond, the monotonicity of both the attribute dependency and
the boundary region-based measure should be the same. The
diverse monotonicity may result in the mixed measure not
reflecting the situation of attributes truly.

In this paper, we first use the boundary region to induce
a measure that can reflect the degree of difficulty in the
approximation between two attributes, called boundary coef-
ficient. Second, we propose the notion of boundary mixed
attribute dependency by combining the boundary coefficient
with the attribute dependency, so that the novel measure
can consider both the boundary region and the attribute
dependency. Finally, we select the boundary mixed attribute
dependency as the decision rule to construct a novel decision
tree algorithm. The experimental results show that with a
slight increase in leaf nodes, the total running time decreases
and the maximum accuracy increases to 0.9518.

The contributions of this paper are given as follows. (1)
We use the boundary region to induce a novel measure, i.e.,
boundary coefficient; (2) We propose the notion of boundary
mixed attribute dependencyby combining the boundary coef-
ficient with the attribute dependency; (3) A novel decision
tree algorithm is constructed based on the boundary mixed
attribute dependency.

The remaining part of this paper is organized as follows.
Section 2 reviews the neighborhood rough set model, the
similarity in neighborhood system and the variable precision
neighborhood rough set model. Section 3 gives the defini-
tions of boundary coefficient and boundary mixed attribute
dependency, and proposes the novel decision tree algorithm.
Section 4 shows the experimental results. Finally, Section 5
concludes the paper.

2 Preliminaries

2.1 Neighborhood rough set model

Asan extension of Pawlak rough setmodel, the neighborhood
rough set model has received much attention from scholars,
since it can deal with continuous data without discretization
[13].

In rough sets, an information table is a 4-tuple〈
U , A, f , V subB

〉
, where U is a sample set called universe,

and A is an attribute set which is the description of the sam-
ple characteristics, f is an information function and V subB

is the value range of attribute subB ⊆ A. If the attribute set
A is divided into two disjointed subsets C and D, then an
information table is also called a decision table, where C is
called the set of condition attributes and D is called the set
of decision attributes.

Given a continuous information table
〈
U , A, f , V subB

〉
.

For any two samples sa, sb ∈ U , let subB ⊆ C be an attribute
subset, the Minkowsky distance between sa and sb under
subB is defined as follows:

MDFsubB
(
sa, sb

)
=

⎛

⎝
∑

g∈subB

∣∣∣sag − sbg

∣∣∣
p

⎞

⎠

1
p

, (1)

where sag and sbg respectively denote the attribute values of
samples sa and sb on attribute g, and MDF denotes the
distance metric.

Tomake the distance calculation of samples less complex,
in this paper, we set p = 1, and in this case MDF is also
called the Manhattan distance.

Given a continuous information table
〈
U , A, f , V subB

〉
.

For any sample sa ∈ U and attribute subsets subB ⊆ C , let
η denote the neighborhood radius, the η−neighborhood class
of sa under the attribute subset subB is defined as follows
[7]:

NsubB
η

(
sa

) =
{
sb | MDFsubB

(
sa, sb

)
≤ η

}
. (2)

Formula (2) is also called the η−neighborhood granu-
lation, and NsubB

η (sa) is also called the η−neighborhood
granule of sa .

Let 〈.U , N R〉 be a neighborhood approximation space,
where U represents the universe and N R represents the
neighborhood relation, for any target set X ⊆ U , the lower
and the upper approximation of the target set X can be defined
as follows [7]:

N RX = {
sa ∈ U | η

(
sa

) ⊆ X
}
. (3)

N RX = {
sa ∈ U | η

(
sa

) ∩ X �= ∅}
. (4)
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2.2 Similarity in neighborhood system

In [14], Liu et al. introduced four similarity measures into
neighborhood system and constructed four neighborhood
algebraic similarities. These four neighborhood algebraic
similarities can reflect the degree of similarity between two
neighborhood granules. Moreover, Liu et al. pointed out that
the neighborhood system has spatial properties. Hence, in
terms of the distance between two neighborhood granules,
they defined the geometric similarity. By combining the two
kinds of similarities mentioned above, four novel neighbor-
hood similarities was constructed.

2.2.1 Neighborhood similarity

Neighborhood similarity is a similarity constructed by com-
bining neighborhood algebraic similarity and neighborhood
geometric similarity. It considers both algebraic and geomet-
ric perspectives in neighborhood system and can tackle the
transitivity contradiction of the equivalence relation.

Definition 1 [14] For any sa, sb ∈ U and attribute subset
subB ⊆ C , let MDFsubB

(
sa, sb

)
represent the Minkowsky

distance of sample sa and sample sb under attribute sub-
set subB, and let η represent the neighborhood radius. Four
neighborhood similarities are respectively defined as follows.

1. The neighborhood Jaccard geometric similarity under
attribute subset subB is defined as:

N RJGSsubB
(
sa, sb

)
=

(

1 − MDFsubB
(
sa, sb

)

2η

)

×
∣∣∣NsubB

η (sa) ∩ NsubB
η

(
sb

)∣∣∣
∣∣∣NsubB

η (sa) ∪ NsubB
η

(
sb

)∣∣∣
. (5)

2. The neighborhood Optimistic geometric similarity
under attribute subset subB is defined as:

N ROGSsubB
(
sa, sb

)
=

(

1 − MDFsubB
(
sa, sb

)

2η

)

×
∣∣∣NsubB

η (sa) ∩ NsubB
η

(
sb

)∣∣∣

min
(∣∣∣NsubB

η (sa)
∣∣∣ ,

∣∣∣NsubB
η

(
sb

)∣∣∣
) . (6)

3. The neighborhood Pessimistic geometric similarity
under attribute subset subB is defined as:

N RPGSsubB
(
sa, sb

)
=

(

1 − MDFsubB
(
sa, sb

)

2η

)

×
∣∣∣NsubB

η (sa) ∩ NsubB
η

(
sb

)∣∣∣

max
(∣∣∣NsubB

η (sa)
∣∣∣ ,

∣∣∣NsubB
η

(
sb

)∣∣∣
) . (7)

4. The neighborhood Average geometric similarity under
attribute subset subB is defined as:

N RAGSsubB
(
sa, sb

)
=

(

1 − MDFsubB
(
sa, sb

)

2η

)

×
∣∣∣NsubB

η (sa) ∩ NsubB
η

(
sb

)∣∣∣

average
(∣∣∣NsubB

η (sa)
∣∣∣ ,

∣∣∣NsubB
η

(
sb

)∣∣∣
) .(8)

In this paper, we use N RSsubB
(
sa, sb

)
to represent the

above four neighborhood similarities.

2.3 Variable precision neighborhood rough set
model induced by neighborhood similarity

Based on the neighborhood similarity proposed in
Section 2.2.1, we can construct a variable precision neigh-
borhood rough set model. In this model, the classical
neighborhood equivalence relation is replaced by the vari-
able precision neighborhood equivalence relation induced
by neighborhood similarity, which can avoid the problems
caused by the rigorous neighborhood equivalence relation.

Due to the addition of variable precision threshold, the
variable precision neighborhood equivalence relation can be
constructed. In order to make difference, in this paper, the
decision table

〈
U , A, f , V subB

〉
is replaced by the variable

neighborhood decision table
〈
U , A, f , V subB, η, μ

〉
.

Definition 2 [14] Let
〈
U , A, f , V subB, η, μ

〉
be a variable

neighborhood decision table, where η represents the neigh-
borhood radius and μ represents the variable precision
threshold. For any attribute subset subB ⊆ C and any tuple
(sa, sb) ∈ U×U , the variable precision neighborhood equiv-
alence relation is defined as follows:

V PNERsubB
(η,μ) =

{(
sa, sb

)
∈ U ×U

∣∣∣N RSsubB
(
sa, sb

)
≥ μ

}
. (9)

Definition 3 [14] Let
〈
U , A, f , V subB, η, μ

〉
be a variable

neighborhood decision table, where η represents the neigh-
borhood radius and μ represents the variable precision
threshold. For any sample s ∈ U any attribute subset
subB ⊆ C, the variable precision neighborhood equivalence
class of sample s induced by variable precision neighborhood
equivalence relation is defined as follows:

U/V PNERsubB
(η,μ) =

{
[s]V PNERsubB

(η,μ)

|s ∈ U

}

=
{
S1(η,μ), ..., S

X
(η,μ)

}
. (10)

where SX
(η,μ) represents the variable precision neighborhood

equivalence class set formed.
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When μ = 1, the variable precision neighborhood gran-
ule degenerates into the rigorous equivalent neighborhood
granule. When η = 0 and μ = 1, the variable precision
neighborhood granule degenerates into the Pawlak equiva-
lent granule. So the variable precision neighborhood granules
are actually a specific type of neighborhood granules.

Definition 4 [14] Let
〈
U , A, f , V subB, η, μ

〉
be a variable

neighborhood decision table, where η represents the neigh-
borhood radius and μ represents the variable precision
threshold. Assume that U/D = {Y 1,Y 2, ...,Y Z } denotes
the partition of U induced by D, for any attribute subset
subB ⊆ C, the lower approximation of D and the upper
approximation of D are respectively defined as follows:

V PNERsubB
(η,μ)D =

Z⋃

z=1

V PNERsubB
(η,μ)Y

z, (11)

V PNERsubB
(η,μ)D =

Z⋃

z=1

V PNERsubB
(η,μ)Y

z, (12)

where

V PNERsubB
(η,μ)Y

z =
⋃{

Sx(η,μ)

∣∣∣Sx(η,μ) ⊆ Y z , Sx(η,μ) ∈ U/V PNERsubB
(δ,β)

}
,

x = 1, 2, ..., X; z = 1, 2, ..., Z .

V PNERsubB
(η,μ)Y

z =
⋃{

Sx(η,μ)

∣∣∣Sx(η,μ) ∈ U/V PNERsubB
(η,μ) : Sx(η,μ) ∩ Y z �=∅

}
,

x = 1, 2, ..., X; z = 1, 2, ..., Z .

In the above formula, V PNERsubB
(η,μ)D is called the posi-

tive region of D, denoted as POSsubB(η,μ)D.

Definition 5 [14] Let
〈
U , A, f , V subB, η, μ

〉
be a variable

neighborhood decision table, where η represents the neigh-
borhood radius and μ represents the variable precision
threshold. For any attribute subset subB ⊆ C, the attribute
dependency of D on subB is defined as follows:

r(η,μ) (D, subB) =
∣∣∣V PNERsubB

(η,μ)D
∣∣∣

|U | . (13)

3 An improved decision tree algorithm
based on boundary mixed attribute
dependency

In this section, we introduce the boundary coefficient, and
propose a novel decision rule — boundary mixed attribute
dependency, which is induced by the boundary coefficient
and attribute dependency. Moreover, an improved decision
tree algorithm is constructed by the novel decision rule.

3.1 Boundary coefficient and boundarymixed
attribute dependency

In rough set theory, the boundary region is used to describe
the uncertainty when approximating a target set using the
existing knowledge. The larger the uncertainty, the larger the
boundary region. Therefore, the boundary region is a good
perspective for constructing the decision rule in decision tree
learning. In this subsection, we first propose a novel mea-
sure called boundary coefficient, and then propose the notion
of boundary mixed attribute dependency by combining the
boundary coefficient with the attribute dependency.

Definition 6 Let
〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table, where η represents the neighborhood
radius and μ represents the variable precision threshold. For
any attribute subset subB ⊆ C, the boundary region of D
with respect to subB is defined as follows:

BNDsubB
(η,μ)(D) = V PNERsubB

(η,μ)D − V PNERsubB
(η,μ)D. (14)

Definition 7 Let
〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table, where η represents the neighborhood
radius and μ represents the variable precision threshold. For
any attribute subset subB ⊆ C, the boundary coefficient of
D with respect to subB is defined as follows:

BCsubB
(η,μ)(D) = 1 −

∣∣∣BNDsubB
(η,μ) (D)

∣∣∣

|U | . (15)

The basic idea of the definition of boundary coefficient
can be divided into two parts. (1) To ensure that the bound-
ary coefficient and the attribute dependency can cause the
same weighting influence on the final mixed decision rule,
the value range of boundary coefficient should be [0,1]. Sowe
use the cardinality of the universe to normalize the cardinal-

ity of the boundary region, that is,

∣∣∣BNDsubB
(η,μ)(D)

∣∣∣
|U | . Therefore,

the computation of the final mixed decision rule is not biased
towards the boundary coefficient or the attribute dependency.

(2) To ensure that the performance of boundary coefficient
to the final mixed decision rule is the same as that of attribute
dependency, themonotonicity of boundary coefficient should
be the same as the attribute dependency. That is, the larger
the attribute dependency, the larger the boundary coefficient.

Since the monotonicity of

∣∣∣BNDsubB
(η,μ)

(D)

∣∣∣
|U | is opposite to the

attribute dependency, we use 1−
∣∣∣BNDsubB

(η,μ)(D)

∣∣∣
|U | as the bound-

ary coefficient of D with respect to subB. Therefore, we can
avoid the situation that the larger the attribute dependency,
the smaller the boundary coefficient, so that the computation
result of the final mixed decision rule can correctly reflect
the true situation of attributes.
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The boundary coefficient is a measure induced by the
boundary region, which can be used to reflect the roughness
degree or the difficulty degree during the approximation to
the target set.

Property 1 Let
〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table, where η represents the neighborhood
radius and μ represents the variable precision threshold. For
any attribute subset subB ⊆ C, we have that:

(1) BCsubB
(η,μ)(D) ∈ [0, 1];

(2) If BCsubB
(η,μ)(D) = 0, then r(η,μ) (D, subB) = 0;

(3) If BCsubB
(η,μ)(D) = 1 and V PNERsubB

(η,μ)D = U , then
r(η,μ) (D, subB) = 1.

Proof (1) When BCsubB
(η,μ)(D) takes the minimum value, it

means that
∣∣∣BNDsubB

(η,μ) (D)

∣∣∣ takes the maximum value,

i.e., |U |. So we can obtain that the minimum value of
BCsubB

(η,μ)(D) is 0.When BCsubB
(η,μ)(D) takes themaximum

value, it means that
∣∣∣BNDsubB

(η,μ) (D)

∣∣∣ takes theminimum

value, i.e., 0. So we can obtain that the maximum value
of BCsubB

(η,μ)(D) is 1.

(2) If BCsubB
(η,μ)(D) = 0, then we have that V PNERsubB

(η,μ)D −
V PNERsubB

(η,μ)D = U , which means that V PNERsubB
(η,μ)D =

U and V PNERsubB
(η,μ)D = ∅. Hence, we have that

r(η,μ) (D, subB) = 0.

(3) If BCsubB
(η,μ)(D) = 1 and V PNERsubB

(η,μ)D = U , then we

canobtain thatV PNERsubB
(η,μ)D−V PNERsubB

(η,μ)D = ∅,
which means that V PNERsubB

(η,μ)D = V PNERsubB
(η,μ)D = U .

Hence, we have that r(η,μ) (D, subB) = 1.
Property 1 discusses the value range of BCsubB

(η,μ)(D). From
Property 1, we can clearly notice that the value range of
BCsubB

(η,μ)(D) is [0, 1], which ensures that the final mixed
decision rule can obtain the same impact from the bound-
ary coefficient and the attribute dependency. Moreover, (2)
and (3) of Property 1 ensure that when the boundary coeffi-
cient takes the maximum value and the minimum value, the
value of attribute dependency is the same. �
Theorem 1 Let

〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table, whereη represents the neighborhood
radius andμ represents the variable precision threshold. For
any subB1, subB2 ⊆ C, if subB1 ⊆ subB2, then we have
that BCsubB1

(η,μ) (D) ≤ BCsubB2

(η,μ) (D).

Proof Since subB1 ⊆ subB2, we can obtain that the par-
tition of subB1 is rougher than that of subB2, that is,

for any s ∈ U , [s]
V PNERsubB2

(η,μ)

⊆ [s]
V PNERsubB1

(η,μ)

. Hence,

we have that POSsubB
1

(η,μ) D ⊆ POSsubB
2

(η,μ) D, which means

that

∣∣∣BNDsubB2
(η,μ) (D)

∣∣∣
|U | ≤

∣∣∣BNDsubB1
(η,μ) (D)

∣∣∣
|U | . So we can obtain that

BCsubB1

(η,μ) (D) ≤ BCsubB2

(η,μ) (D).
From Theorem 1, it can be seen that the more knowl-

edge there is, this is, subB1 ⊆ subB2, the deeper realization
to the target set can be achieved, this is, [s]

V PNERsubB2
(η,μ)

⊆
[s]

V PNERsubB1
(η,μ)

. Hence, we can obtain more information to

make a decision, that is, the boundary coefficient will be
larger. So the change of the boundary coefficient is consis-
tent with the way we learn the rules of the world. �

Definition 8 Let
〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table, where η represents the neighborhood
radius and μ represents the variable precision threshold. For
any attribute subset subB ⊆ C, by combining the bound-
ary coefficient with the attribute dependency, the boundary
mixed attribute dependency of D with respect to subB is
defined as follows:

BMADsubB
(η,μ)(D) = BCsubB

(η,μ)(D) ∗ r(η,μ) (D, subB)

= (1 −
∣∣∣BNDsubB

(η,μ) (D)

∣∣∣

|U | ) ∗
∣∣∣V PNERsubB

(η,μ)D
∣∣∣

|U | . (16)

Since the boundary mixed attribute dependency is con-
structed by combining the boundary coefficient and the
attribute dependency, it can reflect both the uncertainty and
the dependency of D with respect to subB. Therefore, the
boundary mixed attribute dependency is a good decision rule
for decision tree learning.

Property 2 Let
〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table, where η represents the neighborhood
radius and μ represents the variable precision threshold. For
any attribute subset subB ⊆ C, we have that:

(1) BMADsubB
(η,μ)(D) ∈ [0, 1];

(2) If BMADsubB
(η,μ)(D) = 0, then r(η,μ) (D, subB) = 0 or

BCsubB
(η,μ)(D) = 0;

(3) If BMADsubB
(η,μ)(D) = 1, then r(η,μ) (D, subB) = 1 and

BCsubB
(η,μ)(D) = 1.

Proof According to Property 1, it is easy to prove Property
2, so we omit the details. �
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Table 1 A variable
neighborhood decision table

U att1 att2 d

s1 0.4 0.3 2

s2 0.9 0.4 2

s3 1 0.6 2

s4 0.5 0.2 1

Theorem 2 Let
〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table, whereη represents the neighborhood
radius andμ represents the variable precision threshold. For
any subB1, subB2 ⊆ C, if subB1 ⊆ subB2, then we have
that BMADsubB1

(η,μ) (D) ≤ BMADsubB2

(η,μ) (D).

Proof Since subB1 ⊆ subB2, according to Theorem 1,
we can obtain that POSsubB

1

(η,μ) D ⊆ POSsubB
2

(η,μ) D. By Defini-
tion 5, we can further obtain that r(η,μ)

(
D, subB1

) ≤
r(η,μ)

(
D, subB2

)
. Moreover, according to Theorem 1, we

can obtain that BCsubB1

(η,μ) (D) ≤ BCsubB2

(η,μ) (D). There-

fore, by Definition 8, we have that BMADsubB1

(η,μ) (D) ≤
BMADsubB2

(η,μ) (D).

Theorem 2 discusses themonotonicity of BMADsubB
(η,μ)(D).

From Theorem 2 we can notice that the more knowledge
we have, the larger the attribute dependency, and the larger
BMADsubB

(η,μ)(D). Hence, the change of the boundary mixed
attribute dependency is also consistent with the way we learn
the rules of the world.

Example 1 Let
〈
U , A, f , V subB, η, μ

〉
be a variable neigh-

borhood decision table (as shown in Table 1), where U
represents the universe, {att1, att2} represents the set of
condition attributes, and {d} represents the set of decision
attributes. Suppose that the neighborhood radius η equals
0.2 and the variable precision threshold μ equals 0.7 (Tables
2, 3, 4, and 5).

From Table 6, we can obtain the following conclusions.
On the one hand, the boundarymixed attribute dependency of
D with respect to att1 is larger than that of D with respect to
att2. On the other hand, the evaluation effect of the bound-
ary coefficient on the two condition attributes is similar to
the attribute dependency. Hence, Example 1 shows the effec-
tiveness of the boundary coefficient and the boundary mixed
attribute dependency.

Table 2 The results of neighborhood granulation

U ηatt1 (s) ηatt2 (s)

s1 {s1, s2} {s1, s2, s4}
s2 {s1, s2, s3, s4} {s1, s2, s3}
s3 {s2, s3} {s2, s3}
s4 {s1, s2, s4} {s1, s2, s4}

Table 3 The results of neighborhood similarity on att1

samples neighborhood
Jaccard
similarity

neighborhood
geometric
similarity

neighborhood
similarity

(1, 2) 0.5 0.5 0.25

(1, 3) 0.333 0 0

(1, 4) 0.666 0.75 0.4995

(2, 3) 0.5 0.5 0.25

(2, 4) 0.75 0.75 0.5625

(3, 4) 0.25 0.25 0.0625

3.2 Algorithm design

In this subsection, a novel decision tree algorithm is con-
structed by regarding the boundary mixed attribute depen-
dency as the partition measure.

Before constructing the algorithm, it should be noted
that the value of neighborhood radius plays an important
role in neighborhood granulation. However, during the most
applications of neighborhood rough set model, the value of
neighborhood radius is given by the authors subjectively.
Therefore, in this paper, the improved neighborhood radius
in [14] is used.

Definition 9 [14] Let subB ⊆ C be a subset of condition
attributes, sta (subB) represent the standard deviation of
subB, N RC represent the neighborhood radius coefficient,
and s represent the average value of subB, a novel neighbor-
hood radius is defined as follows:

ηsubB = sta (subB)

N RC
, (17)

where sta(subB) =
√

1
G

∑G
g=1 (sg − s) and sg denote the

attribute values of samples s on attribute g.
The neighborhood radius coefficient is a constant used to

control the size of neighborhood radius. In this paper, we set
N RC = 2. And the flowchart is shown as Fig. 1

Table 4 The results of neighborhood similarity on att2

samples neighborhood
Jaccard
similarity

neighborhood
geometric
similarity

neighborhood
similarity

(1, 2) 0.5 0.75 0.375

(1, 3) 0.25 0.25 0.0625

(1, 4) 1 0.75 0.75

(2, 3) 0.666 0.5 0.333

(2, 4) 0.5 0.5 0.25

(3, 4) 0.25 0 0
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Table 5 The results of
neighborhood equivalence
relation

U att1 att2

s1 {s1} {s1, s4}
s2 {s2} {s2}
s3 {s3} {s3}
s4 {s4} {s1, s4}

The time complexity of Algorithm 1 is mainly related to
Step 1. During the neighborhood granulation, all samples
need to calculate the neighborhood classes of them and the
time complexity is O(|C | ∗ |U |2). The subsequent calcula-
tion of equivalence partition has the same time complexity as
the neighborhood granulation, which requires a variable pre-
cision equivalent over all samples, and the time complexity
is O(|C | ∗ |U |2). Moreover, the calculation of the partition
measure is a computation operation for each attribute, so the
time complexity is O(|C |). Therefore, the time complexity
of Algorithm 1 is O(|C | ∗ |U |2).

The time complexities of the others algorithms are con-
ducted carefully in literature [15]. So in this paper, the details
are omitted. The time complexity of algorithm in [14] is
O(|C | ∗ |U |2). The time complexity of ID3 algorithm is
O(|C | ∗ |U | ∗ |logU |). The time complexity of C4.5 algo-
rithm is O(|C |∗|U |∗|logU |). The time complexity of CART
algorithm isO(|C | ∗ |U | ∗ |logU |)

4 Experimental analysis

In this section, we use simulation experiments to verify the
effectiveness of Algorithm 1. We choose 14 datasets from
the UCI Machine Learning Repository. Table 7 details the
information of the 14 datasets. We select the ID3 [24], C4.5
[25], CART [1] algorithms (for these three algorithms, the
continuous attributes in each dataset are discretized into 5
intervals by the equal distance partition) and the algorithm
proposed in [14] to compare with Algorithm 1.Moreover, we
use three evaluation metrics: accuracy, number of leaves, and

Table 6 The results of computation

item att1 att2

lower approximation {s1, s2, s3, s4} {s1, s2, s3, s4}
upper approximation {s1, s2, s3, s4} {s2, s3}
boundary region ∅ {s1, s4}
attribute dependence 1 0.5

boundary coefficient 1 0.5

boundary mixed
attribute dependency

1 0.25

Algorithm 1 Decision tree algorithm based on the boundary
mixed attribute dependency.
Input: a variable neighborhood decision table V N RDT =
〈U ,C ∪ D, η, μ〉
Output: A variable precision neighborhood decision tree
1. for each subB ⊆ C do

Compute BMADsubB
(η,μ)(D) = (1 −

∣∣∣BNDsubB
(η,μ)(D)

∣∣∣
|U | ) ∗

∣∣∣V PNERsubB
(η,μ)

D
∣∣∣

|U | ;
end for
2. Select an attribute subset subB

′ ⊂ C with the maxi-
mum boundary mixed attribute dependency, that is, subB

′ =
arg

∀subB⊂C
max BMADsubB

(η,μ)(D), and randomly select an optimal

attribute in subB
′
as the splitting node;

3. Obtain the variable precision neighborhood equivalent granules
U/V PNERsubB

(η,μ) = {
S1subB , S2subB , ..., SxsubB

}
constructed by the

variable precision neighborhood equivalence relation by the selected
attribute subB

′
, and then divide the selected attribute into x variable

precision neighborhood decision information subtables, and each gran-
ule is a subtable and a branch;
For each variable precision neighborhood decision information sub-
table do
4. If all decision labels in certain one variable precision neighborhood
equivalent granule are the same, then a leaf node is created and named
as the decision label;
5. If subB

′ = ∅, then a leaf node is created and named as the decision
label with the maximum number of all decision labels in the parent
node;
6. If subB

′ �= ∅ and there exist different decision labels in certain one
variable precision neighborhood equivalent granule, then go to step 1.
End For
7. Return the variable precision neighborhood decision tree.

running time to assess the effectiveness of each algorithm.
The experiments are repeated 4 times. In each iteration, the
10-fold cross-validationmethod is used to verify the accuracy
and the number of leaves. Finally, we compute the average
values of accuracy and number of leaves. Moreover, the run-
ning time is the total time of the 4 iterations. Since the ID3,
C4.5 and CART algorithms use the equal distance partition
to discretize the continuous attributes in each dataset, the
running time of them is very short. Hence, in terms of the
running time, we only compare the algorithm proposed in
[14] with Algorithm 1.

In the experiments, the variable precision thresholdμ is set
to 0.8. The experiments are run in MATLAB2021b, and the
hardware environment of experiments is Intel(R) Core(TM)
i7-10750H CPU @ 2.60GHz and 16.0 GB RAM.

Since there are four similarity measures for both of liter-
ature [14] and the Algorithm 1, which results in four diverse
experiment results. To make the comparisons more clear, in
the remainder of this paper, we use AD(N RJGS) to rep-
resent the decision tree algorithm proposed in [14] which
is based on NGS ∗ Jaccard, and use BMAD(N RJGS)

to represent Algorithm 1 which is based on N RJGS. The
other representations are the same. In addition, we do com-
parisons on the algorithms with the same neighborhood
algebraic similarity. For instance, the AD(N RJGS) is com-
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Fig. 1 The flowchart of Algorithm 1

Table 7 The information of the
14 datasets

Dataset No. of samples No. of condition attributes No. of classes

1 Crayo 90 6 2

2 Iris 150 4 3

3 wine 178 13 3

4 plrx 182 18 2

5 wpbc 194 33 2

6 Sheesegmentation 210 19 7

7 seeds 210 7 3

8 glass 214 10 6

9 heart 270 13 2

10 ecoli 336 7 7

11 ILPD 583 10 2

12 ENB2012 768 9 6

13 magic 2501 10 2

14 winequality 4899 11 7
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Table 8 The running time(s)

Dataset AD AD AD AD BMAD BMAD BMAD BMAD
(NRJGS) (NRAGS) (NROGS) (NRGPS) (NRJGS) (NRAGS) (NROGS) (NRGPS)

1 Crayo 26 14 17 22 27 11 14 13

2 Iris 53 34 34 38 53 28 32 25

3 wine 296 176 151 178 253 125 160 125

4 plrx 167 114 100 102 124 81 80 86

5 wpbc 502 359 296 300 569 256 243 254

6 Sheesegmentation 1256 824 1338 1404 1267 643 783 1107

7 seeds 273 180 169 164 216 135 131 143

8 glass 527 300 316 312 427 281 250 253

9 heart 604 376 460 252 265 307 257 226

10 ecoli 2524 1368 1584 874 1431 1228 778 820

11 ILPD 1848 1264 1035 1152 1447 1118 972 824

12 ENB2012 9438 4992 5128 5852 7005 4368 4156 4172

13 magic 41136 25970 56712 24814 41360 21632 27674 21453

14 winequality 710302 384270 430668 373062 668686 365484 356276 363879

Average 54925 30017 35572 29180 51654 28264 27986 28098

pared with BMAD(N RJGS), because the neighborhood
algebraic similarity of them are both Jaccard similarity.

From Table 8 and Fig. 2, it can be seen that in most
datasets, the running time of Algorithm 1 is less than that of
the algorithm proposed in [14]. The effectiveness of Algo-
rithm 1 is more clear as the number of samples increases.
In this case, the cost in the computation of boundary coef-
ficient in Algorithm 1 is a worth in getting higher accuracy.
In addition, we can clearly observe that the running time of
Algorithm 1 is still high, which indicates that the Algorithm
1 is not appropriate for large datasets.

Table 9 and Fig. 3 are the accuracy comparisons. We
can observe that the accuracy of Algorithm 1 is the highest,
where the highest average of accuracy reaches 0.9518. Espe-
cially, the accuracy of the crayo dataset reaches 1 in all four
neighborhood similarities. Compared with the three classical
algorithms, the increment of accuracy reaches 10%. Com-
pared with the algorithm in [14], the increment of accuracy
reaches above 2%, even if the accuracy of all four neighbor-
hood similarities in [14] has reached more than 93%. Hence,
the improvement is significant.

Table 10 and Fig. 4 are the number of leaves comparisons
between algorithms. We can see that the number of leaves of
the Algorithm 1 is more than the classical algorithms, which
indicates that the degree of fitting of theAlgorithm 1 is higher
than the classical algorithms. Compared with the algorithm
in [14], it is clear that there is not much diversity between the
Algorithm 1 and [14]. And it can be seen that the variation in
the number of leaves is slight and acceptable. Therefore, the

above experimental results show that Algorithm 1 is mean-
ingful and effective.

5 Conclusion and future work

In order to consider the change of boundary region in an
improved decision tree algorithm based on rough set the-
ory, the boundary coefficient is proposed in this paper. The
boundary coefficient can reflect the difficulty when we use
the available knowledge to approximately represent the deci-
sion, that is, the possibility of selecting one attribute to start
the partition in the decision tree algorithm. Then, the bound-
ary mixed attribute dependency is introduced by combining
the boundary coefficient with the attribute dependency as the
decision rule. This decision rule has better performance in
selecting attributes than the single attribute dependency in
decision tree learning. The experimental results show that
the accuracy of our algorithm is larger than the compared
algorithms, of which the maximum reaches 0.9518. More-
over, in terms of the running time and the number of leaves,
our algorithm also performs well. However, the running time
is still too long. Because the Algorithm 1 needs to calculate
all samples to form neighborhood granular. Then it is needed
to calculate all neighborhood granular to form variable preci-
sion equivalence relation, which results in long running time
and high accuracy. Therefore, further research is needed on
how to reduce the running time while maintaining the high
accuracy and apply the Algorithm 1 to larger datasets, such
as the perspective of local.
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Fig. 2 The accuracy comparison between algorithms
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Fig. 3 The running time comparison between algorithms

123



An improved decision tree algorithm based on boundary mixed attribute dependency 2149

Fig. 3 continued
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Fig. 4 The number of leaves comparison between algorithms
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