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Abstract
Person re-identification (Re-ID) has rapidly advanced due to its widespread real-world applications. It poses a significant risk
of exposing private data from its training dataset. This paper aims to quantify this risk by conducting a membership inference
(MI) attack. Most existing MI attack methods focus on classification models, while Re-ID follows a distinct paradigm for
training and inference. Re-ID is a fine-grained recognition task that involves complex feature embedding, and the model
outputs commonly used by existing MI algorithms, such as logits and losses, are inaccessible during inference. Since Re-ID
models the relative relationship between image pairs rather than individual semantics, we conduct a formal and empirical
analysis that demonstrates that the distribution shift of the inter-sample similarity between the training and test sets is a crucial
factor for membership inference and exists in most Re-ID datasets and models. Thus, we propose a novel MI attack method
based on the distribution of inter-sample similarity, which involves sampling a set of anchor images to represent the similarity
distribution that is conditioned on a target image. Next, we consider two attack scenarios based on information that the attacker
has. In the “one-to-one” scenario, where the attacker has access to the target Re-ID model and dataset, we propose an anchor
selector module to select anchors accurately representing the similarity distribution. Conversely, in the “one-to-any” scenario,
which resembles real-world applications where the attacker has no access to the target Re-ID model and dataset, leading
to the domain-shift problem, we propose two alignment strategies. Moreover, we introduce the patch-attention module as a
replacement for the anchor selector. Experimental evaluations demonstrate the effectiveness of our proposed approaches in
Re-ID tasks in both attack scenarios.
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1 Introduction

The deep learning model has made remarkable progress with
wide applications, but it also exposes risks of leaking per-
sonal information from its training set (Fredrikson et al.,
2015;Wu et al., 2016; Shokri et al., 2017). This is particularly
concerning for sensitive tasks like person re-identification
(Re-ID), which involves identifying a specific person in dif-
ferent images or video scenes. A Re-ID training set contains
pedestrian images, and leaking information from it can cause
serious social security and ethical risks. To address this issue,
quantifying the information leakage of Re-ID data becomes
necessary.

One common methodology to quantify the privacy risk of
a trainedmodel is using the attack success rate ofmembership
inference (MI) attack (Shokri et al., 2017; Yeom et al., 2018;
Salem et al., 2018; Long et al., 2018; Nasr et al., 2018b;
Song et al., 2019; Chen et al., 2021). MI attack algorithm
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infers whether a record belongs to the training set by some
information of the target model and is generally described
as a binary classification problem. However, most existing
MI attack methods focus on the classification task, where
the attacker infers the membership of a sample based on its
corresponding model outputs such as logits or loss (Shokri
et al., 2017; Yeom et al., 2018; Sablayrolles et al., 2019), as
shown in Fig. 1.

In contrast, Re-ID follows a totally different training and
inference paradigm. State-of-the-art (SOTA) Re-ID meth-
ods first extract visual features from each pedestrian image
and then conduct recognition by retrieving images based on
the relative similarity between image pairs. During training,
SOTARe-IDmethods add an extra identity classifier after the
feature extractor, which is not available during inference. As
a result, the attacker generally only gets the feature embed-
ding of individual images, while the commonly used logits
or loss for MI attack on classification are not available in
the Re-ID task. Moreover, compared to the general classifi-
cation, Re-ID is a more challenging fine-grained recognition
task, leading to a more complex and less discriminative fea-
ture distribution for MI attacks. Previous works (Nasr et al.,
2018a; Sablayrolles et al., 2019) have also shown that feature
embedding contains more information irrelevant to training
data and does not characterize the training-test generalization
gapwell compared to logits and loss. Thus,MI attacks onRe-
ID require new approaches and considerations to effectively
assess the privacy risk of the model.

As a result, in this paper, we propose a novel methodology
to quantify privacy risks associated with Re-ID training sets.
We achieve this by finding a new set of features suitable
for MI attacks on Re-ID, rather than relying on conven-
tional model outputs such as features, logits, and loss. Unlike
classification tasks that focus on the semantics of individ-
ual samples, Re-ID is a metric learning task that models the
relative relationship between image pairs. Therefore, rather
than examining individual image characteristics, we exten-
sively analyze the inter-sample correlation between different
images and study how the generalization gap of the Re-ID
model affects the distribution of pair-wise similarity. Intu-
itively, theRe-IDmodel brings together imageswith the same

identities in the training set while separating those with dis-
similar identities (Oh Song et al., 2016; Duan et al., 2017;
Ming et al., 2022). However, this may not generalize well to
samples in the test set, resulting in an inter-image similarity
distribution shift between the training and test sets. This intu-
ition is supported by our formal analysis of optimal attack
with preliminary experiments in Sect. 3. Our experiments
reveal a noticeable difference between the statistical prop-
erties of the inter-sample similarity distribution of samples
in the training and test sets, which is consistently observed
across different Re-ID models and datasets. Based on this
analysis, we introduce a novel MI attack method called sim-
ilarity distribution based MI attack (SD-MI attack), which
conducts membership inference by exploiting the relative
correlation between image pairs. Using a set of sampled
anchor images to represent the inter-sample similarity dis-
tribution conditioned on the target image, the membership of
the target image is inferred by a neural network based on its
similarity with the anchor images within the reference set.

Based on the adversarial knowledge that the attacker can
obtain,we evaluateMI attackmethods on two different attack
scenarios to comprehensively describe the potential privacy
risks in Re-ID tasks, as illustrated in Fig. 2. One of the
attack scenarios is referred to as the “one-to-one”, where
the attacker has access to the dataset distribution, archi-
tecture, and parameters of the target Re-ID model (Yu et
al., 2021; Sablayrolles et al., 2019; Song et al., 2019). In
this scenario, the MI attack method is trained on a sub-
set of the known target model’s training and test datasets
and evaluated on a another disjoint subset, which intro-
duces the risk of overfitting and restricts its applicability
to real-world scenarios. Therefore, we further consider a
more realistic attack scenario called “one-to-any”, where the
attacker has no knowledge about the target Re-ID model and
dataset. In this scenario, the attacker is allowed to possess
their own auxiliary Re-ID model and dataset, which are eas-
ily obtained and distinct from the target Re-ID model and
dataset. They train an MI attack method using this auxil-
iary model and dataset and then expect it to perform well on
the unknown target model and dataset, for instance, a clas-
sic Re-ID model PCB (Sun et al., 2018) trained on an open

Fig. 1 The different outputs for the classification model and Re-ID
model under the black-box setting. For the classification model (left),
an attacker can access the logits and loss both during and after the train-

ing process. However, for the Re-ID model (right), only similarity and
feature embedding are accessible during inference, which is not suitable
for existing classification-based MI attacks
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source dataset Market1501 (Zheng et al., 2015) can be used
to attack an unknown Re-ID model in online serving. This
requires the attacker to identify and exploit vulnerabilities
that are not specific to a particular system but rather exist
across different Re-ID models and datasets, thus introduc-
ing two additional challenges. (1) Cross-dataset: Different
Re-ID datasets exhibit significant shifts due to variations
in scale, scene complexity, lighting conditions, viewpoint,
pedestrians, and camera settings. (2) Cross-model: Differ-
ent Re-ID models may have different architectures, training
strategies, or data augmentation techniques, resulting in dis-
tinct representations in latent space and noticeable variations
in similarity distributions. Hence, to tackle these challenges
in the “one-to-any” attack scenario, we propose two align-
ment strategies. These strategies aim to align each anchor
based on their similarity distribution descriptors, and stan-
dard normalization is employed to mitigate the domain shift
problem.

Subsequently, to better select anchor images in reference
sets that accurately represent the similarity distribution, we
introduce two specialized attention-based modules devel-
oped for two distinct attack scenarios. In the “one-to-one”
attack scenario, we propose an anchor selector module
capable of automatically selecting anchor images based
on their feature embeddings. However, in the “one-to-any”
attack scenario, the feature embeddings follow a clearly
distinct distribution across different domains, unlike the sim-
ilarity distribution. As a result, our alignment strategies
cannot effectively align feature embeddings between differ-
ent domains. Therefore, the attention weights learned from
the auxiliary domain’s feature embedding cannot be directly
applied to a different target domain, which hinders the effec-
tive utilization of the anchor selector module. To address
this limitation, we apply the patch-attention module to the
aligned similarity vector to re-weight the anchors by mod-
eling their inter-relationships. Our extensive experimental
results demonstrate the superiority of our approaches over
existing MI attack algorithms in both the “one-to-one” and
“one-to-any” attack scenarios.

The contributions of our work are summarized as follows:

• We raise a rarely studied privacy risk of the training set
in the Re-ID task, whose information leakage is quan-
tified by our proposed MI attack algorithms. For the
MI attack, We establish two attack scenarios, namely
“one-to-one” and “one-to-any”, which provide a com-
prehensive description of the potential privacy risks
associated with Re-ID tasks.

• We propose the first MI attack algorithm on the Re-ID
task, which exploits a target image’s relative correlation
with reference images.

Fig. 2 There are two MI attack scenarios in the Re-ID task: “one-to-
one” (a) and “one-to-any” (b). In the “one-to-one” attack scenario, the
attacker has access to the target Re-ID model and dataset, and they
train and evaluate our MI method using the same known target Re-ID
model and dataset. In the more realistic “one-to-any” attack scenario,
the attacker lacks access to the target Re-ID model and dataset. They
train MI methods on auxiliary datasets and expect them to perform well
on the target Re-ID dataset and model

• We propose two alignment strategies to mitigate the
domain-shift problem in the “one-to-any” attack sce-
nario.

• Weintroduce twonovel attention-basedmodules designed
to effectively select the anchors that better represent the
similarity distribution in two attack scenarios.

• Our proposed methods demonstrate superior perfor-
mance compared to existing MI attack approaches on
Re-ID models in both attack scenarios.

A preliminary version of this work was reported in Gao et
al. (2023). Compared with our earlier study, the key differ-
ences are introduced: (1) We introduce a new “one-to-any”
attack scenario to facilitate a more realistic discussion that
has no access to target Re-ID model and dataset, accompa-
nied by the corresponding results; (2)We propose two feature
alignment strategies to mitigate the domain-shift problem in
the “one-to-any” attack scenario; (3) We propose a novel
patch-attention module for the new attack scenario, as the
anchor selector module is not applicable; (4) We provide a
detailed discussion and comparison of our new setting and
method.

2 RelatedWorks

2.1 Person Re-identification

Person re-identification aims to address the association and
matching of target pedestrians across cameras and scenes
by the features and similarities between pedestrians them-
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selves. The existing approaches can be divided into two types
depending on the architecture: CNN-based modeling and
Transformer-based modeling.
CNN-based Re-ID Most CNN-based Re-ID models mostly
extract local and global features to obtain discrimination
information of the target person. Based on the methods to
generate the local and global features, the models can be
categorized into the following three categories.

(1) Capturing features with multi-scale. Yin et al. (2020)
learn the local dynamic pose features and simultaneously
quantify bothmotion and global visual cues to distinguish the
different identities with similar appearance features. Zheng
et al. (2019) reduces dependence on precise bounding boxes
by blending local and global cues, and employs a dynamic
training scheme to enhance identity representation. Zhu et
al. (2020) proposed Viewpoint-Aware Loss with Angular
Regularization (VA-reID) that projects features from various
viewpoints onto a unified hypersphere,modeling identity and
viewpoint-level distributions.Wang et al. (2018b) formulated
the Re-ID task as a regression problem and constructed an
identity regression space (IRS) by embedding different train-
ing person identities to solve the regression problem. Wang
et al. (2018a) proposed the Multiple Granularities Network
(MGN) that integrates global and local information at vari-
ous granularities. Within each local branch of the MGN, the
globallymerged featuremap is partitioned into distinct bands
representing local regions, allowing independent learning of
local feature representations.

(2) Utilizing the attention mechanism. Li et al. (2018)
designed a lightweight attention network architecture called
Harmonious Attention CNN (HAN) to learn the person
invariant feature representation through hard-region soft-
pixel-level attention. Yang et al. (2019) proposed an intra-
attention network that aims to identify informative and dis-
criminative regions within whole-body or body-part images.
Chen et al. (2019) introduced the High-Order Attention
(HOA) module, which effectively models and utilizes com-
plex and high-order statistical information in the attention
mechanism to capture subtle differences among pedestrians
and generate discriminative attention proposals.

(3) Partitioning the deep feature maps into pre-defined
regions or parts. Cheng et al. (2016) presented a multi-
channel parts-based convolutional neural network that aims
to jointly learn both the global full-body features and local
body-part features of input persons. Sun et al. (2018) pro-
posed a part-based convolutional baseline (PCB) that takes
the entire image as input and divides the resulting featuremap
from the convolutional layer into p uniformly sized parts to
learn discriminative person features that are informed by dif-
ferent parts. Zhang et al. (2021) find different channels that
activate responses for different body parts respectively and
proposed an attention networkwith self or external guidance.

Transformer-basedRe-ID.With thevisual transformer (Doso-
vitskiy et al., 2020; Liu et al., 2021) demonstrating superior
performance over CNN in more visual tasks, researchers are
also focusing on the Person Re-ID with visual transformers.
He et al. (2021) is the first to apply the pure transformer toRe-
ID models (TransRe-ID), encoding an image as a sequence
of patches and enhancing robust feature learning in the con-
text of transformers using a novel jigsaw patch and side
information embeddings module. In Sharma et al. (2021),
researchers introduced a novel Locally Aware Transformer
(LA-Transformer) that utilizes a strategy inspired by PCB to
aggregate globally enhanced local classification tokens into
an ensemble of N -classifiers, where N represents the number
of patches.

In this study,weemployCNN-basedmodelswithResNet50
(He et al., 2016), MobileNetV2 (Sandler et al., 2018), and
Xception (Chollet, 2017) backbones as our target mod-
els in “one-to-one” attack scenario. Moreover, we utilize
MGN (Wang et al., 2018b),HAN (Li et al., 2018),PCB (Sun
et al., 2018) and TransRe-ID (He et al., 2021) as our tar-
get models in “one-to-any” attack scenario, representing
the diverse architectures of CNN-based Re-ID models and
Transformer-based Re-ID models.

2.2 Membership Inference Attack

Membership inference (MI) attacks pose a significant chal-
lenge to researchers due to the high complexity of the training
set and the target model, making it difficult for a theoretical
analysis of why such attacks work. Recent research shows
that the success rate of these attacks is mainly affected by the
generalization gap of the target model. Shokri et al. (2017)
and Sablayrolles et al. (2019) observe that the attack model
is more likely to infer membership when the target model
performsbetter on the training set than on the test set. Further-
more, Li et al. (2020) demonstrated experimentally that the
generalization gap of the target model determines an upper
boundon the success rate ofMI attacks.WhilemostMI attack
issues are based on prediction vectors that directly relate to
the generalization gap, such as loss and logits, our research
conducts a thorough investigation of the distribution gap of
similarities.

In metric embedding learning, Li et al. (2022) proposed
a user-level MI attack based on the assumption that data
from the same category forms a more compact cluster in the
training set than in the test set. Our method differs from Li
et al. (2022) by examining the similarity distribution over
all sample pairs, including both intra- and inter-class sim-
ilarity. Furthermore, our method does not require multiple
samples for each identity. We establish the similarity distri-
bution membership inference attack approach that describes
the distribution gap between the training and test sets of a
trained Re-ID model. This approach examines the similarity
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between the target image (xt ) and the anchor images to infer
membership.

Shokri et al. (2017) proposed a method that trains a binary
classifier to conduct membership inference on the classifica-
tion model using logits as features. According to Hayes et
al. (2017), for a generative adversarial network, the trained
generator leads to more substantial confidence scores on the
training set. In this paper, we introduce the similarity distri-
bution membership inference attack approach that describes
the distribution gap between the training and test sets of a
trained Re-ID model. This approach examines the similarity
between the target image (xt ) and the anchor images.

2.3 Domain Adaptation

DomainAdaptation is a technique that involves learning from
a set of source domains to develop a high-performing model
for an unseen target domain. Ganin et al. (2016) uses the
gradient reverse layer and an adversarial loss to learn the
domain-invariant representation.Recently,Gonget al. (2014)
proposed unsupervised learning of a geodesic flow kernel to
learn robust features that are resilient to the mismatch across
domains. In addition, compared to feature space alignment,
Bousmalis et al. (2017) learned a transformation in the pixel
space from one domain to the other in an unsupervised man-
ner.

In this work, we found that our similarity distribution
shift is consistently observed as the domain-invariant fea-
ture across various Re-ID models and datasets. Additionally,
we propose two alignment strategies that align each anchor
based on their similarity distribution descriptors and utilize
standard normalization to mitigate the domain-shift problem
in the “one-to-any” attack scenario.

3 Preliminary Analysis

3.1 Preliminaries

This paper focuses on the effectiveness of approaches com-
monly adopted by SOTA Re-ID models, which employ a
softmax-based classifier as a loss function. Let D be a Re-ID
dataset consisting of images sampled from a data distribution
P(x) in the form of (x, y) ∈ X × Y , where x represents the
pedestrian image and y is the corresponding identity label.
Previousmethods (Zheng et al., 2016;Hu et al., 2017; Zhou et
al., 2019; Wang et al., 2018b) first pass an image x through
a backbone network to extract high-dimensional features.
These features are then fed into fully connected layers to
classify x based on its corresponding identity y. Then the

model is trained using the cross-entropy loss function:

Lid = 1

n

n∑

i=1

log(p(yi |xi )) (1)

During the inference phase, Re-ID can be viewed as an
image retrieval task aimed at identifying images with the
same identity as the query image from a gallery. This is
accomplished by excluding the identity classifier and uti-
lizing the high-level feature extracted before the classifier
to calculate the similarity between the query image and the
gallery images. Subsequently, person re-identification is per-
formed by sorting the images based on this similarity metric.

3.2 Optimal Membership Inference

We adopt the assumption from Sablayrolles et al. (2019) that
models the posterior distribution of model parameters θ as
follows:

P(θ |(xi , yi ,mi )) ∝ exp

(
− 1

T

n∑

i=1

miL(θ, xi , yi )

)
(2)

The membership variable mi indicates whether a sample
belongs to the test set (mi = 0) or the training set (mi = 1).
Additionally, the temperature parameter T controls the level
of stochasticity in the model parameters θ . By substituting
the Re-ID loss function into Eq.2, we obtain the posterior
distribution of the model parameters for Re-ID:

P(θ |(xi , yi ,mi ) ∝ exp

(
− 1

T

n∑

i=1

miL(θ, xi , yi )

)

= exp

(
− 1

T

n∑

i=1

mi log P(yi |xi ; θ)

)

= exp

(
− 1

T

n∑

i=1

mi log
d(xi , ayi )∑k
j=1 d(xi , a j )

)

(3)

The function d(xi , a j ) represents a similarity measure-
ment in the Re-ID representation space. This function has
multiple variants depending on the specific cross-entropy
based Re-ID methods used, such as L2Softmax (Ranjan et
al., 2017) and AngularSoftmax (Liu et al., 2016). The vari-
able a j represents learned class centers that correspond to
each identity, while k denotes the total number of identities.

In accordance with Sablayrolles et al. (2019), considering
the set of other samples and their membership denoted as
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T = (xi , yi ,mi )
n
i=1, the membership of the sample x1 can

be inferred as follows:

M(θ, x1, y1) := P(m1 = 1|θ, x1, y1)

= ET

[
σ

(
s(x1, y1, θ, P(θ |T )) + log

P(m1 = 1)

1 − P(m1 = 1)

)] (4)

where

s(x1, y1, θ, P(θ |T )) = − 1

T
log

d(x1, ay1)∑k
j=1 d(x1, a j )

− log

(∫

θ ′
exp

(
− 1

T
log

d(x1, ay1)∑k
j=1 d(x1, a j )

P(θ ′|T )

)
dθ ′

)

(5)

From Eqs. 4 and 5, the second term of Eq.5 represents the
standard loss of x1 under models that have not been trained
with x1 and can be interpreted as a threshold for membership
inference (MI) attacks. If this term is computed or accurately
approximated, the optimal membership inference depends
solely on the relative similarity between the target sample
xi and the identity centers a j . However, as discussed in the
introduction, these learnable identity centers are typically
inaccessible to attackers. Consequently, since the Re-ID loss
aims to minimize the distance between the training sam-
ples and their respective centers, it is intuitive to choose a
set of proxy centers, referred to as anchor images in this
paper, to approximate the learned centers using actual Re-ID
dataset images and perform membership inference based on
the sampled proxy centers. Our preliminary experiments in
the next subsection confirm that there exists a noticeable and
distinguishable distinction in the statistical properties of the
similarity between the target image and randomly sampled
anchor images in both the training and test sets.

3.3 Preliminary Experiments

ExperimentConfigurationThe formal analysis in the last sub-
section demonstrated that the membership of a target image
is contingent upon the relative similarity between the target
image and the identity centers learned during Re-ID train-
ing. As identity centers are inaccessible for MI attacks, we
propose sampling a set of reference images from the Re-ID
dataset as proxy centers and investigating the impact of the
training/test generalization gap on their similarities with the
target image. Specifically, when considering a Re-ID model
and its training dataset (Dtrain) and test dataset (Dtest ), we
select a randomsubset comprising 10%of Dtrain and Dtest as
reference samples. Subsequently, we compute the Euclidean
distance in the feature space of Re-IDmodel’s feature extrac-
tor between the target samples from Dtrain /Dtest and these

Table 1 The table presents the average discrepancy in average distance
for all training and testing samples relative to the reference samples

Dataset MGN (%) PCB (%) HAN (%)

Market1501 10.87 8.66 8.39

DukeMTMC 15.06 4.66 8.12

MSMT17 13.22 6.69 5.86

reference samples.We expect that the similarity distributions
between the reference-Dtrain and reference-Dtest pairings
will exhibit significant differences.
Statistical Analysis Upon analyzing the distance matrix, we
observed that the individual pair-wise distances exhibit a
high standard deviation and do not exhibit discernible pat-
terns associated with membership. Consequently, various
statistical properties of the overall distance distribution are
compared between the distances from training samples and
test samples to the reference samples.

First, for each reference sample, we calculate the aver-
age distance for both reference-Dtrain and reference-Dtest

pairings. Subsequently, we subtract the average distance
of reference-Dtrain pairings from the average distance of
reference-Dtest pairings across all reference samples and
calculate their average. As illustrated in Table 1, the discrep-
ancies in average are consistently positive, predominantly
ranging from 5 to 15%, signifying a discernible disparity in
the similarity distribution among training and test set samples
across diverse Re-ID models and datasets.

Next, we investigate the average and standard deviation
distances for different reference samples on specific Re-ID
datasets and models, as depicted in Fig. 3. In sub-figures (a),
(e) and (i), the y-axis represents the average distance from
each target sample in Dtrain or Dtest to a specific reference
sample, while the x-axis denotes different reference samples.
As a result, we note a distinct separation between the average
distances corresponding to Dtrain and Dtest . Typically, the
average distance for target samples in Dtrain is greater than
that for samples in Dtest .

Likewise, sub-figures (b), (f) and (j) illustrate the stan-
dard deviation of the distances between each target sample in
Dtrain /Dtest and various reference samples in the respective
Re-ID datasets and models, highlighting a more noticeable
discrepancy between samples from Dtrain and Dtest com-
pared to the average distance.

In addition to examining the mean and deviation of dis-
tances based on each reference image, we also investigate the
mean and standard deviation distribution across all reference
images. This is represented by a cumulative distribution func-
tion, as illustrated in Fig. 3c, d, g, h, k, l. Notably, we observe
that the cumulative distribution functions for samples in Dtest

consistently lie above those for samples in Dtrain .
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Fig. 3 The average (a, e, i) and standard deviation (b, f, j) gap of
distance from every reference sample to training target images or test
target images and the cumulative density function of the average (c, g,

k) and standard deviation (d, h, l) of the distance from all reference
samples to training target images and test target images across Mar-
ket1501+MGN,DukeMTMC+HAN and MSMT17+PCB

Fig. 4 The two-stages pipeline of our black-box MI attack. First, for
each target image xt we compute the similarity vector ṽt with refer-
ence samples. Next, we feed the similarity vector ṽt into the attack
model to infer the membership of the target image xt (Two alignment
strategies are applied to tackle the domain-shift problem in the “one-

to-any” attack scenario). Furthermore, we propose two attention-based
modules, namely anchor selector and patch-attention, to select useful
anchor images from the limited reference set and improve the approxi-
mation of the similarity distribution

Design Principles In conclusion, our experiments reveal the
existence of a noticeable shift in the similarity distribu-
tion between the training and test sets across diverse Re-ID
datasets and models. This phenomenon occurs because var-
ious Re-ID models, employed on different Re-ID datasets,
aim to minimize the distance between images of the same ID
while maximizing the distance between images of other IDs
in the latent space during training. Consequently, the similar-
ity distribution shift among pedestrian images becomesmore
consistent and is less susceptible to different Re-ID models
and datasets. This suggests that the similarity distribution
between the target sample and a set of anchor images serves
as an effective attack feature for membership inference in
both “one-to-one” and “one-to-any” attack scenarios.

4 ProposedMethod

We first provide a brief overview of the pipeline for our
membership inference attack based on similarity distribution
in two attack scenarios, as illustrated in Fig. 4. Our method
consists of two main stages. In the first stage, we compute
a similarity vector that represents the conditional distribu-
tion of similarity between the target image and other images
in the dataset. The second stage involves conducting mem-
bership inference based on the similarity distribution using
novel neural network structures. In the following two subsec-
tions, we will provide detailed explanations of our designs
and implementations for each of the two stages.
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4.1 Obtaining Similarity Vector

In line with the design principles, we infer the membership
of a target image xt by examining its similarity with a set
of anchors sampled from the target Re-ID data distribution
P(x).
One-to-one Attack Scenario Firstly, we begin by sampling
a reference set rt = [r1t , r2t , r3t , . . . , r

N
t ] from the Re-ID

data distribution P(x). Here, each r it ∈ P(x) is randomly
sampled from the dataset distribution P(x), and N repre-
sents the number of images in the reference set. We calculate
the i-th sampled distance ṽit of the similarity vector ṽt =
[ṽ1t , ṽ2t , ṽ3t , . . . , ṽN

t ] by computing the Euclidean distance
between the target image xt and the i-th anchor image r it in
the reference set:

ṽit = ‖ f (xt ) − f (r it )‖22, (6)

The function f ( · ) maps any input instance to its feature
embeddings in the corresponding known model f . Specifi-
cally, we consider the feature embeddings f (xt ) and f (r it )
of the target image xt and the reference image r it as points in
a K -dimensional Euclidean space. The sampled similarities
from the known model f and the dataset P(x) are utilized
to construct a similarity vector ṽt . In the “one-to-one” attack
scenario, sincewehave knowledge of the dataset, parameters,
and architecture of the target Re-ID model, we can effort-
lessly label a small portion of similarity vectors as member
or non-member of the target Re-IDmodel and train our attack
model using these samples. Finally, the remaining unlabeled
samples from the target model are inputted into our attack
model to predict the membership.
One-to-any Attack Scenario Conversely, in the “one-to-any”
attack scenario, where we lack access to the target Re-ID
model and dataset for training an attack model. To address
this, we introduce an auxiliary model and dataset to train our
attack model and evaluate the target sample of target model
and dataset. Specifically, we randomly sample N images
from auxiliary model and dataset as the reference set r ′

t and
then compute the similarity vector ṽ′

t for other samples. These
samples are then labeled based on their corresponding mem-
bership in the auxiliary model, forming the dataset Ar . After
training the attack model using Ar , we sample N images in
target model and dataset to construct the reference set rt ,
and compute ṽt for target sample xt . denoted as evaluation
dataset Ae. It is important to note that the number of sam-
pled images in r ′

t and rt should be equal to ensure the input
dimensions of ṽ′

t and ṽt in attack model are identical.
Additionally, as mentioned in Sect. 3, although similar-

ity distribution shift is prevalent in nearly all Re-ID models
and datasets, the cross-dataset and cross-model challenges
further amplify the domain-shift problem in the “one-to-
any” attack scenario. Therefore, we propose two alignment

Fig. 5 The specific architectures of our attackmodel (c), anchor selector
module (a), and patch-attention module (b) in “one-to-one” (left) and
“one-to-any” (right) attack scenarios

strategies to mitigate the domain-shift problem between the
training dataset Ar and evaluation dataset Ae. Specifically,
the random sampling strategy employed in the reference sets
rt and r ′

t results in different similarity distributions between
the i-th anchors ṽit and ṽ′i

t . Consequently, we sort each
anchor in ascending order based on their respective standard
deviation values. This alignment aims for a more uniform
similarity distribution across the anchors by ensuring that
the similarity distributions between the i-th anchors ṽit and
ṽ′i
t are as similar as possible in terms of their standard devi-
ation value that provides a more informative representation
of the similarity distribution compared to the mean value.

Subsequently, to reduce significant disparities in similarity
distributions between different Re-ID models and datasets,
we apply standard normalization on the similarity vectors ṽt
and ṽ′

t in datasets Ar and Ae:

V i = V i − μ

σ
(7)

where V i represents the similarities between anchor image
i and all other images in Ar or Ae, μ represents the mean
value of V i

t , and σ refers to the standard deviation. After
normalization, the similarity distribution of each anchor in
the reference set is transformed to a numerical space with
a mean of zero and a variance of one, aiming to reduce the
domain shift.
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4.2 Membership Inference Network

Figure 5 illustrates themodel structure of our proposedmem-
bership inference network in two attack scenarios. It receives
as input the similarity vector between a target image and a
reference set of anchor images and produces a binary value
that determines the membership.
Attack Model Consistent with prior research Shokri et al.
(2017), Long et al. (2018), Salem et al. (2018), Yu et al.
(2021), Chen et al. (2021), we employ a multi-layer per-
ceptron (MLP) for membership inference. Our attack model
for SD-MI attack consists of four hidden layers employing
the Tanh activation function, and a binary classification out-
put layer using the sigmoid activation function, as shown in
Fig. 5c. We denote this approach as MSD .

As mentioned in the previous section, Eq. 5 highlights the
significance of selecting suitable reference images to achieve
an improved approximation of the identity centers a j in Re-
ID membership inference. Consequently, we propose two
additional attention-based modules to enhance the represen-
tation of the similarity distribution in both the “one-to-one”
and “one-to-any” attack scenarios.
Anchor Selector Module In the “one-to-one” attack scenario,
we present the anchor selector module to choose relevant
anchor images based on the content of the current image. This
module assigns weights wi to the distances between the tar-
get image and various reference images. Figure5a illustrates
the utilization of the anchor selector Fas . It takes the high-
dimensional Re-ID feature embedding f (xt ) of the target
image xt as its input. For the implementation of this mod-
ule Fas , we employ a 2-layer MLP with a sigmoid activation
function.

wt = Fas( f (xt ),�) = σ(�2δ(�1 f (xt ))), (8)

where δ represents the Tanh activation, �1 ∈ R
K×K and

�2 ∈ R
N×K . Then we rescale the weight vector wt and the

similarity vector ṽt as:

uit = Fscale(w
i
t , ṽ

i
t ) = wi

t ṽ
i
t , (9)

where ut = [u1t , u2t , . . . , uN
t ] is the input feature for attack

model and Fscale refers to a multiplication between the
weight vector wt and the similarity vector ṽt . We refer to
the SD-MI attack with anchor selector module as MAS+SD .
Patch-Attention Module In the “one-to-any” attack sce-
nario, the cross-model and cross-dataset challenges result in
clearly distinct feature embedding distributions across dif-
ferent domains. This hampers the effective utilization of
the anchor selector module. To address this limitation, we
apply the novel patch-attention module to the aligned sim-
ilarity vector to re-weight the anchors by modeling their
inter-relationships in similarity distribution. Specifically, as

depicted in Fig. 5b, this module initially maps the aligned
similarity vector ṽt with N dimensions into a latent repre-
sentation with 2 × N dimensions. Subsequently, the latent
representation is partitioned into eight patches, with each
patch representing the anchors with closely related similar-
ity distributions.

[p1t , p2t , . . . , p8t ] = Fpatch(φ(ṽt)), (10)

Here, Fpatch denotes the grouping operation, and φ(, ·, )
is implemented as a 3-layer MLP with a tanh activation
function. To effectively capture the relationships between
similarity distributions at different levels, we utilize a trans-
former encoder with self-attention to weight the anchors
among patches. Lastly, we perform max pooling on the eight
patches to select the most salient anchor across the different
patches:

pt = max(T [p1t , p2t , . . . , p8t ]), (11)

where T represents the transformer encoder, and pt refers
to our final attack feature, which captures the prominent
anchors with the most informative similarity distribution in
the latent space. We denote the SD-MI attack with patch-
attention module as MPA+SD .

5 Experimental Setup

This section presents the configuration and implementation
details of our experiments.

5.1 Datasets

We utilize three variant datasets for Re-ID: Market1501
(Zheng et al., 2015), DukeMTMC-Re-ID (Zheng et al.,
2017) and MSMT17 (Wei et al., 2018). The Market1501
dataset consists of 1501 pedestrian classes, totaling 32,668
images captured by five high-resolution cameras and one
low-resolution camera. We assign 751 pedestrian classes to
the training set, while the remaining classes form the test set
(gallery set). For evaluation, we select one image per pedes-
trian from the test set as a query to assess the Re-ID model.
The DukeMTMC-Re-ID dataset comprises 16,522 training
images from 702 pedestrians and 17,661 test images (gallery
set) from 702 other pedestrians. The images are captured
by eight static HD cameras located at Duke University. The
query set is also selected from the gallery set. As a more
realistic and larger Re-ID dataset, MSMT17 consists of 15
cameras capturing diverse scenes, and various weather con-
ditions, and spanning multiple time periods. Ultimately, the
dataset comprises a total of 126,441 images, featuring 4101
unique pedestrians. Out of these, 1041 pedestrians with a
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Table 2 We compared the performance of our proposed method with existing membership inference attack baselines in the “one-to-one” attack
scenario on different Re-ID models trained on the Market1501 and DukeMTMC datasets

Method ResNet50 MobileNetV2 Xception
Market1501 (%) DukeMTMC (%) Market1501 (%) DukeMTMC (%) Market1501 (%) DukeMTMC (%)

MFE 80.1 80.5 74.9 72.7 78.5 76.1

Mtloss 82.6 86.2 77.4 77.8 84.9 83.8

MU_low 72.4 70.8 65.5 63.3 71.0 66.1

MU_mid 78.6 77.4 71.0 69.3 76.9 72.3

MU_high 82.9 81.9 74.0 72.6 79.6 75.9

MSD (ours) 87.0 88.7 80.6 81.4 89.7 90.6

MAS+SD (ours) 87.3 89.1 81.2 82.2 90.1 91.6

The highest performance is indicated in bold

combined image count of 32,621 were allocated to the train-
ing set, while the test set consisted of 3060 pedestrians with a
collective image count of 93,820. For the query set, a random
subset of 11,659 images was selected from the test set.

In the “one-to-one” attack scenario, the training dataset
for the attack model consists of 2000 samples selected from
the training set and 2000 samples from the test set of the tar-
get Re-ID model. Additionally, the evaluation dataset for the
attack model is created by randomly sampling 6000 images
from both the training set and the test set of the same target
Re-ID model. In the “one-to-any” attack scenario, the entire
dataset of the auxiliary Re-ID model is considered as the
attack training dataset, while the dataset of the target Re-ID
model is used as the attack evaluation dataset.

5.2 Target Models

In our experiments, we employ the CNN-based Re-ID mod-
els with different backbone networks, namely ResNet50,
MobileNetV2, and Xception, as target models in the “one-
to-one” attack scenario. Each model is trained on the
Market1501 and DukeMTMC-Re-ID datasets. In addition,
we utilize various architecture models for the “one-to-any”
attack scenario, including CNN-based Re-ID models such
as MGN, HAN, PCB, and a transformer-based Re-ID model
TransRe-ID. Each targetmodel is trained on theMarket1501,
DukeMTMC-Re-ID, and MSMT17 Re-ID datasets.

5.3 Baselines

Feature based MI Attack (MFE ) In order to validate the
assumption that the feature embedding does not capture the
train/test generalization gap as effectively as the direct model
outputs, we employ a feature embedding-based MI attack
method. This method involves feeding the Re-ID feature of
the target image into the sameMI backbone as MSD , follow-
ing the approach outlined in Nasr et al. (2018a).

Fig. 6 ROC curve of MAS+SD , MSD , MU_high , MU_mid , MU_low and
MFE on ResNet50 trained on Market1501

Triple Loss based MI Attack (Mtloss) This baseline approach
follows the design of a state-of-the-art (SOTA) black-box
metric-based MI attack (Sablayrolles et al., 2019), which
infers membership by considering the target image’s training
loss and a manually determined threshold. Since the cross-
entropy-based Re-ID losses are not directly accessible in our
black-box setting, we compute the triplet loss (Schroff et al.,
2015) based on the image features, serving as a surrogate
loss function. More specifically, the triplet loss is computed
by selecting the target image xt as the anchor image and
treating all images with the same identity as positive sam-
ples, while sampling 100 images with different identities as
negative samples.
User-level MI Attack (MU ) As a comparison baseline, we
select the user-level MI attack (Li et al., 2022), which was
originally designed for metric learning-based models. How-
ever, this method cannot be directly applied to instance-level
MI attacks. Therefore, we adapt the original method by sam-
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Table 3 Performance comparison between our proposed method, MPA+SD , and the baseline membership inference attack method, MU , under the
“one-to-any” attack scenario

Source→Target Method Trans→HAN (%) PCB→MGN (%) HAN→PCB (%) MGN→HAN (%) Avg (%)

MSMT→Duke MU_low(aligned) 71.1 63.1 65.4 67.3 66.7

MU_mid (aligned) 77.8 69.7 72.8 77.5 74.5

MU_high(aligned) 82.9 77.7 77.4 82.3 80.1

MSD(aligned) 92.0 88.3 79.1 88.4 87.0

MPA+SD 94.6 88.3 79.0 92.4 88.6

MSMT→Market MU_low(aligned) 67.4 66.9 78.2 71.8 71.1

MU_mid (aligned) 78.2 72.2 83.6 79.4 78.4

MU_high(aligned) 82.1 77.1 87.5 83.9 82.7

MSD(aligned) 91.1 87.3 90.4 84.9 88.4

MPA+SD 92.7 87.4 91.3 88.1 89.9

Market→Duke MU_low(aligned) 80.4 72.0 71.4 80.7 76.1

MU_mid (aligned) 88.5 79.4 77.6 87.6 83.3

MU_high(aligned) 91.4 87.0 84.1 91.5 88.5

MSD(aligned) 92.3 89.4 78.7 88.4 87.2

MPA+SD 94.8 89.6 79.0 94.1 89.4

Avg. MU_low(aligned) 73.0 67.3 71.7 73.3 71.3

MU_mid (aligned) 81.5 73.8 78.0 81.5 78.7

MU_high(aligned) 85.5 80.6 83.0 85.9 83.7

MSD(aligned) 91.8 88.3 82.7 87.2 87.5

MPA+SD 94.0 88.4 83.1 91.5 89.3

To ensure a fair comparison, we have adopted the alignment strategies used in MU . All comparisons are conducted across multiple Re-ID models
and datasets. Source→Target means auxiliary model and dataset to target model and dataset. The best-performing results are highlighted in bold

pling a set of images that share the same identity as the target
image and computing the intra-class distance based on the
sampled images. In order to examine the impact of the num-
ber of positive images on the performance of the user-level
MI attack, we present three sets of results using different
numbers of sampled images. More specifically, MU_low,
MU_mid , and MU_high refers to the user-level MI attack with
two, four, and all positive images sampled for each target
image, respectively. It is important to note that this method
requires the attacker to possess the identity annotation of each
pedestrian image and multiple positive images per identity,
whereas our method does not have such a requirement.

In the “one-to-one” attack scenario, we employ MFE ,
Mtloss , and MU as the baselines for comparison. Conversely,
in the “one-to-any” attack scenario, where the domain shift
exists between attack training and test set, we consider the
method MSD and MU that utilizes our alignment strategies
as the attack baselines.

5.4 EvaluationMetrics

In our experiments, we employ the attack success rate (ASR)
(Shokri et al., 2017) as an evaluation metric, which is
defined as the ratio of successful attacks, where members are
correctly predicted as members and non-members as non-

members, to all unknown attacks. We also generate Receiver
Operating Characteristic (ROC) curves to evaluate the trade-
off between the true positive rate and false positive rate of
the compared methods.

6 Experiments

We compare the performance of the proposed method in
MI attacks with several baselines on the Re-ID task in two
attack scenarios.We also present an ablation study to investi-
gate the impact of different components and hyperparameters
on the performance of our method. Finally, we compare the
performance of our approaches with SOTAmethods on clas-
sification tasks.

6.1 Performance Comparison

One-to-One Attack Scenario Table 2 presents the ASR of our
methods and the compared baselines when attacking Re-ID
models with different backbones (ResNet50, MobileNetV2,
and Xception) trained on different datasets (Market1501
and DukeMTMC) in “one-to-one” attack scenario. Firstly,
we observe that our approach, MSD , significantly outper-
forms existing baseline methods in both datasets and across
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Table 4 We compare the
performance of the aligned MSD
and the patch-attention based
MPA+SD (given in ( · )) in the
“one-to-any” attack scenario
across four Re-ID models and
three datasets in terms of ASR

Source→Target MGN→Trans PCB→Trans HAN→Trans Avg

Market→Duke 58.3% (62.4%) 60.6% (63.1%) 65.1% (64.7%) 61.3% (63.4%)

Market→MSMT 54.6% (54.0%) 56.2% (58.9%) 59.0% (63.3%) 56.6% (58.7%)

Duke→Market 59.8% (61.2%) 53.3% (59.3%) 61.1% (61.7%) 58.1% (60.7%)

Duke→MSMT 54.4% (54.5%) 52.0% (54.2%) 58.5% (60.8%) 55.0% (56.5%)

MSMT→Market 57.7% (57.9%) 61.1% (61.2%) 60.7% (61.2%) 59.8% (60.1%)

MSMT→Duke 57.6% (60.3%) 58.6% (58.4%) 64.0% (65.6%) 60.1% (61.4%)

Source→Target Trans→MGN PCB→MGN HAN→MGN Avg

Market→Duke 89.3% (90.1%) 89.4% (89.6%) 89.9% (89.8%) 89.5% (89.8%)

Market→MSMT 76.9% (77.7%) 77.7% (77.8%) 78.9% (78.8%) 77.8% (78.1%)

Duke→Market 86.7% (87.0%) 78.0% (82.6%) 87.8% (87.7%) 84.2% (85.8%)

Duke→MSMT 76.7% (77.4%) 72.5% (74.1%) 77.8% (78.7%) 75.7% (76.7%)

MSMT→Market 86.3% (86.9%) 87.3% (87.4%) 86.4% (87.1%) 86.6% (87.1%)

MSMT→Duke 89.1% (90.0%) 88.3% (88.3%) 89.1% (89.6%) 88.8% (89.3%)

Source→Target Trans→PCB MGN→PCB HAN→PCB Avg

Market→Duke 79.0% (79.5%) 75.5% (78.4%) 78.7% (79.0%) 77.7% (78.9%)

Market→MSMT 86.9% (87.6%) 85.3% (85.9%) 88.9% (89.1%) 87.0% (87.5%)

Duke→Market 90.6% (90.9%) 88.6% (90.2%) 90.7% (91.3%) 90.0% (90.8%)

Duke→MSMT 87.8% (87.5%) 84.3% (86.3%) 88.0% (89.0%) 86.7% (87.6%)

MSMT→Market 90.1% (90.7%) 87.7% (89.6%) 90.4% (91.3%) 89.4% (90.5%)

MSMT→Duke 79.7% (79.7%) 68.9% (75.1%) 79.1% (79.0%) 75.9% (77.9%)

Source→Target Trans→HAN MGN→HAN PCB→HAN Avg

Market→Duke 92.3% (94.8%) 88.4% (94.1%) 94.5% (94.8%) 91.7% (94.5%)

Market→MSMT 77.9% (81.3%) 76.6% (76.6%) 81.1% (81.3%) 78.5% (79.7%)

Duke→Market 91.8% (92.8%) 88.7% (91.6%) 84.5% (88.9%) 88.3% (91.1%)

Duke→MSMT 80.2% (80.6%) 78.2% (80.2%) 69.8% (74.6%) 76.1% (78.4%)

MSMT→Market 91.1% (92.7%) 84.9% (88.1%) 92.7% (92.6%) 89.6% (91.1%)

MSMT→Duke 92.0% (94.6%) 88.4% (92.4%) 94.0% (94.0%) 91.5% (93.7%)

Source→Target means auxiliary model and dataset to target model and dataset. The highest performance is
indicated in bold

all three Re-ID backbones, demonstrating the effectiveness
of leveraging the relative similarity between samples for
membership inference. By introducing an anchor selector,
MAS+SD achieves the highest ASR, underscoring the impor-
tance of selecting appropriate anchors for different images.

Additionally, we notice that MFE achieves a lower ASR
compared to other methods, further validating the assump-
tion that feature embedding contains additional information
unrelated to the training data. Moreover, individual fea-
ture embedding provides less informative evidence regarding
training set membership compared to methods that con-
sider inter-sample similarities. The user-level method MU

also outperforms feature-based methods on Market1501,
highlighting the significance of inter-sample relationships.
However, this method solely considers the correlation among
positive samples, resulting in inferior performance compared
to MSD and MAS+SD . Furthermore, we observe that the per-
formance of MU is significantly influenced by the number of

positive samples in each class. Specifically, upon examining
the results of experiments conducted withMU_high ,MU_mid ,
and MU_low, we observe a decrease in ASR as the number of
positive images per identity decreases. In conclusion, com-
pared to ourmethod, the user-levelMI attack imposes stricter
requirements on background knowledge of the target images,
including the identity annotation and a large number of pos-
itive images for each identity.

Moreover, we compare our methods and the compared
baselines using ResNet50 trained with Market1501 in terms
of the ROC curve, as depicted in Fig. 6. Our methods,
MAS+SD and MSD , outperform the other methods, achiev-
ing the highest Area Under Curve (AUC) values of 0.935 and
0.930, respectively.
One-to-Any Attack Scenario We compare our proposed
method MPA+SD with other aligned methods in a more real-
istic “one-to-any” attack scenario by presenting the attack
results across different Re-IDmodels and datasets in Table 3.
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Fig. 7 Attack success rate with different sampling percentages of sampled anchor images in the reference set for methods MFE , MSD and MAS+SD
on ResNet50 and Xception backbones trained on Market1501 and DukeMTMC datasets

Firstly, it is important to note that in the absence of our align-
ment strategies, MSD and MU will consistently yield poor
performance due to the domain-shift problem between the
auxiliary and target Re-ID model.

Furthermore, we observed that our method MSD mostly
achieves a higher ASR than the method MU when we apply
the alignment strategies. This finding further supports our
earlier assertion in Sect. 3 that the similarity distribution shift
exhibits the domain-invariant features present in nearly all
Re-ID models and datasets that will easily and effectively
expose the privacy and security vulnerabilities of real-world
Re-ID models.

Moreover, our novel patch-attention-basedmethodMPA+SD

surpasses the aligned method MSD in the majority settings,
especially in the Avg. column, as shown in Table 4. This
highlights the effectiveness of our patch-attention module,
which models the inter-relationship of similarity distribution
and selects the most crucial anchors in the latent space.

6.2 Ablation Study

Reference Set SamplingBased on the formal analysis in Sect.
3, we have determined the importance of selecting appropri-
ate reference images as proxy centers to approximate the
learned identity centers. In general, with a sufficiently large
reference set, it is always possible to find samples that are
close enough to the identity center. However, when the ref-
erence set is small, there may not be enough samples to
accurately approximate the identity centers.

Consequently, Fig. 7 illustrates the impact of the percent-
age of sampled anchor images in the reference set on the
success of the attacks conducted by MSD and MAS+SD . Our
observations reveal that the attack success rate (ASR) of
MSD significantly decreases as the percentage of sampled
reference images decreases. Conversely, when the number
of anchors is low, MAS+SD surpasses MSD by incorporating
an additional anchor selector that assigns higher importance
weight to appropriate anchor images. Notably, even when

Table 5 We evaluate MPA+SD for various numbers of latent space
dimensions (L-D) and patch dimensions (P-D) in the MGN→Trans
and Market→Duke attack setting, where N represents the dimensions
of the similarity vector

L-D P-D
N/2 (%) N/4 (%) N/8 (%)

4N 60.9 61.8 61.7

2N 61.5 62.4 61.5

1N 61.5 61.9 61.6

The highest performance is indicated in bold

only 4% of the images are sampled, MAS+SD achieves the
upper-bound performance, thereby emphasizing the signifi-
cance of selecting suitable reference images to approximate
the identity anchors.
Dimension in Latent Space and PatchWe conducted ablation
experiments on the dimensions of the latent space represen-
tation and each patch. As shown in Table 5, it can be observed
that the attack achieves optimal performance when the simi-
larity vectors aremapped to a latent space of 2∗N dimensions
and each patch has a N/4 dimension.

6.3 Evaluation on Classification

To investigate the performance of our proposed method
in tasks beyond Re-ID, we apply it to the classification
task and compare its effectiveness with several state-of-the-
art MI attack methods in the “one-to-one” attack scenario.
We choose CIFAR10 (Krizhevsky, 2009) as our benchmark
dataset and evaluate our method on various target mod-
els, namely ResNet18 (He et al., 2016), ResNet50 (He et
al., 2016), VGG19 (Simonyan & Zisserman, 2014), and
GoogLeNet (Szegedy et al., 2015). The target models are
trained using the SGD optimizer with a learning rate of 0.1,
200 epochs, and l2 regularization with a weight of 0.0005.
The comparison methods consist of the logits-based MI
attack Mlogits (Shokri et al., 2017; Salem et al., 2018), which
utilizes the output logits in the attack neural network, the
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Table 6 Performance
comparison between the
proposed method and existing
membership inference attack
baselines on different
classification models trained on
CIFAR10 in terms of attack
success rate

Model Mloss (%) Mlogits (%) MFE (%) MAS+SD (%)

ResNet18 78.7 78.5 78.6 79.0

ResNet50 69.1 67.9 66.9 68.3

VGG19 63.9 63.8 63.6 63.6

GoogLeNet 67.8 65.9 63.9 66.9

feature-based method MFE , and the loss-based MI attack
Mloss (Sablayrolles et al., 2019), which performs MI based
on the classification loss using a manually defined threshold.

As shown in Table 6, our algorithm MAS+SD achieves a
similar ASR to the previous state-of-the-art algorithm Mloss

on most target models and a higher ASR on ResNet18.
This result demonstrates that the inter-sample similarity also
provides sufficient information about the generalization gap
between the training and test sets in the classification task.

7 Conclusion

This paper highlights a rarely explored privacy risk asso-
ciated with the training data of person re-identification.
Membership inference attacks can quantify the information
leakage from Re-ID data. However, Re-ID is a fine-grained
recognition taskwith complex feature embedding, andmodel
outputs commonly utilized by existing MI methods, such as
logits and losses, are not accessible during inference. Conse-
quently, this paper conducts formal and empirical analyses to
uncover a new set of features for Re-ID MI attacks, namely
the inter-sample similarity of image pairs. Therefore, a novel
membership inference attack method is proposed in order
to quantify the information leakage of the Re-ID dataset
by leveraging the inter-sample correlation among pedes-
trian images. We analyze two attack scenarios “one-to-one”
and “one-to-any” to comprehensively understand the privacy
risks in Re-ID tasks. In the more realistic “one-to-any” sce-
nario, we introduce two alignment strategies to mitigate the
domain-shift problem. Furthermore, in both scenarios, we
propose the attention-based module that accurately selects
anchors representing the similarity distribution. Our pro-
posed method achieves superior performance compared to
existing MI attack approaches when applied to Re-ID mod-
els.
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