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Abstract
Multi-label feature selection aims to mitigate the curse of dimensionality in multi-label data by selecting a smaller subset 
of features from the original set for classification. Existing multi-label feature selection algorithms frequently neglect the 
inherent uncertainty in multi-label data and fail to adequately consider the relationships between features and labels when 
assessing the importance of features. In response to this challenge, a Fuzzy Information Gain Ratio-based multi-label fea-
ture selection considering Label Correlation (FIGR_LC) algorithm is proposed. FIGR_LC evaluates feature importance by 
combining the relationship between features and individual labels, as well as the correlation between features and label sets. 
Subsequently, a feature ranking is established based on these feature weights. Experimental results substantiate the effective-
ness of FIGR_LC, showcasing its superiority over several established feature selection methods.
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1 Introduction

In conventional supervised learning, a sample is usually 
associated with only one category label, which represents 
one specific semantic meaning [1]. However, real-world 
scenarios often involve objects with multiple semantic 
information, potentially belonging to multiple categories 
simultaneously [2]. For instance, a text can be both political 

and economic; An image might include various semantic 
items, such as meadow and flower; In the gene function 
prediction, a gene might be involved in both transcription 
and metabolism at the same time. Clearly, these multi-sense 
objects cannot be accurately described by a single category 
label. This challenge poses a significant problem for tradi-
tional supervised learning, which emphasizes singular and 
distinct semantic meanings. To address this challenge, the 
multi-label learning framework has been introduced [3], in 
which each object is associated with a set of class labels that 
represents multiple semantic information. It could leverage 
multi-label training datasets to predict the class labels for 
unlabeled multi-label samples and finds widespread applica-
tions in various domains. Specifically, it is extensively uti-
lized in text classification [4, 5], automatic image and video 
labeling [6–8], as well as scene classification [9].

The widespread availability of high-dimensional multi-
label data potentially leads to the curse of dimensionality 
and compromising the accuracy of multi-label learning. To 
address this, numerous multi-label dimensionality reduction 
methods have been proposed. These methods generally fall 
into two categories: feature extraction and feature selec-
tion. The process of transforming the feature space from 
its higher original dimensionality into lower dimensional-
ity using mapping or transformation is referred to as fea-
ture extraction. For example, Multi-label Informed Latent 

 * Ying Yu 
 yuyingjx@163.com

 Meiyue Lv 
 meiyuelv@163.com

 Jin Qian 
 qjqjlqyf@163.com

 Jingqin Lv 
 jingqinlv@ecjtu.edu.cn

 Duoqian Miao 
 dqmiao@tongji.edu.cn

1 State Key Laboratory of Performance Monitoring 
and Protecting of Rail Transit Infrastructure, East China 
Jiaotong University, Nanchang 330013, Jiangxi, China

2 College of Software, East China Jiaotong University, 
Nanchang 330013, Jiangxi, China

3 Department of Computer Science and Technology, Tongji 
University, Shanghai 201804, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-023-02060-9&domain=pdf


2738 International Journal of Machine Learning and Cybernetics (2024) 15:2737–2747

Semantic Indexing (MLSI) [10] is a notable feature extrac-
tion algorithm. Although feature extraction can reduce the 
dimensionality of multi-label feature space, it also destroy 
the structure of the original feature space. The newly gen-
erated feature space loses its original semantics, resulting 
in a classification model that cannot be fully interpreted. 
Conversely, feature selection focuses on selecting a subset 
of features from the original set based on specific evaluation 
criteria. This approach not only reduces the dimensional-
ity of the original feature space by eliminating unneces-
sary or redundant attributes but also preserves the original 
semantics. As a result, feature selection has garnered more 
attention in research and applications, providing a balance 
between dimensionality reduction and retaining the inter-
pretability and meaning of the data.

The key to feature selection is to figure out the impor-
tance of each feature and then select features with higher 
importance, which can generally be measured through cor-
relation. Unlike traditional single-label learning, each multi-
label object may have multiple semantic labels simultane-
ously, so multi-label feature selection approaches should 
consider not only feature-to-label and feature-to-feature 
correlations, but also feature-to-label set correlations, as 
well as correlations between labels [11, 12]. Currently, 
some existing multi-label feature selection algorithms can 
describe the correlation well based on some valid evaluation 
metrics, such as information entropy [13–15], dependency 
[16], or classification interval [17, 18]. For example, three 
multi-label feature selection algorithms, including NFNMI-
opt, NFNMIneu, and NFNMIpes, were proposed based on 
pessimistic, neutral, and optimistic neighborhood informa-
tion entropy by Lin et al. [13]. Li et al. [14] proposed a 
information gain-based multi-label feature selection algo-
rithm, IGML, which uses the maximum information gain 
to measure the relation between features and class labels. 
Reyes et al. [18] presented three extensions of the popular 
feature estimation algorithm, ReliefF, for multi-label fea-
ture selection algorithms, namely ReliefF-ML, PPT-ReliefF, 
and RReliefF-ML. However, most of the existing algorithms 
mainly consider feature-to-label correlations or feature-to-
feature correlations.

Similar to the traditional single-label feature selection, 
multi-label feature selection also faces the challenge of 
uncertainty, including randomness, ambiguity and inconsist-
ency. As a valuable technique for analyzing data uncertainty 
[19], rough sets theory [20] can describe the dependencies 
within the data under the condition of limited information 
granularity and is therefore regarded as an effective tool for 
dimensionality reduction [21–24]. Originally, rough sets 
was ill-suited for handling continuous data, leading to their 
extension to overcome this limitation. One of the primary 
extension model for rough sets is fuzzy rough sets, which 
replaces equivalence relations with similarity relations in 

classical rough sets to calculate indistinguishability. Several 
evaluation metrics based on fuzzy rough sets were intro-
duced, including fuzzy dependency functions [25–28] and 
fuzzy information entropy [29, 30]. These metrics paved 
the way for the creation of a fuzzy discernibility matrix for 
single-label feature selection [31, 32]. Subsequently, it was 
extended to multi-label feature selection, resulting in numer-
ous algorithms based on fuzzy rough sets [33–36]. Zhang 
et al. [33] proposed an multi-label feature selection algo-
rithm by amalgamating dependency functions with BR as 
a fuzzy rough set-based feature assessment. Lin et al. [34] 
introduced two algorithms for multi-label feature selection, 
leveraging the stream features of multi-label data and fuzzy 
mutual information, separately. Li et al. [36] executed multi-
label feature selection by combining fuzzy rough set and 
multi-kernel learning, introducing a model utilizing ker-
nelized fuzzy rough sets (RMFRS). However, it’s important 
to note that these approaches only partially assess the cor-
relations between features, leaving room for further explora-
tion and refinement.

To address the aforementioned problems, a novel fuzzy 
information gain ratio-based multi-label feature selec-
tion algorithm considering label correlation (FIGR_LC) 
is proposed. FIGR_LC considers the correlation between 
features and each label, as well as the correlation between 
features and label sets that incorporate inter-label correla-
tion. It utilizes the fuzzy information gain ratio to measure 
the correlation and defines label weights accordingly. By 
integrating correlation measurement with label weights, the 
proposed algorithm established the significance of features. 
Subsequently, features are ranked based on their weights in 
descending order, creating the feature ranking. Extensive 
experiments confirm the efficiency of FIGR_LC. The con-
tributions of this research can be summarized as follows: 

1. A fuzzy information gain ratio-based multi-label feature 
selection algorithm with label correlation is proposed, 
which employs fuzzy rough set information theory to 
handle the ambiguity and uncertainty inherent in multi-
label data.

2. Different from the existing multi-label feature selection 
algorithms which partially consider the relationship 
between features and labels, the proposed algorithm 
considers the relationship between features and labels in 
terms of individual label-feature associations as well as 
the relevance between the feature and label sets, which 
also takes into account the label relevance.

3. The proposed algorithm employs fuzzy information gain 
ratios to quantify relevance and establish label weights. 
By integrating both correlation and label weights, the 
algorithm determines the importance of features. This 
importance assessment guides the derivation of a feature 
ranking.
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The rest of this paper is organized as follows: Sect. 2 reviews 
the fundamental concepts of multi-label learning and fuzzy 
rough sets. Section 3 explores various aspects of FIGR_LC. 
Section 4 presents the detailed methodology of FIGR_LC. 
Section 5 describes experimental findings. Finally, Sect. 6 
provides the concluding remarks.

2  Preliminaries

This chapter introduces the fundamental notions used in this 
paper.

2.1  Multi‑label learning

Given a sample space � = ℝ
q , a label space with � labels. 

Each sample �i ∈ � denotes a q-dimensional feature vector, 
�i =

{
�i1, �i2,… , �i�

}
 represents the label vector related to 

sample �i . For each label �j , if �i is connected to �j , then 
�ij = 1 ; otherwise �ij = 0.

2.2  Fuzzy rough sets

In traditional rough sets, equivalence relations are calculated 
from symbolic data, while in fuzzy rough sets, numeric type 
features can produce fuzzy equivalence relations. Let � be a 
finite nonempty universe and ℜ be a fuzzy equivalence rela-
tion on � . For ∀m, o, n ∈ � , ℜ meets the properties below: 

1. Reflexivity: ∀m ∈ �,ℜ(m,m) = 1;
2. Symmetry: ∀m, o ∈ �,ℜ(m, o) = ℜ(o,m);
3. Transitivity:ℜ(m, n) ≥ mino{ℜ(m, o),ℜ(o, n)}.

Given a object set � , the feature set is �  , � ∈ �  . The fuzzy 
relationship matrix M(�) based on feature � is denoted as:

where the relationship between �m and �n is �mn ∈ [0, 1] . In 
the traditional rough sets, when �m equals �n , �mn = 1 , oth-
erwise �mn = 0.

Definition 1 [37] Let � denotes sample set, ℜ denotes fuzzy 
equivalence relation. fuzzy partition of � generated by the 
ℜ is as follows:

where 
[
𝔵m

]
ℜ
=

𝔯m1

𝔵1
+

𝔯m2

𝔵2
+⋯ +

𝔯mz

𝔵z
 denotes the fuzzy equiva-

lence class. “+” denotes “union” and “−” denotes a 

(1)M(�) =

⎛⎜⎜⎜⎝

�11 �12 ⋯ �1z
�21 �22 ⋯ �2z
⋮ ⋮ ⋱ ⋮

�z1 �z2 ⋯ �zz

⎞⎟⎟⎟⎠

(2)�∕ℜ =
{[
𝔵m

]
ℜ

}z

m=1
,

separator. The partition �∕ℜ is produced by the ℜ . 
[
𝔵m

]
ℜ

 
represents a fuzzy set, as a result of fuzzy equivalence 
relation.

Definition 2 [37] Cardinalities of 
[
𝔵m

]
ℜ

 are as follows:

2.3  Fuzzy rough sets information measurement

Definition 3 [29] Given an object space < �,ℜ > , the fuzzy 
information entropy of feature � is as follows:

Definition 4 [29] Given a information system 
𝜍 =< �, � , 𝜈,𝜑 > , �  is attribute set, � is the attribute value 
range, the mapping � = � × � → � . The equivalence classes [
�m

]
X
 and 

[
�m

]
Y
 that contain �m are produced by feature sub-

sets X and Y. The following is fuzzy joint entropy of X and Y:

where 
[
�m

]
X
∩
[
�m

]
Y
= min

{[
�m

]
X
,
[
�m

]
Y

}
.

Definition 5 [29] Given a fuzzy rough decision table 
FRDT =< �, � , 𝜈,𝜑 > , ℑ is conditional attribute set, � 
is decision attribute, � = ℑ ∪𝔗 , X ⊆ ℑ . The equivalence 
classes 

[
�m

]
X
 and 

[
�m

]
�
 that contain �m are produced by X and 

� . The fuzzy conditional entropy from � to X is as follows:

Theorem 1 [29] FH(� ∣ �) = FH(��) − FH(�).

Definition 6 [29] Given a fuzzy rough decision table 
FRDT =< �, � , 𝜈,𝜑 > , ℑ is conditional attribute set, � 
is decision attribute, � = ℑ ∪𝔗 , X ⊆ ℑ . The equivalence 
classes 

[
�m

]
X
 and 

[
�m

]
�
 that contain �m are produced by X and 

� . The fuzzy mutual information of X and � is as follows:

(3)
|||
[
𝔵m

]
ℜ

||| =
z∑

n=1

𝔯mn.

(4)FH(�) = −
1

z

z∑
m=1

log

|||
[
𝔵m

]
ℜ

|||
z

.

(5)FH(XY) = −
1

z

z∑
m=1

log

|||
[
�m

]
X
∩
[
�m

]
Y

|||
z

,

(6)FH(� ∣ X) = −
1

z

z∑
m=1

log

|||
[
�m

]
X
∩
[
�m

]
�

|||
|||
[
�m

]
X

|||
.

(7)I(X;�) = FH(�) − FH(� ∣ X).



2740 International Journal of Machine Learning and Cybernetics (2024) 15:2737–2747

3  Fuzzy information gain ratio and label 
relevance

3.1  Correlation measurement method

Information gain signifies the degree of uncertainty reduc-
tion in the random variable � once the random variable � 
is determined. As a metric for assessing the significance 
of features, information gain gauges the information a fea-
ture provides to the system. The importance of a feature is 
directly proportional to the information it contributes. The 
definition can be stated as follows:

Feature selection relying on information gain often favors 
features with a wide range of values, sometimes resulting 
in the selected features meaningless. The introduction of 
information gain ratio mitigates this bias by factoring in the 
ratio of information gain to the information entropy of the 
feature. Hence, considering the information gain ratio for 
feature selection, as outlined in Definition 7, can be a more 
balanced and precise approach.

Definition 7 Given a sample set � , a feature set �  , � and � 
are two features or feature sets describing the sample, the 
fuzzy information gain ratio is defined as follows:

In Definition 7, IGR denotes the relation between � and � . 
The stronger relation between features � and � , the higher 
value of IGR(�, �).

3.2  Correlation measures for feature and label

Each multi-label object is associated with a set of category 
labels, representing various semantic. In this context, not 
only the features exhibit correlations among themselves, 
but also the labels also demonstrate interconnections. These 
intricate relationships significantly influence the calculation 
of feature importance, as highlighted in previous research 
[34]. Solely examining the connection between features and 
label sets would overlook crucial information, including the 
relevance between individual labels and the associations 
between features and each label [38]. Consequently, FIGR_
LC integrates the relation between labels and features with 
that between features and label sets. This comprehensive 
perspective also takes into consideration label relevance, 
allowing for a holistic analysis of the relationships between 
features and label sets.

(8)IG(�, �) = FH(�) − FH(� ∣ �).

(9)IGR(�, �) =
IG(�, �)

FH(�)
=

FH(�) − FH(� ∣ �)

FH(�)
.

In Definition 7, the term IGR denotes the correlation 
between two features, forming the basis for defining the 
relationship between features and labels.

Definition 8 Given a multi-label table � =< �, � ,� > , � 
represents sample set, �  denotes the feature set, � denotes 
label set, fm ∈ �  , �n ∈ � . The correlation between fm and 
�n is as follows:

In Definition 8, the larger value of IGR(�n, fm) , the greater 
correlation between label �n and feature fm.

3.3  Label relevance

The weight assigned to a label signifies its significance 
and its interconnection with other labels. A higher label 
weight indicates a greater likelihood of the label’s impor-
tance. Information gain is employed to gauge the relevance 
between two labels and ascertain the significance of these 
labels in relation to each other.

Definition 9 Given a multi-label table � =< �, � ,� > , 
� represents sample set, �  denotes the feature set, and � 
denotes label set containing � labels. The weight of �m is as 
follows, where �m ∈ �:

where IG
(
�n,�m

)
 denotes the information gain between 

�m and �n . W
(
�m

)
 represents the importance of label �m 

and is equal to the ratio of the sum of information gain of 
label �m and other labels to the information gain among all 
labels. Obviously, it can be seen that 0 < W

(
�m

)
< 1 and ∑�

m=1
W
�
�m

�
= 1.

3.4  Correlation measures for feature and label sets

In order to calculate the relevance between features and label 
sets, which incorporates label significance, we construct a rela-
tionship matrix concerning � that considers label correlations. 
The conventional method of computing the label relation-
ship matrix mandates absolute identity in all labels between 
two samples for the value to be 1; otherwise, it defaults to 0. 
However, in the context of multi-label data, this traditional 
approach is excessively stringent. It often yields a similarity 
score of 0 between two samples, neglecting label relevance 
and failing to effectively capture the label set’s characteristics. 

(10)IGR(�n, fm) =
FH(�n) − FH(�n ∣ fm)

FH(fm)
.

(11)W
�
�m

�
=

∑�

n=1
IG

�
�n,�m

�
∑�

m=1

∑�

n=1
IG

�
�n,�m

� ,
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Consequently, we propose a novel method for calculating label 
set relationships, integrating label weights, as delineated in 
Definition 10.

Definition 10 Given a multi-label table � =< �, � ,� > , � 
represents sample set, �  denotes feature set, � denotes label 
set containing � labels. W

(
�k

)
 denotes the weight of label 

�k . Then the similarity of �m and �n with respect to � is 
defined as follow:

if �mk = �nk , it returns 1, otherwise returns 0. The weight 
information is incorporated into the similarity relation of 
label sets, which also means that the correlation between 
the labels is considered.

Since label set consists of symbolic data with a value of 0 
or 1 in the relationship matrix, we convert the similarity to 0 
or 1 according to Definition 11.

Definition 11 Given a multi-label table � =< �, � ,� > , 
� represents sample set, �  denotes the feature set, and � 
denotes label set containing � labels. s�

mn
 denotes the simi-

larity of samples �m and �n . If s�mn >= 𝛾 , the similarity of 
samples �m and �n is equal to 1. It is defined as follows:

where the default value of threshold � is 0.8.

Calculate the relationship matrix of label sets 
M
(
ℝ�

)
=
[
��
mn

]
z×z

 by Eq. (13). The information entropy of 
the label set is calculated based on Eq. (4) and Definition 7.

4  The proposed method

According to the preceding analysis, label correlation could 
offer valuable additional information to improve the efficiency 
of multi-label learning. Therefore, it is imperative to consider 
the correlation between labels in the process of multi-label 
feature selection.

Definition 12 Given a multi-label table � =< �, � ,� > , � 
represents sample set, �  denotes the feature set, fm ∈ �  , � 
denotes label set containing � labels. The weight of feature 
fm is defined as follows:

(12)s�
mn

=

�∑
k=1

W
(
�k

)(
�mk = �nk

)
,

(13)��
mn

=

{
1, s�

mn
>= 𝛾

0, otherwise
,

Based on Definition 12, a fuzzy information gain ratio-
based multi-label feature selection algorithm with label 
correlation (FIGR_LC) is proposed. Algorithm 1 provides 
comprehensive instructions.

Algorithm 1  Fuzzy information gain ratio-based multi-
label feature selection with label correlation (FIGR_LC)

Input: A multi-label decision table T =<
U,F,L >, where U denotes a nonempty finite
set of samples, F = {f1, f2, · · · , fq} denotes
the feature set, and L denotes label set con-
taining labels

Output: The feature ranking rank
1: //Compute the information gain between

labels
2: for m = 1 : do
3: for n = 1 : do
4: IG(Ln,Lm) = FH(Ln) − FH(Ln |

Lm)
5: end for
6: end for
7: //Compute the weight of each label
8: for m = 1 : do

9: W (Lm) = n=1
IG(Ln,Lm)

m=1 n=1
IG(Ln,Lm)

10: end for
11: //Compute the weight of each feature
12: for m = 1 : q do
13: //Compute the correlation between fm

and each label
14: for n = 1 : do
15: IGR(Ln, fm)=FH(Ln)−FH(Ln|fm)

FH(fm)
16: IGR SUM = IGR SUM +

IGR(Ln, fm)
17: end for
18: //Compute the correlation between fm

and L with label correlation
19: IGRS(fm) = IGR SUM +

FH(L)−FH(L|fm)
FH(fm)

20: end for
21: Sort features in descending order of IGRS to

eatablish the feature ranking rank
22: return rank

(14)

IGRS(fm) =

�∑
n=1

IGR
(
�n, fm

)
+ IGR

(
�, fm

)

=

�∑
n=1

FH(�n) − FH(�n ∣ fm)

FH(fm)

+
FH(�) − FH(� ∣ fm)

FH(fm)
.
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The weight of feature fm is considered from two different 
perspectives. Firstly the correlation between feature fm and 
each label is calculated. Then, the correlation between the 
feature fm and the label set � is calculated, where the cor-
relation between the labels is considered. Finally, two results 
are combined as feature weight to evaluate the importance 
of the feature fm.

Let |F| represent the number of features, |L| is the num-
ber of labels, and |U| denotes the number of samples. Algo-
rithm 1 mainly includes three steps. First, the weights of 
labels are calculated with O

(|L|3) time complexity. Then 
the feature weights IGRS(fm) is calculated, with O(|F||L|) 
time complexity of the correlation. Finally, feature ranking 
is performed, and its time complexity is O(|F||F|) . Overall 
temporal complexity is O

(|L|3 + |F||L| + |F||F|).

5  Experiments study

In this section, the proposed algorithm is compared with five 
popular multi-label feature selection algorithms in terms of 
classification performance.

5.1  Multi‑label datasets

In the experiments, five baseline multi-label datasets from a 
variety of fields are used to evaluate the effectiveness of the 
proposed algorithm. All of these used datasets are available 
from the Mulan Library. Table 1 summarises the character-
istics of these datasets.

5.2  Evaluation metrics

Five evaluation metrics [33] are used to assess the algorithm 
performance and their particulars are as follows:

Let Z =
{(

xi, Yi
)}m

i=1
⊂ R

d × {+1,−1}L be test set. fl(x) 
is the prediction function, and rankf (x, l) ∈ {1, 2,… , L} is 
the ranking function. 

1. Average Precision (AP): it is used to examine the aver-
age probability that the label whose position is ranked 

ahead of the predicted label for all samples still belongs 
to the sample label, defined as: 

2. Ranking Loss (RL): it is used to examine the average 
probability that the unrelated labels of all samples are 
ranked ahead of the related labels, defined as: 

3. Hamming Loss (HL): it is used to measure the misclas-
sification of a sample on a single category label, defined 
as: 

4. Coverage (CV): it is a measure of the average number of 
lookups required for a sample to traverse all its relevant 
category labels, defined as: 

5. One-Error (OE): it is a measure of the probability that 
the first label in the sample category label ranking is not 
part of the set of related labels, defined as: 

 where Ri =
{
l||Yil = +1

}
 denotes the set of labels 

related to sample xi , and Ri =
{
l||Yil = −1

}
 denotes the 

set of labels unrelated to sample xi.
As for AP, the performance improves as the value increases, 
while for RL, HL, CV and OE, the performance improves as 
the value decreases.

5.3  Experiment configurations

To validate the effectiveness of FIGR_LC, five classical 
multi-label feature selection algorithms are selected for 
comparison with the proposed algorithm. MLNB (Multi-
label Naive Bayes Classification) [39] is a feature selec-
tion algorithm embedded in a multi-label Bayesian classi-
fier. MDDM is a maximum dependency-based multi-label 

AP =
1

m

m∑
i=1

1
||Ri

||

×
∑
l∈Ri

{
k
|||rankf

(
xi, k

)
≤ rankf

(
xi, l

)
, k ∈ Ri

}

rankf
(
xi, l

) .

RL = 1
m

m
∑

i=1

1
|

|

Ri
|

|

|

|

R̄i
|

|

×
|

|

|

|

{

(l, k)||
|

rankf
(

xi, l
)

≥ rankf
(

xi, k
)

, (l, k) ∈ Ri × R̄i
}

|

|

|

.

HL =
1

m

m∑
i=1

1

L

L∑
l=1

[
fl
(
xi
)
≠ Yil

]
.

CV =
1

m

m∑
i=1

max
l∈Ri

rankf
(
xi, l

)
− 1.

OE =
1

m

m∑
i=1

[
argmax

l∈L
fl
(
xi
)
∉ Ri

]
,

Table 1  The description of multi-label datasets

Name Instances Attribute Labels Train Test

Emotion 593 72 6 391 202
Birds 645 260 19 322 323
Yeast 2417 103 14 1499 918
Computer 5000 681 33 2000 3000
Health 5000 612 32 2000 3000
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feature selection algorithm, which is further divided into 
MDDMspc (MDDM Based on Subspace) [40] and MDDM-
proj (MDDM Based on Projection) [40] based on parameter 
selection. MEFS (Multi-label Embedded Feature Selection) 
[41] is an embedded feature selection method based on fore-
cast risk. By evaluating the importance of each feature, the 
best feature subset is finally obtained. ARMLNRS [16] is a 
neighborhood rough set-based multi-label feature selection 
method. As for health and compute datasets with the feature 
number is more than 300, we take the first 300 features for 
the experiments. The multi-label classifier ML-kNN [42] 
is used to evaluate the performance of multi-label feature 
selection algorithms. s is the smoothing coefficient, which 
is set to 1. The number of nearest neighbours k is set to 10.

5.4  Experiment analysis and results

(1) Comparative Performance In order to demonstrate that 
FIGR_LC is effective, we compare the classification results 
based on different feature subsets induced by various feature 

selection algorithms, and analyse the classification perfor-
mance of each feature selection algorithm with respect to 
the number of selected features. The experimental results 
are shown in Tables 2, 3, 4, 5 and 6.

As shown in the five tables, “ ↑ ” mark means that the per-
formance improves as the value increases, while “ ↓ ” mark 
means that the performance improves as the value decreases. 
Num denotes the number of selected features, and it is equal 
to the number of features contained in the feature subset that 
could achieve the optimal classification result. In addition, 
bold indicates that the method obtains the best results for 
the relevant evaluation metric. “−” denotes that the method 
was unable to choose features because of its lengthy running 
time. Due to the failure of MEFS algorithm to get results 
on health and computer datasets, the classification results 
on these two datasets are replaced with “−”. It is worth 
mentioning that the dimensionality reduction threshold of 
MDDM in the table is set to 90%, and MDDMspc, MDDM-
proj, MEFS and FIGR_LC could get the ranking of all the 
features, and then the top Num features that can achieve the 

Table 2  Performance 
comparison on emotion 

Algorithm Num AP ( ↑) HL ( ↓) CV ( ↓) OE ( ↓) RL ( ↓)

Raw data 72 0.781 0.214 1.920 0.332 0.173
MLNB 25 0.753 0.245 2.074 0.376 0.205
MDDMproj 3 0.669 0.314 2.649 0.445 0.316
MDDMspc 6 0.748 0.244 2.213 0.352 0.226
MEFS 69 0.798 0.219 1.891 0.297 0.166
ARMLNRS 30 0.790 0.226 1.960 0.277 0.174
FIGR_LC 45 0.802 0.200 1.861 0.282 0.165

Table 3  Performance 
comparison on birds 

Algorithm Num AP ( ↑) HL ( ↓) CV(↓) OE ( ↓) RL ( ↓)

Raw data 260 0.695 0.054 3.399 0.390 0.125
MLNB 131 0.697 0.052 3.458 0.365 0.128
MDDMproj 13 0.626 0.068 3.564 0.523 0.141
MDDMspc 19 0.643 0.067 3.616 0.489 0.139
MEFS 128 0.709 0.053 3.511 0.344 0.129
ARMLNRS 104 0.719 0.053 3.421 0.346 0.123
FIGR_LC 111 0.722 0.052 3.331 0.322 0.119

Table 4  Performance 
comparison on yeast 

Algorithm Num AP ( ↑) HL ( ↓) CV ( ↓) OE ( ↓) RL ( ↓)

Raw data 103 0.751 0.201 6.809 0.250 0.176
MLNB 28 0.736 0.208 6.693 0.256 0.187
MDDMproj 7 0.708 0.229 6.852 0.262 0.208
MDDMspc 10 0.712 0.229 6.879 0.254 0.206
MEFS 76 0.758 0.204 6.415 0.244 0.174
ARMLNRS 23 0.734 0.215 6.605 0.253 0.190
FIGR_LC 60 0.758 0.201 6.330 0.237 0.171
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best classification performance are selected to participate in 
the comparison.

From Tables 2, 3, 4, 5 and 6, it can be seen that FIGR_
LC performs outstandingly compared to other algorithms, 
with optimal evaluation values on all datasets, except the 
emotion dataset where the OE metric is only slightly below 
the optimal perform. On the emotion dataset, ARMLNRS 
only achieves a winning rate of 3.33%, while FIGR_LC had 
a winning rate of 96.67%. According to the experimental 
results, the performance of FIGR_LC ranks first, followed 
by ARMLNRS and MEFS, and finally MLNB, MDDMproj 
and MDDMspc.

To analyze how varying numbers of selected features 
impact the algorithms’ classification performance, we 

conducted further experiments, the outcomes of which are 
presented in Figs. 1, 2 and 3. The multi-label feature selec-
tion algorithms, namely MDDMspc, MDDMproj, MEFS, 
and FIGR_LC, generated a set of feature rankings, then 
inserted the features into the selected feature set sequen-
tially according to the feature order. Subsequently, the result-
ing average classification accuracies were compared with 
ARMLNRS. The horizontal line in the figures represents 
the Average Precision (AP) of the initial data, providing a 
reference point for evaluation.

As can be seen from Figs. 1, 2 and 3, the algorithm per-
formance fluctuates with the number of selected features. 
Nevertheless, the Average Precision (AP) does not follow a 
strictly increasing trend with the number of selected features. 

Table 5  Performance 
comparison on health 

Algorithm Num AP ( ↑) HL ( ↓) CV ( ↓) OE ( ↓) RL ( ↓)

Raw data 612 0.681 0.046 3.305 0.421 0.061
MLNB 289 0.667 0.044 3.555 0.425 0.068
MDDMproj 15 0.634 0.049 3.834 0.491 0.074
MDDMspc 81 0.647 0.048 3.704 0.453 0.071
MEFS – – – – – –
ARMLNRS 83 0.685 0.043 3.358 0.401 0.063
FIGR_LC 57 0.696 0.042 3.278 0.383 0.060

Table 6  Performance 
comparison on computer 

Algorithm Num AP ( ↑) HL ( ↓) CV ( ↓) OE ( ↓) RL ( ↓)

Raw data 681 0.633 0.041 4.416 0.437 0.092
MLNB 345 0.635 0.094 4.553 0.434 0.095
MDDMproj 18 0.598 0.044 4.880 0.481 0.105
MDDMspc 23 0.599 0.043 4.847 0.480 0.103
MEFS – – – – – –
ARMLNRS 132 0.633 0.040 4.419 0.443 0.091
FIGR_LC 189 0.639 0.040 4.374 0.443 0.091

Fig. 1  Average precision of different algorithms on emotion Fig. 2  Average precision of different algorithms on birds
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This suggests that not all features are equally effective; only 
specific ones influence the classification performance sig-
nificantly. Notably, FIGR_LC displays markedly superior 
classification performance on these datasets compared to 
the other algorithms.

On the whole, MDDM exhibits two comparable mapping 
effects, with the average classification accuracy changing 
gradually as the selected feature number increases. When 
considering the maximum average Average Precision (AP), 
MDDMproj and MDDMspc require a selected feature num-
ber that is roughly similar to the original data’s dimension-
ality, respectively. MEFS evaluates features using the clas-
sifier’s scores, leading to an evident simplification effect, 
albeit with low efficiency. ARMLNRS selects fewer features, 
resulting in a noticeable simplification effect; however, the 
average classification accuracy remains relatively modest. 
In contrast, FIGR_LC not only achieves lower dimension-
ality but also attains an average classification accuracy that 
matches or even surpasses that of the original data, while 
also proving more efficiency than MEFS.

Analyzing the interplay between classification perfor-
mance driven by feature subsets and the efficiency trend 

with increasing selected feature numbers provides a clearer 
demonstration of the proposed algorithm’s effectiveness.

(2) Statistical test Statistical hypothesis tests were con-
ducted to compare multiple multi-label feature selection 
algorithms across various datasets systematically, aiming 
to assess the efficiency of these methods. The Friedman 
test was employed to determine whether these comparative 
methods exhibited substantially differences. Given N data-
sets and � comparative algorithms, �m

n
 denotes the ranking 

of the nth method on the mth dataset. ℜn =
1

N

∑N

m=1
𝔯m
n
 indi-

cates the nth method’s average sort. This analysis was per-
formed under the null hypothesis assuming that all methods 
are equal. The Friedman statistics are calculated as follows, 
where FF follows the F-distribution with degrees of freedom 
(� − 1) and (� − 1)(N − 1).

In Table 7, FF is presented, summarizing five evalua-
tion metrics. The results reveal that at a significance level 
� = 0.1 , the null hypothesis is denied, indicating significant 
differences among the comparative approaches. A Neme-
nyi test was employed as a post-hoc test to assess whether 
FIGR_LC achieves competitive performance compared to 
the other algorithms. Comparing the difference between 
FIGR_LC and the average rating of a comparative algorithm 
is as follows:

Given q� = 2.589(� = 6, � = 0.1) , CD = 3.954(N = 3, � = 6) , 
the crucial difference CD is utilized to control the family-
wise error rate.

Figure 4 illustrates the Critical Difference (CD) plots of 
several evaluation measures. In each subfigure, all methods’ 
average ranks are aligned along the identical coordinate line. 
Methods with superior performance are located closer to 
the right edge of the axis, while those with lower rank are 
positioned closer to the left edge of the axis. A straight line 
connects any two methods if their average ranks are less than 
the CD. Methods whose average ranks exceeds the CD are 
considered to have substantial distinctions.

In summary, it can be seen from Fig. 4 that: (1) FIGR_LC 
outperforms MDDMspc, MDDMproj, MLNB, MEFS and 
ARMLNRS across all evaluation metrics. (2) FIGR_LC 
demonstrates statistically superior over MDDMproj across 
all evaluation measures.

FF =
(N − 1)�2

F

N(� − 1) − �2
F

, where

�2
F
=

12N

�(� + 1)

(
�∑

n=1

ℜ2
n
−

�(� + 1)2

4

)
.

CD = q�

√
�(� + 1)

6N
.

Fig. 3  Average precision of different algorithms on yeast

Table 7  Summary of the Friedman statistics F
F
 ( k = 6 , N = 3 ) and 

the critical value

Evaluation measure F
F

Criti-
cal value 
( � = 0.10)

AP 29.5 2.522
RL 17.6875
HL 7.403
CV 17.6875
OE 17.6875
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6  Conclusions

To address the inherent ambiguity and uncertainty in multi-
label data, this paper introduces a novel multi-label feature 
selection algorithm utilizing fuzzy information gain ratio. 
This approach simultaneously considers the correlation 
between features and individual labels, the correlation 
between features and the set of labels, as well as the corre-
lation between labels when evaluating feature importance. 
Comparative analysis with other existing multi-label feature 
selection algorithms demonstrates the superiority of the pro-
posed algorithm.

In traditional multi-label learning, it is commonly 
assumed that each training sample is accurately labeled with 
all relevant labels. However, this assumption rarely holds 
true in reality due to the exorbitant cost associated with pre-
cise labeling for each sample. Instead, just roughly assigning 
a set of candidate labels to each sample would significantly 
reduce labeling efforts, leading to the emergence of Partial 
Multi-label Learning (PML). Although PML is a prominent 
research area within multi-label learning, the feature selec-
tion of partial multi-label learning remains underexplored. 
In our future work, we plan to explore several effective par-
tial multi-label feature selection algorithms based on fuzzy 
information entropy.
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